Search Results

Search found 1131 results on 46 pages for 'clr'.

Page 4/46 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • CLR Profiler Allocated Bytes and XNA ContentManager

    - by Vackup
    I've been fighting with XNA ContentManager and memory allocations for some weeks because I'm trying to port my game from XNA (Windows) to ExEn / Monotouch (iphone). The problem is that after playing a few levels, my game exits unexpectedly on a real iPhone device (not simulator). Profiling memory usage on Windows with CLRProfile, I found some useful stuff but I also found something I dont understand. If I use 2 ContentManagers (1 for shared assets and 1 for level assets), when profiling, "Allocated Bytes" grows and grows after level through level but Memory consumption measured by Windows Task Manager stays constant (down when I unload the content manager and up again when I load content). Obviously, I contentManager.Unload() when level ends. After a few levels my game exits unexpectedly on an iPhone device. If I use 1 content manager, "CRLProfiler Allocated Bytes" stays constant on Windows and on the iPhone; I can play the game normally and it doesnt exit unexpectedly. I use the same assets level through level. It seems like in ios (iPhone) when loading and unloading the same assets, it allocates memory and consumes all device memory, so the ios kill it. Can anybody explain me how this really works? I've read quite a bit, but I still don't understand what's going on.

    Read the article

  • Is IronScheme complete enough or stable enough to be worth learning?

    - by World Engineer
    IronScheme is mentioned on Wikipedia as a successor to a failed project called IronLisp, bringing Lisp to CLR and .NET, the way Clojure does for the JVM. Does anyone have experience with this language? It looks fairly complete (99%) but I'm not sure how to judge whether it's worth my time to fiddle with getting it set up or not. By stable or complete, I mean using it for actual projects rather than just fiddling with tools and Project Euler style problems.

    Read the article

  • A CLR-supporting browser (4 replies)

    Microsoft, by seemingly ignoring the huge benefits of JIT compiling VMs on the browser and instead pushing Silverlight (which is pretty awesome though), is showing it STILL hasn't gotten the Web. (The fact that I can't seem to post on these newsgroups using Firefox (!!!) is yet another glaring example) What is so ironic is that it has a golden chance to leapfrog Chrome without even reinventing any...

    Read the article

  • Writing a new programming language - when and how to bootstrap datastructures?

    - by OnResolve
    I'm in the process of writing my own programming language which, thus far, has been going great in terms of what I set out to accomplish. However, now, I'd like to bootstrap some pre-existing data structures and/or objects. My problem is that I'm not really sure on how to begin. When the compiler begins do I splice in these add-ins so their part of the scope of the application? If I make these in some core library, my concern is how I distribute the library in addition to the compiler--or are they part of the compiler? I get that there are probably a number of plausible ways to approach this, but I'm having trouble with the setting my direction. If it helps, the language is on top of the .NET core (i.e it compiles to CLR code). Any help or suggestions are very much appreciated!

    Read the article

  • How do I select the right version of the CLR in VS2010?

    - by sameer
    hi all At the time of creating the new project, i not able to session entry for previous version of .net framework in the drop drown box it should only .net Framework 4 and hyper link for more framework.Even those i have .net 2.0 ,3.0 and 3.5. Can anyone suggest me what can be done? Thanks and Regards Sameer ahmed.s

    Read the article

  • Visual Studio CLR project

    - by Vit
    Hi, so I wanted to try my first CLR project in Visual C++. So I created console project, but since every tutorial I found about CLR programming was using C#, or windows forms, I just tried writing standart c++ Hello Word app using iostream (I think code isnt needed in this case) but I though it will give me some compile error, since iostream uses precompiled functions, and CLR app compiles into MSIL. I assumed that CLR programming using C++ means just using C++ syntax, but different functions for I/O and so. So, basicly, what I want to ask is, can any native console C++ app be compiled into MSIL and run by .NET framework?

    Read the article

  • Does the number of busy worker threads in the CLR ThreadPool affect performance of I/O threads?

    - by andrej351
    We have a Windows Service which hosts a number of WCF services and, in an unrelated part of the app, makes extensive use of the TPL Task class to asynchronously do relatively short bits of work. It is my understanding that WCF uses managed I/O threads from the ThreadPool to execute requests. I noticed that after deploying a feature which significantly raised the applications use of Tasks, and as such the use of ThreadPool worker threads as well, performance of a couple of web services has become very slow. We're talking minutes instead of less than a second. The number of Tasks actually trying to run at any one time can range between 20 and 1000, which makes me think that any new (last in) work needing some CPU time could be forced to wait for quite some time. Does the (in my case extremely large) number of busy ThreadPool worker threads affect the ThreadPool's managed I/O threads? Or could these two be connected in any way? Thanks!

    Read the article

  • CLR: Multi Param Aggregate, Argument not in Final Output?

    - by OMG Ponies
    Why is my delimiter not appearing in the final output? It's initialized to be a comma, but I only get ~5 white spaces between each attribute using: SELECT [article_id] , dbo.GROUP_CONCAT(0, t.tag_name, ',') AS col FROM [AdventureWorks].[dbo].[ARTICLE_TAG_XREF] atx JOIN [AdventureWorks].[dbo].[TAGS] t ON t.tag_id = atx.tag_id GROUP BY article_id The bit for DISTINCT works fine, but it operates within the Accumulate scope... Output: article_id | col ------------------------------------------------- 1 | a a b c I only have rudimentary C# API knowledge... C# Code: using System; using System.Data; using System.Data.SqlClient; using System.Data.SqlTypes; using Microsoft.SqlServer.Server; using System.Xml.Serialization; using System.Xml; using System.IO; using System.Collections; using System.Text; [Serializable] [SqlUserDefinedAggregate(Format.UserDefined, MaxByteSize = 8000)] public struct GROUP_CONCAT : IBinarySerialize { ArrayList list; string delimiter; public void Init() { list = new ArrayList(); delimiter = ","; } public void Accumulate(SqlBoolean isDistinct, SqlString Value, SqlString separator) { delimiter = (separator.IsNull) ? "," : separator.Value ; if (!Value.IsNull) { if (isDistinct) { if (!list.Contains(Value.Value)) { list.Add(Value.Value); } } else { list.Add(Value.Value); } } } public void Merge(GROUP_CONCAT Group) { list.AddRange(Group.list); } public SqlString Terminate() { string[] strings = new string[list.Count]; for (int i = 0; i < list.Count; i++) { strings[i] = list[i].ToString(); } return new SqlString(string.Join(delimiter, strings)); } #region IBinarySerialize Members public void Read(BinaryReader r) { int itemCount = r.ReadInt32(); list = new ArrayList(itemCount); for (int i = 0; i < itemCount; i++) { this.list.Add(r.ReadString()); } } public void Write(BinaryWriter w) { w.Write(list.Count); foreach (string s in list) { w.Write(s); } } #endregion }

    Read the article

  • Tell me again why we need both .NET and Windows? Why can't Windows morph into the CLR?

    - by le dorfier
    The same way DOS morphed into Windows? We seem to have ended up supporting and developing for three platforms from Microsoft, and I'm not sure where the boundaries are supposed to lie. Why can't the benefits of the CLR (such as type safety, memory protection, etc.) be built into Windows itself? Or into the browser? Why an entirely other virtual machine? (How may levels of virtual machine indirection are we dealing with now? We just added Silverlight - and before that Flash - running inside the Browser running inside maybe a VM install...) I can see raw Windows for servers, but why couldn't there be a CLR for workstations talking directly to the hardware (or at least not the whole Windows legacy ball and chain)? (ooppp - I've got two questions here. Let's make this - why can't .net be built into Windows? I understand about backward compatibility - but the safety of what's in .NET could be at least optionally in Windows itself, couldn't it? It would just be yet another of many sets of APIs?) Factoid - I recall that one of the competitor architectures selling against MS-DOS on the IBM PC was UCSD-pascal runtime - a VM.

    Read the article

  • Is it possible to implement an infinite IEnumerable without using yield with only C# code?

    - by sinelaw
    This isn't a practical problem, it's more of a riddle. Problem I'm curious to know if there's a way to implement something equivalent to the following, but without using yield: IEnumerable<T> Infinite<T>() { while (true) { yield return default(T); } } Rules You can't use the yield keyword Use only C# itself directly - no IL code, no constructing dynamic assemblies etc. You can only use the basic .NET lib (only mscorlib.dll, System.Core.dll? not sure what else to include). However if you find a solution with some of the other .NET assemblies (WPF?!), I'm also interested. Don't implement IEnumerable or IEnumerator. Notes The closest I've come yet: IEnumerable<int> infinite = null; infinite = new int[1].SelectMany(x => new int[1].Concat(infinite)); This is "correct" but hits a StackOverflowException after 14399 iterations through the enumerable (not quite infinite). I'm thinking there might be no way to do this due to the CLR's lack of tail recursion optimization. A proof would be nice :)

    Read the article

  • how can i figure out iis7 memory leak from this dump result?

