Search Results

Search found 90 results on 4 pages for 'ecmascript 5'.

Page 4/4 | < Previous Page | 1 2 3 4 

  • TypeScript first impressions

    - by Bertrand Le Roy
    Anders published a video of his new project today, which aims at creating a superset of JavaScript, that compiles down to regular current JavaScript. Anders is a tremendously clever guy, and it always shows in his work. There is much to like in the enterprise (good code completion, refactoring and adoption of the module pattern instead of namespaces to name three), but a few things made me rise an eyebrow. First, there is no mention of CoffeeScript or Dart, but he does talk briefly about Script# and GWT. This is probably because the target audience seems to be the same as the audience for the latter two, i.e. developers who are more comfortable with statically-typed languages such as C# and Java than dynamic languages such as JavaScript. I don’t think he’s aiming at JavaScript developers. Classes and interfaces, although well executed, are not especially appealing. Second, as any code generation tool (and this is true of CoffeeScript as well), you’d better like the generated code. I didn’t, unfortunately. The code that I saw is not the code I would have written. What’s more, I didn’t always find the TypeScript code especially more expressive than what it gets compiled to. I also have a few questions. Is it possible to duck-type interfaces? For example, if I have an IPoint2D interface with x and y coordinates, can I pass any object that has x and y into a function that expects IPoint2D or do I need to necessarily create a class that implements that interface, and new up an instance that explicitly declares its contract? The appeal of dynamic languages is the ability to make objects as you go. This needs to be kept intact. More technical: why are generated variables and functions prefixed with _ rather than the $ that the EcmaScript spec recommends for machine-generated variables? In conclusion, while this is a good contribution to the set of ideas around JavaScript evolution, I don’t expect a lot of adoption outside of the devoted Microsoft developers, but maybe some influence on the language itself. But I’m often wrong. I would certainly not use it because I disagree with the central motivation for doing this: Anders explicitly says he built this because “writing application-scale JavaScript is hard”. I would restate that “writing application-scale JavaScript is hard for people who are used to statically-typed languages”. The community has built a set of good practices over the last few years that do scale quite well, and many people are successfully developing and maintaining impressive applications directly in JavaScript. You can play with TypeScript here: http://www.typescriptlang.org

    Read the article

  • Using "Object.create" instead of "new"

    - by Graham King
    Javascript 1.9.3 / ECMAScript 5 introduces Object.create, which Douglas Crockford amongst others has been advocating for a long time. How do I replace new in the code below with Object.create? var UserA = function(nameParam) { this.id = MY_GLOBAL.nextId(); this.name = nameParam; } UserA.prototype.sayHello = function() { console.log('Hello '+ this.name); } var bob = new UserA('bob'); bob.sayHello(); (Assume MY_GLOBAL.nextId exists). The best I can come up with is: var userB = { init: function(nameParam) { this.id = MY_GLOBAL.nextId(); this.name = nameParam; }, sayHello: function() { console.log('Hello '+ this.name); } }; var bob = Object.create(userB); bob.init('Bob'); bob.sayHello(); There doesn't seem to be any advantage, so I think I'm not getting it. I'm probably being too neo-classical. How should I use Object.create to create user 'bob'?

    Read the article

  • Which languages support *recursive* function literals / anonymous functions?

    - by Hugh Allen
    It seems quite a few mainstream languages support function literals these days. They are also called anonymous functions, but I don't care if they have a name. The important thing is that a function literal is an expression which yields a function which hasn't already been defined elsewhere, so for example in C, &printf doesn't count. EDIT to add: if you have a genuine function literal expression <exp>, you should be able to pass it to a function f(<exp>) or immediately apply it to an argument, ie. <exp>(5). I'm curious which languages let you write function literals which are recursive. Wikipedia's "anonymous recursion" article doesn't give any programming examples. Let's use the recursive factorial function as the example. Here are the ones I know: JavaScript / ECMAScript can do it with callee: function(n){if (n<2) {return 1;} else {return n * arguments.callee(n-1);}} it's easy in languages with letrec, eg Haskell (which calls it let): let fac x = if x<2 then 1 else fac (x-1) * x in fac and there are equivalents in Lisp and Scheme. Note that the binding of fac is local to the expression, so the whole expression is in fact an anonymous function. Are there any others?

    Read the article

  • GUI toolkit for Unicode text app?

    - by wrp
    In developing a tool for processing text in exotic scripts, I'm having trouble choosing a GUI toolkit. The main part of the interface is to be a text editor, not much more elaborate than Notepad, but with its own input method editor. It is to be extensible in a scripting language so that non-programmers can develop their own input methods and display routines. It will be assumed that all files are UTF-8. More elaborate support like regexes is not needed. The main sticking points are: characters beyond the Basic Multilingual Plane right-to-left and bi-directional text extension in a scripting language cross-platform Linux/Windows/OS X My first choice was Tcl/Tk, but it lacks bidi and going beyond the BMP seems dodgy. At the other extreme, I've considered Qt with embedded ECMAScript, but that might be heavier and less malleable than I would like. I'm even thinking about making it browser based, but I'm concerned that the IM for large scripts would be too heavy for client-side processing. I've also looked at a few similar projects in Java, but the quality of the font rendering in SWING has been unacceptable. What are your experiences in handling Unicode with various toolkits? Are there other serious issues I haven't considered? What would you recommend for doing this in the lightest way?

    Read the article

  • Javascript: "Dangling" Reference to DOM element?

    - by Channel72
    It seems that in Javascript, if you have a reference to some DOM element, and then modify the DOM by adding additional elements to document.body, your DOM reference becomes invalidated. Consider the following code: <html> <head> <script type = "text/javascript"> function work() { var foo = document.getElementById("foo"); alert(foo == document.getElementById("foo")); document.body.innerHTML += "<div>blah blah</div>"; alert(foo == document.getElementById("foo")); } </script> </head> <body> <div id = "foo" onclick='work()'>Foo</div> </body> </html> When you click on the DIV, this alerts "true", and then "false." So in other words, after modifying document.body, the reference to the DIV element is no longer valid. This behavior is the same on Firefox and MSIE. Some questions: Why does this occur? Is this behavior specified by the ECMAScript standard, or is this a browser-specific issue? Note: there's another question posted on stackoverflow that seems to be referring to the same issue, but neither the question nor the answers are very clear.

    Read the article

  • Create swipe controlled simple flipbook style animation in ObjC

    - by eco_bach
    Hi I am a beginner in Obj C development, though quite experienced (over 10 years) with other ECMAscript based languages and OOP development. I want to build a simple flipbook style animation, controlled through swiping motion. I'm sure extremely simple for any advanced ObjC coders. Can anyone with extensive ObjC-CocoaTouch experience give me some higher level recommendations? ie, 1 -general application design, should I start with a simple view based application, or navigation based or? 2 -should I use 3rd party animation frameworks such as Cocos2D, or stick with built in classes and methods? 3 -if using built in methods, classes, what is the recommended way of achieving a animation, that will be controlled via swipe and touch gestures? 4 -I want to eventually have multiple 'flipbooks' that I can 'instantly' swap with one another, ie to give the net effect of an object changing color, etc, but not sure how to approach this from a memory management point of view, related to #1 above Except for point 3 above, I'm not expecting any actual code examples. Just general guidelines to follow and perhaps, what are some next steps I should take in my goal as an ObjC code samurai.

    Read the article

  • Search field using Ultraseek

    - by tony noriega
    So i realized today that using IE to do a search on my site, for instance the term "documents" returns the search results. if i use FireFox or Chrome the data in the input field is not recognized... now i looked at the code, and realized that there are no tags around the input fields... BUT if i put them, then IE does not work... what the heck do i do? <div class="searchbox" id="searchbox"> <script type="text/ecmascript"> function RunSearch() { window.location = "http://searcher.example.com:8765/query.html?ql=&amp;col=web1&amp;qt=" + document.getElementById("search").value; } </script> <div class="formSrchr"> <input type="text" size="20" name="qt" id="search" /> <input type="hidden" name="qlOld" id="qlOld" value="" /> <input type="hidden" name="colOld" id="colOld value="web1" /> <input type="image" name="imageField" src="/_images/search-mag.gif" width="20" height="20" onclick="RunSearch();" /> </div> </div> <!-- /searchbox -->

    Read the article

  • How to preserve the state of JavaScript closure?

    - by Uccio
    I am working on a migration platform to migrate web applications from a device to another. I am extending it to add the support for preserving JavaScript state. My main task is to create a file representing the current state of the executing application, to transmit it to another device and to reload the state in the destination device. The basic solution I adopted is to navigate the window object and to save all its descendant properties using JSON as base format for exportation and extending it to implement some features: preserving object reference, even if cyclic (dojox.json.ref library) support for timers Date non-numericproperties of arrays reference to DOM elements The most important task I need to solve now is exportation of closures. At this moment I didn't know how to implement this feature. I read about the internal EcmaScript property [[scope]] containing the scope chain of a function, a list-like object composed by all the nested activation context of the function. Unfortunately it is not accessible by JavaScript. Anyone know if there is a way to directly access the [[scope]] property? Or another way to preserve the state of a closure?

    Read the article

  • Converting IIS Redirect to .htaccess

    - by user1641321
    I am having trouble getting the rewrite to work on an apache server. The end result is so i can make subdomains on the fly just by adding a directory. For example anysubdomain.domain.com will redirect to domain.com/anysubdomain and still appear as anysubdomain.domain.com. Is there anyone out there that convert this for me? <rewrite> <rules> <rule name="Subdomain Redirect" patternSyntax="ECMAScript" stopProcessing="true"> <match url="^(.*)$" /> <conditions trackAllCaptures="true"> <add input="{HTTP_HOST}" pattern="^www\.obdevsite\.com" negate="true" /> <add input="{HTTP_HOST}" pattern="^(.*)\.obdevsite\.com" /> <add input="{REQUEST_URI}" pattern="^(.*)$" /> </conditions> <action type="Rewrite" url="/{C:1}/{C:2}" appendQueryString="false" /> </rule> </rules> </rewrite>

    Read the article

  • What are the benefits of a classical structure over a prototyple one?

    - by Rixius
    I have only recently started programming significantly, and being completely self-taught, I unfortunately don't have the benefits of a detailed Computer science course. I've been reading a lot about JavaScript lately, and I'm trying to find the benefit in classes over the prototype nature of JavaScript. The question seems to be drawn down the middle of which one is better, and I want to see the classical side of it. When I look at the prototype example: var inst_a = { "X": 123, "Y": 321, add: function () { return this.X+this.Y; } }; document.write(inst_a.add()); And then the classical version function A(x,y){ this.X = x; this.Y = y; this.add = function(){ return this.X+this.Y; }; }; var inst_a = new A(123,321); document.write(inst_a.add()); I begun thinking about this because I'm looking at the new ecmascript revision 5 and a lot of people seem up in arms that they didn't add a Class system.

    Read the article

  • Very simple jquery ui drag and drop does not work. Why not?

    - by Catfish
    WHy doesn't this work? <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <style type="text/css"> #content { background:#CCCCCC; width:500px; height:500px; } #drop { height:200px; width:200px; background:#00FFFF; float:right; } #drag { background:#009966; width:100px; height:100px; float:left; } .active { background:#FFCC33; } </style> <script type="text/ecmascript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js"></script> <script type="text/javascript" src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js"></script> <script type="text/javascript"> $(document).ready(function() { $('#drag').draggable({ containment: '#content', scrollSensitivity: 60, revert: true, cursor: 'move' }); $('#drop').droppable({ accept: '#drag', drop: function(event, ui) { $(this).addClass('.active'); } }); }); </script> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Untitled Document</title> </head> <body> <div id="content"> <div id="drag"> </div> <div id="drop"> </div> </div> </body> </html>

    Read the article

  • Copy all childNodes to an other element. In javascript native way.

    - by kroko
    Hello I have to change "unknown" contents of XML. The structure and content itself is valid. Original <blabla foo="bar"> <aa>asas</aa> <ff> <cc> <dd /> </cc> </ff> <gg attr2="2"> </gg> ... ... </blabla> becomes <blabla foo="bar"> <magic> <aa>asas</aa> <ff> <cc> <dd /> </cc> </ff> <gg attr2="2"> </gg> ... ... </magic> </blabla> thus, adding a child straight under document root node (document.documentElement) and "pushing" the "original" children under that. Here it has to be done in plain javascript (ecmascript). The idea now is to // Get the root node RootNode = mymagicdoc.documentElement; // Create new magic element (that will contain contents of original root node) var magicContainer = mymagicdoc.createElement("magic"); // Copy all root node children (and their sub tree - deep copy) to magic node /* ????? here RootNodeClone = RootNode.cloneNode(true); RootNodeClone.childNodes...... */ // Remove all children from root node while(RootNode.hasChildNodes()) RootNode.removeChild(RootNode.firstChild); // Now when root node is empty add the magicContainer // node in it that contains all the children of original root node RootNode.appendChild(magicContainer); How to do that /* */ step? Or maybe someone has a much better solution in general for achieving the desirable result? Thank you in advance!

    Read the article

  • XSL transformation of SVG adds namespace attribute to new tag

    - by Steve
    I have a SVG file that I want to extend by adding onclick handlers to edges and nodes. I also want to add a script tag referring to a JavaScript. The problem is that the script tag gets an empty namespace attribute added to it. I haven't found any information regarding this that I understand. Why does XSLT add an empty namespace? XSL file: <?xml version="1.0"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <xsl:output method="xml" encoding="utf-8" /> <xsl:template match="/svg:svg"> <xsl:copy> <script type="text/ecmascript" xlink:href="base.js" /> <!-- this tag gets a namespace attr --> <xsl:apply-templates /> </xsl:copy> </xsl:template> <!-- Identity transform http://www.w3.org/TR/xslt#copying --> <xsl:template match="@*|node()"> <xsl:copy> <xsl:apply-templates select="@*|node()"/> </xsl:copy> </xsl:template> <!-- Check groups and add functions --> <xsl:template match="svg:g"> <xsl:copy> <xsl:if test="@class = 'node'"> <xsl:attribute name="onclick">node_clicked()</xsl:attribute> </xsl:if> <xsl:if test="@class = 'edge'"> <xsl:attribute name="onclick">edge_clicked()</xsl:attribute> </xsl:if> <xsl:apply-templates select="@*|node()" /> </xsl:copy> </xsl:template> </xsl:stylesheet>

    Read the article

  • Getting Started with TypeScript – Classes, Static Types and Interfaces

    - by dwahlin
    I had the opportunity to speak on different JavaScript topics at DevConnections in Las Vegas this fall and heard a lot of interesting comments about JavaScript as I talked with people. The most frequent comment I heard from people was, “I guess it’s time to start learning JavaScript”. Yep – if you don’t already know JavaScript then it’s time to learn it. As HTML5 becomes more and more popular the amount of JavaScript code written will definitely increase. After all, many of the HTML5 features available in browsers have little to do with “tags” and more to do with JavaScript (web workers, web sockets, canvas, local storage, etc.). As the amount of JavaScript code being used in applications increases, it’s more important than ever to structure the code in a way that’s maintainable and easy to debug. While JavaScript patterns can certainly be used (check out my previous posts on the subject or my course on Pluralsight.com), several alternatives have come onto the scene such as CoffeeScript, Dart and TypeScript. In this post I’ll describe some of the features TypeScript offers and the benefits that they can potentially offer enterprise-scale JavaScript applications. It’s important to note that while TypeScript has several great features, it’s definitely not for everyone or every project especially given how new it is. The goal of this post isn’t to convince you to use TypeScript instead of standard JavaScript….I’m a big fan of JavaScript. Instead, I’ll present several TypeScript features and let you make the decision as to whether TypeScript is a good fit for your applications. TypeScript Overview Here’s the official definition of TypeScript from the http://typescriptlang.org site: “TypeScript is a language for application-scale JavaScript development. TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. Any browser. Any host. Any OS. Open Source.” TypeScript was created by Anders Hejlsberg (the creator of the C# language) and his team at Microsoft. To sum it up, TypeScript is a new language that can be compiled to JavaScript much like alternatives such as CoffeeScript or Dart. It isn’t a stand-alone language that’s completely separate from JavaScript’s roots though. It’s a superset of JavaScript which means that standard JavaScript code can be placed in a TypeScript file (a file with a .ts extension) and used directly. That’s a very important point/feature of the language since it means you can use existing code and frameworks with TypeScript without having to do major code conversions to make it all work. Once a TypeScript file is saved it can be compiled to JavaScript using TypeScript’s tsc.exe compiler tool or by using a variety of editors/tools. TypeScript offers several key features. First, it provides built-in type support meaning that you define variables and function parameters as being “string”, “number”, “bool”, and more to avoid incorrect types being assigned to variables or passed to functions. Second, TypeScript provides a way to write modular code by directly supporting class and module definitions and it even provides support for custom interfaces that can be used to drive consistency. Finally, TypeScript integrates with several different tools such as Visual Studio, Sublime Text, Emacs, and Vi to provide syntax highlighting, code help, build support, and more depending on the editor. Find out more about editor support at http://www.typescriptlang.org/#Download. TypeScript can also be used with existing JavaScript frameworks such as Node.js, jQuery, and others and even catch type issues and provide enhanced code help. Special “declaration” files that have a d.ts extension are available for Node.js, jQuery, and other libraries out-of-the-box. Visit http://typescript.codeplex.com/SourceControl/changeset/view/fe3bc0bfce1f#samples%2fjquery%2fjquery.d.ts for an example of a jQuery TypeScript declaration file that can be used with tools such as Visual Studio 2012 to provide additional code help and ensure that a string isn’t passed to a parameter that expects a number. Although declaration files certainly aren’t required, TypeScript’s support for declaration files makes it easier to catch issues upfront while working with existing libraries such as jQuery. In the future I expect TypeScript declaration files will be released for different HTML5 APIs such as canvas, local storage, and others as well as some of the more popular JavaScript libraries and frameworks. Getting Started with TypeScript To get started learning TypeScript visit the TypeScript Playground available at http://www.typescriptlang.org. Using the playground editor you can experiment with TypeScript code, get code help as you type, and see the JavaScript that TypeScript generates once it’s compiled. Here’s an example of the TypeScript playground in action:   One of the first things that may stand out to you about the code shown above is that classes can be defined in TypeScript. This makes it easy to group related variables and functions into a container which helps tremendously with re-use and maintainability especially in enterprise-scale JavaScript applications. While you can certainly simulate classes using JavaScript patterns (note that ECMAScript 6 will support classes directly), TypeScript makes it quite easy especially if you come from an object-oriented programming background. An example of the Greeter class shown in the TypeScript Playground is shown next: class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } Looking through the code you’ll notice that static types can be defined on variables and parameters such as greeting: string, that constructors can be defined, and that functions can be defined such as greet(). The ability to define static types is a key feature of TypeScript (and where its name comes from) that can help identify bugs upfront before even running the code. Many types are supported including primitive types like string, number, bool, undefined, and null as well as object literals and more complex types such as HTMLInputElement (for an <input> tag). Custom types can be defined as well. The JavaScript output by compiling the TypeScript Greeter class (using an editor like Visual Studio, Sublime Text, or the tsc.exe compiler) is shown next: var Greeter = (function () { function Greeter(message) { this.greeting = message; } Greeter.prototype.greet = function () { return "Hello, " + this.greeting; }; return Greeter; })(); Notice that the code is using JavaScript prototyping and closures to simulate a Greeter class in JavaScript. The body of the code is wrapped with a self-invoking function to take the variables and functions out of the global JavaScript scope. This is important feature that helps avoid naming collisions between variables and functions. In cases where you’d like to wrap a class in a naming container (similar to a namespace in C# or a package in Java) you can use TypeScript’s module keyword. The following code shows an example of wrapping an AcmeCorp module around the Greeter class. In order to create a new instance of Greeter the module name must now be used. This can help avoid naming collisions that may occur with the Greeter class.   module AcmeCorp { export class Greeter { greeting: string; constructor (message: string) { this.greeting = message; } greet() { return "Hello, " + this.greeting; } } } var greeter = new AcmeCorp.Greeter("world"); In addition to being able to define custom classes and modules in TypeScript, you can also take advantage of inheritance by using TypeScript’s extends keyword. The following code shows an example of using inheritance to define two report objects:   class Report { name: string; constructor (name: string) { this.name = name; } print() { alert("Report: " + this.name); } } class FinanceReport extends Report { constructor (name: string) { super(name); } print() { alert("Finance Report: " + this.name); } getLineItems() { alert("5 line items"); } } var report = new FinanceReport("Month's Sales"); report.print(); report.getLineItems();   In this example a base Report class is defined that has a variable (name), a constructor that accepts a name parameter of type string, and a function named print(). The FinanceReport class inherits from Report by using TypeScript’s extends keyword. As a result, it automatically has access to the print() function in the base class. In this example the FinanceReport overrides the base class’s print() method and adds its own. The FinanceReport class also forwards the name value it receives in the constructor to the base class using the super() call. TypeScript also supports the creation of custom interfaces when you need to provide consistency across a set of objects. The following code shows an example of an interface named Thing (from the TypeScript samples) and a class named Plane that implements the interface to drive consistency across the app. Notice that the Plane class includes intersect and normal as a result of implementing the interface.   interface Thing { intersect: (ray: Ray) => Intersection; normal: (pos: Vector) => Vector; surface: Surface; } class Plane implements Thing { normal: (pos: Vector) =>Vector; intersect: (ray: Ray) =>Intersection; constructor (norm: Vector, offset: number, public surface: Surface) { this.normal = function (pos: Vector) { return norm; } this.intersect = function (ray: Ray): Intersection { var denom = Vector.dot(norm, ray.dir); if (denom > 0) { return null; } else { var dist = (Vector.dot(norm, ray.start) + offset) / (-denom); return { thing: this, ray: ray, dist: dist }; } } } }   At first glance it doesn’t appear that the surface member is implemented in Plane but it’s actually included automatically due to the public surface: Surface parameter in the constructor. Adding public varName: Type to a constructor automatically adds a typed variable into the class without having to explicitly write the code as with normal and intersect. TypeScript has additional language features but defining static types and creating classes, modules, and interfaces are some of the key features it offers. So is TypeScript right for you and your applications? That’s a not a question that I or anyone else can answer for you. You’ll need to give it a spin to see what you think. In future posts I’ll discuss additional details about TypeScript and how it can be used with enterprise-scale JavaScript applications. In the meantime, I’m in the process of working with John Papa on a new Typescript course for Pluralsight that we hope to have out in December of 2012.

    Read the article

  • Understanding and Implementing a Force based graph layout algorithm

    - by zcourts
    I'm trying to implement a force base graph layout algorithm, based on http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing) My first attempt didn't work so I looked at http://blog.ivank.net/force-based-graph-drawing-in-javascript.html and https://github.com/dhotson/springy I changed my implementation based on what I thought I understood from those two but I haven't managed to get it right and I'm hoping someone can help? JavaScript isn't my strong point so be gentle... If you're wondering why write my own. In reality I have no real reason to write my own I'm just trying to understand how the algorithm is implemented. Especially in my first link, that demo is brilliant. This is what I've come up with //support function.bind - https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind#Compatibility if (!Function.prototype.bind) { Function.prototype.bind = function (oThis) { if (typeof this !== "function") { // closest thing possible to the ECMAScript 5 internal IsCallable function throw new TypeError("Function.prototype.bind - what is trying to be bound is not callable"); } var aArgs = Array.prototype.slice.call(arguments, 1), fToBind = this, fNOP = function () {}, fBound = function () { return fToBind.apply(this instanceof fNOP ? this : oThis || window, aArgs.concat(Array.prototype.slice.call(arguments))); }; fNOP.prototype = this.prototype; fBound.prototype = new fNOP(); return fBound; }; } (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); function Graph(o){ this.options=o; this.vertices={}; this.edges={};//form {vertexID:{edgeID:edge}} } /** *Adds an edge to the graph. If the verticies in this edge are not already in the *graph then they are added */ Graph.prototype.addEdge=function(e){ //if vertex1 and vertex2 doesn't exist in this.vertices add them if(typeof(this.vertices[e.vertex1])==='undefined') this.vertices[e.vertex1]=new Vertex(e.vertex1); if(typeof(this.vertices[e.vertex2])==='undefined') this.vertices[e.vertex2]=new Vertex(e.vertex2); //add the edge if(typeof(this.edges[e.vertex1])==='undefined') this.edges[e.vertex1]={}; this.edges[e.vertex1][e.id]=e; } /** * Add a vertex to the graph. If a vertex with the same ID already exists then * the existing vertex's .data property is replaced with the @param v.data */ Graph.prototype.addVertex=function(v){ if(typeof(this.vertices[v.id])==='undefined') this.vertices[v.id]=v; else this.vertices[v.id].data=v.data; } function Vertex(id,data){ this.id=id; this.data=data?data:{}; //initialize to data.[x|y|z] or generate random number for each this.x = this.data.x?this.data.x:-100 + Math.random()*200; this.y = this.data.y?this.data.y:-100 + Math.random()*200; this.z = this.data.y?this.data.y:-100 + Math.random()*200; //set initial velocity to 0 this.velocity = new Point(0, 0, 0); this.mass=this.data.mass?this.data.mass:Math.random(); this.force=new Point(0,0,0); } function Edge(vertex1ID,vertex2ID){ vertex1ID=vertex1ID?vertex1ID:Math.random() vertex2ID=vertex2ID?vertex2ID:Math.random() this.id=vertex1ID+"->"+vertex2ID; this.vertex1=vertex1ID; this.vertex2=vertex2ID; } function Point(x, y, z) { this.x = x; this.y = y; this.z = z; } Point.prototype.plus=function(p){ this.x +=p.x this.y +=p.y this.z +=p.z } function ForceLayout(o){ this.repulsion = o.repulsion?o.repulsion:200; this.attraction = o.attraction?o.attraction:0.06; this.damping = o.damping?o.damping:0.9; this.graph = o.graph?o.graph:new Graph(); this.total_kinetic_energy =0; this.animationID=-1; } ForceLayout.prototype.draw=function(){ //vertex velocities initialized to (0,0,0) when a vertex is created //vertex positions initialized to random position when created cc=0; do{ this.total_kinetic_energy =0; //for each vertex for(var i in this.graph.vertices){ var thisNode=this.graph.vertices[i]; // running sum of total force on this particular node var netForce=new Point(0,0,0) //for each other node for(var j in this.graph.vertices){ if(thisNode!=this.graph.vertices[j]){ //net-force := net-force + Coulomb_repulsion( this_node, other_node ) netForce.plus(this.CoulombRepulsion( thisNode,this.graph.vertices[j])) } } //for each spring connected to this node for(var k in this.graph.edges[thisNode.id]){ //(this node, node its connected to) //pass id of this node and the node its connected to so hookesattraction //can update the force on both vertices and return that force to be //added to the net force this.HookesAttraction(thisNode.id, this.graph.edges[thisNode.id][k].vertex2 ) } // without damping, it moves forever // this_node.velocity := (this_node.velocity + timestep * net-force) * damping thisNode.velocity.x=(thisNode.velocity.x+thisNode.force.x)*this.damping; thisNode.velocity.y=(thisNode.velocity.y+thisNode.force.y)*this.damping; thisNode.velocity.z=(thisNode.velocity.z+thisNode.force.z)*this.damping; //this_node.position := this_node.position + timestep * this_node.velocity thisNode.x=thisNode.velocity.x; thisNode.y=thisNode.velocity.y; thisNode.z=thisNode.velocity.z; //normalize x,y,z??? //total_kinetic_energy := total_kinetic_energy + this_node.mass * (this_node.velocity)^2 this.total_kinetic_energy +=thisNode.mass*((thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)* (thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)) } cc+=1; }while(this.total_kinetic_energy >0.5) console.log(cc,this.total_kinetic_energy,this.graph) this.cancelAnimation(); } ForceLayout.prototype.HookesAttraction=function(v1ID,v2ID){ var a=this.graph.vertices[v1ID] var b=this.graph.vertices[v2ID] var force=new Point(this.attraction*(b.x - a.x),this.attraction*(b.y - a.y),this.attraction*(b.z - a.z)) // hook's attraction a.force.x += force.x; a.force.y += force.y; a.force.z += force.z; b.force.x += this.attraction*(a.x - b.x); b.force.y += this.attraction*(a.y - b.y); b.force.z += this.attraction*(a.z - b.z); return force; } ForceLayout.prototype.CoulombRepulsion=function(vertex1,vertex2){ //http://en.wikipedia.org/wiki/Coulomb's_law // distance squared = ((x1-x2)*(x1-x2)) + ((y1-y2)*(y1-y2)) + ((z1-z2)*(z1-z2)) var distanceSquared = ( (vertex1.x-vertex2.x)*(vertex1.x-vertex2.x)+ (vertex1.y-vertex2.y)*(vertex1.y-vertex2.y)+ (vertex1.z-vertex2.z)*(vertex1.z-vertex2.z) ); if(distanceSquared==0) distanceSquared = 0.001; var coul = this.repulsion / distanceSquared; return new Point(coul * (vertex1.x-vertex2.x),coul * (vertex1.y-vertex2.y), coul * (vertex1.z-vertex2.z)); } ForceLayout.prototype.animate=function(){ if(this.animating) this.animationID=requestAnimationFrame(this.animate.bind(this)); this.draw(); } ForceLayout.prototype.cancelAnimation=function(){ cancelAnimationFrame(this.animationID); this.animating=false; } ForceLayout.prototype.redraw=function(){ this.animating=true; this.animate(); } $(document).ready(function(){ var g= new Graph(); for(var i=0;i<=100;i++){ var v1=new Vertex(Math.random(), {}) var v2=new Vertex(Math.random(), {}) var e1= new Edge(v1.id,v2.id); g.addEdge(e1); } console.log(g); var l=new ForceLayout({ graph:g }); l.redraw(); });

    Read the article

< Previous Page | 1 2 3 4