Search Results

Search found 128328 results on 5134 pages for 'entity framework code first'.

Page 4/5134 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 1

    - by rajbk
    The Open Data Protocol, referred to as OData, is a new data-sharing standard that breaks down silos and fosters an interoperative ecosystem for data consumers (clients) and producers (services) that is far more powerful than currently possible. It enables more applications to make sense of a broader set of data, and helps every data service and client add value to the whole ecosystem. WCF Data Services (previously known as ADO.NET Data Services), then, was the first Microsoft technology to support the Open Data Protocol in Visual Studio 2008 SP1. It provides developers with client libraries for .NET, Silverlight, AJAX, PHP and Java. Microsoft now also supports OData in SQL Server 2008 R2, Windows Azure Storage, Excel 2010 (through PowerPivot), and SharePoint 2010. Many other other applications in the works. * This post walks you through how to create an OData feed, define a shape for the data and pre-filter the data using Visual Studio 2010, WCF Data Services and the Entity Framework. A sample project is attached at the bottom of Part 2 of this post. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Create the Web Application File –› New –› Project, Select “ASP.NET Empty Web Application” Add the Entity Data Model Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “ADO.NET Entity Data Model” under "Data”. Name the Model “Northwind” and click “Add”.   In the “Choose Model Contents”, select “Generate Model From Database” and click “Next”   Define a connection to your database containing the Northwind database in the next screen. We are going to expose the Products table through our OData feed. Select “Products” in the “Choose your Database Object” screen.   Click “Finish”. We are done creating our Entity Data Model. Save the Northwind.edmx file created. Add the WCF Data Service Right click on the Web Application in the Solution Explorer and select “Add New Item..” Select “WCF Data Service” from the list and call the service “DataService” (creative, huh?). Click “Add”.   Enable Access to the Data Service Open the DataService.svc.cs class. The class is well commented and instructs us on the next steps. public class DataService : DataService< /* TODO: put your data source class name here */ > { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { // TODO: set rules to indicate which entity sets and service operations are visible, updatable, etc. // Examples: // config.SetEntitySetAccessRule("MyEntityset", EntitySetRights.AllRead); // config.SetServiceOperationAccessRule("MyServiceOperation", ServiceOperationRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } Replace the comment that starts with “/* TODO:” with “NorthwindEntities” (the entity container name of the Model we created earlier).  WCF Data Services is initially locked down by default, FTW! No data is exposed without you explicitly setting it. You have explicitly specify which Entity sets you wish to expose and what rights are allowed by using the SetEntitySetAccessRule. The SetServiceOperationAccessRule on the other hand sets rules for a specified operation. Let us define an access rule to expose the Products Entity we created earlier. We use the EnititySetRights.AllRead since we want to give read only access. Our modified code is shown below. public class DataService : DataService<NorthwindEntities> { public static void InitializeService(DataServiceConfiguration config) { config.SetEntitySetAccessRule("Products", EntitySetRights.AllRead); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } } We are done setting up our ODataFeed! Compile your project. Right click on DataService.svc and select “View in Browser” to see the OData feed. To view the feed in IE, you must make sure that "Feed Reading View" is turned off. You set this under Tools -› Internet Options -› Content tab.   If you navigate to “Products”, you should see the Products feed. Note also that URIs are case sensitive. ie. Products work but products doesn’t.   Filtering our data OData has a set of system query operations you can use to perform common operations against data exposed by the model. For example, to see only Products in CategoryID 2, we can use the following request: /DataService.svc/Products?$filter=CategoryID eq 2 At the time of this writing, supported operations are $orderby, $top, $skip, $filter, $expand, $format†, $select, $inlinecount. Pre-filtering our data using Query Interceptors The Product feed currently returns all Products. We want to change that so that it contains only Products that have not been discontinued. WCF introduces the concept of interceptors which allows us to inject custom validation/policy logic into the request/response pipeline of a WCF data service. We will use a QueryInterceptor to pre-filter the data so that it returns only Products that are not discontinued. To create a QueryInterceptor, write a method that returns an Expression<Func<T, bool>> and mark it with the QueryInterceptor attribute as shown below. [QueryInterceptor("Products")] public Expression<Func<Product, bool>> OnReadProducts() { return o => o.Discontinued == false; } Viewing the feed after compilation will only show products that have not been discontinued. We also confirm this by looking at the WHERE clause in the SQL generated by the entity framework. SELECT [Extent1].[ProductID] AS [ProductID], ... ... [Extent1].[Discontinued] AS [Discontinued] FROM [dbo].[Products] AS [Extent1] WHERE 0 = [Extent1].[Discontinued] Other examples of Query/Change interceptors can be seen here including an example to filter data based on the identity of the authenticated user. We are done pre-filtering our data. In the next part of this post, we will see how to shape our data. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2 Foot Notes * http://msdn.microsoft.com/en-us/data/aa937697.aspx † $format did not work for me. The way to get a Json response is to include the following in the  request header “Accept: application/json, text/javascript, */*” when making the request. This is easily done with most JavaScript libraries.

    Read the article

  • Role of systems in entity systems architecture

    - by bio595
    I've been reading a lot about entity components and systems and have thought that the idea of an entity just being an ID is quite interesting. However I don't know how this completely works with the components aspect or the systems aspect. A component is just a data object managed by some relevant system. A collision system uses some BoundsComponent together with a spatial data structure to determine if collisions have happened. All good so far, but what if multiple systems need access to the same component? Where should the data live? An input system could modify an entities BoundsComponent, but the physics system(s) need access to the same component as does some rendering system. Also, how are entities constructed? One of the advantages I've read so much about is flexibility in entity construction. Are systems intrinsically tied to a component? If I want to introduce some new component, do I also have to introduce a new system or modify an existing one? Another thing that I've read often is that the 'type' of an entity is inferred by what components it has. If my entity is just an id how can I know that my robot entity needs to be moved or rendered and thus modified by some system? Sorry for the long post (or at least it seems so from my phone screen)!

    Read the article

  • Actually utilizing relational databases for entity systems

    - by Marc Müller
    Recently I was researching several entity systems and obviously I came across T=Machine's fantastic articles on the subject. In Part 5 of the series the author uses a relational schema to explain how an entity system is built and works. Since reading this, I have been wondering whether or not actually using a compact SQL library would be fast enough for real-time usage in video games. Performance seems to be the main issue with a full blown SQL database for management of all entities and components. However, as mentioned in T=Machine's post, basically all access to data inside the SQLDB is done sequentlially by each system over each component. Additionally, using a library like SQLite, one could easily improve performance by storing the entity data exclusively in RAM to increase access speeds. Disregarding possible performance issues, using a SQL database, in my opinion, would allow for a very intuitive implementation of entity systems and bring a long certain other benefits like easy de/serialization of game states and consistency checks like the uniqueness of entity IDs. Edit for clarification: The main question was whether using a SQL database for the actual entity management (not just storing the game state on the disk) in a real-time game would still yield a framerate appropriate for a game or even if someone is aware of projects that demonstrate SQL in a video game.

    Read the article

  • Design pattern for an ASP.NET project using Entity Framework

    - by MPelletier
    I'm building a website in ASP.NET (Web Forms) on top of an engine with business rules (which basically resides in a separate DLL), connected to a database mapped with Entity Framework (in a 3rd, separate project). I designed the Engine first, which has an Entity Framework context, and then went on to work on the website, which presents various reports. I believe I made a terrible design mistake in that the website has its own context (which sounded normal at first). I present this mockup of the engine and a report page's code behind: Engine (in separate DLL): public Engine { DatabaseEntities _engineContext; public Engine() { // Connection string and procedure managed in DB layer _engineContext = DatabaseEntities.Connect(); } public ChangeSomeEntity(SomeEntity someEntity, int newValue) { //Suppose there's some validation too, non trivial stuff SomeEntity.Value = newValue; _engineContext.SaveChanges(); } } And report: public partial class MyReport : Page { Engine _engine; DatabaseEntities _webpageContext; public MyReport() { _engine = new Engine(); _databaseContext = DatabaseEntities.Connect(); } public void ChangeSomeEntityButton_Clicked(object sender, EventArgs e) { SomeEntity someEntity; //Wrong way: //Get the entity from the webpage context someEntity = _webpageContext.SomeEntities.Single(s => s.Id == SomeEntityId); //Send the entity from _webpageContext to the engine _engine.ChangeSomeEntity(someEntity, SomeEntityNewValue); // <- oops, conflict of context //Right(?) way: //Get the entity from the engine context someEntity = _engine.GetSomeEntity(SomeEntityId); //undefined above //Send the entity from the engine's context to the engine _engine.ChangeSomeEntity(someEntity, SomeEntityNewValue); // <- oops, conflict of context } } Because the webpage has its own context, giving the Engine an entity from a different context will cause an error. I happen to know not to do that, to only give the Engine entities from its own context. But this is a very error-prone design. I see the error of my ways now. I just don't know the right path. I'm considering: Creating the connection in the Engine and passing it off to the webpage. Always instantiate an Engine, make its context accessible from a property, sharing it. Possible problems: other conflicts? Slow? Concurrency issues if I want to expand to AJAX? Creating the connection from the webpage and passing it off to the Engine (I believe that's dependency injection?) Only talking through ID's. Creates redundancy, not always practical, sounds archaic. But at the same time, I already recuperate stuff from the page as ID's that I need to fetch anyways. What would be best compromise here for safety, ease-of-use and understanding, stability, and speed?

    Read the article

  • Using multiple diagrams per model in Entity Framework 5.0

    - by nikolaosk
    I have downloaded .Net framework 4.5 and Visual Studio 2012 since it was released to MSDN subscribers on the 15th of August.For people that do not know about that yet please have a look at Jason Zander's excellent blog post .Since then I have been investigating the many new features that have been introduced in this release.In this post I will be looking into theIn order to follow along this post you must have Visual Studio 2012 and .Net Framework 4.5 installed in your machine.Download and install VS 20120 using this link.My machine runs on Windows 8 and Visual Studio 2012 works just fine. I have also installed in my machine SQL Server 2012 developer edition. I have also downloaded and installed AdventureWorksLT2012 database.You can download this database from the codeplex website.   Before I start showcasing the demo I want to say that I strongly believe that Entity Framework is maturing really fast and now at version 5.0 can be used as your data access layer in all your .Net projects.I have posted extensively about Entity Framework in my blog.Please find all the EF related posts here. In this demo I will show you how to split an entity model into multiple diagrams using the new enhanced EF designer. We will not build an application in this demo.Sometimes our model can become too large to edit or view.In earlier versions we could only have one diagram per EDMX file.In EF 5.0 we can split the model into more diagrams.1) Launch VS 2012. Express edition will work fine.2) Create a New Project. From the available templates choose a Web Forms application  3) Add a new item in your project, an ADO.Net Entity Data Model. I have named it AdventureWorksLT.edmx.Then we will create the model from the database and click Next.Create a new connection by specifying the SQL Server instance and the database name and click OK.Then click Next in the wizard.In the next screen of the wizard select all the tables from the database and hit Finish.4) It will take a while for our .edmx diagram to be created. When I select an Entity (e.g Customer) from my diagram and right click on it,a new option appears "Move to new Diagram".Make sure you have the Model Browser window open.Have a look at the picture below 5) When we do that a new diagram is created and our new Entity is moved there.Have a look at the picture below  6) We can also right-click and include the related entities. Have a look at the picture below. 7) When we do that the related entities are copied to the new diagram.Have a look at the picture below  8) Now we can cut (CTRL+X) the entities from Diagram2 and paste them back to Diagram1.9) Finally another great enhancement of the EF 5.0 designer is that you can change colors in the various entities that make up the model.Select the entities you want to change color, then in the Properties window choose the color of your choice. Have a look at the picture below. To recap we have demonstrated how to split your entity model in multiple diagrams which comes handy in EF models that have a large number of entities in them Hope it helps!!!!

    Read the article

  • Implementing features in an Entity System

    - by Bane
    After asking two questions on Entity Systems (1, 2), and reading some articles on them, I think that I understand them much better than before. But, I still have some uncertainties, and mainly they are about building a Particle Emitter, an Input system, and a Camera. I obviously still have some problems understanding Entity Systems, and they might apply to a whole other range of objects, but I chose these three because they are very different concepts and should cover a pretty big ground, and help me understand Entity Systems and how to handle problems like these myself, as they come along. I am building an engine in Javascript, and I've implemented most of the core features, which include: input handling, flexible animation system, particle emitter, math classes and functions, scene handling, a camera and a render, and a whole bunch of other things that engines usually support. Then, I read Byte56's answer that got me interested into making the engine into an Entity System one. It would still remain an HTML5 game engine with the basic Scene philosophy, but it should support dynamic creation of entities from components. These are some of the definitions from the previous questions, updated: An Entity is an identifier. It doesn't have any data, it's not an object, it's a simple id that represents an index in the Scene's list of all entities (which I actually plan to implement as a component matrix). A Component is a data holder, but with methods that can operate on that data. The best example is a Vector2D, or a "Position" component. It has data: x and y, but also some methods that make operating on the data a bit easier: add(), normalize(), and so on. A System is something that can operate on a set of entities that meet the certain requirements, usually they (the entities) need to have a specified (by the system itself) set of components to be operated upon. The system is the "logic" part, the "algorithm" part, all the functionality supplied by components is purely for easier data management. The problem that I have now is fitting my old engine concept into this new programming paradigm. Lets start with the simplest one, a Camera. The camera has a position property (Vector2D), a rotation property and some methods for centering it around a point. Each frame, it is fed to a renderer, along with a scene, and all the objects are translated according to it's position. Then the scene is rendered. How could I represent this kind of an object in an Entity System? Would the camera be an entity or simply a component? A combination (see my answer)? Another issues that is bothering me is implementing a Particle Emitter. For what exactly I mean by that, you can check out my video of it: http://youtu.be/BObargIMQsE. The problem I have with this is, again, what should be what. I'm pretty sure that particles themselves shouldn't be entities, as I want to support 10k+ of them, and creating that much entities would be a heavy blow on my performance, I believe. Or maybe not? Depends on the implementation, but anyone with experience: please, do answer. The last bit I wan't to talk about, which is also bugging me the most, is how input should be handled. In my current version of the engine, there is a class called Input. It's a handler that subscribes to browser's events, such as keypresses, and mouse position changes, and also it maintains an internal state. Then, the player class has a react() method, which accepts an input object as an argument. The advantage of this is that the input object could be serialized into JSON and then shared over the network, allowing for smooth multiplayer simulations. But how does this translate into an Entity System?

    Read the article

  • Using Entity Framework Table splitting customisations in an ASP.Net application

    - by nikolaosk
    I have been teaching in the past few weeks many people on how to use Entity Framework. I have decided to provide some of the samples I am using in my classes. First let’s try to define what EF is and why it is going to help us to create easily data-centric applications.Entity Framework is an object-relational mapping (ORM) framework for the .NET Framework.EF addresses the problem of Object-relational impedance mismatch . I will not be talking about that mismatch because it is well documented in many...(read more)

    Read the article

  • Efficiently separating Read/Compute/Write steps for concurrent processing of entities in Entity/Component systems

    - by TravisG
    Setup I have an entity-component architecture where Entities can have a set of attributes (which are pure data with no behavior) and there exist systems that run the entity logic which act on that data. Essentially, in somewhat pseudo-code: Entity { id; map<id_type, Attribute> attributes; } System { update(); vector<Entity> entities; } A system that just moves along all entities at a constant rate might be MovementSystem extends System { update() { for each entity in entities position = entity.attributes["position"]; position += vec3(1,1,1); } } Essentially, I'm trying to parallelise update() as efficiently as possible. This can be done by running entire systems in parallel, or by giving each update() of one system a couple of components so different threads can execute the update of the same system, but for a different subset of entities registered with that system. Problem In reality, these systems sometimes require that entities interact(/read/write data from/to) each other, sometimes within the same system (e.g. an AI system that reads state from other entities surrounding the current processed entity), but sometimes between different systems that depend on each other (i.e. a movement system that requires data from a system that processes user input). Now, when trying to parallelize the update phases of entity/component systems, the phases in which data (components/attributes) from Entities are read and used to compute something, and the phase where the modified data is written back to entities need to be separated in order to avoid data races. Otherwise the only way (not taking into account just "critical section"ing everything) to avoid them is to serialize parts of the update process that depend on other parts. This seems ugly. To me it would seem more elegant to be able to (ideally) have all processing running in parallel, where a system may read data from all entities as it wishes, but doesn't write modifications to that data back until some later point. The fact that this is even possible is based on the assumption that modification write-backs are usually very small in complexity, and don't require much performance, whereas computations are very expensive (relatively). So the overhead added by a delayed-write phase might be evened out by more efficient updating of entities (by having threads work more % of the time instead of waiting). A concrete example of this might be a system that updates physics. The system needs to both read and write a lot of data to and from entities. Optimally, there would be a system in place where all available threads update a subset of all entities registered with the physics system. In the case of the physics system this isn't trivially possible because of race conditions. So without a workaround, we would have to find other systems to run in parallel (which don't modify the same data as the physics system), other wise the remaining threads are waiting and wasting time. However, that has disadvantages Practically, the L3 cache is pretty much always better utilized when updating a large system with multiple threads, as opposed to multiple systems at once, which all act on different sets of data. Finding and assembling other systems to run in parallel can be extremely time consuming to design well enough to optimize performance. Sometimes, it might even not be possible at all because a system just depends on data that is touched by all other systems. Solution? In my thinking, a possible solution would be a system where reading/updating and writing of data is separated, so that in one expensive phase, systems only read data and compute what they need to compute, and then in a separate, performance-wise cheap, write phase, attributes of entities that needed to be modified are finally written back to the entities. The Question How might such a system be implemented to achieve optimal performance, as well as making programmer life easier? What are the implementation details of such a system and what might have to be changed in the existing EC-architecture to accommodate this solution?

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1

    - by shiju
    In this post, I will demonstrate web application development using ASP. NET MVC 3, Razor and EF code First. This post will also cover Dependency Injection using Unity 2.0 and generic Repository and Unit of Work for EF Code First. The following frameworks will be used for this step by step tutorial. ASP.NET MVC 3 EF Code First CTP 5 Unity 2.0 Define Domain Model Let’s create domain model for our simple web application Category class public class Category {     public int CategoryId { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public virtual ICollection<Expense> Expenses { get; set; } }   Expense class public class Expense {             public int ExpenseId { get; set; }            public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }     public int CategoryId { get; set; }     public virtual Category Category { get; set; } } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. In this post, we will be focusing on CRUD operations for the entity Category and will be working on the Expense entity with a View Model object in the later post. And the source code for this application will be refactored over time. The above entities are very simple POCO (Plain Old CLR Object) classes and the entity Category is decorated with validation attributes in the System.ComponentModel.DataAnnotations namespace. Now we want to use these entities for defining model objects for the Entity Framework 4. Using the Code First approach of Entity Framework, we can first define the entities by simply writing POCO classes without any coupling with any API or database library. This approach lets you focus on domain model which will enable Domain-Driven Development for applications. EF code first support is currently enabled with a separate API that is runs on top of the Entity Framework 4. EF Code First is reached CTP 5 when I am writing this article. Creating Context Class for Entity Framework We have created our domain model and let’s create a class in order to working with Entity Framework Code First. For this, you have to download EF Code First CTP 5 and add reference to the assembly EntitFramework.dll. You can also use NuGet to download add reference to EEF Code First.    public class MyFinanceContext : DbContext {     public MyFinanceContext() : base("MyFinance") { }     public DbSet<Category> Categories { get; set; }     public DbSet<Expense> Expenses { get; set; }         }   The above class MyFinanceContext is derived from DbContext that can connect your model classes to a database. The MyFinanceContext class is mapping our Category and Expense class into database tables Categories and Expenses using DbSet<TEntity> where TEntity is any POCO class. When we are running the application at first time, it will automatically create the database. EF code-first look for a connection string in web.config or app.config that has the same name as the dbcontext class. If it is not find any connection string with the convention, it will automatically create database in local SQL Express database by default and the name of the database will be same name as the dbcontext class. You can also define the name of database in constructor of the the dbcontext class. Unlike NHibernate, we don’t have to use any XML based mapping files or Fluent interface for mapping between our model and database. The model classes of Code First are working on the basis of conventions and we can also use a fluent API to refine our model. The convention for primary key is ‘Id’ or ‘<class name>Id’.  If primary key properties are detected with type ‘int’, ‘long’ or ‘short’, they will automatically registered as identity columns in the database by default. Primary key detection is not case sensitive. We can define our model classes with validation attributes in the System.ComponentModel.DataAnnotations namespace and it automatically enforces validation rules when a model object is updated or saved. Generic Repository for EF Code First We have created model classes and dbcontext class. Now we have to create generic repository pattern for data persistence with EF code first. If you don’t know about the repository pattern, checkout Martin Fowler’s article on Repository Let’s create a generic repository to working with DbContext and DbSet generics. public interface IRepository<T> where T : class     {         void Add(T entity);         void Delete(T entity);         T GetById(long Id);         IEnumerable<T> All();     }   RepositoryBasse – Generic Repository class public abstract class RepositoryBase<T> where T : class { private MyFinanceContext database; private readonly IDbSet<T> dbset; protected RepositoryBase(IDatabaseFactory databaseFactory) {     DatabaseFactory = databaseFactory;     dbset = Database.Set<T>(); }   protected IDatabaseFactory DatabaseFactory {     get; private set; }   protected MyFinanceContext Database {     get { return database ?? (database = DatabaseFactory.Get()); } } public virtual void Add(T entity) {     dbset.Add(entity);            }        public virtual void Delete(T entity) {     dbset.Remove(entity); }   public virtual T GetById(long id) {     return dbset.Find(id); }   public virtual IEnumerable<T> All() {     return dbset.ToList(); } }   DatabaseFactory class public class DatabaseFactory : Disposable, IDatabaseFactory {     private MyFinanceContext database;     public MyFinanceContext Get()     {         return database ?? (database = new MyFinanceContext());     }     protected override void DisposeCore()     {         if (database != null)             database.Dispose();     } } Unit of Work If you are new to Unit of Work pattern, checkout Fowler’s article on Unit of Work . According to Martin Fowler, the Unit of Work pattern "maintains a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems." Let’s create a class for handling Unit of Work   public interface IUnitOfWork {     void Commit(); }   UniOfWork class public class UnitOfWork : IUnitOfWork {     private readonly IDatabaseFactory databaseFactory;     private MyFinanceContext dataContext;       public UnitOfWork(IDatabaseFactory databaseFactory)     {         this.databaseFactory = databaseFactory;     }       protected MyFinanceContext DataContext     {         get { return dataContext ?? (dataContext = databaseFactory.Get()); }     }       public void Commit()     {         DataContext.Commit();     } }   The Commit method of the UnitOfWork will call the commit method of MyFinanceContext class and it will execute the SaveChanges method of DbContext class.   Repository class for Category In this post, we will be focusing on the persistence against Category entity and will working on other entities in later post. Let’s create a repository for handling CRUD operations for Category using derive from a generic Repository RepositoryBase<T>.   public class CategoryRepository: RepositoryBase<Category>, ICategoryRepository     {     public CategoryRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface ICategoryRepository : IRepository<Category> { } If we need additional methods than generic repository for the Category, we can define in the CategoryRepository. Dependency Injection using Unity 2.0 If you are new to Inversion of Control/ Dependency Injection or Unity, please have a look on my articles at http://weblogs.asp.net/shijuvarghese/archive/tags/IoC/default.aspx. I want to create a custom lifetime manager for Unity to store container in the current HttpContext.   public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName] = newValue;     }     public void Dispose()     {         RemoveValue();     } }   Let’s create controller factory for Unity in the ASP.NET MVC 3 application. public class UnityControllerFactory : DefaultControllerFactory { IUnityContainer container; public UnityControllerFactory(IUnityContainer container) {     this.container = container; } protected override IController GetControllerInstance(RequestContext reqContext, Type controllerType) {     IController controller;     if (controllerType == null)         throw new HttpException(                 404, String.Format(                     "The controller for path '{0}' could not be found" +     "or it does not implement IController.",                 reqContext.HttpContext.Request.Path));       if (!typeof(IController).IsAssignableFrom(controllerType))         throw new ArgumentException(                 string.Format(                     "Type requested is not a controller: {0}",                     controllerType.Name),                     "controllerType");     try     {         controller= container.Resolve(controllerType) as IController;     }     catch (Exception ex)     {         throw new InvalidOperationException(String.Format(                                 "Error resolving controller {0}",                                 controllerType.Name), ex);     }     return controller; }   }   Configure contract and concrete types in Unity Let’s configure our contract and concrete types in Unity for resolving our dependencies.   private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()                 .RegisterType<IDatabaseFactory, DatabaseFactory>(new HttpContextLifetimeManager<IDatabaseFactory>())     .RegisterType<IUnitOfWork, UnitOfWork>(new HttpContextLifetimeManager<IUnitOfWork>())     .RegisterType<ICategoryRepository, CategoryRepository>(new HttpContextLifetimeManager<ICategoryRepository>());                 //Set container for Controller Factory                ControllerBuilder.Current.SetControllerFactory(             new UnityControllerFactory(container)); }   In the above ConfigureUnity method, we are registering our types onto Unity container with custom lifetime manager HttpContextLifetimeManager. Let’s call ConfigureUnity method in the Global.asax.cs for set controller factory for Unity and configuring the types with Unity.   protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     ConfigureUnity(); }   Developing web application using ASP.NET MVC 3 We have created our domain model for our web application and also have created repositories and configured dependencies with Unity container. Now we have to create controller classes and views for doing CRUD operations against the Category entity. Let’s create controller class for Category Category Controller   public class CategoryController : Controller {     private readonly ICategoryRepository categoryRepository;     private readonly IUnitOfWork unitOfWork;           public CategoryController(ICategoryRepository categoryRepository, IUnitOfWork unitOfWork)     {         this.categoryRepository = categoryRepository;         this.unitOfWork = unitOfWork;     }       public ActionResult Index()     {         var categories = categoryRepository.All();         return View(categories);     }     [HttpGet]     public ActionResult Edit(int id)     {         var category = categoryRepository.GetById(id);         return View(category);     }       [HttpPost]     public ActionResult Edit(int id, FormCollection collection)     {         var category = categoryRepository.GetById(id);         if (TryUpdateModel(category))         {             unitOfWork.Commit();             return RedirectToAction("Index");         }         else return View(category);                 }       [HttpGet]     public ActionResult Create()     {         var category = new Category();         return View(category);     }           [HttpPost]     public ActionResult Create(Category category)     {         if (!ModelState.IsValid)         {             return View("Create", category);         }                     categoryRepository.Add(category);         unitOfWork.Commit();         return RedirectToAction("Index");     }       [HttpPost]     public ActionResult Delete(int  id)     {         var category = categoryRepository.GetById(id);         categoryRepository.Delete(category);         unitOfWork.Commit();         var categories = categoryRepository.All();         return PartialView("CategoryList", categories);       }        }   Creating Views in Razor Now we are going to create views in Razor for our ASP.NET MVC 3 application.  Let’s create a partial view CategoryList.cshtml for listing category information and providing link for Edit and Delete operations. CategoryList.cshtml @using MyFinance.Helpers; @using MyFinance.Domain; @model IEnumerable<Category>      <table>         <tr>         <th>Actions</th>         <th>Name</th>          <th>Description</th>         </tr>     @foreach (var item in Model) {             <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.CategoryId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.CategoryId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divCategoryList" })                           </td>             <td>                 @item.Name             </td>             <td>                 @item.Description             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New", "Create")     </p> The delete link is providing Ajax functionality using the Ajax.ActionLink. This will call an Ajax request for Delete action method in the CategoryCotroller class. In the Delete action method, it will return Partial View CategoryList after deleting the record. We are using CategoryList view for the Ajax functionality and also for Index view using for displaying list of category information. Let’s create Index view using partial view CategoryList  Index.chtml @model IEnumerable<MyFinance.Domain.Category> @{     ViewBag.Title = "Index"; }    <h2>Category List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script>    <div id="divCategoryList">               @Html.Partial("CategoryList", Model) </div>   We can call the partial views using Html.Partial helper method. Now we are going to create View pages for insert and update functionality for the Category. Both view pages are sharing common user interface for entering the category information. So I want to create an EditorTemplate for the Category information. We have to create the EditorTemplate with the same name of entity object so that we can refer it on view pages using @Html.EditorFor(model => model) . So let’s create template with name Category. Let’s create view page for insert Category information   @model MyFinance.Domain.Category   @{     ViewBag.Title = "Save"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) {     @Html.ValidationSummary(true)     <fieldset>         <legend>Category</legend>                @Html.EditorFor(model => model)               <p>             <input type="submit" value="Create" />         </p>     </fieldset> }   <div>     @Html.ActionLink("Back to List", "Index") </div> ViewStart file In Razor views, we can add a file named _viewstart.cshtml in the views directory  and this will be shared among the all views with in the Views directory. The below code in the _viewstart.cshtml, sets the Layout page for every Views in the Views folder.      @{     Layout = "~/Views/Shared/_Layout.cshtml"; }   Source Code You can download the source code from http://efmvc.codeplex.com/ . The source will be refactored on over time.   Summary In this post, we have created a simple web application using ASP.NET MVC 3 and EF Code First. We have discussed on technologies and practices such as ASP.NET MVC 3, Razor, EF Code First, Unity 2, generic Repository and Unit of Work. In my later posts, I will modify the application and will be discussed on more things. Stay tuned to my blog  for more posts on step by step application building.

    Read the article

  • Generically correcting data before save with Entity Framework

    - by koevoeter
    Been working with Entity Framework (.NET 4.0) for a week now for a data migration job and needed some code that generically corrects string values in the database. You probably also have seen things like empty strings instead of NULL or non-trimmed texts ("United States       ") in "old" databases, and you don't want to apply a correcting function on every column you migrate. Here's how I've done this (extending the partial class of my ObjectContext):public partial class MyDatacontext{    partial void OnContextCreated()    {        SavingChanges += OnSavingChanges;    }     private void OnSavingChanges(object sender, EventArgs e)    {        foreach (var entity in GetPersistingEntities(sender))        {            foreach (var propertyInfo in GetStringProperties(entity))            {                var value = (string)propertyInfo.GetValue(entity, null);                 if (value == null)                {                    continue;                }                 if (value.Trim().Length == 0 && IsNullable(propertyInfo))                {                    propertyInfo.SetValue(entity, null, null);                }                else if (value != value.Trim())                {                    propertyInfo.SetValue(entity, value.Trim(), null);                }            }        }    }     private IEnumerable<object> GetPersistingEntities(object sender)    {        return ((ObjectContext)sender).ObjectStateManager            .GetObjectStateEntries(EntityState.Added | EntityState.Modified)             .Select(e => e.Entity);    }    private IEnumerable<PropertyInfo> GetStringProperties(object entity)    {        return entity.GetType().GetProperties()            .Where(pi => pi.PropertyType == typeof(string));    }    private bool IsNullable(PropertyInfo propertyInfo)    {        return ((EdmScalarPropertyAttribute)propertyInfo             .GetCustomAttributes(typeof(EdmScalarPropertyAttribute), false)            .Single()).IsNullable;    }}   Obviously you can use similar code for other generic corrections.

    Read the article

  • Entity Framework 4 CTP 5 POCO - Many-to-many configuration, insertion, and update?

    - by Saxman
    I really need someone to help me to fully understand how to do many-to-many relationship with Entity Framework 4 CTP 5, POCO. I need to understand 3 concepts: How to config my model to indicates some tables are many-to-many. How to properly do insert. How to properly do update. Here are my current models: public class MusicSheet { [Key] public int ID { get; set; } public string Title { get; set; } public string Key { get; set; } public virtual ICollection<Author> Authors { get; set; } public virtual ICollection<Tag> Tags { get; set; } } public class Author { [Key] public int ID { get; set; } public string Name { get; set; } public string Bio { get; set; } public virtual ICollection<MusicSheet> MusicSheets { get; set; } } public class Tag { [Key] public int ID { get; set; } public string TagName { get; set; } public virtual ICollection<MusicSheet> MusicSheets { get; set; } } As you can see, the MusicSheet can have many Authors or Tags, and an Author or Tag can have multiple MusicSheets. Again, my questions are: What to do on the EntityTypeConfiguration to set the relationship between them as well as mapping to an table/object that associates with the many-to-many relationship. How to insert a new music sheets (where it might have multiple authors or multiple tags). How to update a music sheet. For example, I might set TagA, TagB to MusicSheet1, but later I need to change the tags to TagA and TagC. It seems like I need to first check to see if the tags already exists, if not, insert the new tag and then associate it with the music sheet (so that I doesn't re-insert TagA?). Or this is something already handled by the framework? Thank you very much. I really hope to fully understand it rather than just doing it without fully understand what's going on. Especially on #3.

    Read the article

  • Whitepaper list for the application framework

    - by Rick Finley
    We're reposting the list of technical whitepapers for the Oracle ETPM framework (called OUAF, Oracle Utilities Application Framework).  These are are available from My Oracle Support at the Doc Id's mentioned below. Some have been updated in the last few months to reflect new advice and new features.  This is reposted from the OUAF blog:  http://blogs.oracle.com/theshortenspot/entry/whitepaper_list_as_at_november Doc Id Document Title Contents 559880.1 ConfigLab Design Guidelines This whitepaper outlines how to design and implement a data management solution using the ConfigLab facility. This whitepaper currently only applies to the following products: Oracle Utilities Customer Care And Billing Oracle Enterprise Taxation Management Oracle Enterprise Taxation and Policy Management           560367.1 Technical Best Practices for Oracle Utilities Application Framework Based Products Whitepaper summarizing common technical best practices used by partners, implementation teams and customers. 560382.1 Performance Troubleshooting Guideline Series A set of whitepapers on tracking performance at each tier in the framework. The individual whitepapers are as follows: Concepts - General Concepts and Performance Troublehooting processes Client Troubleshooting - General troubleshooting of the browser client with common issues and resolutions. Network Troubleshooting - General troubleshooting of the network with common issues and resolutions. Web Application Server Troubleshooting - General troubleshooting of the Web Application Server with common issues and resolutions. Server Troubleshooting - General troubleshooting of the Operating system with common issues and resolutions. Database Troubleshooting - General troubleshooting of the database with common issues and resolutions. Batch Troubleshooting - General troubleshooting of the background processing component of the product with common issues and resolutions. 560401.1 Software Configuration Management Series  A set of whitepapers on how to manage customization (code and data) using the tools provided with the framework. The individual whitepapers are as follows: Concepts - General concepts and introduction. Environment Management - Principles and techniques for creating and managing environments. Version Management - Integration of Version control and version management of configuration items. Release Management - Packaging configuration items into a release. Distribution - Distribution and installation of releases across environments Change Management - Generic change management processes for product implementations. Status Accounting - Status reporting techniques using product facilities. Defect Management - Generic defect management processes for product implementations. Implementing Single Fixes - Discussion on the single fix architecture and how to use it in an implementation. Implementing Service Packs - Discussion on the service packs and how to use them in an implementation. Implementing Upgrades - Discussion on the the upgrade process and common techniques for minimizing the impact of upgrades. 773473.1 Oracle Utilities Application Framework Security Overview A whitepaper summarizing the security facilities in the framework. Now includes references to other Oracle security products supported. 774783.1 LDAP Integration for Oracle Utilities Application Framework based products Updated! A generic whitepaper summarizing how to integrate an external LDAP based security repository with the framework. 789060.1 Oracle Utilities Application Framework Integration Overview A whitepaper summarizing all the various common integration techniques used with the product (with case studies). 799912.1 Single Sign On Integration for Oracle Utilities Application Framework based products A whitepaper outlining a generic process for integrating an SSO product with the framework. 807068.1 Oracle Utilities Application Framework Architecture Guidelines This whitepaper outlines the different variations of architecture that can be considered. Each variation will include advice on configuration and other considerations. 836362.1 Batch Best Practices for Oracle Utilities Application Framework based products This whitepaper outlines the common and best practices implemented by sites all over the world. 856854.1 Technical Best Practices V1 Addendum Addendum to Technical Best Practices for Oracle Utilities Customer Care And Billing V1.x only. 942074.1 XAI Best Practices This whitepaper outlines the common integration tasks and best practices for the Web Services Integration provided by the Oracle Utilities Application Framework. 970785.1 Oracle Identity Manager Integration Overview This whitepaper outlines the principals of the prebuilt intergration between Oracle Utilities Application Framework Based Products and Oracle Identity Manager used to provision user and user group security information. For Fw4.x customers use whitepaper 1375600.1 instead. 1068958.1 Production Environment Configuration Guidelines A whitepaper outlining common production level settings for the products based upon benchmarks and customer feedback. 1177265.1 What's New In Oracle Utilities Application Framework V4? Whitepaper outlining the major changes to the framework since Oracle Utilities Application Framework V2.2. 1290700.1 Database Vault Integration Whitepaper outlining the Database Vault Integration solution provided with Oracle Utilities Application Framework V4.1.0 and above. 1299732.1 BI Publisher Guidelines for Oracle Utilities Application Framework Whitepaper outlining the interface between BI Publisher and the Oracle Utilities Application Framework 1308161.1 Oracle SOA Suite Integration with Oracle Utilities Application Framework based products This whitepaper outlines common design patterns and guidelines for using Oracle SOA Suite with Oracle Utilities Application Framework based products. 1308165.1 MPL Best Practices Oracle Utilities Application Framework This is a guidelines whitepaper for products shipping with the Multi-Purpose Listener. This whitepaper currently only applies to the following products: Oracle Utilities Customer Care And Billing Oracle Enterprise Taxation Management Oracle Enterprise Taxation and Policy Management 1308181.1 Oracle WebLogic JMS Integration with the Oracle Utilities Application Framework This whitepaper covers the native integration between Oracle WebLogic JMS with Oracle Utilities Application Framework using the new Message Driven Bean functionality and real time JMS adapters. 1334558.1 Oracle WebLogic Clustering for Oracle Utilities Application Framework New! This whitepaper covers process for implementing clustering using Oracle WebLogic for Oracle Utilities Application Framework based products. 1359369.1 IBM WebSphere Clustering for Oracle Utilities Application Framework New! This whitepaper covers process for implementing clustering using IBM WebSphere for Oracle Utilities Application Framework based products 1375600.1 Oracle Identity Management Suite Integration with the Oracle Utilities Application Framework New! This whitepaper covers the integration between Oracle Utilities Application Framework and Oracle Identity Management Suite components such as Oracle Identity Manager, Oracle Access Manager, Oracle Adaptive Access Manager, Oracle Internet Directory and Oracle Virtual Directory. 1375615.1 Advanced Security for the Oracle Utilities Application Framework New! This whitepaper covers common security requirements and how to meet those requirements using Oracle Utilities Application Framework native security facilities, security provided with the J2EE Web Application and/or facilities available in Oracle Identity Management Suite.

    Read the article

  • Writing/discussions about the aesthetics of code?

    - by dilettante.coder
    I'm looking for considerations of the questions "Can code be beautiful?" and "What makes code beautiful?" Examples would include: This academic paper: Obfuscation, Weird Languages, and Code Aesthetics This blog post: Hamon or the Skin Deep Beauty of Code Please note that I'm not trying to start a discussion here, or asking for opinions about what makes code beautiful, or for code you think is beautiful; I'm trying to find stuff that has already been published. Thanks for your help.

    Read the article

  • Weekend Entity Framework Class in Dallas...

    - by [email protected]
    Zeeshan Nirani, MVP in the Data Programability Group, co-author of the upcoming Entity Framework Recipies book, is teaching a 6 week class on Entity Framework 4.0 at Collin Community College, beginning May 22nd. The class will meet each Saturday morning from 9 am to 1. There is probably nobody in the Metroplex area that knows the Entity Framework as initimately as Zeeshan. Go and sign-up for this course NOW and consider yourself lucky to have the opportunity to attend. You WILL learn the Entity Framework which will be CRITICAL to your success in Microsoft development, as MSFT has made this framework one of their core pieces moving forward.   Contact Zeeshan at [email protected] for more details.      

    Read the article

  • Entity Framework v1 &hellip; Brief Synopsis and Tips &ndash; Part 2

    - by Rohit Gupta
    Using Entity Framework with ASMX Web sErvices and WCF Web Service: If you use ASMX WebService to expose Entity objects from Entity Framework... then the ASMX Webservice does not  include object graphs, one work around is to use Facade pattern or to use WCF Service. The other important aspect of using ASMX Web Services along with Entity Framework is that the ASMX Client is not aware of the existence of EF v1 since the client solely deals with C# objects (not EntityObjects or ObjectContext). Since the client is not aware of the ObjectContext hence the client cannot participate in change tracking since the client only receives the Current Values and not the Orginal values when the service sends the the Entity objects to the client. Thus there are 2 drawbacks to using EntityFramework with ASMX Web Service: 1. Object state is not maintained... so to overcome this limitation we need insert/update single entity at a time and retrieve the original values for the entity being updated on the server/service end before calling Save Changes. 2. ASMX does not maintain object graphs... i.e. Customer.Reservations or Customer.Reservations.Trip relationships are not maintained. Thus you need to send these relationships separately from service to client. WCF Web Service overcomes the object graph limitation of ASMX Web Service, but we need to insure that we are populating all the non-null scalar properties of all the objects in the object graph before calling Update. WCF Web service still cannot overcome the second limitation of tracking changes to entities at the client end. Also note that the "Customer" class in the Client is very different from the "Customer" class in the Entity Framework Model Entities. They are incompatible with each other hence we cannot cast one to the other. However the .NET Framework translates the client "Customer" Entity to the EFv1 Model "customer" Entity once the entity is serialzed back on the ASMX server end. If you need change tracking enabled on the client then we need to use WCF Data Services which is available with VS 2010. ====================================================================================================== In WCF when adding an object that has relationships, the framework assumes that every object in the object graph needs to be added to store. for e.g. in a Customer.Reservations.Trip object graph, when a Customer Entity is added to the store, the EFv1 assumes that it needs to a add a Reservations collection and also Trips for each Reservation. Thus if we need to use existing Trips for reservations then we need to insure that we null out the Trip object reference from Reservations and set the TripReference to the EntityKey of the desired Trip instead. ====================================================================================================== Understanding Relationships and Associations in EFv1 The Golden Rule of EF is that it does not load entities/relationships unless you ask it to explicitly do so. However there is 1 exception to this rule. This exception happens when you attach/detach entities from the ObjectContext. If you detach an Entity in a ObjectGraph from the ObjectContext, then the ObjectContext removes the ObjectStateEntry for this Entity and all the relationship Objects associated with this Entity. For e.g. in a Customer.Order.OrderDetails if the Customer Entity is detached from the ObjectContext then you cannot traverse to the Order and OrderDetails Entities (that still exist in the ObjectContext) from the Customer Entity(which does not exist in the Object Context) Conversely, if you JOIN a entity that is not in the ObjectContext with a Entity that is in the ObjContext then the First Entity will automatically be added to the ObjContext since relationships for the 2 Entities need to exist in the ObjContext. ========================================================= You cannot attach an EntityCollection to an entity through its navigation property for e.g. you cannot code myContact.Addresses = myAddressEntityCollection ========================================================== Cascade Deletes in EDM: The Designer does not support specifying cascase deletes for a Entity. To enable cascasde deletes on a Entity in EDM use the Association definition in CSDL for the Entity. for e.g. SalesOrderDetail (SOD) has a Foreign Key relationship with SalesOrderHeader (SalesOrderHeader 1 : SalesOrderDetail *) if you specify a cascade Delete on SalesOrderHeader Entity then calling deleteObject on SalesOrderHeader (SOH) Entity will send delete commands for SOH record and all the SOD records that reference the SOH record. ========================================================== As a good design practise, if you use Cascade Deletes insure that Cascade delete facet is used both in the EDM as well as in the database. Even though it is not absolutely mandatory to have Cascade deletes on both Database and EDM (since you can see that just the Cascade delete spec on the SOH Entity in EDM will insure that SOH record and all related SOD records will be deleted from the database ... even though you dont have cascade delete configured in the database in the SOD table) ============================================================== Maintaining relationships in Code When Setting a Navigation property of a Entity (for e.g. setting the Contact Navigation property of Address Entity) the following rules apply : If both objects are detached, no relationship object will be created. You are simply setting a property the CLR way. If both objects are attached, a relationship object will be created. If only one of the objects is attached, the other will become attached and a relationship object will be created. If that detached object is new, when it is attached to the context its EntityState will be Added. One important rule to remember regarding synchronizing the EntityReference.Value and EntityReference.EntityKey properties is that when attaching an Entity which has a EntityReference (e.g. Address Entity with ContactReference) the Value property will take precedence and if the Value and EntityKey are out of sync, the EntityKey will be updated to match the Value. ====================================================== If you call .Load() method on a detached Entity then the .Load() operation will throw an exception. There is one exception to this rule. If you load entities using MergeOption.NoTracking, you will be able to call .Load() on such entities since these Entities are accessible by the ObjectContext. So the bottomline is that we need Objectontext to be able to call .Load() method to do deffered loading on EntityReference or EntityCollection. Another rule to remember is that you cannot call .Load() on entities that have a EntityState.Added State since the ObjectContext uses the EntityKey of the Primary (Parent) Entity when loading the related (Child) Entity (and not the EntityKey of the child (even if the EntityKey of the child is present before calling .Load()) ====================================================== You can use ObjContext.Add() to add a entity to the ObjContext and set the EntityState of the new Entity to EntityState.Added. here no relationships are added/updated. You can also use EntityCollection.Add() method to add an entity to another entity's related EntityCollection for e.g. contact has a Addresses EntityCollection so to add a new address use contact.Addresses.Add(newAddress) to add a new address to the Addresses EntityCollection. Note that if the entity does not already exist in the ObjectContext then calling contact.Addresses.Add(myAddress) will cause a new Address Entity to be added to the ObjContext with EntityState.Added and it will also add a RelationshipEntry (a relationship object) with EntityState.Added which connects the Contact (contact) with the new address newAddress. Note that if the entity already exists in the Objectcontext (being part theOtherContact.Addresses Collection), then calling contact.Addresses.Add(existingAddress) will add 2 RelationshipEntry objects to the ObjectStateEntry Collection, one with EntityState.Deleted and the other with EntityState.Added. This implies that the existingAddress Entity is removed from the theOtherContact.Addresses Collection and Added to the contact.Addresses Collection..effectively reassigning the address entity from the theOtherContact to "contact". This is called moving an existing entity to a new object graph. ====================================================== You usually use ObjectContext.Attach() and EntityCollection.Attach() methods usually when you need to reconstruct the ObjectGraph after deserializing the objects as received from a ASMX Web Service Client. Attach is usually used to connect existing Entities in the ObjectContext. When EntityCollection.Attach() is called the EntityState of the RelationshipEntry (the relationship object) remains as EntityState.unchanged whereas when EntityCollection.Add() method is called the EntityState of the relationship object changes to EntityState.Added or EntityState.Deleted as the situation demands. ========================================================= LINQ To Entities Tips: Select Many does Inner Join by default.   for e.g. from c in Contact from a in c.Address select c ... this will do a Inner Join between the Contacts and Addresses Table and return only those Contacts that have a Address. ======================================================== Group Joins Do LEFT Join by default. e.g. from a in Address join c in Contact ON a.Contact.ContactID == c.ContactID Into g WHERE a.CountryRegion == "US" select g; This query will do a left join on the Contact table and return contacts that have a address in "US" region The following query : from c in Contact join a in Address.Where(a1 => a1.CountryRegion == "US") on c.ContactID  equals a.Contact.ContactID into addresses select new {c, addresses} will do a left join on the Address table and return All Contacts. In these Contacts only those will have its Address EntityCollection Populated which have a Address in the "US" region, the other contacts will have 0 Addresses in the Address collection (even if addresses for those contacts exist in the database but are in a different region) ======================================================== Linq to Entities does not support DefaultIfEmpty().... instead use .Include("Address") Query Builder method to do a Left JOIN or use Group Joins if you need more control like Filtering on the Address EntityCollection of Contact Entity =================================================================== Use CreateSourceQuery() on the EntityReference or EntityCollection if you need to add filters during deferred loading of Entities (Deferred loading in EFv1 happens when you call Load() method on the EntityReference or EntityCollection. for e.g. var cust=context.Contacts.OfType<Customer>().First(); var sq = cust.Reservations.CreateSourceQuery().Where(r => r.ReservationDate > new DateTime(2008,1,1)); cust.Reservations.Attach(sq); This populates only those reservations that are older than Jan 1 2008. This is the only way (in EFv1) to Attach a Range of Entities to a EntityCollection using the Attach() method ================================================================== If you need to get the Foreign Key value for a entity e.g. to get the ContactID value from a Address Entity use this :                                address.ContactReference.EntityKey.EntityKeyValues.Where(k=> k.Key == "ContactID")

    Read the article

  • LLBLGen Pro feature highlights: grouping model elements

    - by FransBouma
    (This post is part of a series of posts about features of the LLBLGen Pro system) When working with an entity model which has more than a few entities, it's often convenient to be able to group entities together if they belong to a semantic sub-model. For example, if your entity model has several entities which are about 'security', it would be practical to group them together under the 'security' moniker. This way, you could easily find them back, yet they can be left inside the complete entity model altogether so their relationships with entities outside the group are kept. In other situations your domain consists of semi-separate entity models which all target tables/views which are located in the same database. It then might be convenient to have a single project to manage the complete target database, yet have the entity models separate of each other and have them result in separate code bases. LLBLGen Pro can do both for you. This blog post will illustrate both situations. The feature is called group usage and is controllable through the project settings. This setting is supported on all supported O/R mapper frameworks. Situation one: grouping entities in a single model. This situation is common for entity models which are dense, so many relationships exist between all sub-models: you can't split them up easily into separate models (nor do you likely want to), however it's convenient to have them grouped together into groups inside the entity model at the project level. A typical example for this is the AdventureWorks example database for SQL Server. This database, which is a single catalog, has for each sub-group a schema, however most of these schemas are tightly connected with each other: adding all schemas together will give a model with entities which indirectly are related to all other entities. LLBLGen Pro's default setting for group usage is AsVisualGroupingMechanism which is what this situation is all about: we group the elements for visual purposes, it has no real meaning for the model nor the code generated. Let's reverse engineer AdventureWorks to an entity model. By default, LLBLGen Pro uses the target schema an element is in which is being reverse engineered, as the group it will be in. This is convenient if you already have categorized tables/views in schemas, like which is the case in AdventureWorks. Of course this can be switched off, or corrected on the fly. When reverse engineering, we'll walk through a wizard which will guide us with the selection of the elements which relational model data should be retrieved, which we can later on use to reverse engineer to an entity model. The first step after specifying which database server connect to is to select these elements. below we can see the AdventureWorks catalog as well as the different schemas it contains. We'll include all of them. After the wizard completes, we have all relational model data nicely in our catalog data, with schemas. So let's reverse engineer entities from the tables in these schemas. We select in the catalog explorer the schemas 'HumanResources', 'Person', 'Production', 'Purchasing' and 'Sales', then right-click one of them and from the context menu, we select Reverse engineer Tables to Entity Definitions.... This will bring up the dialog below. We check all checkboxes in one go by checking the checkbox at the top to mark them all to be added to the project. As you can see LLBLGen Pro has already filled in the group name based on the schema name, as this is the default and we didn't change the setting. If you want, you can select multiple rows at once and set the group name to something else using the controls on the dialog. We're fine with the group names chosen so we'll simply click Add to Project. This gives the following result:   (I collapsed the other groups to keep the picture small ;)). As you can see, the entities are now grouped. Just to see how dense this model is, I've expanded the relationships of Employee: As you can see, it has relationships with entities from three other groups than HumanResources. It's not doable to cut up this project into sub-models without duplicating the Employee entity in all those groups, so this model is better suited to be used as a single model resulting in a single code base, however it benefits greatly from having its entities grouped into separate groups at the project level, to make work done on the model easier. Now let's look at another situation, namely where we work with a single database while we want to have multiple models and for each model a separate code base. Situation two: grouping entities in separate models within the same project. To get rid of the entities to see the second situation in action, simply undo the reverse engineering action in the project. We still have the AdventureWorks relational model data in the catalog. To switch LLBLGen Pro to see each group in the project as a separate project, open the Project Settings, navigate to General and set Group usage to AsSeparateProjects. In the catalog explorer, select Person and Production, right-click them and select again Reverse engineer Tables to Entities.... Again check the checkbox at the top to mark all entities to be added and click Add to Project. We get two groups, as expected, however this time the groups are seen as separate projects. This means that the validation logic inside LLBLGen Pro will see it as an error if there's e.g. a relationship or an inheritance edge linking two groups together, as that would lead to a cyclic reference in the code bases. To see this variant of the grouping feature, seeing the groups as separate projects, in action, we'll generate code from the project with the two groups we just created: select from the main menu: Project -> Generate Source-code... (or press F7 ;)). In the dialog popping up, select the target .NET framework you want to use, the template preset, fill in a destination folder and click Start Generator (normal). This will start the code generator process. As expected the code generator has simply generated two code bases, one for Person and one for Production: The group name is used inside the namespace for the different elements. This allows you to add both code bases to a single solution and use them together in a different project without problems. Below is a snippet from the code file of a generated entity class. //... using System.Xml.Serialization; using AdventureWorks.Person; using AdventureWorks.Person.HelperClasses; using AdventureWorks.Person.FactoryClasses; using AdventureWorks.Person.RelationClasses; using SD.LLBLGen.Pro.ORMSupportClasses; namespace AdventureWorks.Person.EntityClasses { //... /// <summary>Entity class which represents the entity 'Address'.<br/><br/></summary> [Serializable] public partial class AddressEntity : CommonEntityBase //... The advantage of this is that you can have two code bases and work with them separately, yet have a single target database and maintain everything in a single location. If you decide to move to a single code base, you can do so with a change of one setting. It's also useful if you want to keep the groups as separate models (and code bases) yet want to add relationships to elements from another group using a copy of the entity: you can simply reverse engineer the target table to a new entity into a different group, effectively making a copy of the entity. As there's a single target database, changes made to that database are reflected in both models which makes maintenance easier than when you'd have a separate project for each group, with its own relational model data. Conclusion LLBLGen Pro offers a flexible way to work with entities in sub-models and control how the sub-models end up in the generated code.

    Read the article

  • Entity Framework 4 Entity with EntityState of Unchanged firing update

    - by Andy
    I am using EF 4, mapping all CUD operations for my entities using sprocs. I have two tables, ADDRESS and PERSON. A PERSON can have multiple ADDRESS associated with them. Here is the code I am running: Person person = (from p in context.People where p.PersonUID == 1 select p).FirstOrDefault(); Address address = (from a in context.Addresses where a.AddressUID == 51 select a).FirstOrDefault(); address.AddressLn2 = "Test"; context.SaveChanges(); The Address being updated is associated with the Person I am retrieveing - although they are not explicitly linked in any way in the code. When the context.SaveChanges() executes not only does the Update sproc for my Address entity get fired (like you would expect), but so does the Update sproc for the Person entity - even though you can see there was no change made to the Person entity. When I check the EntityState of both objects before the context.SaveChanges() call I see that my Address entity has an EntityState of "Modified" and my Person enity has an EntityState of "Unchanged". Why is the Update sproc being called for the Person entity? Is there a setting of some sort that I can set to prevent this from happening?

    Read the article

  • Looking into Entity Framework Code First Migrations

    - by nikolaosk
    In this post I will introduce you to Code First Migrations, an Entity Framework feature introduced in version 4.3 back in February of 2012.I have extensively covered Entity Framework in this blog. Please find my other Entity Framework posts here .   Before the addition of Code First Migrations (4.1,4.2 versions), Code First database initialisation meant that Code First would create the database if it does not exist (the default behaviour - CreateDatabaseIfNotExists). The other pattern we could use is DropCreateDatabaseIfModelChanges which means that Entity Framework, will drop the database if it realises that model has changes since the last time it created the database.The final pattern is DropCreateDatabaseAlways which means that Code First will recreate the database every time one runs the application.That is of course fine for the development database but totally unacceptable and catastrophic when you have a production database. We cannot lose our data because of the work that Code First works.Migrations solve this problem.With migrations we can modify the database without completely dropping it.We can modify the database schema to reflect the changes to the model without losing data.In version EF 5.0 migrations are fully included and supported. I will demonstrate migrations with a hands-on example.Let me say a few words first about Entity Framework first. The .Net framework provides support for Object Relational Mappingthrough EF. So EF is a an ORM tool and it is now the main data access technology that microsoft works on. I use it quite extensively in my projects. Through EF we have many things out of the box provided for us. We have the automatic generation of SQL code.It maps relational data to strongly types objects.All the changes made to the objects in the memory are persisted in a transactional way back to the data store. You can find in this post an example on how to use the Entity Framework to retrieve data from an SQL Server Database using the "Database/Schema First" approach.In this approach we make all the changes at the database level and then we update the model with those changes. In this post you can see an example on how to use the "Model First" approach when working with ASP.Net and the Entity Framework.This model was firstly introduced in EF version 4.0 and we could start with a blank model and then create a database from that model.When we made changes to the model , we could recreate the database from the new model. The Code First approach is the more code-centric than the other two. Basically we write POCO classes and then we persist to a database using something called DBContext.Code First relies on DbContext. We create 2,3 classes (e.g Person,Product) with properties and then these classes interact with the DbContext class we can create a new database based upon our POCOS classes and have tables generated from those classes.We do not have an .edmx file in this approach.By using this approach we can write much easier unit tests.DbContext is a new context class and is smaller,lightweight wrapper for the main context class which is ObjectContext (Schema First and Model First).Let's move on to our hands-on example.I have installed VS 2012 Ultimate edition in my Windows 8 machine. 1)  Create an empty asp.net web application. Give your application a suitable name. Choose C# as the development language2) Add a new web form item in your application. Leave the default name.3) Create a new folder. Name it CodeFirst .4) Add a new item in your application, a class file. Name it Footballer.cs. This is going to be a simple POCO class.Place this class file in the CodeFirst folder.The code follows    public class Footballer     {         public int FootballerID { get; set; }         public string FirstName { get; set; }         public string LastName { get; set; }         public double Weight { get; set; }         public double Height { get; set; }              }5) We will have to add EF 5.0 to our project. Right-click on the project in the Solution Explorer and select Manage NuGet Packages... for it.In the window that will pop up search for Entity Framework and install it.Have a look at the picture below   If you want to find out if indeed EF version is 5.0 version is installed have a look at the References. Have a look at the picture below to see what you will see if you have installed everything correctly.Have a look at the picture below 6) Then we need to create a context class that inherits from DbContext.Add a new class to the CodeFirst folder.Name it FootballerDBContext.Now that we have the entity classes created, we must let the model know.I will have to use the DbSet<T> property.The code for this class follows     public class FootballerDBContext:DbContext     {         public DbSet<Footballer> Footballers { get; set; }             }    Do not forget to add  (using System.Data.Entity;) in the beginning of the class file 7) We must take care of the connection string. It is very easy to create one in the web.config.It does not matter that we do not have a database yet.When we run the DbContext and query against it , it will use a connection string in the web.config and will create the database based on the classes.I will use the name "FootballTraining" for the database.In my case the connection string inside the web.config, looks like this    <connectionStrings>    <add name="CodeFirstDBContext" connectionString="server=.;integrated security=true; database=FootballTraining" providerName="System.Data.SqlClient"/>                       </connectionStrings>8) Now it is time to create Linq to Entities queries to retrieve data from the database . Add a new class to your application in the CodeFirst folder.Name the file DALfootballer.csWe will create a simple public method to retrieve the footballers. The code for the class followspublic class DALfootballer     {         FootballerDBContext ctx = new FootballerDBContext();         public List<Footballer> GetFootballers()         {             var query = from player in ctx.Footballers select player;             return query.ToList();         }     } 9) Place a GridView control on the Default.aspx page and leave the default name.Add an ObjectDataSource control on the Default.aspx page and leave the default name. Set the DatasourceID property of the GridView control to the ID of the ObjectDataSource control.(DataSourceID="ObjectDataSource1" ). Let's configure the ObjectDataSource control. Click on the smart tag item of the ObjectDataSource control and select Configure Data Source. In the Wizzard that pops up select the DALFootballer class and then in the next step choose the GetFootballers() method.Click Finish to complete the steps of the wizzard.Build and Run your application.  10) Obviously you will not see any records coming back from your database, because we have not inserted anything. The database is created, though.Have a look at the picture below.  11) Now let's change the POCO class. Let's add a new property to the Footballer.cs class.        public int Age { get; set; } Build and run your application again. You will receive an error. Have a look at the picture below 12) That was to be expected.EF Code First Migrations is not activated by default. We have to activate them manually and configure them according to your needs. We will open the Package Manager Console from the Tools menu within Visual Studio 2012.Then we will activate the EF Code First Migration Features by writing the command “Enable-Migrations”.  Have a look at the picture below. This adds a new folder Migrations in our project. A new auto-generated class Configuration.cs is created.Another class is also created [CURRENTDATE]_InitialCreate.cs and added to our project.The Configuration.cs  is shown in the picture below. The [CURRENTDATE]_InitialCreate.cs is shown in the picture below  13) ??w we are ready to migrate the changes in the database. We need to run the Add-Migration Age command in Package Manager ConsoleAdd-Migration will scaffold the next migration based on changes you have made to your model since the last migration was created.In the Migrations folder, the file 201211201231066_Age.cs is created.Have a look at the picture below to see the newly generated file and its contents. Now we can run the Update-Database command in Package Manager Console .See the picture above.Code First Migrations will compare the migrations in our Migrations folder with the ones that have been applied to the database. It will see that the Age migration needs to be applied, and run it.The EFMigrations.CodeFirst.FootballeDBContext database is now updated to include the Age column in the Footballers table.Build and run your application.Everything will work fine now.Have a look at the picture below to see the migrations applied to our table. 14) We may want it to automatically upgrade the database (by applying any pending migrations) when the application launches.Let's add another property to our Poco class.          public string TShirtNo { get; set; }We want this change to migrate automatically to the database.We go to the Configuration.cs we enable automatic migrations.     public Configuration()        {            AutomaticMigrationsEnabled = true;        } In the Page_Load event handling routine we have to register the MigrateDatabaseToLatestVersion database initializer. A database initializer simply contains some logic that is used to make sure the database is setup correctly.   protected void Page_Load(object sender, EventArgs e)        {            Database.SetInitializer(new MigrateDatabaseToLatestVersion<FootballerDBContext, Configuration>());        } Build and run your application. It will work fine. Have a look at the picture below to see the migrations applied to our table in the database. Hope it helps!!!  

    Read the article

  • How to code UI / HUD in Entity System?

    - by Sylpheed
    I think I already got the idea of the Entity System inspired by Adam Martin (t-machine). I want to start using this for my next project. I already know the basic of Entity, Components, and Systems. My problem is how to handle UI / HUD. For example, a quest window, skill window, character info window, etc. How do you handle UI events (eg. pressing a button)? These are stuff that doesn't need to be processed every frame. Currently, I'm using MVC to code UI but I don't think that'll be compatible for Entity System. I've read that Entity System is embedded on a larger OOP. I don't know if UI is outside of ES or not. How do I approach this one?

    Read the article

  • Enhancing performance in Entity Framework applications by precompiling LINQ to Entities queries

    - by nikolaosk
    This is going to be the tenth post of a series of posts regarding ASP.Net and the Entity Framework and how we can use Entity Framework to access our datastore. You can find the first one here , the second one here , the third one here , the fourth one here , the fifth one here ,the sixth one here ,the seventh one here ,the eighth one here and the ninth one here . I have a post regarding ASP.Net and EntityDataSource . You can read it here .I have 3 more posts on Profiling Entity Framework applications...(read more)

    Read the article

  • Processing component pools problem - Entity Subsystem

    - by mani3xis
    Architecture description I'm creating (designing) an entity system and I ran into many problems. I'm trying to keep it Data-Oriented and efficient as much as possible. My components are POD structures (array of bytes to be precise) allocated in homogeneous pools. Each pool has a ComponentDescriptor - it just contains component name, field types and field names. Entity is just a pointer to array of components (where address acts like an entity ID). EntityPrototype contains entity name and array of component names. Finally Subsystem (System or Processor) which works on component pools. Actual problem The problem is that some components dependents on others (Model, Sprite, PhysicalBody, Animation depends on Transform component) which makes a lot of problems when it comes to processing them. For example, lets define some entities using [S]prite, [P]hysicalBody and [H]ealth: Tank: Transform, Sprite, PhysicalBody BgTree: Transform, Sprite House: Transform, Sprite, Health and create 4 Tanks, 5 BgTrees and 2 Houses and my pools will look like: TTTTTTTTTTT // Transform pool SSSSSSSSSSS // Sprite pool PPPP // PhysicalBody pool HH // Health component There is no way to process them using indices. I spend 3 days working on it and I still don't have any ideas. In previous designs TransformComponent was bound to the entity - but it wasn't a good idea. Can you give me some advices how to process them? Or maybe I should change the overall design? Maybe I should create pools of entites (pools of component pools) - but I guess it will be a nightmare for CPU caches. Thanks

    Read the article

  • How to update entity states and animations in a component-based game

    - by mivic
    I'm trying to design a component-based entity system for learning purposes (and later use on some games) and I'm having some troubles when it comes to updating entity states. I don't want to have an update() method inside the Component to prevent dependencies between Components. What I currently have in mind is that components hold data and systems update components. So, if I have a simple 2D game with some entities (e.g. player, enemy1, enemy 2) that have Transform, Movement, State, Animation and Rendering components I think I should have: A MovementSystem that moves all the Movement components and updates the State components And a RenderSystem that updates the Animation components (the animation component should have one animation (i.e. a set of frames/textures) for each state and updating it means selecting the animation corresponding to the current state (e.g. jumping, moving_left, etc), and updating the frame index). Then, the RenderSystem updates the Render components with the texture corresponding to the current frame of each entity's Animation and renders everything on screen. I've seen some implementations like Artemis framework, but I don't know how to solve this situation: Let's say that my game has the following entities. Each entity have a set of states and one animation for each state: player: "idle", "moving_right", "jumping" enemy1: "moving_up", "moving_down" enemy2: "moving_left", "moving_right" What are the most accepted approaches in order to update the current state of each entity? The only thing that I can think of is having separate systems for each group of entities and separate State and Animation components so I would have PlayerState, PlayerAnimation, Enemy1State, Enemy1Animation... PlayerMovementSystem, PlayerRenderingSystem... but I think this is a bad solution and breaks the purpose of having a component-based system. As you can see, I'm quite lost here, so I'd very much appreciate any help.

    Read the article

  • Open source Entity-Component game [on hold]

    - by Papavoikos
    I've been reading a lot about entity-component design but every article talks about the philosophy behind such design, leaving a lot of details and implementations outside. I'm looking for an open source game that uses the entity-component design so I can study the concrete implementations and see how they deal with things such as How (and if) they deal with inter-component communication How much logic each component has or doesn't have How a subsystem can change it's behavior depending on an entity's state (the screen darkens depending on the player's health)

    Read the article

  • Entity Framework - Merging 2 physical tables into one "virtual" table problems...

    - by Keith Barrows
    I have been reading up on porting ASP.NET Membership Provider into .NET 3.5 using LINQ & Entities. However, the DB model that every single sample shows is the newer model while I've inherited a rather old model. Differences: The User Table is split into a pair of User & Membership Tables. All of the tables in the DB are prepended with aspnet_ I have Lowered versions of some columns (UserName, Email, etc) To work with this I have copied the properties from the Membership table into the User table (in the DB this is a 1<-1 relationship, not a 1<-0,1), renamed aspnet_Applications to Application, aspnet_Profiles to Profile, aspnet_Users to User and aspnet_Roles to Role. (See image) Link to full size image of model Now, I am running into one of 2 problems when I try to compile. Using the model in the image I get this error: Problem in Mapping Fragment starting at line 464: EntitySets 'UserSet' and 'aspnet_Membership' are both mapped to table 'aspnet_Membership'. Their Primary Keys may collide. If I delete the aspnet_Membership table from my model (to handle the above error) I then get: Problem in Mapping Fragment starting at line 384: Column aspnet_Membership.ApplicationId in table aspnet_Membership must be mapped: It has no default value and is not nullable. My ability to hand edit the backing stores is not the best and I don't want to just hack something in that may break other things. I am looking for suggestions, best practices, etc to handle this. Note: Moving the data tables themselves is not an option as I cannot replace all the logic in the existing apps. I am building this EF Provider for a new App. Over the next 6 months the old app(s) will migrate bit-by-bit to the new structures. Note: I added a link just under the image to the full size image for better viewing.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >