Search Results

Search found 48308 results on 1933 pages for 'embedded system'.

Page 4/1933 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 2)

    - by hinkmond
    To start out our ghost hunting here at the Oracle Santa Clara campus office, we first need a ghost sensor. It's pretty easy to build one, since all we need to do is to create a circuit that can detect small fluctuations in the electromagnetic field, just like the fluctuations that ghosts cause when they pass by... Naturally, right? So, we build a static charge sensor and will use a Java Embedded app to monitor for changes in the sensor value, running analytics using Java technology on a Raspberry Pi. Bob's your uncle, and there you have it: a ghost sensor. See: Ghost Detector So, go out to Radio Shack and buy up these items: shopping list: 1 - NTE312 JFET N-channel transistor (this is in place of the MPF-102) 1 - Set of Jumper Wires 1 - LED 1 - 300 ohm resistor 1 - set of header pins Then, grab a flashlight, your Raspberry Pi, and come back here for more instructions... Don't be afraid... Yet. Hinkmond

    Read the article

  • Embedded .swf file in .pfd-Ubuntu 10.04

    - by Thanos
    I have just finished a presentation in LaTeX. In this very .pdf file I have included a .swf animation(done with adobe flash CS5 in windows) which starts when you click on it. While I have already installed a relevant player(swfdec flash player) neither document viewer nor okular are able to reproduce it. I tried with my player to make sure that the file is not corrupted and the result was that it can be produced. I tried the same .pdf file in windows using adobe reader and there is no problem there. The embedded file can be reproduced with no problem. So I thought of installing adobe in ubuntu. I tried there to see if the problem was solved. Things got a bit better. Adobe could understand that there is something there, so when clicked I got a message that I had to get the proper player. When I clicked on a relevant button I expected to open my browser in a player's page. Instead nothing happened. If I place my mouse's cursor next to the space that defines my animation the is a "message" stating "Media File(application/x-shockwave flash)". The next step was to install Adobe Flash player, but I couldn't find the standallone player;only the browser's plugs... How can I get this .swf file play in pdf?

    Read the article

  • How to access an encrypted INI file from C on an embedded system with little RAM

    - by Mawg
    I want to encrypt an INI file using a Delphi program on a Windows PC. Then I need to decrypt & access it in C on an embedded system with little RAM. I will do that once & fetch all info; I will not be consutinuously accessing the INI file whenever my program needs data from the file. Any advice as to which encryption to use? Nothing too heavyweight, just good enough for "Security through obscurity" and FOSS for both Delphi & C. And how can I decrypt, get all the info from the INI file - using as little RAM as possible, and then free any allocated RAM? I hope that someone can help. [Update] I am currently using an Atmel UC3, although I am not sure if that will be the final case. It has 512kB falsh & 128kB RAM. For an INI file, I am talking of max 8 sections, with a total of max 256 entries, each max 8 chars. I chose INI (but am not married to it), because i have had major problems in the past when the format of a data fiel changes, no matter whether binary, or text. For tex, I prefer the free format of INI (on PC), but suppose I could switch to line_1=data_1, line_2=data_2 and accept that if I add new fields in future software erleases they must come at the end, even if it is not pretty when read directly by humans. I suppose if I choose a fixed format text file then I never need get more than one line into RAM at a time ...

    Read the article

  • Skynet Big Data Demo Using Hexbug Spider Robot, Raspberry Pi, and Java SE Embedded (Part 3)

    - by hinkmond
    In Part 2, I described what connections you need to make for this demo using a Hexbug Spider Robot, a Raspberry Pi, and Java SE Embedded for programming. Here are some photos of me doing the soldering. Software engineers should not be afraid of a little soldering work. It's all good. See: Skynet Big Data Demo (Part 2) One thing to watch out for when you open the remote is that there may be some glue covering the contact points. Make sure to use an Exacto knife or small screwdriver to scrape away any glue or non-conductive material covering each place where you need to solder. And after you are done with your soldering and you gave the solder enough time to cool, make sure all your connections are marked so that you know which wire goes where. Give each wire a very light tug to make sure it is soldered correctly and is making good contact. There are lots of videos on the Web to help you if this is your first time soldering. Check out Laday Ada's (from adafruit.com) links on how to solder if you need some additional help: http://www.ladyada.net/learn/soldering/thm.html If everything looks good, zip everything back up and meet back here for how to connect these wires to your Raspberry Pi. That will be it for the hardware part of this project. See, that wasn't so bad. Hinkmond

    Read the article

  • Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 3)

    - by hinkmond
    So, let's now connect the parts together to make a Java Embedded ghost sensor using a Raspberry Pi. Grab your JFET transistor, LED light, wires, and breadboard and follow the connections on this diagram. The JFET transistor plugs into the breadboard with the flat part facing left. Then, plug in a wire to the same breadboard hole row as the top JFET lead (green in the diagram) and keep it unconnected to act as an antenna. Then, connect a wire (red) from the middle lead of the JFET transistor to Pin 1 on your RPi GPIO header. And, connect another wire (blue) from the lower lead of the JFET transistor to Pin 25 on your RPi GPIO header, then connect another (blue) wire from the lower lead of the JFET transistor to the long end of a common cathode LED, and finally connect the short end of the LED with a wire (black) to Pin 6 (ground) of the RPi GPIO header. That's it. Easy. Now test it. See: Ghost Sensor Testing Here's a video of me testing the Ghost Sensor circuit on my Raspberry Pi. We'll cover the Java SE app needed to record the ghost analytics in the next post. Hinkmond