    - by Cenk Erdem
    my application sometimes starts to eat too much memory in a few seconds then crashes, i used debugdiag to take a dump when this happened, in the analyse i see lots of memory allocations all of them has the same information and each of them allocates 128mb. they look like this: Address 0x00000000`aff41798 Allocation Time 06:56:06 since tracking started Allocation Size 128.00 MBytes Function Source Destination LeakTrack+186cf clr!CExecutionEngine::ClrVirtualAlloc+3c clr!ClrVirtualAlloc+3c clr!WKS::virtual_alloc+42 clr!WKS::gc_heap::get_segment+a2 clr!WKS::gc_heap::get_large_segment+204 clr!WKS::gc_heap::loh_get_new_seg+78 clr! ?? ::FNODOBFM::`string'+a008a clr!WKS::gc_heap::try_allocate_more_space+31b clr!WKS::gc_heap::allocate_more_space+26 clr!WKS::gc_heap::allocate_large_object+6a clr!WKS::GCHeap::Alloc+b5 clr!FramedAllocateString+b06 mscorlib_ni+39f5fd mscorlib_ni+389f83 System_Xml_ni+451adc System_Data_SqlXml_ni+2275d4 System_Data_SqlXml_ni+233f32 System_Data_SqlXml_ni+8ec28 System_Data_SqlXml_ni+8eb65 System_Web_ni+2882b2 System_Web_ni+2794b6 System_Web_ni+2794b6 0x7FF002474BC what can be wrong about my code? any suggestions?

    Read the article

  • Sql CLR calling webservice throws exception

    - by TonyP
    I have clr stored procedure that calls a Webservice method. Webmethod in turn call a com object .. and do some processing on a remote Unix server. When I invoke webmethod by it self it works fine. But when called from the CLR I get the following exception.. What am I doing wrong ? Msg 6522, Level 16, State 1, Procedure PrintOa, Line 0 A .NET Framework error occurred during execution of user-defined routine or aggregate "PrintOa": System.Security.HostProtectionException: Attempted to perform an operation that was forbidden by the CLR host. The protected resources (only available with full trust) were: All The demanded resources were: Synchronization System.Security.HostProtectionException: at System.Reflection.MethodBase.PerformSecurityCheck(Object obj, RuntimeMethodHandle method, IntPtr parent, UInt32 invocationFlags) at System.Reflection.RuntimeConstructorInfo.Invoke(BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture) at System.Diagnostics.TraceUtils.GetRuntimeObject(String className, Type baseType, String initializeData) at System.Diagnostics.TypedElement.BaseGetRuntimeObject() at System.Diagnostics.ListenerElement.GetRuntimeObject() at System.Diagnostics.ListenerElementsCollection.GetRuntimeObject() at System.Diagnostics.TraceInternal.get_Listeners() at System.Diagnostics.TraceInternal.WriteLine(Object value) at System.Diagnostics.Debug.WriteLine(Object value) at BaaNOA.PrintOA(String trid)

    Read the article

  • Receiving SQL Server events from a CLR function

    - by Pablo Lerner
    I wrote a CLR class with several methods, which are linked as functions in a SQL Server 2005 database. When several of these functions are used in scope of one transaction or connection, I need another one to be automatically executed to clean up some stuff, at the time of transaction or connection close (either time is good for now, later I will decide which is best). I figure that receiving events from another new CLR functions can do, but I don't know how to achieve that. Can anyone point me to information on modules, documents or whatever, that can help me understand how to receive transaction or connection closing events in a CLR class, or how to execute a particular function when these events occur?

    Read the article

  • .NET Framework 4 updates breaking MMC.exe and other CLR.dll Exceptions

    - by Fox
    I've seen this issue floating around the net the last few weeks and I'm facing exactly the same issue. My servers are set to auto install updates using Windows update (not clever, I know), and since about 2 months ago, I've been getting strange Exceptions. The first thing that happens is that MMC.exe just crashes randomly and sometimes on startup of the console. The exception in the Windows Application log is as follow: Faulting application name: mmc.exe, version: 6.1.7600.16385, time stamp: 0x4a5bc808 Faulting module name: mscorwks.dll, version: 2.0.50727.5448, time stamp: 0x4e153960 Secondly, on the same server, I have some custom Windows services which constantly crash with exceptions : Faulting application name: Myservice.exe, version: 1.0.0.0, time stamp: 0x4f44cb11 Faulting module name: clr.dll, version: 4.0.30319.239, time stamp: 0x4e181a6d Exception code: 0xc0000005 Fault offset: 0x000378aa The exception is not in my code. I've tested and retested it. My server has the following .NET Framework updates installed: Does anyone have any idea?

    Read the article

  • Securing an ASP.NET MVC 2 Application

    - by rajbk
    This post attempts to look at some of the methods that can be used to secure an ASP.NET MVC 2 Application called Northwind Traders Human Resources.  The sample code for the project is attached at the bottom of this post. We are going to use a slightly modified Northwind database. The screen capture from SQL server management studio shows the change. I added a new column called Salary, inserted some random salaries for the employees and then turned off AllowNulls.   The reporting relationship for Northwind Employees is shown below.   The requirements for our application are as follows: Employees can see their LastName, FirstName, Title, Address and Salary Employees are allowed to edit only their Address information Employees can see the LastName, FirstName, Title, Address and Salary of their immediate reports Employees cannot see records of non immediate reports.  Employees are allowed to edit only the Salary and Title information of their immediate reports. Employees are not allowed to edit the Address of an immediate report Employees should be authenticated into the system. Employees by default get the “Employee” role. If a user has direct reports, they will also get assigned a “Manager” role. We use a very basic empId/pwd scheme of EmployeeID (1-9) and password test$1. You should never do this in an actual application. The application should protect from Cross Site Request Forgery (CSRF). For example, Michael could trick Steven, who is already logged on to the HR website, to load a page which contains a malicious request. where without Steven’s knowledge, a form on the site posts information back to the Northwind HR website using Steven’s credentials. Michael could use this technique to give himself a raise :-) UI Notes The layout of our app looks like so: When Nancy (EmpID 1) signs on, she sees the default page with her details and is allowed to edit her address. If Nancy attempts to view the record of employee Andrew who has an employeeID of 2 (Employees/Edit/2), she will get a “Not Authorized” error page. When Andrew (EmpID 2) signs on, he can edit the address field of his record and change the title and salary of employees that directly report to him. Implementation Notes All controllers inherit from a BaseController. The BaseController currently only has error handling code. When a user signs on, we check to see if they are in a Manager role. We then create a FormsAuthenticationTicket, encrypt it (including the roles that the employee belongs to) and add it to a cookie. private void SetAuthenticationCookie(int employeeID, List<string> roles) { HttpCookiesSection cookieSection = (HttpCookiesSection) ConfigurationManager.GetSection("system.web/httpCookies"); AuthenticationSection authenticationSection = (AuthenticationSection) ConfigurationManager.GetSection("system.web/authentication"); FormsAuthenticationTicket authTicket = new FormsAuthenticationTicket( 1, employeeID.ToString(), DateTime.Now, DateTime.Now.AddMinutes(authenticationSection.Forms.Timeout.TotalMinutes), false, string.Join("|", roles.ToArray())); String encryptedTicket = FormsAuthentication.Encrypt(authTicket); HttpCookie authCookie = new HttpCookie(FormsAuthentication.FormsCookieName, encryptedTicket); if (cookieSection.RequireSSL || authenticationSection.Forms.RequireSSL) { authCookie.Secure = true; } HttpContext.Current.Response.Cookies.Add(authCookie); } We read this cookie back in Global.asax and set the Context.User to be a new GenericPrincipal with the roles we assigned earlier. protected void Application_AuthenticateRequest(Object sender, EventArgs e){ if (Context.User != null) { string cookieName = FormsAuthentication.FormsCookieName; HttpCookie authCookie = Context.Request.Cookies[cookieName]; if (authCookie == null) return; FormsAuthenticationTicket authTicket = FormsAuthentication.Decrypt(authCookie.Value); string[] roles = authTicket.UserData.Split(new char[] { '|' }); FormsIdentity fi = (FormsIdentity)(Context.User.Identity); Context.User = new System.Security.Principal.GenericPrincipal(fi, roles); }} We ensure that a user has permissions to view a record by creating a custom attribute AuthorizeToViewID that inherits from ActionFilterAttribute. public class AuthorizeToViewIDAttribute : ActionFilterAttribute{ IEmployeeRepository employeeRepository = new EmployeeRepository(); public override void OnActionExecuting(ActionExecutingContext filterContext) { if (filterContext.ActionParameters.ContainsKey("id") && filterContext.ActionParameters["id"] != null) { if (employeeRepository.IsAuthorizedToView((int)filterContext.ActionParameters["id"])) { return; } } throw new UnauthorizedAccessException("The record does not exist or you do not have permission to access it"); }} We add the AuthorizeToView attribute to any Action method that requires authorization. [HttpPost][Authorize(Order = 1)]//To prevent CSRF[ValidateAntiForgeryToken(Salt = Globals.EditSalt, Order = 2)]//See AuthorizeToViewIDAttribute class[AuthorizeToViewID(Order = 3)] [ActionName("Edit")]public ActionResult Update(int id){ var employeeToEdit = employeeRepository.GetEmployee(id); if (employeeToEdit != null) { //Employees can edit only their address //A manager can edit the title and salary of their subordinate string[] whiteList = (employeeToEdit.IsSubordinate) ? new string[] { "Title", "Salary" } : new string[] { "Address" }; if (TryUpdateModel(employeeToEdit, whiteList)) { employeeRepository.Save(employeeToEdit); return RedirectToAction("Details", new { id = id }); } else { ModelState.AddModelError("", "Please correct the following errors."); } } return View(employeeToEdit);} The Authorize attribute is added to ensure that only authorized users can execute that Action. We use the TryUpdateModel with a white list to ensure that (a) an employee is able to edit only their Address and (b) that a manager is able to edit only the Title and Salary of a subordinate. This works in conjunction with the AuthorizeToViewIDAttribute. The ValidateAntiForgeryToken attribute is added (with a salt) to avoid CSRF. The Order on the attributes specify the order in which the attributes are executed. The Edit View uses the AntiForgeryToken helper to render the hidden token: ......<% using (Html.BeginForm()) {%><%=Html.AntiForgeryToken(NorthwindHR.Models.Globals.EditSalt)%><%= Html.ValidationSummary(true, "Please correct the errors and try again.") %><div class="editor-label"> <%= Html.LabelFor(model => model.LastName) %></div><div class="editor-field">...... The application uses View specific models for ease of model binding. public class EmployeeViewModel{ public int EmployeeID; [Required] [DisplayName("Last Name")] public string LastName { get; set; } [Required] [DisplayName("First Name")] public string FirstName { get; set; } [Required] [DisplayName("Title")] public string Title { get; set; } [Required] [DisplayName("Address")] public string Address { get; set; } [Required] [DisplayName("Salary")] [Range(500, double.MaxValue)] public decimal Salary { get; set; } public bool IsSubordinate { get; set; }} To help with displaying readonly/editable fields, we use a helper method. //Simple extension method to display a TextboxFor or DisplayFor based on the isEditable variablepublic static MvcHtmlString TextBoxOrLabelFor<TModel, TProperty>(this HtmlHelper<TModel> htmlHelper, Expression<Func<TModel, TProperty>> expression, bool isEditable){ if (isEditable) { return htmlHelper.TextBoxFor(expression); } else { return htmlHelper.DisplayFor(expression); }} The helper method is used in the view like so: <%=Html.TextBoxOrLabelFor(model => model.Title, Model.IsSubordinate)%> As mentioned in this post, there is a much easier way to update properties on an object. Download Demo Project VS 2008, ASP.NET MVC 2 RTM Remember to change the connectionString to point to your Northwind DB NorthwindHR.zip Feedback and bugs are always welcome :-)

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Do I lose anything by coding in c# and using free online vb.net code convertors?

    - by Gullu
    The company I work for uses vb.net since there are many programmers who moved up from vb6 to vb.net. Basically more vb.net resources in the company for support/maintenance vs c#. I am a c# coder and was wondering if I could just continue coding in c# and just use the many online free c# to vb.net code convertors. That way, I will be more productive and also be more marketable since there are more c# jobs compared to vb.net jobs. I have done vb6 many years ago and I am comfortable debugging vb.net code. It's just the primary coding language. I am more comfortable in c#. Will I lose anything if I use this approach. (code conversion). Based on what i read online the future of vb.net is really "Dim". Please advise. thank you

    Read the article

  • Umbraco Permissions Script - Secure Version

    - by Vizioz Limited
    Back in May I blogged about how to set Permissions for Umbraco using SetACL to set the appropriate directory permissions based on the installation recommendations.Recently I have been working on a site for a client who wanted every security item to be locked down as tightly as possible. And so I modified the script based on the Umbraco security best practices, I thought I'd share it with everyone, if I have missed anything, or if anyone has any suggestions on how to improve this, please let me know :)Please refer to my previous post regarding the SetAcl command line application that you will need.I suggest you save the following into a batch file called: umbPermSecure.batecho offREM Script to setup the Security Permissions for an Umbraco siteREM This script will give your machine Network Service the minimum rights requiredREM for Umbraco to workREM I suggest you update this script to also remove any users who do not need REM access to the web foldersREM **** Pre-requisites ****REM You will need to download - http://setacl.sourceforge.net/REM It is assumed that you have stored SetACL in a directory called, C:\SetACL ifREM not, you will need to modify the script.REM **** Usage ****REM You need to pass in the path for the root of your Umbraco directoryREM E.g. umbPermSecure.bat C:\inetpub\umbracoroot@echo umbPermSecure.bat - Script to set Umbraco File and Directory Permissions@echo based on the Umbraco Security Best Practices Document (13th March 2009)@echo Published by Chris Houston - 19th October 2009@echo http://blog.vizioz.com@echo Adding READ only access SetACL.exe -on "%1" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\web.config" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\bin" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\umbraco" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"@echo Adding READ and EXECUTE access SetACL.exe -on "%1\app_code" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read_ex" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\usercontrols" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read_ex" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"@echo Adding READ, WRITE and MODIFY access SetACL.exe -on "%1\config" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\css" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\data" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\masterpages" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\media" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\python" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\scripts" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"SetACL.exe -on "%1\xslt" -ot file -actn ace -ace "n:%computername%\NETWORK SERVICE;p:read" -ace "n:%computername%\NETWORK SERVICE;p:change" -actn clear -clr "dacl,sacl" -log "c:\setacl\log.txt"

    Read the article

  • Using delegates in C# (Part 2)

    - by rajbk
    Part 1 of this post can be read here. We are now about to see the different syntaxes for invoking a delegate and some c# syntactic sugar which allows you to code faster. We have the following console application. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: Operation op1 = new Operation(Division); 9: double result = op1.Invoke(10, 5); 10: 11: Console.WriteLine(result); 12: Console.ReadLine(); 13: } 14: 15: static double Division(double x, double y) { 16: return x / y; 17: } 18: } Line 1 defines a delegate type called Operation with input parameters (double x, double y) and a return type of double. On Line 8, we create an instance of this delegate and set the target to be a static method called Division (Line 15) On Line 9, we invoke the delegate (one entry in the invocation list). The program outputs 5 when run. The language provides shortcuts for creating a delegate and invoking it (see line 9 and 11). Line 9 is a syntactical shortcut for creating an instance of the Delegate. The C# compiler will infer on its own what the delegate type is and produces intermediate language that creates a new instance of that delegate. Line 11 uses a a syntactical shortcut for invoking the delegate by removing the Invoke method. The compiler sees the line and generates intermediate language which invokes the delegate. When this code is compiled, the generated IL will look exactly like the IL of the compiled code above. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //shortcut constructor syntax 9: Operation op1 = Division; 10: //shortcut invoke syntax 11: double result = op1(10, 2); 12: 13: Console.WriteLine(result); 14: Console.ReadLine(); 15: } 16: 17: static double Division(double x, double y) { 18: return x / y; 19: } 20: } C# 2.0 introduced Anonymous Methods. Anonymous methods avoid the need to create a separate method that contains the same signature as the delegate type. Instead you write the method body in-line. There is an interesting fact about Anonymous methods and closures which won’t be covered here. Use your favorite search engine ;-)We rewrite our code to use anonymous methods (see line 9): 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //Anonymous method 9: Operation op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } We could rewrite our delegate to be of a generic type like so (see line 2 and line 9). You will see why soon. 1: //Generic delegate 2: public delegate T Operation<T>(T x, T y); 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: Operation<double> op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } The .NET 3.5 framework introduced a whole set of predefined delegates for us including public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2); Our code can be modified to use this delegate instead of the one we declared. Our delegate declaration has been removed and line 7 has been changed to use the Func delegate type. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //Func is a delegate defined in the .NET 3.5 framework 7: Func<double, double, double> op1 = delegate (double x, double y) { 8: return x / y; 9: }; 10: double result = op1(10, 2); 11: 12: Console.WriteLine(result); 13: Console.ReadLine(); 14: } 15: 16: static double Division(double x, double y) { 17: return x / y; 18: } 19: } .NET 3.5 also introduced lambda expressions. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. We change our code to use lambda expressions. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //lambda expression 7: Func<double, double, double> op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } C# 3.0 introduced the keyword var (implicitly typed local variable) where the type of the variable is inferred based on the type of the associated initializer expression. We can rewrite our code to use var as shown below (line 7).  The implicitly typed local variable op1 is inferred to be a delegate of type Func<double, double, double> at compile time. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //implicitly typed local variable 7: var op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } You have seen how we can write code in fewer lines by using a combination of the Func delegate type, implicitly typed local variables and lambda expressions.

    Read the article

  • Find a Hash Collision, Win $100

    - by Mike C
    Margarity Kerns recently published a very nice article at SQL Server Central on using hash functions to detect changes in rows during the data warehouse load ETL process. On the discussion page for the article I noticed a lot of the same old arguments against using hash functions to detect change. After having this same discussion several times over the past several months in public and private forums, I've decided to see if we can't put this argument to rest for a while. To that end I'm going to...(read more)

    Read the article

  • ASP.NET Asynchronous Pages and when to use them

    - by rajbk
    There have been several articles posted about using  asynchronous pages in ASP.NET but none of them go into detail as to when you should use them. I finally found a great post by Thomas Marquardt that explains the process in depth. He addresses a key misconception also: So, in your ASP.NET application, when should you perform work asynchronously instead of synchronously? Well, only 1 thread per CPU can execute at a time.  Did you catch that?  A lot of people seem to miss this point...only one thread executes at a time on a CPU. When you have more than this, you pay an expensive penalty--a context switch. However, if a thread is blocked waiting on work...then it makes sense to switch to another thread, one that can execute now.  It also makes sense to switch threads if you want work to be done in parallel as opposed to in series, but up until a certain point it actually makes much more sense to execute work in series, again, because of the expensive context switch. Pop quiz: If you have a thread that is doing a lot of computational work and using the CPU heavily, and this takes a while, should you switch to another thread? No! The current thread is efficiently using the CPU, so switching will only incur the cost of a context switch. Ok, well, what if you have a thread that makes an HTTP or SOAP request to another server and takes a long time, should you switch threads? Yes! You can perform the HTTP or SOAP request asynchronously, so that once the "send" has occurred, you can unwind the current thread and not use any threads until there is an I/O completion for the "receive". Between the "send" and the "receive", the remote server is busy, so locally you don't need to be blocking on a thread, but instead make use of the asynchronous APIs provided in .NET Framework so that you can unwind and be notified upon completion. Again, it only makes sense to switch threads if the benefit from doing so out weights the cost of the switch. Read more about it in these posts: Performing Asynchronous Work, or Tasks, in ASP.NET Applications http://blogs.msdn.com/tmarq/archive/2010/04/14/performing-asynchronous-work-or-tasks-in-asp-net-applications.aspx ASP.NET Thread Usage on IIS 7.0 and 6.0 http://blogs.msdn.com/tmarq/archive/2007/07/21/asp-net-thread-usage-on-iis-7-0-and-6-0.aspx   PS: I generally do not write posts that simply link to other posts but think it is warranted in this case.

    Read the article

  • Setting up Visual Studio 2010 to step into Microsoft .NET Source Code

    - by rajbk
    Using the Microsoft Symbol Server to obtain symbol debugging information is now much easier in VS 2010. Microsoft gives you access to their internet symbol server that contains symbol files for most of the .NET framework including the recently announced availability of MVC 2 Symbols.  SETUP In VS 2010 RTM, go to Tools –> Options –> Debugging –> General. Check “Enable .NET Framework source stepping” We get the following dialog box   This automatically disables “Enable My Code”   Go to Debugging –> Symbols and Check “Microsoft Symbol Servers”. You can selectively exclude modules if you want to.   You will get a warning dialog like so: Hitting OK will start the download process   The setup is complete. You are now ready to start debugging! DEBUGGING Add a break point to your application and run the application in debug mode (F5 shortcut for me). Go to your call stack when you hit the break point. Right click on a frame that is grayed out. Select “Load Symbols from” “Microsoft Symbol Servers”. VS will begin a one time download of that assembly. This assembly will be cached locally so you don’t have to wait for the download the next time you debug the app.   We get a one time license agreement dialog box You might see an error like the one below regarding different encoding (hopefully will be fixed).    Assemblies for which the symbols have been loaded are no longer grayed out. Double clicking on any entry in the call stack should now directly take you to the source code for that assembly. AFAIK, not all symbols are available on the MS symbol server. In cases like that you will see a tab like the one below and be given the option to “Show Disassembly”. Enjoy! Newsreel Announcer: Humiliated, Muntz vows a return to Paradise Falls and promises to capture the beast alive! Charles Muntz: [speaking to a large audience outside in the newsreel] I promise to capture the beast alive, and I will not come back until I do!

    Read the article

  • 'The default schema does not exist' on deploy of SQL CLR assembly onto SQL Server 2008

    - by abatishchev
    I'm deploying an example SQL CLR stored procedure which has a SQL CLR type as parameter using Visual Studio 2008 and menu Project -> Deploy. public partial class StoredProcedures { [Microsoft.SqlServer.Server.SqlProcedure] public static void TakeTariff(TariffInfo tariffInfo) { } } public class TariffInfo { public SqlDecimal Amount { get; private set; } } but getting next strange error: The default schema does not exist. How can I fix that? My user was created this way: CREATE USER myUser FOR LOGIN myLogin_mod WITH DEFAULT_SCHEMA = mySchema

    Read the article

  • SQL CLR Stored Procedure and Web Service

    - by Nathan
    I am current working on a task in which I am needing to call a method in a web service from a CLR stored procedure. A bit of background: Basically, I have a task that requires ALOT of crunching. If done strictly in SQL, it takes somewhere around 30-45 mins to process. If I pull the same process into code, I can get it complete in seconds due to being able to optimize the processing so much more efficiently. The only problem is that I have to have this process set as an automated task in SQL Server. In that vein, I have exposed the process as a web service (I use it for other things as well) and want the SQL CLR sproc to consume the service and execute the code. This allows me to have my automated task. The problem: I have read quite a few different topics regarding how to consume a web service in a CLR Sproc and have done so effectivly. Here is an example of what I have followed. http://blog.hoegaerden.be/2008/11/11/calling-a-web-service-from-sql-server-2005/ I can get this example working without any issues. However, whenever I pair this process w/ a Web Service method that involves a database call, I get the following exceptions (depending upon whether or not I wrap in a try / catch): Msg 10312, Level 16, State 49, Procedure usp_CLRRunDirectSimulationAndWriteResults, Line 0 .NET Framework execution was aborted. The UDP/UDF/UDT did not revert thread token. or Msg 6522, Level 16, State 1, Procedure MyStoredProc , Line 0 A .NET Framework error occurred during execution of user defined routine or aggregate 'MyStoredProc': System.Security.SecurityException: Request for the permission of type 'System.Security.Permissions.EnvironmentPermission, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' failed. System.Security.SecurityException: at System.Security.CodeAccessSecurityEngine.Check(Object demand, StackCrawlMark& stackMark, Boolean isPermSet) at System.Security.CodeAccessPermission.Demand() at System.Net.CredentialCache.get_DefaultCredentials() at System.Web.Services.Protocols.WebClientProtocol.set_UseDefaultCredentials(Boolean value) at MyStoredProc.localhost.MPWebService.set_UseDefaultCredentials(Boolean Value) at MyStoredProclocalhost.MPWebService..ctor() at MyStoredProc.StoredProcedures.MyStoredProc(String FromPostCode, String ToPostCode) I am sure this is a permission issue, but I can't, for the life of me get it working. I have attempted using impersonation in the CLR sproc and a few other things. Any suggestions? What am I missing?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >