Search Results

Search found 61890 results on 2476 pages for 'day of net'.

Page 4/2476 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Implementing History Support using jQuery for AJAX websites built on asp.net AJAX

    - by anil.kasalanati
    Problem Statement: Most modern day website use AJAX for page navigation and gone are the days of complete HTTP redirection so it is imperative that we support back and forward buttons on the browser so that end users navigation is not broken. In this article we discuss about solutions which are already available and problems with them. Microsoft History Support: Post .Net 3.5 sp1 Microsoft’s Script manager supports history for websites using Update panels. This is achieved by enabling the ENABLE HISTORY property for the script manager and then the event “Page_Browser_Navigate” needs to be handled. So whenever the browser buttons are clicked the event is fired and the application can write code to do the navigation. The following articles provide good tutorials on how to do that http://www.asp.net/aspnet-in-net-35-sp1/videos/introduction-to-aspnet-ajax-history http://www.codeproject.com/KB/aspnet/ajaxhistorymanagement.aspx And Microsoft api internally creates an IFrame and changes the bookmark of the url. Unfortunately this has a bug and it does not work in Ie6 and 7 which are the major browsers but it works in ie8 and Firefox. And Microsoft has apparently fixed this bug in .Net 4.0. Following is the blog http://weblogs.asp.net/joshclose/archive/2008/11/11/asp-net-ajax-addhistorypoint-bug.aspx For solutions which are still running on .net 3.5 sp1 there is no solution which Microsoft offers so there is  are two way to solve this o   Disable the back button. o   Develop custom solution.   Disable back button Even though this might look like a very simple thing to do there are issues around doing this  because there is no event which can be manipulated from the javascript. The browser does not provide an api to do this. So most of the technical solution on internet offer work arounds like doing a history.forward(1) so that even if the user clicks a back button the destination page redirects the user to the original page. This is not a good customer experience and does not work for asp.net website where there are different views in the same page. There are other ways around detecting the window unload events and writing code there. So there are 2 events onbeforeUnload and onUnload and we can write code to show a confirmation message to the user. If we write code in onUnLoad then we can only show a message but it is too late to stop the navigation. And if we write on onBeforeUnLoad we can stop the navigation if the user clicks cancel but this event would be triggered for all AJAX calls and hyperlinks where the href is anything other than #. We can do this but the website has to be checked properly to ensure there are no links where href is not # otherwise the user would see a popup message saying “you are leaving the website”. Believe me after doing a lot of research on the back button disable I found it easier to support it rather than disabling the button. So I am going to discuss a solution which work  using jQuery with some tweaking. Custom Solution JQuery already provides an api to manage the history of a AJAX website - http://plugins.jquery.com/project/history We need to integrate this with Microsoft Page request manager so that both of them work in tandem. The page state is maintained in the cookie so that it can be passed to the server and I used jQuery cookie plug in for that – http://plugins.jquery.com/node/1386/release Firstly when the page loads there is a need to hook up all the events on the page which needs to cause browser history and following is the code to that. jQuery(document).ready(function() {             // Initialize history plugin.             // The callback is called at once by present location.hash.             jQuery.history.init(pageload);               // set onlick event for buttons             jQuery("a[@rel='history']").click(function() {                 //                 var hash = this.page;                 hash = hash.replace(/^.*#/, '');                 isAsyncPostBack = true;                 // moves to a new page.                 // pageload is called at once.                 jQuery.history.load(hash);                 return true;             });         }); The above scripts basically gets all the DOM objects which have the attribute rel=”history” and add the event. In our test page we have the link button  which has the attribute rel set to history. <asp:LinkButton ID="Previous" rel="history" runat="server" onclick="PreviousOnClick">Previous</asp:LinkButton> <asp:LinkButton ID="AsyncPostBack" rel="history" runat="server" onclick="NextOnClick">Next</asp:LinkButton> <asp:LinkButton ID="HistoryLinkButton" runat="server" style="display:none" onclick="HistoryOnClick"></asp:LinkButton>   And you can see that there is an hidden HistoryLinkButton which used to send a sever side postback in case of browser back or previous buttons. And note that we need to use display:none and not visible= false because asp.net AJAX would disallow any post backs if visible=false. And in general the pageload event get executed on the client side when a back or forward is pressed and the function is shown below function pageload(hash) {                   if (hash) {                         if (!isAsyncPostBack) {                           jQuery.cookie("page", hash);                     __doPostBack("HistoryLinkButton", "");                 }                isAsyncPostBack = false;                             } else {                 // start page             jQuery("#load").empty();             }         }   As you can see in case there is an hash in the url we are basically do an asp.net AJAX post back using the following statement __doPostBack("HistoryLinkButton", ""); So whenever the user clicks back or forward the post back happens using the event statement we provide and Previous event code is invoked in the code behind.  We need to have the code to use the pageId present in the url to change the page content. And there is an important thing to note – because the hash is worked out using the pageId’s there is a need to recalculate the hash after every AJAX post back so following code is plugged in function ReWorkHash() {             jQuery("a[@rel='history']").unbind("click");             jQuery("a[@rel='history']").click(function() {                 //                 var hash = jQuery(this).attr("page");                 hash = hash.replace(/^.*#/, '');                 jQuery.cookie("page", hash);                 isAsyncPostBack = true;                                   // moves to a new page.                 // pageload is called at once.                 jQuery.history.load(hash);                 return true;             });        }   This code is executed from the code behind using ScriptManager RegisterClientScriptBlock as shown below –       ScriptManager.RegisterClientScriptBlock(this, typeof(_Default), "Recalculater", "ReWorkHash();", true);   A sample application is available to be downloaded at the following location – http://techconsulting.vpscustomer.com/Source/HistoryTest.zip And a working sample is available at – http://techconsulting.vpscustomer.com/Samples/Default.aspx

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • .Net to Oracle Connectivity using ODBC .NET

    - by SAMIR BHOGAYTA
    You can use the new ODBC .NET Data Provider that works with the ODBC Oracle7.x driver or higher. You need to have MDAC 2.6 or later installed and then download ODBC .NET from the MS Web Site http://msdn.microsoft.com/downloads/default.asp?url=/code/sample.asp?url=/msdn-files/027/001/668/msdncompositedoc.xml&frame=true. MDAC (Microsoft Data Access Component) 2.7 contains core component, including the Microsoft SQL server and Oracle OLE Database provider and ODBC driver. Insta ...You can use the new ODBC .NET Data Provider that works with the ODBC Oracle7.x driver or higher. You need to have MDAC 2.6 or later installed and then download ODBC .NET from the MS Web Site http://msdn.microsoft.com/downloads/default.asp?url=/code/sample.asp?url=/msdn-files/027/001/668/msdncompositedoc.xml&frame=true. MDAC (Microsoft Data Access Component) 2.7 contains core component, including the Microsoft SQL server and Oracle OLE Database provider and ODBC driver. Install ODBC .NET from the MS Web Site http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/msdn-files/027/001/943/msdncompositedoc.xml Create a DSN, using either Microsoft ODBC for Oracle or Oracle supplied Driver if the Oracle client software is loaded. here for eq. TrailDSN. While creating DSN give user name along with passward for eq. scott/tiger. using Microsoft .Data.Odbc; private void Form1_Load(object sender, System.EventArgs e) { try { OdbcConnection myconnection= new OdbcConnection ("DSN=TrialDSN"); OdbcDataAdapter myda = new OdbcDataAdapter ("Select * from EMP", myconnection); DataSet ds= new DataSet (); myda.Fill(ds, "Table"); dataGrid1.DataSource = ds ; } catch(Exception ex) { MessageBox.Show (ex.Message ); } }

    Read the article

  • Coexistence of projects between Visual Studio 2010 and 2012

    - by sreejukg
    Microsoft has released another version of Visual Studio named Visual Studio 2012. As you can see there are user interface (UI) changes in all/most of the Microsoft applications as Microsoft is moving towards Windows 8 and changing the UI scheme for all of the applications. Visual Studio 2012 is a move to adapt the new interface requirements that are in coherent with Windows 8. Not only this Visual Studio 2012 has lots of improvements in several areas and it supports .Net framework 4.5. In the past, whenever a new version of Visual Studio launches, developers needed to upgrade the project to new version of Visual Studio which was a pain, especially when you are working with a team of developers. Once a solution is upgraded to a newer version, it was not possible to going back. With Visual studio 2012, you can avoid the pain of upgrading. Developers will be able to open their project in Visual Studio 2012 along with Visual Studio 2010 SP 1. This means if you create a project using Visual Studio 2012, you will be able to open it with Visual Studio 2010 SP 1 and vice versa. There are some exceptions (as always!). Visual Studio 2012 supports some new project types, which was not there in 2010 version. Such project, you will not be able to open in Visual Studio 2010. For e.g. Visual Studio 2012 brings a new project type named “Windows 8 Modern Applications”, such projects you will not be able to open using the 2010 version of Visual Studio. Just to prove the said subject, I am going to perform some simple operations. I installed Visual Studio 2010 with SP 1 and Visual Studio 2012 on my PC. See the snapshots for both the installations. Visual Studio 2010 Visual Studio 2012 Now I am going to perform two test cases. First create a project in 2010 Version and open it in 2012 version and vice versa. If you are interested, you can continue scrolling down, otherwise just say bye bye to this article. Case 1: Open a solution created using Visual Studio 2010 in 2012 version. I created a project in VS 2010 named TestProject2010 using empty ASP.Net web application template. Once created the project appears in VS 2010 as follows. I closed Visual Studio and opened the solution file using VS 2012 by using the Open Project dialog(File -> Open Project/Solution). Surprisingly, there is not even a warning message, just the project opened fine in Visual Studio 2012. Case 2: Open a solution created using Visual Studio 2012 in 2010 version. I have created a project in Visual Studio 2012 named testProject2012. See the screenshot of the project in VS 2012 below. Now try opening the solution in Visual Studio 2010. The solution loaded successfully, but Visual Studio failed to load project. See the screenshot. At first I was surprised. The Web application project template is available in both versions, So there should not be any problem. What is making the incompatibility? Is it ASP.Net version? Yes it is. VS 2012 assign ASP.Net 4.5 as the default version that was causing the trouble for Visual Studio 2010. I changed the version to .Net framework 4.0 and saved the project after that I was able to open the project in Visual Studio 2010. This as an excellent move from Visual Studio Team and allows enterprises to perform gradual upgrade to the new version. Now developers can work in any version based on availability and preference, simply I can use Visual Studio 2012 as my IDE while my colleague working on the same project can still use Visual Studio 2010.

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 2

    - by shiju
    In my previous post Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1, we have discussed on how to work with ASP.NET MVC 3 and EF Code First for developing web apps. We have created generic repository and unit of work with EF Code First for our ASP.NET MVC 3 application and did basic CRUD operations against a simple domain entity. In this post, I will demonstrate on working with domain entity with deep object graph, Service Layer and View Models and will also complete the rest of the demo application. In the previous post, we have done CRUD operations against Category entity and this post will be focus on Expense entity those have an association with Category entity. You can download the source code from http://efmvc.codeplex.com . The following frameworks will be used for this step by step tutorial.    1. ASP.NET MVC 3 RTM    2. EF Code First CTP 5    3. Unity 2.0 Domain Model Category Entity public class Category   {       public int CategoryId { get; set; }       [Required(ErrorMessage = "Name Required")]       [StringLength(25, ErrorMessage = "Must be less than 25 characters")]       public string Name { get; set;}       public string Description { get; set; }       public virtual ICollection<Expense> Expenses { get; set; }   } Expense Entity public class Expense     {                public int ExpenseId { get; set; }                public string  Transaction { get; set; }         public DateTime Date { get; set; }         public double Amount { get; set; }         public int CategoryId { get; set; }         public virtual Category Category { get; set; }     } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. Repository class for Expense Transaction Let’s create repository class for handling CRUD operations for Expense entity public class ExpenseRepository : RepositoryBase<Expense>, IExpenseRepository     {     public ExpenseRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface IExpenseRepository : IRepository<Expense> { } Service Layer If you are new to Service Layer, checkout Martin Fowler's article Service Layer . According to Martin Fowler, Service Layer defines an application's boundary and its set of available operations from the perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactions and coordinating responses in the implementation of its operations. Controller classes should be lightweight and do not put much of business logic onto it. We can use the service layer as the business logic layer and can encapsulate the rules of the application. Let’s create a Service class for coordinates the transaction for Expense public interface IExpenseService {     IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime ednDate);     Expense GetExpense(int id);             void CreateExpense(Expense expense);     void DeleteExpense(int id);     void SaveExpense(); } public class ExpenseService : IExpenseService {     private readonly IExpenseRepository expenseRepository;            private readonly IUnitOfWork unitOfWork;     public ExpenseService(IExpenseRepository expenseRepository, IUnitOfWork unitOfWork)     {                  this.expenseRepository = expenseRepository;         this.unitOfWork = unitOfWork;     }     public IEnumerable<Expense> GetExpenses(DateTime startDate, DateTime endDate)     {         var expenses = expenseRepository.GetMany(exp => exp.Date >= startDate && exp.Date <= endDate);         return expenses;     }     public void CreateExpense(Expense expense)     {         expenseRepository.Add(expense);         unitOfWork.Commit();     }     public Expense GetExpense(int id)     {         var expense = expenseRepository.GetById(id);         return expense;     }     public void DeleteExpense(int id)     {         var expense = expenseRepository.GetById(id);         expenseRepository.Delete(expense);         unitOfWork.Commit();     }     public void SaveExpense()     {         unitOfWork.Commit();     } }   View Model for Expense Transactions In real world ASP.NET MVC applications, we need to design model objects especially for our views. Our domain objects are mainly designed for the needs for domain model and it is representing the domain of our applications. On the other hand, View Model objects are designed for our needs for views. We have an Expense domain entity that has an association with Category. While we are creating a new Expense, we have to specify that in which Category belongs with the new Expense transaction. The user interface for Expense transaction will have form fields for representing the Expense entity and a CategoryId for representing the Category. So let's create view model for representing the need for Expense transactions. public class ExpenseViewModel {     public int ExpenseId { get; set; }       [Required(ErrorMessage = "Category Required")]     public int CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]     public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]     public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } The ExpenseViewModel is designed for the purpose of View template and contains the all validation rules. It has properties for mapping values to Expense entity and a property Category for binding values to a drop-down for list values of Category. Create Expense transaction Let’s create action methods in the ExpenseController for creating expense transactions public ActionResult Create() {     var expenseModel = new ExpenseViewModel();     var categories = categoryService.GetCategories();     expenseModel.Category = categories.ToSelectListItems(-1);     expenseModel.Date = DateTime.Today;     return View(expenseModel); } [HttpPost] public ActionResult Create(ExpenseViewModel expenseViewModel) {                      if (!ModelState.IsValid)         {             var categories = categoryService.GetCategories();             expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);             return View("Save", expenseViewModel);         }         Expense expense=new Expense();         ModelCopier.CopyModel(expenseViewModel,expense);         expenseService.CreateExpense(expense);         return RedirectToAction("Index");              } In the Create action method for HttpGet request, we have created an instance of our View Model ExpenseViewModel with Category information for the drop-down list and passing the Model object to View template. The extension method ToSelectListItems is shown below   public static IEnumerable<SelectListItem> ToSelectListItems(         this IEnumerable<Category> categories, int  selectedId) {     return           categories.OrderBy(category => category.Name)                 .Select(category =>                     new SelectListItem                     {                         Selected = (category.CategoryId == selectedId),                         Text = category.Name,                         Value = category.CategoryId.ToString()                     }); } In the Create action method for HttpPost, our view model object ExpenseViewModel will map with posted form input values. We need to create an instance of Expense for the persistence purpose. So we need to copy values from ExpenseViewModel object to Expense object. ASP.NET MVC futures assembly provides a static class ModelCopier that can use for copying values between Model objects. ModelCopier class has two static methods - CopyCollection and CopyModel.CopyCollection method will copy values between two collection objects and CopyModel will copy values between two model objects. We have used CopyModel method of ModelCopier class for copying values from expenseViewModel object to expense object. Finally we did a call to CreateExpense method of ExpenseService class for persisting new expense transaction. List Expense Transactions We want to list expense transactions based on a date range. So let’s create action method for filtering expense transactions with a specified date range. public ActionResult Index(DateTime? startDate, DateTime? endDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!startDate.HasValue)     {         startDate = new DateTime(dtNow.Year, dtNow.Month, 1);         endDate = startDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of start date's month, if end date is not passed     if (startDate.HasValue && !endDate.HasValue)     {         endDate = (new DateTime(startDate.Value.Year, startDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }     var expenses = expenseService.GetExpenses(startDate.Value ,endDate.Value);     //if request is Ajax will return partial view     if (Request.IsAjaxRequest())     {         return PartialView("ExpenseList", expenses);     }     //set start date and end date to ViewBag dictionary     ViewBag.StartDate = startDate.Value.ToShortDateString();     ViewBag.EndDate = endDate.Value.ToShortDateString();     //if request is not ajax     return View(expenses); } We are using the above Index Action method for both Ajax requests and normal requests. If there is a request for Ajax, we will call the PartialView ExpenseList. Razor Views for listing Expense information Let’s create view templates in Razor for showing list of Expense information ExpenseList.cshtml @model IEnumerable<MyFinance.Domain.Expense>   <table>         <tr>             <th>Actions</th>             <th>Category</th>             <th>                 Transaction             </th>             <th>                 Date             </th>             <th>                 Amount             </th>         </tr>       @foreach (var item in Model) {              <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.ExpenseId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.ExpenseId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divExpenseList" })             </td>              <td>                 @item.Category.Name             </td>             <td>                 @item.Transaction             </td>             <td>                 @String.Format("{0:d}", item.Date)             </td>             <td>                 @String.Format("{0:F}", item.Amount)             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New Expense", "Create") |         @Html.ActionLink("Create New Category", "Create","Category")     </p> Index.cshtml @using MyFinance.Helpers; @model IEnumerable<MyFinance.Domain.Expense> @{     ViewBag.Title = "Index"; }    <h2>Expense List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery-ui.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.ui.datepicker.js")" type="text/javascript"></script> <link href="@Url.Content("~/Content/jquery-ui-1.8.6.custom.css")" rel="stylesheet" type="text/css" />      @using (Ajax.BeginForm(new AjaxOptions{ UpdateTargetId="divExpenseList", HttpMethod="Get"})) {     <table>         <tr>         <td>         <div>           Start Date: @Html.TextBox("StartDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["StartDate"].ToString())), new { @class = "ui-datepicker" })         </div>         </td>         <td><div>            End Date: @Html.TextBox("EndDate", Html.Encode(String.Format("{0:mm/dd/yyyy}", ViewData["EndDate"].ToString())), new { @class = "ui-datepicker" })          </div></td>          <td> <input type="submit" value="Search By TransactionDate" /></td>         </tr>     </table>         }   <div id="divExpenseList">             @Html.Partial("ExpenseList", Model)     </div> <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script> Ajax search functionality using Ajax.BeginForm The search functionality of Index view is providing Ajax functionality using Ajax.BeginForm. The Ajax.BeginForm() method writes an opening <form> tag to the response. You can use this method in a using block. In that case, the method renders the closing </form> tag at the end of the using block and the form is submitted asynchronously by using JavaScript. The search functionality will call the Index Action method and this will return partial view ExpenseList for updating the search result. We want to update the response UI for the Ajax request onto divExpenseList element. So we have specified the UpdateTargetId as "divExpenseList" in the Ajax.BeginForm method. Add jQuery DatePicker Our search functionality is using a date range so we are providing two date pickers using jQuery datepicker. You need to add reference to the following JavaScript files to working with jQuery datepicker. jquery-ui.js jquery.ui.datepicker.js For theme support for datepicker, we can use a customized CSS class. In our example we have used a CSS file “jquery-ui-1.8.6.custom.css”. For more details about the datepicker component, visit jquery UI website at http://jqueryui.com/demos/datepicker . In the jQuery ready event, we have used following JavaScript function to initialize the UI element to show date picker. <script type="text/javascript">     $().ready(function () {         $('.ui-datepicker').datepicker({             dateFormat: 'mm/dd/yy',             buttonImage: '@Url.Content("~/Content/calendar.gif")',             buttonImageOnly: true,             showOn: "button"         });     }); </script>   Source Code You can download the source code from http://efmvc.codeplex.com/ . Summary In this two-part series, we have created a simple web application using ASP.NET MVC 3 RTM, Razor and EF Code First CTP 5. I have demonstrated patterns and practices  such as Dependency Injection, Repository pattern, Unit of Work, ViewModel and Service Layer. My primary objective was to demonstrate different practices and options for developing web apps using ASP.NET MVC 3 and EF Code First. You can implement these approaches in your own way for building web apps using ASP.NET MVC 3. I will refactor this demo app on later time.

    Read the article

  • ASP.NET MVC 3 SERIES

    - by carlone
      Estimados Lectores,   Luego de un tiempo ausente en mi blog, re-tomamos el rumbo… en esta oportunidad quiero comunicarles que iniciaré una serie de screencast sobre ASP.NET MVC, en donde me estare enfocando desde los conceptos básicos del patrón, pasaremos por las definiciones y conceptos utilizados dentro del ASP.NET MVC para la Vista, El controlador y el Modelo.   Estos videos tengo pensados que sean cápsulas no mayores a los 10 minutos para que sean fáciles de entender y visualizar.   Para los que quieran prepararse con tiempo les recomiendo descargar las tools requeridas para esta series-curso:   Descargar los tools de ASP.NET MVC 3 para VS2010: http://www.microsoft.com/en-us/download/details.aspx?id=1491 , seleccionar el archivo “AspNetMVC3ToolsUpdateSetup.exe” (Nota: si tienen el web platform installer también pueden instalar desde esta tool el ASP.NET MVC 3)   Recuerden que pueden utilizar el Web Developer Express 2010 también para el desarrollo:  mi recomendación es que lo hagan por medio del Web Platform Installer:  Install Visual Web Developer Express Free   Bueno esten pendientes de los próximos videos que estaré publicando.   Cualquier comentario o sugerencia es bienvenido!   Saludos   Carlos A. Lone

    Read the article

  • Running ASP.NET Webforms and ASP.NET MVC side by side

    - by rajbk
    One of the nice things about ASP.NET MVC and its older brother ASP.NET WebForms is that they are both built on top of the ASP.NET runtime environment. The advantage of this is that, you can still run them side by side even though MVC and WebForms are different frameworks. Another point to note is that with the release of the ASP.NET routing in .NET 3.5 SP1, we are able to create SEO friendly URLs that do not map to specific files on disk. The routing is part of the core runtime environment and therefore can be used by both WebForms and MVC. To run both frameworks side by side, we could easily create a separate folder in your MVC project for all our WebForm files and be good to go. What this post shows you instead, is how to have an MVC application with WebForm pages  that both use a common master page and common routing for SEO friendly URLs.  A sample project that shows WebForms and MVC running side by side is attached at the bottom of this post. So why would we want to run WebForms and MVC in the same project?  WebForms come with a lot of nice server controls that provide a lot of functionality. One example is the ReportViewer control. Using this control and client report definition files (RDLC), we can create rich interactive reports (with charting controls). I show you how to use the ReportViewer control in a WebForm project here :  Creating an ASP.NET report using Visual Studio 2010. We can create even more advanced reports by using SQL reporting services that can also be rendered by the ReportViewer control. Now, consider the sample MVC application I blogged about called ASP.NET MVC Paging/Sorting/Filtering using the MVCContrib Grid and Pager. Assume you were given the requirement to add a UI to the MVC application where users could interact with a report and be given the option to export the report to Excel, PDF or Word. How do you go about doing it?   This is a perfect scenario to use the ReportViewer control and RDLCs. As you saw in the post on creating the ASP.NET report, the ReportViewer control is a Web Control and is designed to be run in a WebForm project with dependencies on, amongst others, a ScriptManager control and the beloved Viewstate.  Since MVC and WebForm both run under the same runtime, the easiest thing to is to add the WebForm application files (index.aspx, rdlc, related class files) into our MVC project. You can copy the files over from the WebForm project into the MVC project. Create a new folder in our MVC application called CommonReports. Add the index.aspx and rdlc file from the Webform project   Right click on the Index.aspx file and convert it to a web application. This will add the index.aspx.designer.cs file (this step is not required if you are manually adding a WebForm aspx file into the MVC project).    Verify that all the type names for the ObjectDataSources in code behind to point to the correct ProductRepository and fix any compiler errors. Right click on Index.aspx and select “View in browser”. You should see a screen like the one below:   There are two issues with our page. It does not use our site master page and the URL is not SEO friendly. Common Master Page The easiest way to use master pages with both MVC and WebForm pages is to have a common master page that each inherits from as shown below. The reason for this is most WebForm controls require them to be inside a Form control and require ControlState or ViewState. ViewMasterPages used in MVC, on the other hand, are designed to be used with content pages that derive from ViewPage with Viewstate turned off. By having a separate master page for MVC and WebForm that inherit from the Root master page,, we can set properties that are specific to each. For example, in the Webform master, we can turn on ViewState, add a form tag etc. Another point worth noting is that if you set a WebForm page to use a MVC site master page, you may run into errors like the following: A ViewMasterPage can be used only with content pages that derive from ViewPage or ViewPage<TViewItem> or Control 'MainContent_MyButton' of type 'Button' must be placed inside a form tag with runat=server. Since the ViewMasterPage inherits from MasterPage as seen below, we make our Root.master inherit from MasterPage, MVC.master inherit from ViewMasterPage and Webform.master inherits from MasterPage. We define the attributes on the master pages like so: Root.master <%@ Master Inherits="System.Web.UI.MasterPage"  … %> MVC.master <%@ Master MasterPageFile="~/Views/Shared/Root.Master" Inherits="System.Web.Mvc.ViewMasterPage" … %> WebForm.master <%@ Master MasterPageFile="~/Views/Shared/Root.Master" Inherits="NorthwindSales.Views.Shared.Webform" %> Code behind: public partial class Webform : System.Web.UI.MasterPage {} We make changes to our reports aspx file to use the Webform.master. See the source of the master pages in the sample project for a better understanding of how they are connected. SEO friendly links We want to create SEO friendly links that point to our report. A request to /Reports/Products should render the report located in ~/CommonReports/Products.aspx. Simillarly to support future reports, a request to /Reports/Sales should render a report in ~/CommonReports/Sales.aspx. Lets start by renaming our index.aspx file to Products.aspx to be consistent with our routing criteria above. As mentioned earlier, since routing is part of the core runtime environment, we ca easily create a custom route for our reports by adding an entry in Global.asax. public static void RegisterRoutes(RouteCollection routes) { routes.IgnoreRoute("{resource}.axd/{*pathInfo}");   //Custom route for reports routes.MapPageRoute( "ReportRoute", // Route name "Reports/{reportname}", // URL "~/CommonReports/{reportname}.aspx" // File );     routes.MapRoute( "Default", // Route name "{controller}/{action}/{id}", // URL with parameters new { controller = "Home", action = "Index", id = UrlParameter.Optional } // Parameter defaults ); } With our custom route in place, a request to Reports/Employees will render the page at ~/CommonReports/Employees.aspx. We make this custom route the first entry since the routing system walks the table from top to bottom, and the first route to match wins. Note that it is highly recommended that you write unit tests for your routes to ensure that the mappings you defined are correct. Common Menu Structure The master page in our original MVC project had a menu structure like so: <ul id="menu"> <li> <%=Html.ActionLink("Home", "Index", "Home") %></li> <li> <%=Html.ActionLink("Products", "Index", "Products") %></li> <li> <%=Html.ActionLink("Help", "Help", "Home") %></li> </ul> We want this menu structure to be common to all pages/views and hence should reside in Root.master. Unfortunately the Html.ActionLink helpers will not work since Root.master inherits from MasterPage which does not have the helper methods available. The quickest way to resolve this issue is to use RouteUrl expressions. Using  RouteUrl expressions, we can programmatically generate URLs that are based on route definitions. By specifying parameter values and a route name if required, we get back a URL string that corresponds to a matching route. We move our menu structure to Root.master and change it to use RouteUrl expressions: <ul id="menu"> <li> <asp:HyperLink ID="hypHome" runat="server" NavigateUrl="<%$RouteUrl:routename=default,controller=home,action=index%>">Home</asp:HyperLink></li> <li> <asp:HyperLink ID="hypProducts" runat="server" NavigateUrl="<%$RouteUrl:routename=default,controller=products,action=index%>">Products</asp:HyperLink></li> <li> <asp:HyperLink ID="hypReport" runat="server" NavigateUrl="<%$RouteUrl:routename=ReportRoute,reportname=products%>">Product Report</asp:HyperLink></li> <li> <asp:HyperLink ID="hypHelp" runat="server" NavigateUrl="<%$RouteUrl:routename=default,controller=home,action=help%>">Help</asp:HyperLink></li> </ul> We are done adding the common navigation to our application. The application now uses a common theme, routing and navigation structure. Conclusion We have seen how to do the following through this post Add a WebForm page from a WebForm project to an existing ASP.NET MVC application Use a common master page for both WebForm and MVC pages Use routing for SEO friendly links Use a common menu structure for both WebForm and MVC. The sample project is attached below. Version: VS 2010 RTM Remember to change your connection string to point to your Northwind database NorthwindSalesMVCWebform.zip

    Read the article

  • Traditional ASP.Net WebForms vs ASP.Net MVC

    - by Pankaj Upadhyay
    ASP.Net MVC has been around for some time now. The latest one, i.e MVC3 comes with Razor View Engine. My question: How long is traditional ASP.Net here to stay. Does Microsoft have any plans to eliminate it in aid of ASP.Net MVC in the future and will the next release of VS incorporate it? Also, I would like to know if there is any merit of traditional over ASP.Net MVC, other than the controls-aid?

    Read the article

  • Allowing asterisk in URL - ASP.NET MVC 2 - .NET 4.0 or encoding

    - by raRaRa
    I'm having a trouble allowing asterisk (*) in the URL of my website. I am running ASP.NET MVC 2 and .NET 4.0. Here's an example that describes the problem: http://mysite.com/profile/view/Nice* The username is Nice* and ASP.NET says there are illegal characters in the URL: Illegal characters in path. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.ArgumentException: Illegal characters in path. I have tried all the Web.config methods I've seen online such as: <pages validateRequest="false"> and <httpRuntime requestPathInvalidCharacters="" requestValidationMode="2.0" /> So my question is: Is it possible to allow asterisk in URL? If not, is there some encoding method in .NET that can encode asterisk(*) ? Thanks!

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1

    - by shiju
    In this post, I will demonstrate web application development using ASP. NET MVC 3, Razor and EF code First. This post will also cover Dependency Injection using Unity 2.0 and generic Repository and Unit of Work for EF Code First. The following frameworks will be used for this step by step tutorial. ASP.NET MVC 3 EF Code First CTP 5 Unity 2.0 Define Domain Model Let’s create domain model for our simple web application Category class public class Category {     public int CategoryId { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public virtual ICollection<Expense> Expenses { get; set; } }   Expense class public class Expense {             public int ExpenseId { get; set; }            public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }     public int CategoryId { get; set; }     public virtual Category Category { get; set; } } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. In this post, we will be focusing on CRUD operations for the entity Category and will be working on the Expense entity with a View Model object in the later post. And the source code for this application will be refactored over time. The above entities are very simple POCO (Plain Old CLR Object) classes and the entity Category is decorated with validation attributes in the System.ComponentModel.DataAnnotations namespace. Now we want to use these entities for defining model objects for the Entity Framework 4. Using the Code First approach of Entity Framework, we can first define the entities by simply writing POCO classes without any coupling with any API or database library. This approach lets you focus on domain model which will enable Domain-Driven Development for applications. EF code first support is currently enabled with a separate API that is runs on top of the Entity Framework 4. EF Code First is reached CTP 5 when I am writing this article. Creating Context Class for Entity Framework We have created our domain model and let’s create a class in order to working with Entity Framework Code First. For this, you have to download EF Code First CTP 5 and add reference to the assembly EntitFramework.dll. You can also use NuGet to download add reference to EEF Code First.    public class MyFinanceContext : DbContext {     public MyFinanceContext() : base("MyFinance") { }     public DbSet<Category> Categories { get; set; }     public DbSet<Expense> Expenses { get; set; }         }   The above class MyFinanceContext is derived from DbContext that can connect your model classes to a database. The MyFinanceContext class is mapping our Category and Expense class into database tables Categories and Expenses using DbSet<TEntity> where TEntity is any POCO class. When we are running the application at first time, it will automatically create the database. EF code-first look for a connection string in web.config or app.config that has the same name as the dbcontext class. If it is not find any connection string with the convention, it will automatically create database in local SQL Express database by default and the name of the database will be same name as the dbcontext class. You can also define the name of database in constructor of the the dbcontext class. Unlike NHibernate, we don’t have to use any XML based mapping files or Fluent interface for mapping between our model and database. The model classes of Code First are working on the basis of conventions and we can also use a fluent API to refine our model. The convention for primary key is ‘Id’ or ‘<class name>Id’.  If primary key properties are detected with type ‘int’, ‘long’ or ‘short’, they will automatically registered as identity columns in the database by default. Primary key detection is not case sensitive. We can define our model classes with validation attributes in the System.ComponentModel.DataAnnotations namespace and it automatically enforces validation rules when a model object is updated or saved. Generic Repository for EF Code First We have created model classes and dbcontext class. Now we have to create generic repository pattern for data persistence with EF code first. If you don’t know about the repository pattern, checkout Martin Fowler’s article on Repository Let’s create a generic repository to working with DbContext and DbSet generics. public interface IRepository<T> where T : class     {         void Add(T entity);         void Delete(T entity);         T GetById(long Id);         IEnumerable<T> All();     }   RepositoryBasse – Generic Repository class public abstract class RepositoryBase<T> where T : class { private MyFinanceContext database; private readonly IDbSet<T> dbset; protected RepositoryBase(IDatabaseFactory databaseFactory) {     DatabaseFactory = databaseFactory;     dbset = Database.Set<T>(); }   protected IDatabaseFactory DatabaseFactory {     get; private set; }   protected MyFinanceContext Database {     get { return database ?? (database = DatabaseFactory.Get()); } } public virtual void Add(T entity) {     dbset.Add(entity);            }        public virtual void Delete(T entity) {     dbset.Remove(entity); }   public virtual T GetById(long id) {     return dbset.Find(id); }   public virtual IEnumerable<T> All() {     return dbset.ToList(); } }   DatabaseFactory class public class DatabaseFactory : Disposable, IDatabaseFactory {     private MyFinanceContext database;     public MyFinanceContext Get()     {         return database ?? (database = new MyFinanceContext());     }     protected override void DisposeCore()     {         if (database != null)             database.Dispose();     } } Unit of Work If you are new to Unit of Work pattern, checkout Fowler’s article on Unit of Work . According to Martin Fowler, the Unit of Work pattern "maintains a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems." Let’s create a class for handling Unit of Work   public interface IUnitOfWork {     void Commit(); }   UniOfWork class public class UnitOfWork : IUnitOfWork {     private readonly IDatabaseFactory databaseFactory;     private MyFinanceContext dataContext;       public UnitOfWork(IDatabaseFactory databaseFactory)     {         this.databaseFactory = databaseFactory;     }       protected MyFinanceContext DataContext     {         get { return dataContext ?? (dataContext = databaseFactory.Get()); }     }       public void Commit()     {         DataContext.Commit();     } }   The Commit method of the UnitOfWork will call the commit method of MyFinanceContext class and it will execute the SaveChanges method of DbContext class.   Repository class for Category In this post, we will be focusing on the persistence against Category entity and will working on other entities in later post. Let’s create a repository for handling CRUD operations for Category using derive from a generic Repository RepositoryBase<T>.   public class CategoryRepository: RepositoryBase<Category>, ICategoryRepository     {     public CategoryRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface ICategoryRepository : IRepository<Category> { } If we need additional methods than generic repository for the Category, we can define in the CategoryRepository. Dependency Injection using Unity 2.0 If you are new to Inversion of Control/ Dependency Injection or Unity, please have a look on my articles at http://weblogs.asp.net/shijuvarghese/archive/tags/IoC/default.aspx. I want to create a custom lifetime manager for Unity to store container in the current HttpContext.   public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName] = newValue;     }     public void Dispose()     {         RemoveValue();     } }   Let’s create controller factory for Unity in the ASP.NET MVC 3 application. public class UnityControllerFactory : DefaultControllerFactory { IUnityContainer container; public UnityControllerFactory(IUnityContainer container) {     this.container = container; } protected override IController GetControllerInstance(RequestContext reqContext, Type controllerType) {     IController controller;     if (controllerType == null)         throw new HttpException(                 404, String.Format(                     "The controller for path '{0}' could not be found" +     "or it does not implement IController.",                 reqContext.HttpContext.Request.Path));       if (!typeof(IController).IsAssignableFrom(controllerType))         throw new ArgumentException(                 string.Format(                     "Type requested is not a controller: {0}",                     controllerType.Name),                     "controllerType");     try     {         controller= container.Resolve(controllerType) as IController;     }     catch (Exception ex)     {         throw new InvalidOperationException(String.Format(                                 "Error resolving controller {0}",                                 controllerType.Name), ex);     }     return controller; }   }   Configure contract and concrete types in Unity Let’s configure our contract and concrete types in Unity for resolving our dependencies.   private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()                 .RegisterType<IDatabaseFactory, DatabaseFactory>(new HttpContextLifetimeManager<IDatabaseFactory>())     .RegisterType<IUnitOfWork, UnitOfWork>(new HttpContextLifetimeManager<IUnitOfWork>())     .RegisterType<ICategoryRepository, CategoryRepository>(new HttpContextLifetimeManager<ICategoryRepository>());                 //Set container for Controller Factory                ControllerBuilder.Current.SetControllerFactory(             new UnityControllerFactory(container)); }   In the above ConfigureUnity method, we are registering our types onto Unity container with custom lifetime manager HttpContextLifetimeManager. Let’s call ConfigureUnity method in the Global.asax.cs for set controller factory for Unity and configuring the types with Unity.   protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     ConfigureUnity(); }   Developing web application using ASP.NET MVC 3 We have created our domain model for our web application and also have created repositories and configured dependencies with Unity container. Now we have to create controller classes and views for doing CRUD operations against the Category entity. Let’s create controller class for Category Category Controller   public class CategoryController : Controller {     private readonly ICategoryRepository categoryRepository;     private readonly IUnitOfWork unitOfWork;           public CategoryController(ICategoryRepository categoryRepository, IUnitOfWork unitOfWork)     {         this.categoryRepository = categoryRepository;         this.unitOfWork = unitOfWork;     }       public ActionResult Index()     {         var categories = categoryRepository.All();         return View(categories);     }     [HttpGet]     public ActionResult Edit(int id)     {         var category = categoryRepository.GetById(id);         return View(category);     }       [HttpPost]     public ActionResult Edit(int id, FormCollection collection)     {         var category = categoryRepository.GetById(id);         if (TryUpdateModel(category))         {             unitOfWork.Commit();             return RedirectToAction("Index");         }         else return View(category);                 }       [HttpGet]     public ActionResult Create()     {         var category = new Category();         return View(category);     }           [HttpPost]     public ActionResult Create(Category category)     {         if (!ModelState.IsValid)         {             return View("Create", category);         }                     categoryRepository.Add(category);         unitOfWork.Commit();         return RedirectToAction("Index");     }       [HttpPost]     public ActionResult Delete(int  id)     {         var category = categoryRepository.GetById(id);         categoryRepository.Delete(category);         unitOfWork.Commit();         var categories = categoryRepository.All();         return PartialView("CategoryList", categories);       }        }   Creating Views in Razor Now we are going to create views in Razor for our ASP.NET MVC 3 application.  Let’s create a partial view CategoryList.cshtml for listing category information and providing link for Edit and Delete operations. CategoryList.cshtml @using MyFinance.Helpers; @using MyFinance.Domain; @model IEnumerable<Category>      <table>         <tr>         <th>Actions</th>         <th>Name</th>          <th>Description</th>         </tr>     @foreach (var item in Model) {             <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.CategoryId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.CategoryId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divCategoryList" })                           </td>             <td>                 @item.Name             </td>             <td>                 @item.Description             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New", "Create")     </p> The delete link is providing Ajax functionality using the Ajax.ActionLink. This will call an Ajax request for Delete action method in the CategoryCotroller class. In the Delete action method, it will return Partial View CategoryList after deleting the record. We are using CategoryList view for the Ajax functionality and also for Index view using for displaying list of category information. Let’s create Index view using partial view CategoryList  Index.chtml @model IEnumerable<MyFinance.Domain.Category> @{     ViewBag.Title = "Index"; }    <h2>Category List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script>    <div id="divCategoryList">               @Html.Partial("CategoryList", Model) </div>   We can call the partial views using Html.Partial helper method. Now we are going to create View pages for insert and update functionality for the Category. Both view pages are sharing common user interface for entering the category information. So I want to create an EditorTemplate for the Category information. We have to create the EditorTemplate with the same name of entity object so that we can refer it on view pages using @Html.EditorFor(model => model) . So let’s create template with name Category. Let’s create view page for insert Category information   @model MyFinance.Domain.Category   @{     ViewBag.Title = "Save"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) {     @Html.ValidationSummary(true)     <fieldset>         <legend>Category</legend>                @Html.EditorFor(model => model)               <p>             <input type="submit" value="Create" />         </p>     </fieldset> }   <div>     @Html.ActionLink("Back to List", "Index") </div> ViewStart file In Razor views, we can add a file named _viewstart.cshtml in the views directory  and this will be shared among the all views with in the Views directory. The below code in the _viewstart.cshtml, sets the Layout page for every Views in the Views folder.      @{     Layout = "~/Views/Shared/_Layout.cshtml"; }   Source Code You can download the source code from http://efmvc.codeplex.com/ . The source will be refactored on over time.   Summary In this post, we have created a simple web application using ASP.NET MVC 3 and EF Code First. We have discussed on technologies and practices such as ASP.NET MVC 3, Razor, EF Code First, Unity 2, generic Repository and Unit of Work. In my later posts, I will modify the application and will be discussed on more things. Stay tuned to my blog  for more posts on step by step application building.

    Read the article

  • SQL SERVER – Summary of Month – Wait Type – Day 28 of 28

    - by pinaldave
    I am glad to announce that the month of Wait Types and Queues very successful. I am glad that it was very well received and there was great amount of participation from community. I am fortunate to have some of the excellent comments throughout the series. I want to dedicate this series to all the guest blogger – Jonathan, Jacob, Glenn, and Feodor for their kindness to take a participation in this series. Here is the complete list of the blog posts in this series. I enjoyed writing the series and I plan to continue writing similar series. Please offer your opinion. SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28 SQL SERVER – Signal Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28 SQL SERVER – DMV – sys.dm_os_wait_stats Explanation – Wait Type – Day 3 of 28 SQL SERVER – DMV – sys.dm_os_waiting_tasks and sys.dm_exec_requests – Wait Type – Day 4 of 28 SQL SERVER – Capturing Wait Types and Wait Stats Information at Interval – Wait Type – Day 5 of 28 SQL SERVER – CXPACKET – Parallelism – Usual Solution – Wait Type – Day 6 of 28 SQL SERVER – CXPACKET – Parallelism – Advanced Solution – Wait Type – Day 7 of 28 SQL SERVER – SOS_SCHEDULER_YIELD – Wait Type – Day 8 of 28 SQL SERVER – PAGEIOLATCH_DT, PAGEIOLATCH_EX, PAGEIOLATCH_KP, PAGEIOLATCH_SH, PAGEIOLATCH_UP – Wait Type – Day 9 of 28 SQL SERVER – IO_COMPLETION – Wait Type – Day 10 of 28 SQL SERVER – ASYNC_IO_COMPLETION – Wait Type – Day 11 of 28 SQL SERVER – PAGELATCH_DT, PAGELATCH_EX, PAGELATCH_KP, PAGELATCH_SH, PAGELATCH_UP – Wait Type – Day 12 of 28 SQL SERVER – FT_IFTS_SCHEDULER_IDLE_WAIT – Full Text – Wait Type – Day 13 of 28 SQL SERVER – BACKUPIO, BACKUPBUFFER – Wait Type – Day 14 of 28 SQL SERVER – LCK_M_XXX – Wait Type – Day 15 of 28 SQL SERVER – Guest Post – Jonathan Kehayias – Wait Type – Day 16 of 28 SQL SERVER – WRITELOG – Wait Type – Day 17 of 28 SQL SERVER – LOGBUFFER – Wait Type – Day 18 of 28 SQL SERVER – PREEMPTIVE and Non-PREEMPTIVE – Wait Type – Day 19 of 28 SQL SERVER – MSQL_XP – Wait Type – Day 20 of 28 SQL SERVER – Guest Posts – Feodor Georgiev – The Context of Our Database Environment – Going Beyond the Internal SQL Server Waits – Wait Type – Day 21 of 28 SQL SERVER – Guest Post – Jacob Sebastian – Filestream – Wait Types – Wait Queues – Day 22 of 28 SQL SERVER – OLEDB – Link Server – Wait Type – Day 23 of 28 SQL SERVER – 2000 – DBCC SQLPERF(waitstats) – Wait Type – Day 24 of 28 SQL SERVER – 2011 – Wait Type – Day 25 of 28 SQL SERVER – Guest Post – Glenn Berry – Wait Type – Day 26 of 28 SQL SERVER – Best Reference – Wait Type – Day 27 of 28 SQL SERVER – Summary of Month – Wait Type – Day 28 of 28 Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, SQLServer, T SQL, Technology

    Read the article

  • Integrating ASP.NET MVC 3 into existing upgraded ASP.NET 4 Web Forms applications

    - by SAMIR BHOGAYTA
    http://www.hanselman.com/blog/IntegratingASPNETMVC3IntoExistingUpgradedASPNET4WebFormsApplications.aspx As per above article I follow the steps to integrate WebApp with MVC application. I am successfully integrated MVC project into WebApp(C#) and also VB.NET MVC and VB.NET WebApp also I am able to successfully integrated. The problem is If I choose WebApp as VB.NET project, and integrated with C# MVC project. In this case the request is not routing to corresponding MVC files. What could be the reason not routing to MVC. Do we need to plug some extra dlls?

    Read the article

  • Getting Started with ASP.NET MVC 3 and Razor

    - by dwahlin
    I had a chance to give a talk on ASP.NET MVC 3, Razor and jQuery today at a company and wanted to post the slides and demos from the talk. The focus was on getting started with ASP.NET MVC 3 projects and .cshtml files including creating pages using the new Razor syntax (which I personally love….never going back to the Web Forms View Engine) as well as working with jQuery. Topics covered in the demos (download below) include: Binding form data to custom object properties Validating a model using data annotations and IValidatableObject Integrating jQuery into MVC sites (using the DataTables plugin) Using the new WebGrid class to generate tables with sorting and paging functionality Integrating Silverlight applications into MVC sites Exposing JSON data from a controller action and consuming it in Silverlight Using the Ajax helper to add AJAX functionality (without jQuery)     The code and slides from the talk can be downloaded here.     If you or your company is interested in training, consulting or mentoring on jQuery or .NET technologies please visit http://www.thewahlingroup.com for more information. We’ve provided training, consulting and mentoring services to some of the largest companies in the world and would enjoy sharing our knowledge and real-world lessons learned with you.

    Read the article

  • Announcing the ASP.NET and Web Tools 2012.2 Release Candidate

    - by ScottGu
    This week the ASP.NET and Visual Web Developer teams delivered the Release Candidate of the ASP.NET and Web Tools 2012.2 update (formerly ASP.NET Fall 2012 Update BUILD Prerelease). This update extends the existing ASP.NET runtime and adds new web tooling to Visual Studio 2012. Whether you use Web Forms, MVC, Web API, or any other ASP.NET technology, there is something cool in this update for you. You can download and install the RC today: http://www.asp.net/vnext. Great ASP.NET Enhancements This update adds new ASP.NET templates and features, including: New ASP.NET MVC templates. Creating Facebook applications just became easier using the new Facebook Application template. In just a few easy steps you can create a Facebook application that gets data from the logged in user as well as integrates with their friends. A new Single Page Application template allows developers to build interactive client-side web apps using Knockout, jQuery, and ASP.NET Web API. Real-time communication support with ASP.NET SignalR.  This enables you to easily take advantage of the new WebSocket support in .NET 4.5, while also automatically degrading to long-polling and other protocols for older clients.  If you haven’t tried SignalR yet you should – it is awesome. New ASP.NET Web API functionality, including support for OData, integrated tracing, and automatically generating help page documentation for your API. New ASP.NET Friendly URL functionality. This new feature makes it very easy for Web Forms developers to generate cleaner looking URLs (without the .aspx extension). The Friendly URLs feature also makes it easier for developers to add mobile support to their applications with support for mobile .ASPX pages and  supporting switching between desktop and mobile views. It can be used with existing ASP.NET v4.0 applications. Visual Studio 2012 Web publishing enhancements. Web site projects now have the same publish experience as web application projects (including to Windows Azure Web Sites), and you can selectively publish files, see the differences between local and remote files, and update local to remote files or vice versa. Visual Studio 2012 Page Inspector enhancements. JavaScript selection mapping is now supported, and you can CSS updates in real-time. Visual Studio 2012 editor support for Knockout IntelliSense and pasting JSON as a .NET class (which makes it even easier to consume Web APIs from others). Visual Studio 2012 Project Template updates, including the latest versions of jQuery, jQuery UI, jQuery Validation, Modernirz, Knockout and more… How it is delivered You can download and install an integrated setup that contains the above enhancements today from http://www.asp.net/vnext. The new runtime functionality is delivered to ASP.NET via additional NuGet packages. This means that installing this update does not make any changes to the existing ASP.NET binaries, and thus does not cause any compatibility issues with existing projects. New projects will contain the new functionality and existing projects can be updated with the new NuGet packages. Summary Web development is changing, and ASP.NET is rapidly delivering new capabilities to developers that help them take full advantage of new capabilities.  The ASP.NET and Web Tools 2012.2 update installs in minutes without altering the current ASP.NET run time components. For a complete description see the Release Notes. Next week I plan to publish a tutorial showing how to build a cool Facebook application using the new Facebook template. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Tulsa Dot Net Rocks

    - by dmccollough
    Carl Franklin & Richard Campbell of .NET Rocks are taking their show on the road and are going to make a stop in Tulsa Oklahoma on Wednesday April 28th, 2010. This event will be from 6:00 PM until 9:00 PM. This is a FREE EVENT, with FREE FOOD and FREE SWAG. They are also going to be bringing a special surprise guest speaker (It could be Scott Hanselman, Scott Guthrie, Don Box, Billy Hollis, Dan Appleman or …)   Broken Arrow North Auditorium 808 East College Street   Please visit the Tulsa Developers .NET web site for updated information as it becomes available.   Register by going to this link.

    Read the article

  • Ternary operator in VB.NET

    - by Jalpesh P. Vadgama
    We all know about Ternary operator in C#.NET. I am a big fan of ternary operator and I like to use it instead of using IF..Else. Those who don’t know about ternary operator please go through below link. http://msdn.microsoft.com/en-us/library/ty67wk28(v=vs.80).aspx Here you can see ternary operator returns one of the two values based on the condition. See following example. bool value = false;string output=string.Empty;//using If conditionif (value==true) output ="True";else output="False";//using tenary operatoroutput = value == true ? "True" : "False"; In the above example you can see how we produce same output with the ternary operator without using If..Else statement. Recently in one of the project I was working with VB.NET language and I was eager to know if there is a ternary operator equivalent there or not. After searching on internet I have found two ways to do it. IF operator which works for VB.NET 2008 and higher version and IIF operator which is there since VB 6.0. So let’s check same above example with both of this operators. So let’s create a console application which has following code. Module Module1 Sub Main() Dim value As Boolean = False Dim output As String = String.Empty ''Output using if else statement If value = True Then output = "True" Else output = "False" Console.WriteLine("Output Using If Loop") Console.WriteLine(output) output = If(value = True, "True", "False") Console.WriteLine("Output using If operator") Console.WriteLine(output) output = IIf(value = True, "True", "False") Console.WriteLine("Output using IIF Operator") Console.WriteLine(output) Console.ReadKey() End If End SubEnd Module As you can see in the above code I have written all three-way to condition check using If.Else statement and If operator and IIf operator. You can see that both IIF and If operator has three parameter first parameter is the condition which you need to check and then another parameter is true part of you need to put thing which you need as output when condition is ‘true’. Same way third parameter is for the false part where you need to put things which you need as output when condition as ‘false’. Now let’s run that application and following is the output as expected. That’s it. You can see all three ways are producing same output. Hope you like it. Stay tuned for more..Till then Happy Programming.

    Read the article

  • Securing ASP.Net Pages - Forms Authentication - C# and .Net 4

    - by SAMIR BHOGAYTA
    ASP.Net has a built-in feature named Forms Authentication that allows a developer to easily secure certain areas of a web site. In this post I'm going to build a simple authentication sample using C# and ASP.Net 4.0 (still in beta as of the posting date). Security settings with ASP.Net is configured from within the web.config file. This is a standard ASCII file, with an XML format, that is located in the root of your web application. Here is a sample web.config file: configuration system.web authenticationmode="Forms" formsname="TestAuthCookie"loginUrl="login.aspx"timeout="30" credentialspasswordFormat="Clear" username="user1"password="pass1"/ username="user2"password="pass2"/ authorization denyusers="?"/ compilationtargetFramework="4.0"/ pagescontrolRenderingCompatibilityVersion="3.5"clientIDMode="AutoID"/ Here is the complete source of the sample login.aspx page: div Username: asp:TextBox ID="txtUsername" runat="server":TextBox Password: asp:TextBox ID="txtPassword" runat="server":TextBox asp:Button ID="Button1" runat="server" onclick="Button1_Click" Text="Login" / asp:Label ID="lblStatus" runat="server" Text="Please login":Label /div And here is the complete source of the login.aspx.cs file: using System; using System.Web.UI.WebControls; using System.Web.Security; public partial class Default3 : System.Web.UI.Page { protected void Button1_Click(object sender, EventArgs e) { if (FormsAuthentication.Authenticate(txtUsername.Text, txtPassword.Text)) { lblStatus.Text = ("Welcome " + txtUsername.Text); FormsAuthentication.RedirectFromLoginPage(txtUsername.Text, true); } else { lblStatus.Text = "Invalid login!"; } } }

    Read the article

  • ASP.NET web forms as ASP.NET MVC

    - by lopkiju
    I am sorry for possible misleading about the title, but I have no idea for a proper title. Feel free to edit. Anyway, I am using ASP.NET Web Forms, and maybe this isn't how web forms is intended to be used, but I like to construct and populate HTML elements manually. It gives me more control. I don't use DataBinding and that kind of stuff. I use SqlConnection, SqlCommand and SqlDataReader, set SQL string etc. and read the data from the DataReader. Old school if you like. :) I do create WebControls so that I don't have to copy-paste every time I need some control, but mostly, I need WebControls to render as HTML so I can append that HTML into some other function that renders the final output with the control inside. I know I can render a control with control.RenderControl(writer), but this can only be done in (pre)Render or RenderContents overrides. For example. I have a dal.cs file where is stored all static functions and voids that communicate with the database. Functions mostly return string so that it can be appended into some other function to render the final result. The reason I am doing like this is that I want to separate the coding from the HTML as much as I can so that I don't do <% while (dataReader.Read()) % in HTML and display the data. I moved this into a CodeBehind. I also use this functions to render in the HttpHandler for AJAX response. That works perfectly, but when I want to add a control (ASP.NET Server control (.cs extension, not .ascx)) I don't know how to do that, so I see my self writing the same control as function that returns string or another function inside that control that returns string and replaces a job that would RenderContents do, so that I can call that function when I need control to be appended into a another string. I know this may not be a very good practice. As I see all the tutorials/videos about the ASP.NET MVC, I think it suite my needs as with the MVC you have to construct everything (or most of it) by your self, which I am already doing right now with web forms. After this long intro, I want to ask how can I build my controls so I can use them as I mentioned (return string) or I have to forget about server controls and build the controls as functions and used them that way? Is that even possible with ASP.NET Server Controls (.cs extension) or am I right when I said that I am not using it right. To be clear, I am talking about how to properly use a web forms, but to avoid data binders because I want to construct everything by my self (render HTML in Code Behind). Someone might think that I am appending strings like "some " + "string", which I am not. I am using StringBuilder for that so there's no slowness. Every opinion is welcome.

    Read the article

  • C# development with Mono and MonoDevelop

    - by developerit
    In the past two years, I have been developing .NET from my MacBook by running Windows XP into VM Ware and more recently into Virtual Box from OS X. This way, I could install Visual Studio and be able to work seamlessly. But, this way of working has a major down side: it kills the battery of my laptop… I can easiely last for 3 hours if I stay in OS X, but can only last 45 min when XP is running. Recently, I gave MonoDevelop a try for developing Developer IT‘s tools and web site. While being way less complete then Visual Studio, it provides essentials tools when it comes to developping software. It works well with solutions and projects files created from Visual Studio, it has Intellisence (word completion), it can compile your code and can even target your .NET app to linux or unix. This tools can save me a lot of time and batteries! Although I could not only work with MonoDevelop, I find it way better than a simple text editor like Smultron. Thanks to Novell, we can now bring Microsoft technology to OS X.

    Read the article

  • Extracting the Date from a DateTime in Entity Framework 4 and LINQ

    - by Ken Cox [MVP]
    In my current ASP.NET 4 project, I’m displaying dates in a GridDateTimeColumn of Telerik’s ASP.NET Radgrid control. I don’t care about the time stuff, so my DataFormatString shows only the date bits: <telerik:GridDateTimeColumn FilterControlWidth="100px"   DataField="DateCreated" HeaderText="Created"    SortExpression="DateCreated" ReadOnly="True"    UniqueName="DateCreated" PickerType="DatePicker"    DataFormatString="{0:dd MMM yy}"> My problem was that I couldn’t get the built-in column filtering (it uses Telerik’s DatePicker control) to behave.  The DatePicker assumes that the time is 00:00:00 but the data would have times like 09:22:21. So, when you select a date and apply the EqualTo filter, you get no results. You would get results if all the time portions were 00:00:00. In essence, I wanted my Entity Framework query to give the DatePicker what it wanted… a Date without the Time portion. Fortunately, EF4 provides the TruncateTime  function. After you include Imports System.Data.Objects.EntityFunctions You’ll find that your EF queries will accept the TruncateTime function. Here’s my routine: Protected Sub RadGrid1_NeedDataSource _     (ByVal source As Object, _      ByVal e As Telerik.Web.UI.GridNeedDataSourceEventArgs) _     Handles RadGrid1.NeedDataSource     Dim ent As New OfficeBookDBEntities1     Dim TopBOMs = From t In ent.TopBom, i In ent.Items _                   Where t.BusActivityID = busActivityID _       And i.BusActivityID And t.ItemID = i.RecordID _       Order By t.DateUpdated Descending _       Select New With {.TopBomID = t.TopBomID, .ItemID = t.ItemID, _                        .PartNumber = i.PartNumber, _                        .Description = i.Description, .Notes = t.Notes, _                        .DateCreated = TruncateTime(t.DateCreated), _                        .DateUpdated = TruncateTime(t.DateUpdated)}     RadGrid1.DataSource = TopBOMs End Sub Now when I select March 14, 2011 on the DatePicker, the filter doesn’t stumble on time values that don’t make sense. Full Disclosure: Telerik gives me (and other developer MVPs) free copies of their suite.

    Read the article

  • Skinny controller in ASP.NET MVC 4

    - by thangchung
    Rails community are always inspire a lot of best ideas. I really love this community by the time. One of these is "Fat models and skinny controllers". I have spent a lot of time on ASP.NET MVC, and really I did some miss-takes, because I made the controller so fat. That make controller is really dirty and very hard to maintain in the future. It is violate seriously SRP principle and KISS as well. But how can we achieve that in ASP.NET MVC? That question is really clear after I read "Manning ASP.NET MVC 4 in Action". It is simple that we can separate it into ActionResult, and try to implementing logic and persistence data inside this. In last 2 years, I have read this from Jimmy Bogard blog, but in that time I never had a consideration about it. That's enough for talking now. I just published a sample on ASP.NET MVC 4, implemented on Visual Studio 2012 RC at here. I used EF framework at here for implementing persistence layer, and also use 2 free templates from internet to make the UI for this sample. In this sample, I try to implementing the simple magazine website that managing all articles, categories and news. It is not finished at all in this time, but no problems, because I just show you about how can we make the controller skinny. And I wanna hear more about your ideas. The first thing, I am abstract the base ActionResult class like this:    public abstract class MyActionResult : ActionResult, IEnsureNotNull     {         public abstract void EnsureAllInjectInstanceNotNull();     }     public abstract class ActionResultBase<TController> : MyActionResult where TController : Controller     {         protected readonly Expression<Func<TController, ActionResult>> ViewNameExpression;         protected readonly IExConfigurationManager ConfigurationManager;         protected ActionResultBase (Expression<Func<TController, ActionResult>> expr)             : this(DependencyResolver.Current.GetService<IExConfigurationManager>(), expr)         {         }         protected ActionResultBase(             IExConfigurationManager configurationManager,             Expression<Func<TController, ActionResult>> expr)         {             Guard.ArgumentNotNull(expr, "ViewNameExpression");             Guard.ArgumentNotNull(configurationManager, "ConfigurationManager");             ViewNameExpression = expr;             ConfigurationManager = configurationManager;         }         protected ViewResult GetViewResult<TViewModel>(TViewModel viewModel)         {             var m = (MethodCallExpression)ViewNameExpression.Body;             if (m.Method.ReturnType != typeof(ActionResult))             {                 throw new ArgumentException("ControllerAction method '" + m.Method.Name + "' does not return type ActionResult");             }             var result = new ViewResult             {                 ViewName = m.Method.Name             };             result.ViewData.Model = viewModel;             return result;         }         public override void ExecuteResult(ControllerContext context)         {             EnsureAllInjectInstanceNotNull();         }     } I also have an interface for validation all inject objects. This interface make sure all inject objects that I inject using Autofac container are not null. The implementation of this as below public interface IEnsureNotNull     {         void EnsureAllInjectInstanceNotNull();     } Afterwards, I am just simple implementing the HomePageViewModelActionResult class like this public class HomePageViewModelActionResult<TController> : ActionResultBase<TController> where TController : Controller     {         #region variables & ctors         private readonly ICategoryRepository _categoryRepository;         private readonly IItemRepository _itemRepository;         private readonly int _numOfPage;         public HomePageViewModelActionResult(Expression<Func<TController, ActionResult>> viewNameExpression)             : this(viewNameExpression,                    DependencyResolver.Current.GetService<ICategoryRepository>(),                    DependencyResolver.Current.GetService<IItemRepository>())         {         }         public HomePageViewModelActionResult(             Expression<Func<TController, ActionResult>> viewNameExpression,             ICategoryRepository categoryRepository,             IItemRepository itemRepository)             : base(viewNameExpression)         {             _categoryRepository = categoryRepository;             _itemRepository = itemRepository;             _numOfPage = ConfigurationManager.GetAppConfigBy("NumOfPage").ToInteger();         }         #endregion         #region implementation         public override void ExecuteResult(ControllerContext context)         {             base.ExecuteResult(context);             var cats = _categoryRepository.GetCategories();             var mainViewModel = new HomePageViewModel();             var headerViewModel = new HeaderViewModel();             var footerViewModel = new FooterViewModel();             var mainPageViewModel = new MainPageViewModel();             headerViewModel.SiteTitle = "Magazine Website";             if (cats != null && cats.Any())             {                 headerViewModel.Categories = cats.ToList();                 footerViewModel.Categories = cats.ToList();             }             mainPageViewModel.LeftColumn = BindingDataForMainPageLeftColumnViewModel();             mainPageViewModel.RightColumn = BindingDataForMainPageRightColumnViewModel();             mainViewModel.Header = headerViewModel;             mainViewModel.DashBoard = new DashboardViewModel();             mainViewModel.Footer = footerViewModel;             mainViewModel.MainPage = mainPageViewModel;             GetViewResult(mainViewModel).ExecuteResult(context);         }         public override void EnsureAllInjectInstanceNotNull()         {             Guard.ArgumentNotNull(_categoryRepository, "CategoryRepository");             Guard.ArgumentNotNull(_itemRepository, "ItemRepository");             Guard.ArgumentMustMoreThanZero(_numOfPage, "NumOfPage");         }         #endregion         #region private functions         private MainPageRightColumnViewModel BindingDataForMainPageRightColumnViewModel()         {             var mainPageRightCol = new MainPageRightColumnViewModel();             mainPageRightCol.LatestNews = _itemRepository.GetNewestItem(_numOfPage).ToList();             mainPageRightCol.MostViews = _itemRepository.GetMostViews(_numOfPage).ToList();             return mainPageRightCol;         }         private MainPageLeftColumnViewModel BindingDataForMainPageLeftColumnViewModel()         {             var mainPageLeftCol = new MainPageLeftColumnViewModel();             var items = _itemRepository.GetNewestItem(_numOfPage);             if (items != null && items.Any())             {                 var firstItem = items.First();                 if (firstItem == null)                     throw new NoNullAllowedException("First Item".ToNotNullErrorMessage());                 if (firstItem.ItemContent == null)                     throw new NoNullAllowedException("First ItemContent".ToNotNullErrorMessage());                 mainPageLeftCol.FirstItem = firstItem;                 if (items.Count() > 1)                 {                     mainPageLeftCol.RemainItems = items.Where(x => x.ItemContent != null && x.Id != mainPageLeftCol.FirstItem.Id).ToList();                 }             }             return mainPageLeftCol;         }         #endregion     }  Final step, I get into HomeController and add some line of codes like this [Authorize]     public class HomeController : BaseController     {         [AllowAnonymous]         public ActionResult Index()         {             return new HomePageViewModelActionResult<HomeController>(x=>x.Index());         }         [AllowAnonymous]         public ActionResult Details(int id)         {             return new DetailsViewModelActionResult<HomeController>(x => x.Details(id), id);         }         [AllowAnonymous]         public ActionResult Category(int id)         {             return new CategoryViewModelActionResult<HomeController>(x => x.Category(id), id);         }     } As you see, the code in controller is really skinny, and all the logic I move to the custom ActionResult class. Some people said, it just move the code out of controller and put it to another class, so it is still hard to maintain. Look like it just move the complicate codes from one place to another place. But if you have a look and think it in details, you have to find out if you have code for processing all logic that related to HttpContext or something like this. You can do it on Controller, and try to delegating another logic  (such as processing business requirement, persistence data,...) to custom ActionResult class. Tell me more your thinking, I am really willing to hear all of its from you guys. All source codes can be find out at here. Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="http://weblogs.asp.net//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs");

    Read the article

  • ASP.NET Web API Exception Handling

    - by Fredrik N
    When I talk about exceptions in my product team I often talk about two kind of exceptions, business and critical exceptions. Business exceptions are exceptions thrown based on “business rules”, for example if you aren’t allowed to do a purchase. Business exceptions in most case aren’t important to log into a log file, they can directly be shown to the user. An example of a business exception could be "DeniedToPurchaseException”, or some validation exceptions such as “FirstNameIsMissingException” etc. Critical Exceptions are all other kind of exceptions such as the SQL server is down etc. Those kind of exception message need to be logged and should not reach the user, because they can contain information that can be harmful if it reach out to wrong kind of users. I often distinguish business exceptions from critical exceptions by creating a base class called BusinessException, then in my error handling code I catch on the type BusinessException and all other exceptions will be handled as critical exceptions. This blog post will be about different ways to handle exceptions and how Business and Critical Exceptions could be handled. Web API and Exceptions the basics When an exception is thrown in a ApiController a response message will be returned with a status code set to 500 and a response formatted by the formatters based on the “Accept” or “Content-Type” HTTP header, for example JSON or XML. Here is an example:   public IEnumerable<string> Get() { throw new ApplicationException("Error!!!!!"); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response message will be: HTTP/1.1 500 Internal Server Error Content-Length: 860 Content-Type: application/json; charset=utf-8 { "ExceptionType":"System.ApplicationException","Message":"Error!!!!!","StackTrace":" at ..."} .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The stack trace will be returned to the client, this is because of making it easier to debug. Be careful so you don’t leak out some sensitive information to the client. So as long as you are developing your API, this is not harmful. In a production environment it can be better to log exceptions and return a user friendly exception instead of the original exception. There is a specific exception shipped with ASP.NET Web API that will not use the formatters based on the “Accept” or “Content-Type” HTTP header, it is the exception is the HttpResponseException class. Here is an example where the HttpReponseExcetpion is used: // GET api/values [ExceptionHandling] public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError)); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response will not contain any content, only header information and the status code based on the HttpStatusCode passed as an argument to the HttpResponseMessage. Because the HttpResponsException takes a HttpResponseMessage as an argument, we can give the response a content: public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("My Error Message"), ReasonPhrase = "Critical Exception" }); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The code above will have the following response:   HTTP/1.1 500 Critical Exception Content-Length: 5 Content-Type: text/plain; charset=utf-8 My Error Message .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The Content property of the HttpResponseMessage doesn’t need to be just plain text, it can also be other formats, for example JSON, XML etc. By using the HttpResponseException we can for example catch an exception and throw a user friendly exception instead: public IEnumerable<string> Get() { try { DoSomething(); return new string[] { "value1", "value2" }; } catch (Exception e) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Adding a try catch to every ApiController methods will only end in duplication of code, by using a custom ExceptionFilterAttribute or our own custom ApiController base class we can reduce code duplicationof code and also have a more general exception handler for our ApiControllers . By creating a custom ApiController’s and override the ExecuteAsync method, we can add a try catch around the base.ExecuteAsync method, but I prefer to skip the creation of a own custom ApiController, better to use a solution that require few files to be modified. The ExceptionFilterAttribute has a OnException method that we can override and add our exception handling. Here is an example: using System; using System.Diagnostics; using System.Net; using System.Net.Http; using System.Web.Http; using System.Web.Http.Filters; public class ExceptionHandlingAttribute : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { if (context.Exception is BusinessException) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(context.Exception.Message), ReasonPhrase = "Exception" }); } //Log Critical errors Debug.WriteLine(context.Exception); throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: Something to have in mind is that the ExceptionFilterAttribute will be ignored if the ApiController action method throws a HttpResponseException. The code above will always make sure a HttpResponseExceptions will be returned, it will also make sure the critical exceptions will show a more user friendly message. The OnException method can also be used to log exceptions. By using a ExceptionFilterAttribute the Get() method in the previous example can now look like this: public IEnumerable<string> Get() { DoSomething(); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To use the an ExceptionFilterAttribute, we can for example add the ExceptionFilterAttribute to our ApiControllers methods or to the ApiController class definition, or register it globally for all ApiControllers. You can read more about is here. Note: If something goes wrong in the ExceptionFilterAttribute and an exception is thrown that is not of type HttpResponseException, a formatted exception will be thrown with stack trace etc to the client. How about using a custom IHttpActionInvoker? We can create our own IHTTPActionInvoker and add Exception handling to the invoker. The IHttpActionInvoker will be used to invoke the ApiController’s ExecuteAsync method. Here is an example where the default IHttpActionInvoker, ApiControllerActionInvoker, is used to add exception handling: public class MyApiControllerActionInvoker : ApiControllerActionInvoker { public override Task<HttpResponseMessage> InvokeActionAsync(HttpActionContext actionContext, System.Threading.CancellationToken cancellationToken) { var result = base.InvokeActionAsync(actionContext, cancellationToken); if (result.Exception != null && result.Exception.GetBaseException() != null) { var baseException = result.Exception.GetBaseException(); if (baseException is BusinessException) { return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Error" }); } else { //Log critical error Debug.WriteLine(baseException); return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Critical Error" }); } } return result; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can register the IHttpActionInvoker with your own IoC to resolve the MyApiContollerActionInvoker, or add it in the Global.asax: GlobalConfiguration.Configuration.Services.Remove(typeof(IHttpActionInvoker), GlobalConfiguration.Configuration.Services.GetActionInvoker()); GlobalConfiguration.Configuration.Services.Add(typeof(IHttpActionInvoker), new MyApiControllerActionInvoker()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   How about using a Message Handler for Exception Handling? By creating a custom Message Handler, we can handle error after the ApiController and the ExceptionFilterAttribute is invoked and in that way create a global exception handler, BUT, the only thing we can take a look at is the HttpResponseMessage, we can’t add a try catch around the Message Handler’s SendAsync method. The last Message Handler that will be used in the Wep API pipe-line is the HttpControllerDispatcher and this Message Handler is added to the HttpServer in an early stage. The HttpControllerDispatcher will use the IHttpActionInvoker to invoke the ApiController method. The HttpControllerDipatcher has a try catch that will turn ALL exceptions into a HttpResponseMessage, so that is the reason why a try catch around the SendAsync in a custom Message Handler want help us. If we create our own Host for the Wep API we could create our own custom HttpControllerDispatcher and add or exception handler to that class, but that would be little tricky but is possible. We can in a Message Handler take a look at the HttpResponseMessage’s IsSuccessStatusCode property to see if the request has failed and if we throw the HttpResponseException in our ApiControllers, we could use the HttpResponseException and give it a Reason Phrase and use that to identify business exceptions or critical exceptions. I wouldn’t add an exception handler into a Message Handler, instead I should use the ExceptionFilterAttribute and register it globally for all ApiControllers. BUT, now to another interesting issue. What will happen if we have a Message Handler that throws an exception?  Those exceptions will not be catch and handled by the ExceptionFilterAttribute. I found a  bug in my previews blog post about “Log message Request and Response in ASP.NET WebAPI” in the MessageHandler I use to log incoming and outgoing messages. Here is the code from my blog before I fixed the bug:   public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); var responseMessage = await response.Content.ReadAsByteArrayAsync(); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If a ApiController throws a HttpResponseException, the Content property of the HttpResponseMessage from the SendAsync will be NULL. So a null reference exception is thrown within the MessageHandler. The yellow screen of death will be returned to the client, and the content is HTML and the Http status code is 500. The bug in the MessageHandler was solved by adding a check against the HttpResponseMessage’s IsSuccessStatusCode property: public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); byte[] responseMessage; if (response.IsSuccessStatusCode) responseMessage = await response.Content.ReadAsByteArrayAsync(); else responseMessage = Encoding.UTF8.GetBytes(response.ReasonPhrase); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we don’t handle the exceptions that can occur in a custom Message Handler, we can have a hard time to find the problem causing the exception. The savior in this case is the Global.asax’s Application_Error: protected void Application_Error() { var exception = Server.GetLastError(); Debug.WriteLine(exception); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I would recommend you to add the Application_Error to the Global.asax and log all exceptions to make sure all kind of exception is handled. Summary There are different ways we could add Exception Handling to the Wep API, we can use a custom ApiController, ExceptionFilterAttribute, IHttpActionInvoker or Message Handler. The ExceptionFilterAttribute would be a good place to add a global exception handling, require very few modification, just register it globally for all ApiControllers, even the IHttpActionInvoker can be used to minimize the modifications of files. Adding the Application_Error to the global.asax is a good way to catch all unhandled exception that can occur, for example exception thrown in a Message Handler.   If you want to know when I have posted a blog post, you can follow me on twitter @fredrikn

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >