Search Results

Search found 18318 results on 733 pages for 'dynamic management'.

Page 4/733 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Dynamic mod_rewrite or how to plan a dynamic website

    - by Sophia Gavish
    Hi, I'm trying to make a clean url for a blog on a dynamic website, but I think that the problem is that I don't know how to plan the website schema. I read about how to use mod_rewrite and all I found is how to make "http://www.website.com/?category&date&post-title" to "http://www.website.com/category/date/post-title". that's works o.k for me. The problem is that If my url looks like "http://www.website.com/blog/?id=34" this method won't work as far as I got it. So, I have two questions: 1. Is there a way to use mod_rewrite (maybe read from a txt file) to read the post title of my blog and rewrite my url by date and post-title? 2. Should I rewrite my website to query the data from one index file in the homepage and use mod_rewrite to write the nice url? should I query also the date and the title of the post instead just the post ID?

    Read the article

  • We're Hiring! - Server and Desktop Virtualization Product Management

    - by adam.hawley
    There is a lot of exciting stuff going on here at Oracle in general but the server and desktop virtualization group in particular is deeply involved in executing on Oracle's strategy for delivering complete hardware-software solutions across the company, so we're expanding our team with several open positions. If you're interested and qualified, then please send us your resume. The three positions in Virtualization Product Management can be found by going here or going to the Employment Opportunities Job Search page, clicking on 'Advanced Search' and typing the job opening numbers (include 'IRC'... see below) in the 'Keywords' field. Click Search. Current openings are... IRC1457623: Oracle VM Product Management IRC1457626: Desktop Virtualization Application Solutions Product Management IRC1473577: Oracle VM Best Practices Implementation Engineer (Product Management) I look forward to hearing from you!

    Read the article

  • Implementing Database Settings Using Policy Based Management

    - by Ashish Kumar Mehta
    Introduction Database Administrators have always had a tough time to ensuring that all the SQL Servers administered by them are configured according to the policies and standards of organization. Using SQL Server’s  Policy Based Management feature DBAs can now manage one or more instances of SQL Server 2008 and check for policy compliance issues. In this article we will utilize Policy Based Management (aka Declarative Management Framework or DMF) feature of SQL Server to implement and verify database settings on all production databases. It is best practice to enforce the below settings on each Production database. However, it can be tedious to go through each database and then check whether the below database settings are implemented across databases. In this article I will explain it to you how to utilize the Policy Based Management Feature of SQL Server 2008 to create a policy to verify these settings on all databases and in cases of non-complaince how to bring them back into complaince. Database setting to enforce on each user database : Auto Close and Auto Shrink Properties of database set to False Auto Create Statistics and Auto Update Statistics set to True Compatibility Level of all the user database set as 100 Page Verify set as CHECKSUM Recovery Model of all user database set to Full Restrict Access set as MULTI_USER Configure a Policy to Verify Database Settings 1. Connect to SQL Server 2008 Instance using SQL Server Management Studio 2. In the Object Explorer, Click on Management > Policy Management and you will be able to see Policies, Conditions & Facets as child nodes 3. Right click Policies and then select New Policy…. from the drop down list as shown in the snippet below to open the  Create New Policy Popup window. 4. In the Create New Policy popup window you need to provide the name of the policy as “Implementing and Verify Database Settings for Production Databases” and then click the drop down list under Check Condition. As highlighted in the snippet below click on the New Condition… option to open up the Create New Condition window. 5. In the Create New Condition popup window you need to provide the name of the condition as “Verify and Change Database Settings”. In the Facet drop down list you need to choose the Facet as Database Options as shown in the snippet below. Under Expression you need to select Field value as @AutoClose and then choose Operator value as ‘ = ‘ and finally choose Value as False. Now that you have successfully added the first field you can now go ahead and add rest of the fields as shown in the snippet below. Once you have successfully added all the above shown fields of Database Options Facet, click OK to save the changes and to return to the parent Create New Policy – Implementing and Verify Database Settings for Production Database windows where you will see that the newly created condition “Verify and Change Database Settings” is selected by default. Continues…

    Read the article

  • How can i use JIRA for project management with Green Hopper

    - by user22
    I am thinking of using JIRA + GreenHopper for my project management. I have seen that Green Hopper is for making User stories , sprints. I am not able to find how do i need to add tasks , or how to break user stories in to sub stoires. DO i first need to create project in JIRA and then use Green Hopper or i can use use Green Hopper as stand alone for project management. I am thinking of JIRA as issue tracker not project management.