    Read the article

  • Junit with Embedded Glassfish fails - JMS Resource Adapter should be EMBEDDED

    - by Hank
    I'm trying to test a session bean (NetBeans 6.8, Glassfish V3). Unfortunately, the embedded glassfish is unable to start properly, as it tries to connect to a remote JMS Provider (at localhost:7676): $ ant test ... [junit] Mar 23, 2010 12:13:51 PM com.sun.messaging.jms.ra.ResourceAdapter start [junit] INFO: MQJMSRA_RA1101: SJSMQ JMS Resource Adapter starting: REMOTE [junit] Mar 23, 2010 12:13:51 PM com.sun.messaging.jmq.jmsclient.ExceptionHandler throwConnectionException [junit] WARNING: [C4003]: Error occurred on connection creation [localhost:7676]. - cause: java.net.ConnectException: Connection refused The error is in itself correct, as no (other) JMS provider is running. I was expecting the embedded glassfish to start the JMS provider in EMBEDDED mode. My test uses javax.ejb.embeddable.EJBContainer : @BeforeClass public static void initContainer() throws Exception { ec = EJBContainer.createEJBContainer(); ctx = ec.getContext(); } When I start glassfish normally, it's fine: $ bin/asadmin get server.jms-service.type server.jms-service.type=EMBEDDED How can I get my junit tests to use an embedded glassfish with an EMBEDDED JMS Provider?

    Read the article

  • Embedded Development Board

    - by ALF3130
    I'm new to the embedded development world and am looking to get my very first board. After some research, I realize that there aren't many choices with FPUs. This is important in my project as I'm going to be doing quite a bit of floating point computations. I found the Mini2440 which seems to run on the ARM920T core. This particular unit is perfect for my needs (decent price, all the right I/O ports, and a touch screen to boot) but it seems that it doesn't have an FPU. I don't know how big of a penalty I'd be paying for FP emulation, so I'm unsure of whether to pull the trigger on this one. That said: Can someone please confirm whether this product (Mini2440) has an FPU or not? My project will do image capture and analysis. Does anyone have any experience with running things like OpenMP on such platforms? Please suggest any other similar boards in the = $200 price range that have an FPU. This world is new to me. Any other advice or things I should be aware of is much appreciated.

    Read the article

  • CFP for Java Embedded @ JavaOne

    - by Tori Wieldt
    Java Embedded @ JavaOne is designed to provide business and technical decision makers, as well as Java embedded ecosystem partners, a unique occasion to come together and learn about how they can use Java Embedded technologies for new business opportunities. The call-for-papers (CFP) for Java Embedded @ JavaOne is now open. Interested speakers are invited to make business submissions: best practices, case studies and panel discussions on emerging opportunities in the Java embedded space. Submit a paper. Also, due to high interest, event organizers are also asking for technical submissions for the JavaOne conference, for the "Java ME, Java Card, Embedded and Devices" track (this track ONLY). The timeline for the CFP is the same for both business and technical submissions: CFP Open – June 18th Deadline for submissions – July 18th Notifications (Accepts/Declines) – week of July 29th Deadline for speakers to accept speaker invitation – August 10th Presentations due for review – August 31st Attendees of both JavaOne and Oracle Openworld can attend Java Embedded @ JavaOne by purchasing a $100.00 USD upgrade to their full conference pass. Rates for attending Embedded @ JavaOne alone are here.

    Read the article

  • How to reinstall Windows 7 Embedded?

    - by Joshua Lim
    I need to reinstall Windows 7 Embedded on my server but I'm not able to do so despite repeated tries. I tried booting up the server with the Windows Embedded 7 Setup ISO attached (using IPMI) and I've also tried running setup.exe in the CDROM after Windows has booted up. Both methods fail. In the first case, the server simply reboots by itself after I selected "IBW" button. In the second case, the installer returns some files missing while installing. I'm sure my Windows Embedded 7 Setup ISO is correct, because earlier on, I used IBW on the same ISO to install Windows Embedded 7 onto the server. Of course, the C drive has empty when I first installed. What should I do? I read that the normal Windows 7 (not embedded version) installer allows you to reformat the C drive before re installing. There does not appear to be such an option for Windows embedded. Appreciate any tip. Thanks.

    Read the article

  • MVC Portable Areas Enhancement &ndash; Embedded Resource Controller

    - by Steve Michelotti
    MvcContrib contains a feature called Portable Areas which I’ve recently blogged about. In short, portable areas provide a way to distribute MVC binary components as simple .NET assemblies where the aspx/ascx files are actually compiled into the assembly as embedded resources. This is an extremely cool feature but once you start building robust portable areas, you’ll also want to be able to access other external files like css and javascript.  After my recent post suggesting portable areas be expanded to include other embedded resources, Eric Hexter asked me if I’d like to contribute the code to MvcContrib (which of course I did!). Embedded resources are stored in a case-sensitive way in .NET assemblies and the existing embedded view engine inside MvcContrib already took this into account. Obviously, we’d want the same case sensitivity handling to be taken into account for any embedded resource so my job consisted of 1) adding the Embedded Resource Controller, and 2) a little refactor to extract the logic that deals with embedded resources so that the embedded view engine and the embedded resource controller could both leverage it and, therefore, keep the code DRY. The embedded resource controller targets these scenarios: External image files that are referenced in an <img> tag External files referenced like css or JavaScript files Image files referenced inside css files Embedded Resources Walkthrough This post will describe a walkthrough of using the embedded resource controller in your portable areas to include the scenarios outlined above. I will build a trivial “Quick Links” widget to illustrate the concepts. The portable area registration is the starting point for all portable areas. The MvcContrib.PortableAreas.EmbeddedResourceController is optional functionality – you must opt-in if you want to use it.  To do this, you simply “register” it by providing a route in your area registration that uses it like this: 1: context.MapRoute("ResourceRoute", "quicklinks/resource/{resourceName}", 2: new { controller = "EmbeddedResource", action = "Index" }, 3: new string[] { "MvcContrib.PortableAreas" }); First, notice that I can specify any route I want (e.g., “quicklinks/resources/…”).  Second, notice that I need to include the “MvcContrib.PortableAreas” namespace as the fourth parameter so that the framework is able to find the EmbeddedResourceController at runtime. The handling of embedded views and embedded resources have now been merged.  Therefore, the call to: 1: RegisterTheViewsInTheEmmeddedViewEngine(GetType()); has now been removed (breaking change).  It has been replaced with: 1: RegisterAreaEmbeddedResources(); Other than that, the portable area registration remains unchanged. The solution structure for the static files in my portable area looks like this: I’ve got a css file in a folder called “Content” as well as a couple of image files in a folder called “images”. To reference these in my aspx/ascx code, all of have to do is this: 1: <link href="<%= Url.Resource("Content.QuickLinks.css") %>" rel="stylesheet" type="text/css" /> 2: <img src="<%= Url.Resource("images.globe.png") %>" /> This results in the following HTML mark up: 1: <link href="/quicklinks/resource/Content.QuickLinks.css" rel="stylesheet" type="text/css" /> 2: <img src="/quicklinks/resource/images.globe.png" /> The Url.Resource() method is now included in MvcContrib as well. Make sure you import the “MvcContrib” namespace in your views. Next, I have to following html to render the quick links: 1: <ul class="links"> 2: <li><a href="http://www.google.com">Google</a></li> 3: <li><a href="http://www.bing.com">Bing</a></li> 4: <li><a href="http://www.yahoo.com">Yahoo</a></li> 5: </ul> Notice the <ul> tag has a class called “links”. This is defined inside my QuickLinks.css file and looks like this: 1: ul.links li 2: { 3: background: url(/quicklinks/resource/images.navigation.png) left 4px no-repeat; 4: padding-left: 20px; 5: margin-bottom: 4px; 6: } On line 3 we’re able to refer to the url for the background property. As a final note, although we already have complete control over the location of the embedded resources inside the assembly, what if we also want control over the physical URL routes as well. This point was raised by John Nelson in this post. This has been taken into account as well. For example, suppose you want your physical url to look like this: 1: <img src="/quicklinks/images/globe.png" /> instead of the same corresponding URL shown above (i.e., “/quicklinks/resources/images.globe.png”). You can do this easily by specifying another route for it which includes a “resourcePath” parameter that is pre-pended. Here is the complete code for the area registration with the custom route for the images shown on lines 9-11: 1: public class QuickLinksRegistration : PortableAreaRegistration 2: { 3: public override void RegisterArea(System.Web.Mvc.AreaRegistrationContext context, IApplicationBus bus) 4: { 5: context.MapRoute("ResourceRoute", "quicklinks/resource/{resourceName}", 6: new { controller = "EmbeddedResource", action = "Index" }, 7: new string[] { "MvcContrib.PortableAreas" }); 8:   9: context.MapRoute("ResourceImageRoute", "quicklinks/images/{resourceName}", 10: new { controller = "EmbeddedResource", action = "Index", resourcePath = "images" }, 11: new string[] { "MvcContrib.PortableAreas" }); 12:   13: context.MapRoute("quicklink", "quicklinks/{controller}/{action}", 14: new {controller = "links", action = "index"}); 15:   16: this.RegisterAreaEmbeddedResources(); 17: } 18:   19: public override string AreaName 20: { 21: get 22: { 23: return "QuickLinks"; 24: } 25: } 26: } The Quick Links portable area results in the following requests (including custom route formats): The complete code for this post is now included in the Portable Areas sample solution in the latest MvcContrib source code. You can get the latest code now.  Portable Areas open up exciting new possibilities for MVC development!

    Read the article

  • Using tslib (touchscreen input) with DirectFB on embedded system (gumstix overo)

    - by emi1faber
    I'm attempting to use tslib with DirectFB on the gumstix Overo. Everything seems to be compiled correctly, as when DirectFB starts up, I get messages saying "Started 'tslib Input' ... DirectFB/Input: tslib touchscreen 0 0.1 (tslib)" etc. However, I haven't been able to find any example code showing how one reads the X-Y coordinates of a touchscreen press. Is there any example code out there to initialize the touchscreen and return the coordinates of a touchscreen press? Thanks in advance, Ben

    Read the article

  • A good interpreted language for a small embedded project

    - by Earlz
    I have an mbed which has a small ARM Cortex M3 on it. Basically, my effective resources for the project are ~25Kb of RAM and ~400Kb of Flash. For I/O I'll have a PS/2 keyboard, a VGA framebuffer(with character output), and an SD card for saving/loading programs(up to a couple of Mb maybe) The reason I ask this here is because I'm trying to figure out what programming language to implement on the thing. I'm looking for an interpreted language that's easy for me to implement, and won't break the bank on my resources. I also intend for this to be at least possible to write on th device itself, though the editor can be interpreted(yay bootstrapping) Anyway, I've looked at a few simple languages. Some nice candidates: Forth BASIC Scheme? Has anyone done something like this or know of any languages that can fit this bill or have comments about my three candidates so far?

    Read the article

  • RPi and Java Embedded GPIO: Sensor Hardware for Java Enabled Interface

    - by hinkmond
    Now here's the hardware you'll need to make a Java app interface with a static charge sensor connected to your Raspberry Pi via the GPIO port. It means another Fry's run of course. That's not too bad during Christmas since you can browse all the gadget and toys while doing your shopping for sensor hardware for your RPi. Here's a your shopping list: 1 - NTE312 JFET N-channel transistor (this is in place of the MPF-102) 1 - Set of Jumper Wires 1 - LED 1 - 300 ohm resistor 1 - set of header pins Grab all that from Fry's or your local hobby electronics shop and come back here for how to connect it together. Oh, and don't go too crazy buying all the other electronic toys and gadgets that catch your eye because of the holiday displays at the store. Hinkmond

    Read the article

  • RPi and Java Embedded GPIO: Using Java to read input

    - by hinkmond
    Now that we've learned about using Java code to control the output of the Raspberry Pi GPIO ports (by lighting up LEDs from a Java app on the RPi for now and noting in the future the same Java code can be used to drive industrial automation or medical equipment, etc.), let's move on to learn about reading input from the RPi GPIO using Java code. As before, we need to start out with the necessary hardware. For this exercise we will connect a Static Electricity Detector to the RPi GPIO port and read the value of that sensor using Java code. The circuit we'll use is from William J. Beaty and is described at this Web link. See: Static Electricity Detector He calls it an "Electric Charge" detector, which is a bit misleading. A Field Effect Transistor is subject to nearby electro-magnetic fields, such as a static charge on a nearby object, not really an electric charge. So, this sensor will detect static electricity (or ghosts if you are into paranormal activity ). Take a look at the circuit and in the next blog posts we'll step through how to connect it to the GPIO port of your RPi and then how to write Java code to access this fun sensor. Hinkmond

    Read the article

  • RPi and Java Embedded GPIO: Sensor Connections for Java Enabled Interface

    - by hinkmond
    Now we're ready to connect the hardware needed to make a static electricity sensor for the Raspberry Pi and use Java code to access it through a GPIO port. First, very carefully bend the NTE312 (or MPF-102) transistor "gate" pin (see the diagram on the back of the package or refer to the pin diagram on the Web). You can see it in the inset photo on the bottom left corner. I bent the leftmost pin of the NTE312 transistor as I held the flat part toward me. That is going to be your antenna. So, connect one of the jumper wires to the bent pin. I used the dark green jumper wire (looks almost black; coiled at the bottom) in the photo. Then push the other 2 pins of the transistor into your breadboard. Connect one of the pins to Pin # 1 (3.3V) on the GPIO header of your RPi. See the diagram if you need to glance back at it. In the photo, that's the orange jumper wire. And connect the final unconnected transistor pin to Pin # 22 (GPIO25) on the RPi header. That's the blue jumper wire in my photo. For reference, connect the LED anode (long pin on a common anode LED/short pin on a common cathode LED, check your LED pin diagram) to the same breadboard hole that is connecting to Pin # 22 (same row of holes where the blue wire is connected), and connect the other pin of the LED to GROUND (row of holes that connect to the black wire in the photo). Test by blowing up a balloon, rubbing it on your hair (or your co-worker's hair, if you are hair-challenged) to statically charge it, and bringing it near your antenna (green wire in the photo). The LED should light up when it's near and go off when you pull it away. If you need more static charge, find a co-worker with really long hair, or rub the balloon on a piece of silk (which is just as good but not as fun). Next blog post is where we do some Java coding to access this sensor on your RPi. Finally, back to software! Ha! Hinkmond

    Read the article

  • RPi and Java Embedded GPIO: Connecting LEDs

    - by hinkmond
    Next, we need some low-level peripherals to connect to the Raspberry Pi GPIO header. So, we'll do what's called a "Fry's Run" in Silicon Valley, which means we go shop at the local Fry's Electronics store for parts. In this case, we'll need some breadboard jumper wires (blue wires in photo), some LEDs, and some resistors (for the RPi GPIO, 150 ohms - 300 ohms would work for the 3.3V output of the GPIO ports). And, if you want to do other projects, you might as well by a breadboard, which is a development board with lots of holes in it. Ask a Fry's clerk for help. Or, better yet, ask the customer standing next to you in the electronics components aisle for help. (Might be faster) So, go to your local hobby electronics store, or go to Fry's if you have one close by, and come back here to the next blog post to see how to hook these parts up. Hinkmond

    Read the article

  • Automated testing tool development challenges (for embedded software)

    - by Karthi prime
    My boss want to come up with the proposal for the following tool: An IDE: Able to build, compile, debug, via JTAG programming for the micro-controller. A Test Suite, reads the code in the IDE, auto generates the test cases, and it gives the in-target unit testing results(which is done by controlling code execution in the micro-controller via IDE). A no-overhead code coverage tool which interacts with the test suite and IDE. My work is to obtain the high level architecture of this tool, so as to proceed further. My current knowledge: There are tool-chains available from the chip manufacturer for the micro-controllers which can be utilized along with an open-source IDE like Eclipse, and along with an open-source burner, a complete IDE for a micro-controller can be done. Test cases can be auto-generated by reading the source file through the process of parsing, scripting, based on keywords. Test suite must be able to command the IDE to control, through breakpoints, and read the register contents from the microcontroller - This enables the in-target unit testing. An no-overhead code coverage should be done by no-overhead code instrumentation so as to execute those in the resource constraint environment of the micro-controller. I have the following questions: Any advice on the validity of my understanding? What are the challenges I will have during the development? What are the helpful open-source tools regarding this? What is the development time for this software? Thanks

    Read the article

  • RPi and Java Embedded GPIO: Hooking Up Your Wires for Java

    - by hinkmond
    So, you bought your blue jumper wires, your LEDs, your resistors, your breadboard, and your fill of Fry's for the day. How do you hook this cool stuff up to write Java code to blink them LEDs? I'll step you through it. First look at that pinout diagram of the GPIO header that's on your RPi. Find the pins in the corner of your RPi board and make sure to orient it the right way. The upper left corner pin should have the characters "P1" next to it on the board. That pin next to "P1" is your Pin #1 (in the diagram). Then, you can start counting left, right, next row, left, right, next row, left, right, and so on: Pins # 1, 2, next row, 3, 4, next row, 5, 6, and so on. Take one blue jumper wire and connect to Pin # 3 (GPIO0). Connect the other end to a resistor and then the other end of the resistor into the breadboard. Each row of grouped-together holes on a breadboard are connected, so plug in the short-end of a common cathode LED (long-end of a common anode LED) into a hole that is in the same grouping as where the resistor is plugged in. Then, connect the other end of the LED back to Pin # 6 (GND) on the RPi GPIO header. Now you have your first LED connected ready for you to write some Java code to turn it on and off. (As, extra credit you can connect 7 other LEDs the same way to with one lead to Pins # 5, 7, 11, 13, 15, 19 & 21). Whew! That wasn't so bad, was it? Next blog post on this thread will have some Java source code for you to try... Hinkmond

    Read the article

  • Testing my model for hybrid scheduling in Embedded Systems

    - by markusian
    I am working on a project for school, where I have to analyze the performances of a few fixed-priority servers algorithms (polling server, deferrable server, priority exchange) using a simulator in the case of hybrid scheduling, where we have both hard periodic tasks and soft aperiodic tasks. In my model I consider that: the hard tasks have a period equal to their deadline, with a known worst case execution time (wcet). The actual execution time could be smaller than the wcet. the soft tasks have a known wcet and random interarrival times. The actual execution time could be smaller than the wcet. In order to test those algorithms I need realistic case studies. For this reason I'm digging in the scientific literature but I am facing different problems: Sometimes I find a list of hard tasks with wcet, but it is not specified how the soft tasks parameters are found. Given the wcet of a task, how can I model its actual execution time? This means, what random distribution should I use considering the wcet? How can I model the random interarrival times of soft aperiodic tasks?

    Read the article

  • NullReferenceException when changing skin/theme via Application.Current.Resources

    - by CoolCat
    I am writing an wpf application with multiple skins. The code to switch theme is as below: try { Application.Current.Resources.MergedDictionaries.Add( resource ); } catch( Exception ex ) { } The first time the code is called (to switch to a new theme), it is executed successfully; however, any subsequent calls to the same code would throw System.NullReferenceException. The way I set up my themes are similar to what described here: http://www.codewrecks.com/blog/index.php/2008/05/22/simple-skinnable-and-theme-management-in-wpf-user-interface/. Has anyone seen this error before? How do I go about debugging this since the exception is thrown else where? Any help is greatly appreciated. StackTrace: at System.Windows.EffectiveValueEntry.GetFlattenedEntry(RequestFlags requests) at System.Windows.DependencyObject.EvaluateEffectiveValue(EntryIndex entryIndex, DependencyProperty dp, PropertyMetadata metadata, EffectiveValueEntry oldEntry, EffectiveValueEntry newEntry, OperationType operationType) at System.Windows.DependencyObject.UpdateEffectiveValue(EntryIndex entryIndex, DependencyProperty dp, PropertyMetadata metadata, EffectiveValueEntry oldEntry, EffectiveValueEntry& newEntry, Boolean coerceWithDeferredReference, OperationType operationType) at System.Windows.StyleHelper.ApplyStyleOrTemplateValue(FrameworkObject fo, DependencyProperty dp) at System.Windows.StyleHelper.InvalidateContainerDependents(DependencyObject container, FrugalStructList`1& exclusionContainerDependents, FrugalStructList`1& oldContainerDependents, FrugalStructList`1& newContainerDependents) at System.Windows.StyleHelper.DoStyleInvalidations(FrameworkElement fe, FrameworkContentElement fce, Style oldStyle, Style newStyle) at System.Windows.StyleHelper.UpdateStyleCache(FrameworkElement fe, FrameworkContentElement fce, Style oldStyle, Style newStyle, Style& styleCache) at System.Windows.FrameworkElement.OnStyleChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) at System.Windows.DependencyObject.OnPropertyChanged(DependencyPropertyChangedEventArgs e) at System.Windows.FrameworkElement.OnPropertyChanged(DependencyPropertyChangedEventArgs e) at System.Windows.DependencyObject.NotifyPropertyChange(DependencyPropertyChangedEventArgs args) at System.Windows.DependencyObject.UpdateEffectiveValue(EntryIndex entryIndex, DependencyProperty dp, PropertyMetadata metadata, EffectiveValueEntry oldEntry, EffectiveValueEntry& newEntry, Boolean coerceWithDeferredReference, OperationType operationType) at System.Windows.DependencyObject.InvalidateProperty(DependencyProperty dp) at System.Windows.FrameworkElement.UpdateStyleProperty() at System.Windows.TreeWalkHelper.InvalidateStyleAndReferences(DependencyObject d, ResourcesChangeInfo info, Boolean containsTypeOfKey) at System.Windows.TreeWalkHelper.OnResourcesChanged(DependencyObject d, ResourcesChangeInfo info, Boolean raiseResourceChangedEvent) at System.Windows.TreeWalkHelper.OnResourcesChangedCallback(DependencyObject d, ResourcesChangeInfo info) at System.Windows.DescendentsWalker`1._VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.VisitNode(FrameworkElement fe) at System.Windows.DescendentsWalker`1.VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.WalkLogicalChildren(FrameworkElement feParent, FrameworkContentElement fceParent, IEnumerator logicalChildren) at System.Windows.DescendentsWalker`1.WalkFrameworkElementLogicalThenVisualChildren(FrameworkElement feParent, Boolean hasLogicalChildren) at System.Windows.DescendentsWalker`1.IterateChildren(DependencyObject d) at System.Windows.DescendentsWalker`1._VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.VisitNode(FrameworkElement fe) at System.Windows.DescendentsWalker`1.VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.WalkLogicalChildren(FrameworkElement feParent, FrameworkContentElement fceParent, IEnumerator logicalChildren) at System.Windows.DescendentsWalker`1.WalkFrameworkElementLogicalThenVisualChildren(FrameworkElement feParent, Boolean hasLogicalChildren) at System.Windows.DescendentsWalker`1.IterateChildren(DependencyObject d) at System.Windows.DescendentsWalker`1._VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.VisitNode(FrameworkElement fe) at System.Windows.DescendentsWalker`1.VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.WalkLogicalChildren(FrameworkElement feParent, FrameworkContentElement fceParent, IEnumerator logicalChildren) at System.Windows.DescendentsWalker`1.WalkFrameworkElementLogicalThenVisualChildren(FrameworkElement feParent, Boolean hasLogicalChildren) at System.Windows.DescendentsWalker`1.IterateChildren(DependencyObject d) at System.Windows.DescendentsWalker`1._VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.VisitNode(FrameworkElement fe) at System.Windows.DescendentsWalker`1.VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.WalkLogicalChildren(FrameworkElement feParent, FrameworkContentElement fceParent, IEnumerator logicalChildren) at System.Windows.DescendentsWalker`1.WalkFrameworkElementLogicalThenVisualChildren(FrameworkElement feParent, Boolean hasLogicalChildren) at System.Windows.DescendentsWalker`1.IterateChildren(DependencyObject d) at System.Windows.DescendentsWalker`1._VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.VisitNode(FrameworkElement fe) at System.Windows.DescendentsWalker`1.VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.WalkFrameworkElementLogicalThenVisualChildren(FrameworkElement feParent, Boolean hasLogicalChildren) at System.Windows.DescendentsWalker`1.IterateChildren(DependencyObject d) at System.Windows.DescendentsWalker`1._VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.VisitNode(FrameworkElement fe) at System.Windows.DescendentsWalker`1.VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.WalkLogicalChildren(FrameworkElement feParent, FrameworkContentElement fceParent, IEnumerator logicalChildren) at System.Windows.DescendentsWalker`1.WalkFrameworkElementLogicalThenVisualChildren(FrameworkElement feParent, Boolean hasLogicalChildren) at System.Windows.DescendentsWalker`1.IterateChildren(DependencyObject d) at System.Windows.DescendentsWalker`1._VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.VisitNode(FrameworkElement fe) at System.Windows.DescendentsWalker`1.VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.WalkLogicalChildren(FrameworkElement feParent, FrameworkContentElement fceParent, IEnumerator logicalChildren) at System.Windows.DescendentsWalker`1.WalkFrameworkElementLogicalThenVisualChildren(FrameworkElement feParent, Boolean hasLogicalChildren) at System.Windows.DescendentsWalker`1.IterateChildren(DependencyObject d) at System.Windows.DescendentsWalker`1._VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.VisitNode(FrameworkElement fe) at System.Windows.DescendentsWalker`1.VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.WalkLogicalChildren(FrameworkElement feParent, FrameworkContentElement fceParent, IEnumerator logicalChildren) at System.Windows.DescendentsWalker`1.WalkFrameworkElementLogicalThenVisualChildren(FrameworkElement feParent, Boolean hasLogicalChildren) at System.Windows.DescendentsWalker`1.IterateChildren(DependencyObject d) at System.Windows.DescendentsWalker`1._VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.VisitNode(FrameworkElement fe) at System.Windows.DescendentsWalker`1.VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.WalkLogicalChildren(FrameworkElement feParent, FrameworkContentElement fceParent, IEnumerator logicalChildren) at System.Windows.DescendentsWalker`1.WalkFrameworkElementLogicalThenVisualChildren(FrameworkElement feParent, Boolean hasLogicalChildren) at System.Windows.DescendentsWalker`1.IterateChildren(DependencyObject d) at System.Windows.DescendentsWalker`1._VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.VisitNode(FrameworkElement fe) at System.Windows.DescendentsWalker`1.VisitNode(DependencyObject d) at System.Windows.DescendentsWalker`1.WalkLogicalChildren(FrameworkElement feParent, FrameworkContentElement fceParent, IEnumerator logicalChildren) at System.Windows.DescendentsWalker`1.WalkFrameworkElementLogicalThenVisualChildren(FrameworkElement feParent, Boolean hasLogicalChildren) at System.Windows.DescendentsWalker`1.IterateChildren(DependencyObject d) at System.Windows.DescendentsWalker`1.StartWalk(DependencyObject startNode, Boolean skipStartNode) at System.Windows.TreeWalkHelper.InvalidateOnResourcesChange(FrameworkElement fe, FrameworkContentElement fce, ResourcesChangeInfo info) at System.Windows.Application.InvalidateResourceReferenceOnWindowCollection(WindowCollection wc, ResourcesChangeInfo info) at System.Windows.ResourceDictionary.NotifyOwners(ResourcesChangeInfo info) at System.Windows.ResourceDictionary.OnMergedDictionariesChanged(Object sender, NotifyCollectionChangedEventArgs e) at System.Collections.ObjectModel.ObservableCollection`1.OnCollectionChanged(NotifyCollectionChangedEventArgs e) at System.Collections.ObjectModel.ObservableCollection`1.InsertItem(Int32 index, T item) at System.Windows.ResourceDictionaryCollection.InsertItem(Int32 index, ResourceDictionary item) at System.Collections.ObjectModel.Collection`1.Add(T item)

    Read the article

  • Windows Embedded Forums

    - by Luca Calligaris
    Here are the forums about Windows Embedded: Windows Embedded Standard Windows Embedded Compact Platform Development Windows Embedded Compact Managed Application Development Windows Embedded Compact Native Application Development The first forum has been online for some time while those about Windows Embedded Compact have been welcomed by Olivier Bloch a couple of hours ago. As I discuss in the previous post the public MS newsgroups will close between June 1, 2010 and October 1, 2010, starting from those with less traffic. The embedded NG's will be probably close at the beginning of the period since, for some reasons I do not understand, they're not so popular as those devoted to, let's say, Office. The forums will substitute the newsgroups so prepare to switch over soon!

    Read the article

  • SceneManagers as systems in entity system or as a core class used by a system?

    - by Hatoru Hansou
    It seems entity systems are really popular here. Links posted by other users convinced me of the power of such system and I decided to try it. (Well, that and my original code getting messy) In my project, I originally had a SceneManager class that maintained needed logic and structures to organize the scene (QuadTree, 2D game). Before rendering I call selectRect() and pass the x,y of the camera and the width and height of the screen and then obtain a minimized list containing only visible entities ordered from back to front. Now with Systems, originally in my first attempt my Render system required to get added all entities it should handle. This may sound like the correct approach but I realized this was not efficient. Trying to optimize It I reused the SceneManager class internally in the Renderer system, but then I realized I needed methods such as selectRect() in others systems too (AI principally) and make the SceneManager accessible globally again. Currently I converted SceneManager to a system, and ended up with the following interface (only relevant methods): /// Base system interface class System { public: virtual void tick (double delta_time) = 0; // (methods to add and remove entities) }; typedef std::vector<Entity*> EntitiesVector; /// Specialized system interface to allow query the scene class SceneManager: public System { public: virtual EntitiesVector& cull () = 0; /// Sets the entity to be used as the camera and replaces previous ones. virtual void setCamera (Entity* entity) = 0; }; class SceneRenderer // Not a system { vitual void render (EntitiesVector& entities) = 0; }; Also I could not guess how to convert renderers to systems. My game separates logic updates from screen updates, my main class have a tick() method and a render() method that may not be called the same times. In my first attempt renderers were systems but they was saved in a separated manager, updated only in render() and not in tick() like all other systems. I realized that was silly and simply created a SceneRenderer interface and give up about converting them to systems, but that may be for another question. Then... something does not feel right, isn't it? If I understood correctly a system should not depend on another or even count with another system exposing an specific interface. Each system should care only about its entities, or nodes (as optimization, so they have direct references to relevant components without having to constantly call the component() or getComponent() method of the entity).

    Read the article

  • FormatException with IsolatedStorageSettings

    - by Jurgen Camilleri
    I have a problem when serializing a Dictionary<string,Person> to IsolatedStorageSettings. I'm doing the following: public Dictionary<string, Person> Names = new Dictionary<string, Person>(); if (!IsolatedStorageSettings.ApplicationSettings.Contains("Names")) { //Add to dictionary Names.Add("key", new Person(false, new System.Device.Location.GeoCoordinate(0, 0), new List<GeoCoordinate>() { new GeoCoordinate(35.8974, 14.5099), new GeoCoordinate(35.8974, 14.5099), new GeoCoordinate(35.8973, 14.5100), new GeoCoordinate(35.8973, 14.5099) })); //Serialize dictionary to IsolatedStorage IsolatedStorageSettings.ApplicationSettings.Add("Names", Names); IsolatedStorageSettings.ApplicationSettings.Save(); } Here is my Person class: [DataContract] public class Person { [DataMember] public bool Unlocked { get; set; } [DataMember] public GeoCoordinate Location { get; set; } [DataMember] public List<GeoCoordinate> Bounds { get; set; } public Person(bool unlocked, GeoCoordinate location, List<GeoCoordinate> bounds) { this.Unlocked = unlocked; this.Location = location; this.Bounds = bounds; } } The code works the first time, however on the second run I get a System.FormatException at the if condition. Any help would be highly appreciated thanks. P.S.: I tried an IsolatedStorageSettings.ApplicationSettings.Clear() but the call to Clear also gives a FormatException. I have found something new...the exception occurs twenty-five times, or at least that's how many times it shows up in the Output window. However after that, the data is deserialized perfectly. Should I be worried about the exceptions if they do not stop the execution of the program? EDIT: Here's the call stack when the exception occurs: mscorlib.dll!double.Parse(string s, System.Globalization.NumberStyles style, System.IFormatProvider provider) + 0x17 bytes System.Xml.dll!System.Xml.XmlConvert.ToDouble(string s) + 0x4b bytes System.Xml.dll!System.Xml.XmlReader.ReadContentAsDouble() + 0x1f bytes System.Runtime.Serialization.dll!System.Xml.XmlDictionaryReader.XmlWrappedReader.ReadContentAsDouble() + 0xb bytes System.Runtime.Serialization.dll!System.Xml.XmlDictionaryReader.ReadElementContentAsDouble() + 0x35 bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlReaderDelegator.ReadElementContentAsDouble() + 0x19 bytes mscorlib.dll!System.Reflection.RuntimeMethodInfo.InternalInvoke(System.Reflection.RuntimeMethodInfo rtmi, object obj, System.Reflection.BindingFlags invokeAttr, System.Reflection.Binder binder, object parameters, System.Globalization.CultureInfo culture, bool isBinderDefault, System.Reflection.Assembly caller, bool verifyAccess, ref System.Threading.StackCrawlMark stackMark) mscorlib.dll!System.Reflection.RuntimeMethodInfo.InternalInvoke(object obj, System.Reflection.BindingFlags invokeAttr, System.Reflection.Binder binder, object[] parameters, System.Globalization.CultureInfo culture, ref System.Threading.StackCrawlMark stackMark) + 0x168 bytes mscorlib.dll!System.Reflection.MethodBase.Invoke(object obj, object[] parameters) + 0xa bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlFormatReader.ReadValue(System.Type type, string name, string ns, System.Runtime.Serialization.XmlObjectSerializerReadContext context, System.Runtime.Serialization.XmlReaderDelegator xmlReader) + 0x138 bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlFormatReader.ReadMemberAtMemberIndex(System.Runtime.Serialization.ClassDataContract classContract, ref object objectLocal, System.Runtime.Serialization.DeserializedObject desObj) + 0xc4 bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlFormatReader.ReadClass(System.Runtime.Serialization.DeserializedObject desObj, System.Runtime.Serialization.ClassDataContract classContract, int membersRead) + 0xf3 bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlFormatReader.Deserialize(System.Runtime.Serialization.XmlObjectSerializerReadContext context) + 0x36 bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlFormatReader.InitializeCallStack(System.Runtime.Serialization.DataContract clContract, System.Runtime.Serialization.XmlReaderDelegator xmlReaderDelegator, System.Runtime.Serialization.XmlObjectSerializerReadContext xmlObjContext, System.Xml.XmlDictionaryString[] memberNamesColl, System.Xml.XmlDictionaryString[] memberNamespacesColl) + 0x77 bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.CollectionDataContract.ReadXmlValue(System.Runtime.Serialization.XmlReaderDelegator xmlReader, System.Runtime.Serialization.XmlObjectSerializerReadContext context) + 0x5d bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlObjectSerializerReadContext.ReadDataContractValue(System.Runtime.Serialization.DataContract dataContract, System.Runtime.Serialization.XmlReaderDelegator reader) + 0x3 bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlObjectSerializerReadContext.InternalDeserialize(System.Runtime.Serialization.XmlReaderDelegator reader, string name, string ns, ref System.Runtime.Serialization.DataContract dataContract) + 0x10e bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlObjectSerializerReadContext.InternalDeserialize(System.Runtime.Serialization.XmlReaderDelegator xmlReader, System.Type declaredType, System.Runtime.Serialization.DataContract dataContract, string name, string ns) + 0xb bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.DataContractSerializer.InternalReadObject(System.Runtime.Serialization.XmlReaderDelegator xmlReader, bool verifyObjectName) + 0x124 bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlObjectSerializer.ReadObjectHandleExceptions(System.Runtime.Serialization.XmlReaderDelegator reader, bool verifyObjectName) + 0xe bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlObjectSerializer.ReadObject(System.Xml.XmlDictionaryReader reader) + 0x7 bytes System.Runtime.Serialization.dll!System.Runtime.Serialization.XmlObjectSerializer.ReadObject(System.IO.Stream stream) + 0x17 bytes System.Windows.dll!System.IO.IsolatedStorage.IsolatedStorageSettings.Reload() + 0xa3 bytes System.Windows.dll!System.IO.IsolatedStorage.IsolatedStorageSettings.IsolatedStorageSettings(bool useSiteSettings) + 0x20 bytes System.Windows.dll!System.IO.IsolatedStorage.IsolatedStorageSettings.ApplicationSettings.get() + 0xd bytes

    Read the article

  • Changes in the Maven Embedded GlassFish plugin

    - by Romain Grecourt
    The plugin changed its Maven coordinates (a.k.a GAV) over time:  version <= 3.1.1 available under org.glassfish:maven-glassfish-embedded-plugin version >= 3.1.2 available under org.glassfish.embedded:maven-glassfish-embedded-plugin The goal “glassfish-embedded:run” has changed its way of reading the deployment configuration in the latest version: 4.0.Projects using previous versions of the plugin will stop working with this goal. Here is an example of the “old behavior”: 1 2 3 4 5 6 7 8 9 10 11 12 <plugin> <groupId>org.glassfish.embedded</groupId> <artifactId>maven-embedded-glassfish-plugin</artifactId> <version>3.1.2.2</version> <configuration> <app>target/${project.build.finalName}.war</app> <contextRoot>/</contextRoot> <goalPrefix>embedded-glassfish</goalPrefix> <autoDelete>true</autoDelete> <port>8080</port> </configuration> </plugin> The new behavior is as follow: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 <plugin> <groupId>org.glassfish.embedded</groupId> <artifactId>maven-embedded-glassfish-plugin</artifactId> <version>4.0</version> <configuration> <goalPrefix>embedded-glassfish</goalPrefix> <autoDelete>true</autoDelete> <port>8080</port> </configuration> <executions> <execution> <goals> <goal>deploy</goal> </goals> <configuration> <app>target/${project.build.finalName}.war</app> <contextRoot>/</contextRoot> </configuration> </execution> </executions> </plugin> The new version looks for execution of the deploy goal and the associated configuration, when running the goal ‘run’. Both would allow you to run the latest version of the glassfish-embedded jar, you’d only need to add it as a plugin dependency: 1 2 3 4 5 6 7 8 9 10 <plugin> [...] <dependencies> <dependency> <groupId>org.glassfish.main.extras</groupId> <artifactId>glassfish-embedded-all</artifactId> <version>4.0</version> </dependency> </dependencies> </plugin>

    Read the article

  • Oracle releases new Java Embedded products

    - by Henrik Stahl
    With less than one week to go to JavaOne 2012, we've spiced things up a little by releasing not one but two net new embedded Java products. This is an important step towards realizing the vision of Java as the standard platform for the Internet of Things that I outlined in a recent blog post. The two new products are: Java ME Embedded 3.2. Based on same code as the widely deployed Oracle Java Wireless Client for feature phones, this new product provides a Java ME implementation optimized for very small microcontroller-based devices and adds - among other things - a new Device Access API that enables interaction with peripherals common in edge devices such as various types of sensors. In addition to the new Java ME Embedded platform, we have also released an update of the Java ME SDK which adds support for the development of small embedded devices. Java Embedded Suite 7.0. This is an integrated middleware stack for embedded devices, incorporating Java SE Embedded and versions of JavaDB, GlassFish and a Web Services stack optimized for remote operation and small footprint. A typical Internet of Things (or M2M) infrastructure contains three types of compute nodes: The edge device which is typically a sensor or control point of some kind. These devices can be connected directly to a backend through a mobile network if they are installed in - for example - a remote vending machine; or, they can be part of a local short-range network and be connected to the backend through a more powerful gateway device. A gateway is the second type of compute node and acts as an aggregator and control point for a local network. A good example of this could be a generalized home Internet access point, or home gateway. Gateways are mostly using normal wall power and are used for multiple applications, deployed by multiple service providers. Finally, the last type of compute node is the normal enterprise or cloud backend. Java ME Embedded and Java Embedded Suite are perfect base software stacks for the edge devices and the gateway respectively, providing the Java promise of a platform independent runtime and a complete set of libraries as well as allowing a programmer to focus on the business logic rather than plumbing. We are very thrilled with these new releases that open up exciting opportunities for Java developers to extend services and enterprise applications in ways that will make organizations more efficient and touch our daily lives. To find out more, come to the JavaOne conference (for technical content) and to the Java Embedded @ JavaOne subconference (for business content). There will be plenty of cool demos showing complete end-to-end applications, provided by Oracle and our partners, as well as keynotes and numerous sessions where you can learn more about the technology and business opportunities.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >