Search Results

Search found 79 results on 4 pages for 'cedric boivin'.

Page 4/4 | < Previous Page | 1 2 3 4 

  • Instantiate a javascript module only one time.

    - by Cedric Dugas
    Hey guys, I follow a module pattern where I instantiate components, however, a lot of time a component will only be instantiate one time (example: a comment system for an article). For now I instantiate in the same JS file. but I was wondering if it is the wrong approach? It kind of make no sense to instantiate in the same file and always only once. But at the same time, if this file is in the page I want to have access to my module without instantiate from elsewhere, and IF I need another instance, I just create another from elsewhere... Here is the pattern I follow: ApplicationNamespace.Classname = function() { // constructor function privateFunctionInit() { // private } this.privilegedFunction = function() { // privileged privateFunction(); }; privateFunctionInit() }; ApplicationNamespace.Classname.prototype = { Method: function(){} } var class = new ApplicationNamespace.Classname(); What do you think, wrong approach, or is this good?

    Read the article

  • Waiting until one event has happened before moving onto the next.

    - by jaasum
    I currently have a scrolling anchor animation that also adds an "active" class to the anchor clicked. I am trying to fit the below function into the works as well, so say someone clicks "anchor 1", "anchor 1" will get an active class and the window will scroll to that location. But, after that has happened say the user manually begins scrolling down the page, I want the active class to be removed. The problem I am running up against now is that the below function will happen when the scrolling animation from a clicked anchor is taking place. How can I disable this only when the window is being scrolled from a clicked anchor? $(window).scroll(function() { $('a[href^=#]').removeClass('active'); }); Here is the scrolling anchor script I am working with. /******* *** Anchor Slider by Cedric Dugas *** *** Http://www.position-absolute.com *** Never have an anchor jumping your content, slide it. Don't forget to put an id to your anchor ! You can use and modify this script for any project you want, but please leave this comment as credit. *****/ jQuery.fn.anchorAnimate = function(settings) { settings = jQuery.extend({ speed : 500 }, settings); return this.each(function(){ var caller = this $(caller).click(function (event) { event.preventDefault() var locationHref = window.location.href var elementClick = $(caller).attr("href") var destination = $(elementClick).offset().top; $("html:not(:animated),body:not(:animated)").animate({ scrollTop: destination}, settings.speed, 'easeOutCubic', function() { window.location.hash = elementClick }); return false; }) }) } And lastly, my jQuery // Scrolling Anchors $('[href^=#]').anchorAnimate(); // Active Class For Clicked Anchors var anchorscroll = $('a[href^=#]') anchorscroll.click(function(){ var anchorlocation = $(this).attr("href"); anchorscroll.removeClass('active'); $(this).addClass('active'); $('a[href='+anchorlocation+']').addClass('active'); });

    Read the article

  • Talend Enterprise Data Integration overperforms on Oracle SPARC T4

    - by Amir Javanshir
    The SPARC T microprocessor, released in 2005 by Sun Microsystems, and now continued at Oracle, has a good track record in parallel execution and multi-threaded performance. However it was less suited for pure single-threaded workloads. The new SPARC T4 processor is now filling that gap by offering a 5x better single-thread performance over previous generations. Following our long-term relationship with Talend, a fast growing ISV positioned by Gartner in the “Visionaries” quadrant of the “Magic Quadrant for Data Integration Tools”, we decided to test some of their integration components with the T4 chip, more precisely on a T4-1 system, in order to verify first hand if this new processor stands up to its promises. Several tests were performed, mainly focused on: Single-thread performance of the new SPARC T4 processor compared to an older SPARC T2+ processor Overall throughput of the SPARC T4-1 server using multiple threads The tests consisted in reading large amounts of data --ten's of gigabytes--, processing and writing them back to a file or an Oracle 11gR2 database table. They are CPU, memory and IO bound tests. Given the main focus of this project --CPU performance--, bottlenecks were removed as much as possible on the memory and IO sub-systems. When possible, the data to process was put into the ZFS filesystem cache, for instance. Also, two external storage devices were directly attached to the servers under test, each one divided in two ZFS pools for read and write operations. Multi-thread: Testing throughput on the Oracle T4-1 The tests were performed with different number of simultaneous threads (1, 2, 4, 8, 12, 16, 32, 48 and 64) and using different storage devices: Flash, Fibre Channel storage, two stripped internal disks and one single internal disk. All storage devices used ZFS as filesystem and volume management. Each thread read a dedicated 1GB-large file containing 12.5M lines with the following structure: customerID;FirstName;LastName;StreetAddress;City;State;Zip;Cust_Status;Since_DT;Status_DT 1;Ronald;Reagan;South Highway;Santa Fe;Montana;98756;A;04-06-2006;09-08-2008 2;Theodore;Roosevelt;Timberlane Drive;Columbus;Louisiana;75677;A;10-05-2009;27-05-2008 3;Andrew;Madison;S Rustle St;Santa Fe;Arkansas;75677;A;29-04-2005;09-02-2008 4;Dwight;Adams;South Roosevelt Drive;Baton Rouge;Vermont;75677;A;15-02-2004;26-01-2007 […] The following graphs present the results of our tests: Unsurprisingly up to 16 threads, all files fit in the ZFS cache a.k.a L2ARC : once the cache is hot there is no performance difference depending on the underlying storage. From 16 threads upwards however, it is clear that IO becomes a bottleneck, having a good IO subsystem is thus key. Single-disk performance collapses whereas the Sun F5100 and ST6180 arrays allow the T4-1 to scale quite seamlessly. From 32 to 64 threads, the performance is almost constant with just a slow decline. For the database load tests, only the best IO configuration --using external storage devices-- were used, hosting the Oracle table spaces and redo log files. Using the Sun Storage F5100 array allows the T4-1 server to scale up to 48 parallel JVM processes before saturating the CPU. The final result is a staggering 646K lines per second insertion in an Oracle table using 48 parallel threads. Single-thread: Testing the single thread performance Seven different tests were performed on both servers. Given the fact that only one thread, thus one file was read, no IO bottleneck was involved, all data being served from the ZFS cache. Read File ? Filter ? Write File: Read file, filter data, write the filtered data in a new file. The filter is set on the “Status” column: only lines with status set to “A” are selected. This limits each output file to about 500 MB. Read File ? Load Database Table: Read file, insert into a single Oracle table. Average: Read file, compute the average of a numeric column, write the result in a new file. Division & Square Root: Read file, perform a division and square root on a numeric column, write the result data in a new file. Oracle DB Dump: Dump the content of an Oracle table (12.5M rows) into a CSV file. Transform: Read file, transform, write the result data in a new file. The transformations applied are: set the address column to upper case and add an extra column at the end, which is the concatenation of two columns. Sort: Read file, sort a numeric and alpha numeric column, write the result data in a new file. The following table and graph present the final results of the tests: Throughput unit is thousand lines per second processed (K lines/second). Improvement is the % of improvement between the T5140 and T4-1. Test T4-1 (Time s.) T5140 (Time s.) Improvement T4-1 (Throughput) T5140 (Throughput) Read/Filter/Write 125 806 645% 100 16 Read/Load Database 195 1111 570% 64 11 Average 96 557 580% 130 22 Division & Square Root 161 1054 655% 78 12 Oracle DB Dump 164 945 576% 76 13 Transform 159 1124 707% 79 11 Sort 251 1336 532% 50 9 The improvement of single-thread performance is quite dramatic: depending on the tests, the T4 is between 5.4 to 7 times faster than the T2+. It seems clear that the SPARC T4 processor has gone a long way filling the gap in single-thread performance, without sacrifying the multi-threaded capability as it still shows a very impressive scaling on heavy-duty multi-threaded jobs. Finally, as always at Oracle ISV Engineering, we are happy to help our ISV partners test their own applications on our platforms, so don't hesitate to contact us and let's see what the SPARC T4-based systems can do for your application! "As describe in this benchmark, Talend Enterprise Data Integration has overperformed on T4. I was generally happy to see that the T4 gave scaling opportunities for many scenarios like complex aggregations. Row by row insertion in Oracle DB is faster with more than 650,000 rows per seconds without using any bulk Oracle capabilities !" Cedric Carbone, Talend CTO.

    Read the article

< Previous Page | 1 2 3 4