    Read the article

  • Webcast Q&A: Cisco's Platform Approach to Identity Management

    - by Tanu Sood
    Thanks to all who attended the live webcast we hosted on Cisco: Best Practices for a Platform Approach on Wed, March 14th. Those of you who couldn’t join us, the webcast replay is now available. Many thanks to our guest speaker, Ranjan Jain, Security Architect at Cisco for walking us through Cisco’s drivers and rationale for the platform approach, the implementation strategy, results, roadmap and recommendations. We greatly appreciate the insight he shared with us all on the deployment synergies with a platform approach to Identity Management. A forward looking organization, Cisco also has plans for secure cloud and mobile access enablement so it was interesting to learn how the Platform approach to Identity Management today is laying down the foundation for those future initiatives. While we tackled a good few questions during the webcast, we have captured the responses to those that we weren’t able to get to: Q.Can you provide insight into how you approached developing profiles for each user groupA. At Cisco, the user profile was already available to IT before the platform consolidation started. There is a dedicated business team that manages the user profiles. Q. What is the current version of Oracle Identity Manager in the market?A. Oracle Identity Manager 11gR1 is the latest version of our industry leading user provisioning/identity administration solution. Q. Is data resource segmentation part of the overall strategy at Cisco?A. It is but it is managed by the business teams and not at the IT level. Q. Does Cisco also have an Active Directoy LDAP? Do they sync AD from OID or do the provision to AD as another resource?[A. Yes, we do. AD is provisioned using in-house tools and not via Oracle Identity Manager (OIM). Q. If we already have a point IDM solution in place (SSO), can the platform approach still work?A. Yes, the platform approach calls for a seamless, standardized framework for identity management to support the enterprise’s entire infrastructure, both on-premise or in the cloud. Oracle Identity Management solutions are standards based so they can easily integrate and interoperate with existing Oracle or non-Oracle solutions. Hope you enjoyed the webcast and we look forward to having you join us for the next webcast in our Customers Talk: Identity as a Platform webcast series:ING: Scaling Role Management and Access Certification to Thousands of ApplicationsWednesday, April 11th at 10 am PST/ 1 pm ESTRegister Today We are also hosting a live event series in collaboration with the Aberdeen Group. To hear first-hand, the insights from the recently released Aberdeen Report and to discuss the merits of the Platform approach, do join us at this event. You can also connect with Oracle Identity Management SMEs and get your questions answered live. Aberdeen Group Live Event Series: IAM Integrated - Analyzing the "Platform" vs. "Point Solution" ApproachNorth America, April 10 - May 22Register for an event near you And here’s the slide deck from our Cisco webcast:   Oracle_Cisco identity platform approach_webcast View more presentations from OracleIDM

    Read the article

  • Computer Networks UNISA - Chap 15 &ndash; Network Management

    - by MarkPearl
    After reading this section you should be able to Understand network management and the importance of documentation, baseline measurements, policies, and regulations to assess and maintain a network’s health. Manage a network’s performance using SNMP-based network management software, system and event logs, and traffic-shaping techniques Identify the reasons for and elements of an asset managements system Plan and follow regular hardware and software maintenance routines Fundamentals of Network Management Network management refers to the assessment, monitoring, and maintenance of all aspects of a network including checking for hardware faults, ensuring high QoS, maintaining records of network assets, etc. Scope of network management differs depending on the size and requirements of the network. All sub topics of network management share the goals of enhancing the efficiency and performance while preventing costly downtime or loss. Documentation The way documentation is stored may vary, but to adequately manage a network one should at least record the following… Physical topology (types of LAN and WAN topologies – ring, star, hybrid) Access method (does it use Ethernet 802.3, token ring, etc.) Protocols Devices (Switches, routers, etc) Operating Systems Applications Configurations (What version of operating system and config files for serve / client software) Baseline Measurements A baseline is a report of the network’s current state of operation. Baseline measurements might include the utilization rate for your network backbone, number of users logged on per day, etc. Baseline measurements allow you to compare future performance increases or decreases caused by network changes or events with past network performance. Obtaining baseline measurements is the only way to know for certain whether a pattern of usage has changed, or whether a network upgrade has made a difference. There are various tools available for measuring baseline performance on a network. Policies, Procedures, and Regulations Following rules helps limit chaos, confusion, and possibly downtime. The following policies and procedures and regulations make for sound network management. Media installations and management (includes designing physical layout of cable, etc.) Network addressing policies (includes choosing and applying a an addressing scheme) Resource sharing and naming conventions (includes rules for logon ID’s) Security related policies Troubleshooting procedures Backup and disaster recovery procedures In addition to internal policies, a network manager must consider external regulatory rules. Fault and Performance Management After documenting every aspect of your network and following policies and best practices, you are ready to asses you networks status on an on going basis. This process includes both performance management and fault management. Network Management Software To accomplish both fault and performance management, organizations often use enterprise-wide network management software. There various software packages that do this, each collect data from multiple networked devices at regular intervals, in a process called polling. Each managed device runs a network management agent. So as not to affect the performance of a device while collecting information, agents do not demand significant processing resources. The definition of a managed devices and their data are collected in a MIB (Management Information Base). Agents communicate information about managed devices via any of several application layer protocols. On modern networks most agents use SNMP which is part of the TCP/IP suite and typically runs over UDP on port 161. Because of the flexibility and sophisticated network management applications are a challenge to configure and fine-tune. One needs to be careful to only collect relevant information and not cause performance issues (i.e. pinging a device every 5 seconds can be a problem with thousands of devices). MRTG (Multi Router Traffic Grapher) is a simple command line utility that uses SNMP to poll devices and collects data in a log file. MRTG can be used with Windows, UNIX and Linux. System and Event Logs Virtually every condition recognized by an operating system can be recorded. This is typically done using event logs. In Windows there is a GUI event log viewer. Similar information is recorded in UNIX and Linux in a system log. Much of the information collected in event logs and syslog files does not point to a problem, even if it is marked with a warning so it is important to filter your logs appropriately to reduce the noise. Traffic Shaping When a network must handle high volumes of network traffic, users benefit from performance management technique called traffic shaping. Traffic shaping involves manipulating certain characteristics of packets, data streams, or connections to manage the type and amount of traffic traversing a network or interface at any moment. Its goals are to assure timely delivery of the most important traffic while offering the best possible performance for all users. Several types of traffic prioritization exist including prioritizing traffic according to any of the following characteristics… Protocol IP address User group DiffServr VLAN tag in a Data Link layer frame Service or application Caching In addition to traffic shaping, a network or host might use caching to improve performance. Caching is the local storage of frequently needed files that would otherwise be obtained from an external source. By keeping files close to the requester, caching allows the user to access those files quickly. The most common type of caching is Web caching, in which Web pages are stored locally. To an ISP, caching is much more than just convenience. It prevents a significant volume of WAN traffic, thus improving performance and saving money. Asset Management Another key component in managing networks is identifying and tracking its hardware. This is called asset management. The first step to asset management is to take an inventory of each node on the network. You will also want to keep records of every piece of software purchased by your organization. Asset management simplifies maintaining and upgrading the network chiefly because you know what the system includes. In addition, asset management provides network administrators with information about the costs and benefits of certain types of hardware or software. Change Management Networks are always in a stage of flux with various aspects including… Software changes and patches Client Upgrades Shared Application Upgrades NOS Upgrades Hardware and Physical Plant Changes Cabling Upgrades Backbone Upgrades For a detailed explanation on each of these read the textbook (Page 750 – 761)

    Read the article

  • Live Webcast: Introducing Oracle Identity Management 11gR2

    - by B Shashikumar
    Please join Oracle and customer executives for the launch of Oracle Identity Management 11g R2, the breakthrough technology that dramatically expands the reach of identity management to cloud and mobile environments. Until now, businesses have been forced to piece together different kinds of technology to get comprehensive identity protection. The latest release of Oracle Identity Management 11g changes all that. Only Oracle Identity Management 11gR2 allows you to: Unlock the potential of cloud, mobile, and social applications Streamline regulatory compliance and reduce risk Improve quality of service and end user satisfaction Don't leave your identity at the office. Take it with you on your phone, in the cloud, and across the social world. Register now for the interactive launch Webcast and don’t miss this chance to have your questions answered by Oracle product experts.Date: Thursday, July 19, 2012 Time: 10am Pacific / 1pm Eastern

    Read the article

  • Dynamic Code for type casting Generic Types 'generically' in C#

    - by Rick Strahl
    C# is a strongly typed language and while that's a fundamental feature of the language there are more and more situations where dynamic types make a lot of sense. I've written quite a bit about how I use dynamic for creating new type extensions: Dynamic Types and DynamicObject References in C# Creating a dynamic, extensible C# Expando Object Creating a dynamic DataReader for dynamic Property Access Today I want to point out an example of a much simpler usage for dynamic that I use occasionally to get around potential static typing issues in C# code especially those concerning generic types. TypeCasting Generics Generic types have been around since .NET 2.0 I've run into a number of situations in the past - especially with generic types that don't implement specific interfaces that can be cast to - where I've been unable to properly cast an object when it's passed to a method or assigned to a property. Granted often this can be a sign of bad design, but in at least some situations the code that needs to be integrated is not under my control so I have to make due with what's available or the parent object is too complex or intermingled to be easily refactored to a new usage scenario. Here's an example that I ran into in my own RazorHosting library - so I have really no excuse, but I also don't see another clean way around it in this case. A Generic Example Imagine I've implemented a generic type like this: public class RazorEngine<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase, new() You can now happily instantiate new generic versions of this type with custom template bases or even a non-generic version which is implemented like this: public class RazorEngine : RazorEngine<RazorTemplateBase> { public RazorEngine() : base() { } } To instantiate one: var engine = new RazorEngine<MyCustomRazorTemplate>(); Now imagine that the template class receives a reference to the engine when it's instantiated. This code is fired as part of the Engine pipeline when it gets ready to execute the template. It instantiates the template and assigns itself to the template: var template = new TBaseTemplateType() { Engine = this } The problem here is that possibly many variations of RazorEngine<T> can be passed. I can have RazorTemplateBase, RazorFolderHostTemplateBase, CustomRazorTemplateBase etc. as generic parameters and the Engine property has to reflect that somehow. So, how would I cast that? My first inclination was to use an interface on the engine class and then cast to the interface.  Generally that works, but unfortunately here the engine class is generic and has a few members that require the template type in the member signatures. So while I certainly can implement an interface: public interface IRazorEngine<TBaseTemplateType> it doesn't really help for passing this generically templated object to the template class - I still can't cast it if multiple differently typed versions of the generic type could be passed. I have the exact same issue in that I can't specify a 'generic' generic parameter, since there's no underlying base type that's common. In light of this I decided on using object and the following syntax for the property (and the same would be true for a method parameter): public class RazorTemplateBase :MarshalByRefObject,IDisposable { public object Engine {get;set; } } Now because the Engine property is a non-typed object, when I need to do something with this value, I still have no way to cast it explicitly. What I really would need is: public RazorEngine<> Engine { get; set; } but that's not possible. Dynamic to the Rescue Luckily with the dynamic type this sort of thing can be mitigated fairly easily. For example here's a method that uses the Engine property and uses the well known class interface by simply casting the plain object reference to dynamic and then firing away on the properties and methods of the base template class that are common to all templates:/// <summary> /// Allows rendering a dynamic template from a string template /// passing in a model. This is like rendering a partial /// but providing the input as a /// </summary> public virtual string RenderTemplate(string template,object model) { if (template == null) return string.Empty; // if there's no template markup if(!template.Contains("@")) return template; // use dynamic to get around generic type casting dynamic engine = Engine; string result = engine.RenderTemplate(template, model); if (result == null) throw new ApplicationException("RenderTemplate failed: " + engine.ErrorMessage); return result; } Prior to .NET 4.0  I would have had to use Reflection for this sort of thing which would have a been a heck of a lot more verbose, but dynamic makes this so much easier and cleaner and in this case at least the overhead is negliable since it's a single dynamic operation on an otherwise very complex operation call. Dynamic as  a Bailout Sometimes this sort of thing often reeks of a design flaw, and I agree that in hindsight this could have been designed differently. But as is often the case this particular scenario wasn't planned for originally and removing the generic signatures from the base type would break a ton of other code in the framework. Given the existing fairly complex engine design, refactoring an interface to remove generic types just to make this particular code work would have been overkill. Instead dynamic provides a nice and simple and relatively clean solution. Now if there were many other places where this occurs I would probably consider reworking the code to make this cleaner but given this isolated instance and relatively low profile operation use of dynamic seems a valid choice for me. This solution really works anywhere where you might end up with an inheritance structure that doesn't have a common base or interface that is sufficient. In the example above I know what I'm getting but there's no common base type that I can cast to. All that said, it's a good idea to think about use of dynamic before you rush in. In many situations there are alternatives that can still work with static typing. Dynamic definitely has some overhead compared to direct static access of objects, so if possible we should definitely stick to static typing. In the example above the application already uses dynamics extensively for dynamic page page templating and passing models around so introducing dynamics here has very little additional overhead. The operation itself also fires of a fairly resource heavy operation where the overhead of a couple of dynamic member accesses are not a performance issue. So, what's your experience with dynamic as a bailout mechanism? © Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Convert Dynamic to Type and convert Type to Dynamic

    - by Jon Canning
    public static class DynamicExtensions     {         public static T FromDynamic<T>(this IDictionary<string, object> dictionary)         {             var bindings = new List<MemberBinding>();             foreach (var sourceProperty in typeof(T).GetProperties().Where(x => x.CanWrite))             {                 var key = dictionary.Keys.SingleOrDefault(x => x.Equals(sourceProperty.Name, StringComparison.OrdinalIgnoreCase));                 if (string.IsNullOrEmpty(key)) continue;                 var propertyValue = dictionary[key];                 bindings.Add(Expression.Bind(sourceProperty, Expression.Constant(propertyValue)));             }             Expression memberInit = Expression.MemberInit(Expression.New(typeof(T)), bindings);             return Expression.Lambda<Func<T>>(memberInit).Compile().Invoke();         }         public static dynamic ToDynamic<T>(this T obj)         {             IDictionary<string, object> expando = new ExpandoObject();             foreach (var propertyInfo in typeof(T).GetProperties())             {                 var propertyExpression = Expression.Property(Expression.Constant(obj), propertyInfo);                 var currentValue = Expression.Lambda<Func<string>>(propertyExpression).Compile().Invoke();                 expando.Add(propertyInfo.Name.ToLower(), currentValue);             }             return expando as ExpandoObject;         }     }

    Read the article

  • Is this how dynamic language copes with dynamic requirement?

    - by Amumu
    The question is in the title. I want to have my thinking verified by experienced people. You can add more or disregard my opinion, but give me a reason. Here is an example requirement: Suppose you are required to implement a fighting game. Initially, the game only includes fighters, who can attack each other. Each fighter can punch, kick or block incoming attacks. Fighters can have various fighting styles: Karate, Judo, Kung Fu... That's it for the simple universe of the game. In an OO like Java, it can be implemented similar to this way: abstract class Fighter { int hp, attack; void punch(Fighter otherFighter); void kick(Fighter otherFighter); void block(Figther otherFighter); }; class KarateFighter extends Fighter { //...implementation...}; class JudoFighter extends Fighter { //...implementation... }; class KungFuFighter extends Fighter { //...implementation ... }; This is fine if the game stays like this forever. But, somehow the game designers decide to change the theme of the game: instead of a simple fighting game, the game evolves to become a RPG, in which characters can not only fight but perform other activities, i.e. the character can be a priest, an accountant, a scientist etc... At this point, to make it more generic, we have to change the structure of our original design: Fighter is not used to refer to a person anymore; it refers to a profession. The specialized classes of Fighter (KaraterFighter, JudoFighter, KungFuFighter) . Now we have to create a generic class named Person. However, to adapt this change, I have to change the method signatures of the original operations: class Person { int hp, attack; List<Profession> skillSet; }; abstract class Profession {}; class Fighter extends Profession { void punch(Person otherFighter); void kick(Person otherFighter); void block(Person otherFighter); }; class KarateFighter extends Fighter { //...implementation...}; class JudoFighter extends Fighter { //...implementation... }; class KungFuFighter extends Fighter { //...implementation ... }; class Accountant extends Profession { void calculateTax(Person p) { //...implementation...}; void calculateTax(Company c) { //...implementation...}; }; //... more professions... Here are the problems: To adapt to the method changes, I have to fix the places where the changed methods are called (refactoring). Every time a new requirement is introduced, the current structural design has to be broken to adapt the changes. This leads to the first problem. Rigid structure makes it hard for code reuse. A function can only accept the predefined types, but it cannot accept future unknown types. A written function is bound to its current universe and has no way to accommodate to the new types, without modifications or rewrite from scratch. I see Java has a lot of deprecated methods. OO is an extreme case because it has inheritance to add up the complexity, but in general for statically typed language, types are very strict. In contrast, a dynamic language can handle the above case as follow: ;;fighter1 punch fighter2 (defun perform-punch (fighter1 fighter2) ...implementation... ) ;;fighter1 kick fighter2 (defun perform-kick (fighter1 fighter2) ...implementation... ) ;;fighter1 blocks attacks from fighter2 (defun perform-block (fighter1 fighter2) ...implementation... ) fighter1 and fighter2 can be anything as long as it has the required data for calculation; or methods (duck typing). You don't have to change from the type Fighter to Person. In the case of Lisp, because Lisp only has a single data structure: list, it's even easier to adapt to changes. However, other dynamic languages can have similar behaviors as well. I work primarily with static languages (mainly C and Java, but working with Java was a long time ago). I started learning Lisp and some other dynamic languages this year. I can see how it helps improving my productivity.

    Read the article

  • Dynamic Type to do away with Reflection

    - by Rick Strahl
    The dynamic type in C# 4.0 is a welcome addition to the language. One thing I’ve been doing a lot with it is to remove explicit Reflection code that’s often necessary when you ‘dynamically’ need to walk and object hierarchy. In the past I’ve had a number of ReflectionUtils that used string based expressions to walk an object hierarchy. With the introduction of dynamic much of the ReflectionUtils code can be removed for cleaner code that runs considerably faster to boot. The old Way - Reflection Here’s a really contrived example, but assume for a second, you’d want to dynamically retrieve a Page.Request.Url.AbsoluteUrl based on a Page instance in an ASP.NET Web Page request. The strongly typed version looks like this: string path = Page.Request.Url.AbsolutePath; Now assume for a second that Page wasn’t available as a strongly typed instance and all you had was an object reference to start with and you couldn’t cast it (right I said this was contrived :-)) If you’re using raw Reflection code to retrieve this you’d end up writing 3 sets of Reflection calls using GetValue(). Here’s some internal code I use to retrieve Property values as part of ReflectionUtils: /// <summary> /// Retrieve a property value from an object dynamically. This is a simple version /// that uses Reflection calls directly. It doesn't support indexers. /// </summary> /// <param name="instance">Object to make the call on</param> /// <param name="property">Property to retrieve</param> /// <returns>Object - cast to proper type</returns> public static object GetProperty(object instance, string property) { return instance.GetType().GetProperty(property, ReflectionUtils.MemberAccess).GetValue(instance, null); } If you want more control over properties and support both fields and properties as well as array indexers a little more work is required: /// <summary> /// Parses Properties and Fields including Array and Collection references. /// Used internally for the 'Ex' Reflection methods. /// </summary> /// <param name="Parent"></param> /// <param name="Property"></param> /// <returns></returns> private static object GetPropertyInternal(object Parent, string Property) { if (Property == "this" || Property == "me") return Parent; object result = null; string pureProperty = Property; string indexes = null; bool isArrayOrCollection = false; // Deal with Array Property if (Property.IndexOf("[") > -1) { pureProperty = Property.Substring(0, Property.IndexOf("[")); indexes = Property.Substring(Property.IndexOf("[")); isArrayOrCollection = true; } // Get the member MemberInfo member = Parent.GetType().GetMember(pureProperty, ReflectionUtils.MemberAccess)[0]; if (member.MemberType == MemberTypes.Property) result = ((PropertyInfo)member).GetValue(Parent, null); else result = ((FieldInfo)member).GetValue(Parent); if (isArrayOrCollection) { indexes = indexes.Replace("[", string.Empty).Replace("]", string.Empty); if (result is Array) { int Index = -1; int.TryParse(indexes, out Index); result = CallMethod(result, "GetValue", Index); } else if (result is ICollection) { if (indexes.StartsWith("\"")) { // String Index indexes = indexes.Trim('\"'); result = CallMethod(result, "get_Item", indexes); } else { // assume numeric index int index = -1; int.TryParse(indexes, out index); result = CallMethod(result, "get_Item", index); } } } return result; } /// <summary> /// Returns a property or field value using a base object and sub members including . syntax. /// For example, you can access: oCustomer.oData.Company with (this,"oCustomer.oData.Company") /// This method also supports indexers in the Property value such as: /// Customer.DataSet.Tables["Customers"].Rows[0] /// </summary> /// <param name="Parent">Parent object to 'start' parsing from. Typically this will be the Page.</param> /// <param name="Property">The property to retrieve. Example: 'Customer.Entity.Company'</param> /// <returns></returns> public static object GetPropertyEx(object Parent, string Property) { Type type = Parent.GetType(); int at = Property.IndexOf("."); if (at < 0) { // Complex parse of the property return GetPropertyInternal(Parent, Property); } // Walk the . syntax - split into current object (Main) and further parsed objects (Subs) string main = Property.Substring(0, at); string subs = Property.Substring(at + 1); // Retrieve the next . section of the property object sub = GetPropertyInternal(Parent, main); // Now go parse the left over sections return GetPropertyEx(sub, subs); } As you can see there’s a fair bit of code involved into retrieving a property or field value reliably especially if you want to support array indexer syntax. This method is then used by a variety of routines to retrieve individual properties including one called GetPropertyEx() which can walk the dot syntax hierarchy easily. Anyway with ReflectionUtils I can  retrieve Page.Request.Url.AbsolutePath using code like this: string url = ReflectionUtils.GetPropertyEx(Page, "Request.Url.AbsolutePath") as string; This works fine, but is bulky to write and of course requires that I use my custom routines. It’s also quite slow as the code in GetPropertyEx does all sorts of string parsing to figure out which members to walk in the hierarchy. Enter dynamic – way easier! .NET 4.0’s dynamic type makes the above really easy. The following code is all that it takes: object objPage = Page; // force to object for contrivance :) dynamic page = objPage; // convert to dynamic from untyped object string scriptUrl = page.Request.Url.AbsolutePath; The dynamic type assignment in the first two lines turns the strongly typed Page object into a dynamic. The first assignment is just part of the contrived example to force the strongly typed Page reference into an untyped value to demonstrate the dynamic member access. The next line then just creates the dynamic type from the Page reference which allows you to access any public properties and methods easily. It also lets you access any child properties as dynamic types so when you look at Intellisense you’ll see something like this when typing Request.: In other words any dynamic value access on an object returns another dynamic object which is what allows the walking of the hierarchy chain. Note also that the result value doesn’t have to be explicitly cast as string in the code above – the compiler is perfectly happy without the cast in this case inferring the target type based on the type being assigned to. The dynamic conversion automatically handles the cast when making the final assignment which is nice making for natural syntnax that looks *exactly* like the fully typed syntax, but is completely dynamic. Note that you can also use indexers in the same natural syntax so the following also works on the dynamic page instance: string scriptUrl = page.Request.ServerVariables["SCRIPT_NAME"]; The dynamic type is going to make a lot of Reflection code go away as it’s simply so much nicer to be able to use natural syntax to write out code that previously required nasty Reflection syntax. Another interesting thing about the dynamic type is that it actually works considerably faster than Reflection. Check out the following methods that check performance: void Reflection() { Stopwatch stop = new Stopwatch(); stop.Start(); for (int i = 0; i < reps; i++) { // string url = ReflectionUtils.GetProperty(Page,"Title") as string;// "Request.Url.AbsolutePath") as string; string url = Page.GetType().GetProperty("Title", ReflectionUtils.MemberAccess).GetValue(Page, null) as string; } stop.Stop(); Response.Write("Reflection: " + stop.ElapsedMilliseconds.ToString()); } void Dynamic() { Stopwatch stop = new Stopwatch(); stop.Start(); dynamic page = Page; for (int i = 0; i < reps; i++) { string url = page.Title; //Request.Url.AbsolutePath; } stop.Stop(); Response.Write("Dynamic: " + stop.ElapsedMilliseconds.ToString()); } The dynamic code runs in 4-5 milliseconds while the Reflection code runs around 200+ milliseconds! There’s a bit of overhead in the first dynamic object call but subsequent calls are blazing fast and performance is actually much better than manual Reflection. Dynamic is definitely a huge win-win situation when you need dynamic access to objects at runtime.© Rick Strahl, West Wind Technologies, 2005-2010Posted in .NET  CSharp  

    Read the article

  • Task Management - How important it is for a entry level developer?

    - by Naveen Kumar
    I hold masters in CS & now I'm mobile apps developer (Entry Level) , I always start to plan things when starting or doing any project both at work & projects i do at Home (for passion) - as I can deliver the project on time but sometimes i m running out of time like 10 tasks a day vs my time forecast will take 2 on that day? As I'm beginner level, I want your suggestions on How important is Task Management for a person like me & for achieving my goals? My target for the next 3 year will be a Project Manager or Similiar Role - i belive which these time managing skills will be a needed quality.

    Read the article

  • Dynamic Data Associate Related Table Value?

    - by davemackey
    I have create a LINQ-to-SQL project in Visual Studio 2010 using Dynamic Data. In this project I have two tables. One is called phones_extension and the other phones_ten. The list of columns in phones_extension looks like this: id, extension, prefix, did_flag, len, ten_id, restriction_class_id, sfc_id, name_display, building_id, floor, room, phone_id, department_id In phones_ten it looks like this: id, name, pbxid Now, I'd like to be able to somehow make it so that there is an association (or inheritance?) that essentially results in me being able to make a query like phones_extension.ten and it gives me the result of phones_ten.name. Right now I have to get phones_extension.ten_id and then match that against phones_ten.id - I'm trying to get the DBML to handle this translation automatically. Is this possible?

    Read the article

  • Five Key Trends in Enterprise 2.0 for 2011

    - by kellsey.ruppel(at)oracle.com
    We recently sat down with Andy MacMillan, an industry veteran and vice president of product management for Enterprise 2.0 at Oracle, to get his take on the year ahead in Enterprise 2.0 (E2.0). He offered us his five predictions about the ways he believes E2.0 technologies will transform business in 2011. 1. Forward-thinking organizations will achieve an unprecedented level of organizational awareness. Enterprise 2.0 and Web 2.0 technologies have already transformed the ways customers, employees, partners, and suppliers communicate and stay informed. But this year we are anticipating that organizations will go to the next step and integrate social activities with business applications to deliver rich contextual "activity streams." Activity streams are a new way for enterprise users to get relevant information as quickly as it happens, by navigating to that information in context directly from their portal. We don't mean syndicating social activities limited to a single application. Instead, we believe back-office systems will be combined with social media tools to drive how users make informed business decisions in brand new ways. For example, an account manager might log into the company portal and automatically receive notification that colleagues are closing business around a certain product in his market segment. With a single click, he can reach out instantly to these colleagues via social media and learn from their successes to drive new business opportunities in his own area. 2. Online customer engagement will become a high priority for CMOs. A growing number of chief marketing officers (CMOs) have created a new direct report called "head of online"--a senior marketing executive responsible for all engagements with customers and prospects via the Web, mobile, and social media. This new field has been dubbed "Web experience management" or "online customer engagement" by firms and analyst organizations. It is likely to rapidly increase demand for a host of new business objectives and metrics from Web content management solutions. As companies interface with customers more and more over the Web, Web experience management solutions will help deliver more targeted interactions to ensure increased customer loyalty while meeting sales and business objectives. 3. Real composite applications will be widely adopted. We expect organizations to move from the concept of a single "uber-portal" that encompasses all the necessary features to a more modular, component-based concept for composite applications. This approach is now possible as IT and power users are empowered to assemble new, purpose-built composite applications quickly from existing components. 4. Records management will drive ECM consolidation. We continue to see a significant shift in the approach to records management. Several years ago initiatives were focused on overlaying records management across a set of electronic repositories and physical storage locations. We believe federated records management will continue, but we also expect to see records management driving conversations around single-platform content management consolidation. 5. Organizations will demand ECM at extreme scale. We have already seen a trend within IT organizations to provide a common, highly scalable infrastructure to consolidate and support content and information needs. But as data sizes grow exponentially, ECM at an extreme scale is likely to spread at unprecedented speeds this year. This makes sense as regulations and transparency requirements rise. The model in which ECM and lightweight CMS systems provide basic content services such as check-in, update, delete, and search has converged around a set of industry best practices and has even been coded into new industry standards such as content management interoperability services. As these services converge and the demand for them accelerates, organizations are beginning to rationalize investments into a single, highly scalable infrastructure. Is your organization ready for Enterprise 2.0 in 2011? Learn more.

    Read the article

  • ASP.NET Dynamic Data Deployment Error

    - by rajbk
    You have an ASP.NET 3.5 dynamic data website that works great on your local box. When you deploy it to your production machine and turn on debug, you get the YSD Server Error in '/MyPath/MyApp' Application. Parser Error Description: An error occurred during the parsing of a resource required to service this request. Please review the following specific parse error details and modify your source file appropriately. Parser Error Message: Unknown server tag 'asp:DynamicDataManager'. Source Error: Line 5:  Line 6:  <asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server"> Line 7:      <asp:DynamicDataManager ID="DynamicDataManager1" runat="server" AutoLoadForeignKeys="true" /> Line 8:  Line 9:      <h2><%= table.DisplayName%></h2> Probable Causes The server does not have .NET 3.5 SP1, which includes ASP.NET Dynamic Data, installed. Download it here. The third tagPrefix shown below is missing from web.config <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.DynamicData" assembly="System.Web.DynamicData, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </controls></pages>     Hope that helps!

    Read the article

  • Learning to implement dynamic language compiler

    - by TriArc
    I'm interested in learning how to create a compiler for a dynamic language. Most compiler books, college courses and articles/tutorials I've come across are specifically for statically typed languages. I've thought of a few ways to do it, but I'd like to know how it's usually done. I know type inferencing is a pretty common strategy, but what about others? Where can I find out more about how to create a dynamically typed language?

    Read the article

  • SQL SERVER – Identifying guest User using Policy Based Management

    - by pinaldave
    If you are following my recent blog posts, you may have noticed that I’ve been writing a lot about Guest User in SQL Server. Here are all the blog posts which I have written on this subject: SQL SERVER – Disable Guest Account – Serious Security Issue SQL SERVER – Force Removing User from Database – Fix: Error: Could not drop login ‘test’ as the user is currently logged in SQL SERVER – Detecting guest User Permissions – guest User Access Status SQL SERVER – guest User and MSDB Database – Enable guest User on MSDB Database One of the requests I received was whether we could create a policy that would prevent users unable guest user in user databases. Well, here is a quick tutorial to answer this. Let us see how quickly we can do it. Requirements Check if the guest user is disabled in all the user-created databases. Exclude master, tempdb and msdb database for guest user validation. We will create the following conditions based on the above two requirements: If the name of the user is ‘guest’ If the user has connect (@hasDBAccess) permission in the database Check in All user databases, except: master, tempDB and msdb Once we create two conditions, we will create a policy which will validate the conditions. Condition 1: Is the User Guest? Expand the Database >> Management >> Policy Management >> Conditions Right click on the Conditions, and click on “New Condition…”. First we will create a condition where we will validate if the user name is ‘guest’, and if it’s so, then we will further validate if it has DB access. Check the image for the necessary configuration for condition: Facet: User Expression: @Name = ‘guest’ Condition 2: Does the User have DBAccess? Expand the Database >> Management >> Policy Management >> Conditions Right click on Conditions and click on “New Condition…”. Now we will validate if the user has DB access. Check the image for necessary configuration for condition: Facet: User Expression: @hasDBAccess = False Condition 3: Exclude Databases Expand the Database >> Management >> Policy Management >> Conditions Write click on Conditions and click on “New Condition…” Now we will create condition where we will validate if database name is master, tempdb or msdb and if database name is any of them, we will not validate our first one condition with them. Check the image for necessary configuration for condition: Facet: Database Expression: @Name != ‘msdb’ AND @Name != ‘tempdb’ AND @Name != ‘master’ The next step will be creating a policy which will enforce these conditions. Creating a Policy Right click on Policies and click “New Policy…” Here, we justify what condition we want to validate against what the target is. Condition: Has User DBAccess Target Database: Every Database except (master, tempdb and MSDB) Target User: Every User in Target Database with name ‘guest’ Now we have options for two evaluation modes: 1) On Demand and 2) On Schedule We will select On Demand in this example; however, you can change the mode to On Schedule through the drop down menu, and select the interval of the evaluation of the policy. Evaluate the Policies We have selected OnDemand as our policy evaluation mode. We will now evaluate by means of executing Evaluate policy. Click on Evaluate and it will give the following result: The result demonstrates that one of the databases has a policy violation. Username guest is enabled in AdventureWorks database. You can disable the guest user by running the following code in AdventureWorks database. USE AdventureWorks; REVOKE CONNECT FROM guest; Once you run above query, you can already evaluate the policy again. Notice that the policy violation is fixed now. You can change the method of the evaluation policy to On Schedule and validate policy on interval. You can check the history of the policy and detect the violation. Quiz I have created three conditions to check if the guest user has database access or not. Now I want to ask you: Is it possible to do the same with 2 conditions? If yes, HOW? If no, WHY NOT? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Best Practices, CodeProject, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology Tagged: Policy Management

    Read the article

  • moving dynamic disk from Windows to another Windows computer when original Windows is not available

    - by Andrei
    How do I mount dynamic disk on new system without access to the old OS ? I need to move Dynamic data disk from old Windows XP (Pro, SP3) system, where disk crashed, to new Windows system without having access to the old OS. On new system, Dynamic disk shows as "Dynamic - Foreign". Microfoft has instructions for moving Dynamic Disk [1]. But Microsoft assumes having access to the old system. But I do not have acess to the old system. I am struck with "Dynamic - Foreign" static of the disk on new system. Thanks WinXP Pro SP3 [1] http://technet.microsoft.com/en-us/library/cc779854(WS.10).aspx Move Disk to another computer.

    Read the article

  • Data Quality and Master Data Management Resources

    - by Dejan Sarka
    Many companies or organizations do regular data cleansing. When you cleanse the data, the data quality goes up to some higher level. The data quality level is determined by the amount of work invested in the cleansing. As time passes, the data quality deteriorates, and you need to repeat the cleansing process. If you spend an equal amount of effort as you did with the previous cleansing, you can expect the same level of data quality as you had after the previous cleansing. And then the data quality deteriorates over time again, and the cleansing process starts over and over again. The idea of Data Quality Services is to mitigate the cleansing process. While the amount of time you need to spend on cleansing decreases, you will achieve higher and higher levels of data quality. While cleansing, you learn what types of errors to expect, discover error patterns, find domains of correct values, etc. You don’t throw away this knowledge. You store it and use it to find and correct the same issues automatically during your next cleansing process. The following figure shows this graphically. The idea of master data management, which you can perform with Master Data Services (MDS), is to prevent data quality from deteriorating. Once you reach a particular quality level, the MDS application—together with the defined policies, people, and master data management processes—allow you to maintain this level permanently. This idea is shown in the following picture. OK, now you know what DQS and MDS are about. You can imagine the importance on maintaining the data quality. Here are some resources that help you preparing and executing the data quality (DQ) and master data management (MDM) activities. Books Dejan Sarka and Davide Mauri: Data Quality and Master Data Management with Microsoft SQL Server 2008 R2 – a general introduction to MDM, MDS, and data profiling. Matching explained in depth. Dejan Sarka, Matija Lah and Grega Jerkic: MCTS Self-Paced Training Kit (Exam 70-463): Building Data Warehouses with Microsoft SQL Server 2012 – I wrote quite a few chapters about DQ and MDM, and introduced also SQL Server 2012 DQS. Thomas Redman: Data Quality: The Field Guide – you should start with this book. Thomas Redman is the father of DQ and MDM. Tyler Graham: Microsoft SQL Server 2012 Master Data Services – MDS in depth from a product team mate. Arkady Maydanchik: Data Quality Assessment – data profiling in depth. Tamraparni Dasu, Theodore Johnson: Exploratory Data Mining and Data Cleaning – advanced data profiling with data mining. Forthcoming presentations I am presenting a DQS and MDM seminar at PASS SQL Rally Amsterdam 2013: Wednesday, November 6th, 2013: Enterprise Information Management with SQL Server 2012 – a good kick start to your first DQ and / or MDM project. Courses Data Quality and Master Data Management with SQL Server 2012 – I wrote a 2-day course for SolidQ. If you are interested in this course, which I could also deliver in a shorter seminar way, you can contact your closes SolidQ subsidiary, or, of course, me directly on addresses [email protected] or [email protected]. This course could also complement the existing courseware portfolio of training providers, which are welcome to contact me as well. Start improving the quality of your data now!

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • C# Proposal: Compile Time Static Checking Of Dynamic Objects

    - by Paulo Morgado
    C# 4.0 introduces a new type: dynamic. dynamic is a static type that bypasses static type checking. This new type comes in very handy to work with: The new languages from the dynamic language runtime. HTML Document Object Model (DOM). COM objects. Duck typing … Because static type checking is bypassed, this: dynamic dynamicValue = GetValue(); dynamicValue.Method(); is equivalent to this: object objectValue = GetValue(); objectValue .GetType() .InvokeMember( "Method", BindingFlags.InvokeMethod, null, objectValue, null); Apart from caching the call site behind the scenes and some dynamic resolution, dynamic only looks better. Any typing error will only be caught at run time. In fact, if I’m writing the code, I know the contract of what I’m calling. Wouldn’t it be nice to have the compiler do some static type checking on the interactions with these dynamic objects? Imagine that the dynamic object that I’m retrieving from the GetValue method, besides the parameterless method Method also has a string read-only Property property. This means that, from the point of view of the code I’m writing, the contract that the dynamic object returned by GetValue implements is: string Property { get; } void Method(); Since it’s a well defined contract, I could write an interface to represent it: interface IValue { string Property { get; } void Method(); } If dynamic allowed to specify the contract in the form of dynamic(contract), I could write this: dynamic(IValue) dynamicValue = GetValue(); dynamicValue.Method(); This doesn’t mean that the value returned by GetValue has to implement the IValue interface. It just enables the compiler to verify that dynamicValue.Method() is a valid use of dynamicValue and dynamicValue.OtherMethod() isn’t. If the IValue interface already existed for any other reason, this would be fine. But having a type added to an assembly just for compile time usage doesn’t seem right. So, dynamic could be another type construct. Something like this: dynamic DValue { string Property { get; } void Method(); } The code could now be written like this; DValue dynamicValue = GetValue(); dynamicValue.Method(); The compiler would never generate any IL or metadata for this new type construct. It would only thee used for compile type static checking of dynamic objects. As a consequence, it makes no sense to have public accessibility, so it would not be allowed. Once again, if the IValue interface (or any other type definition) already exists, it can be used in the dynamic type definition: dynamic DValue : IValue, IEnumerable, SomeClass { string Property { get; } void Method(); } Another added benefit would be IntelliSense. I’ve been getting mixed reactions to this proposal. What do you think? Would this be useful?

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • SQL SERVER – Color Coding SQL Server Management Studio Status Bar – SQL in Sixty Seconds #023 – Video

    - by pinaldave
    I often see developers executing the unplanned code on production server when they actually want to execute on the development server. Developers and DBAs get confused because when they use SQL Server Management Studio (SSMS) they forget to pay attention to the server they are connecting. It is very easy to fix this problem. You can select different color for a different server. Once you have different color for different server in the status bar, it will be easier for developer easily notice the server against which they are about to execute the script. Personally when I work on SQL Server development, here is the color code, which I follow. I keep Green for my development server, blue for my staging server and red for my production server. Honestly color coding does not signify much but different color for different server is the key here. More Tips on SSMS in SQL in Sixty Seconds: Generate Script for Schema and Data in SQL Server – SQL in Sixty Seconds #021  Remove Debug Button in SQL Server Management Studio – SQL in Sixty Seconds #020  Three Tricks to Comment T-SQL in SQL Server Management Studio – SQL in Sixty Seconds #019  Importing CSV into SQL Server – SQL in Sixty Seconds #018   Tricks to Replace SELECT * with Column Names – SQL in Sixty Seconds #017 I encourage you to submit your ideas for SQL in Sixty Seconds. We will try to accommodate as many as we can. If we like your idea we promise to share with you educational material. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >