Search Results

Search found 81 results on 4 pages for 'keytool'.

Page 4/4 | < Previous Page | 1 2 3 4 

  • How to Convert a PFX Certificate into a JKS Certificate to configure it on WebLogic

    - by adejuanc
    To convert a pfx cert file to a jks file, please follow these instructions: 1. Set up the environment for the domain, by executing the setDomainEnv.sh script, typically located at $DOMAIN_HOME/bin. $ . ./setDomainEnv.sh 2. Use OpenSSL to check the pfx certificate's content. $ openssl pkcs12 -in <certificate.pfx> -out KEYSTORE.pem -nodesAt this point, a password for the pfx file will be requested. Expected output: $ openssl pkcs12 -in <certificate.pfx> -out KEYSTORE.pem -nodesEnter Import Password:MAC verified OK3. Open KEYSTORE.pem file, from step 2. This should look similar to this:You will find three certificates on it and the private key: Bag Attributes Microsoft Local Key set: <No Values> localKeyID: 01 00 00 00 friendlyName: le-36c42c6e-ec49-413c-891e-591f7e3dd306 Microsoft CSP Name: Microsoft RSA SChannel Cryptographic ProviderKey Attributes X509v3 Key Usage: 10-----BEGIN RSA PRIVATE KEY-----MIIEpQIBAAKCAQEAtPwoO3eOwSyOapzZgcDnQOH27cOaaejHtNh921Pd+U4N+dlm...EDITING...R5rsB00Yk1/2W9UqD9Nn7cDuMdilS8g9CUqnnSlDkSG0AX67auKUAcI=-----END RSA PRIVATE KEY-----Bag Attributes localKeyID: 01 00 00 00 friendlyName: *.something.comsubject=/serialNumber=sj6QjpTjKcpQGZ9QqWO-pFvsakS1t8MV/C=US/ST=Missouri/L=CHESTERFIELD/O=Oracle_Corp, Inc./OU=Oracle/CN=*.something.comissuer=/C=US/O=GeoTrust, Inc./CN=GeoTrust SSL CA-----BEGIN CERTIFICATE-----MIIErzCCA5egAwIBAgIDAIH6MA0GCSqGSIb3DQEBBQUAMEAxCzAJBgNVBAYTAlVT...EDITING...wA5JxaU55teoWkuiAaYRQpuLepJfzw+qMk5i5FpMRbVMMfkcBusGtdW5OrAoYDL94rgR-----END CERTIFICATE-----Bag Attributes friendlyName: GeoTrust Global CAsubject=/C=US/O=GeoTrust Inc./CN=GeoTrust Global CAissuer=/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA-----BEGIN CERTIFICATE-----MIIDVDCCAjygAwIBAgIDAjRWMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT...EDITING...5fEWCRE11azbJHFwLJhWC9kXtNHjUStedejV0NxPNO3CBWaAocvmMw==-----END CERTIFICATE-----Bag Attributes: <Empty Attributes>subject=/C=US/O=GeoTrust, Inc./CN=GeoTrust SSL CAissuer=/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA-----BEGIN CERTIFICATE-----MIID2TCCAsGgAwIBAgIDAjbQMA0GCSqGSIb3DQEBBQUAMEIxCzAJBgNVBAYTAlVT...EDITING...TpnKXKBuervdo5AaRTPvvz7SBMS24CqFZUE+ENQ=-----END CERTIFICATE-----4. Identify and store contents from KEYSTORE.pem certificate, to proceed and create jks files:At this point, you will find three certificates on KEYSTORE.pem and the private key. 4.1 Private Key.To identify the private key, look for the following headings: -----BEGIN RSA PRIVATE KEY----------END RSA PRIVATE KEY-----Both above mentioned tags will be surrounded the private key. Go ahead and save the content of it into a file called: my_key_pk.pem. This has to include the headings. Expected file: -----BEGIN RSA PRIVATE KEY-----MIIEpQIBAAKCAQEAtPwoO3eOwSyOapzZgcDnQOH27cOaaejHtNh921Pd+U4N+dlm...EDIT...Y4ZrW12PRa9/EOBGTG5teKAEada/K4yKReTyQQAGq6j5RjErmuuKkKgPGMSCjvMSR5rsB00Yk1/2W9UqD9Nn7cDuMdilS8g9CUqnnSlDkSG0AX67auKUAcI=-----END RSA PRIVATE KEY-----4.2 Root Certificate.To identify the Root Certificate, look for the following headings: subject=/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA issuer=/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA Subject and issuer must be the same. Go ahead and save the content of it into a file called: my_key_root.pem. Include all the content from BEGIN CERTIFICATE TO END CERTIFICATE, both included.4.3 Intermediate Certificate.To identify an Intermediate Certificate, look for the following heading: subject=/C=US/O=GeoTrust, Inc./CN=GeoTrust SSL CAissuer=/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA Subject and issuer are different only on the CN. Go ahead and save the content of it into a file called: my_key_intermediate.pem. Include all the content from BEGIN CERTIFICATE TO END CERTIFICATE, both included. NOTE: This certificate is optional and there are some cases where it'll not be present. If this is the case, go ahead and skip this step. In any other case, this needs to be added to the identity keystore jks file. 4.4 Server Certificate. To identify a Server Certificate, look for the following heading: friendlyName: some.thing.comsubject=/serialNumber=sj6QjpTjKcpQGZ9QqWO-pFvsakS1t8MV/C=US/ST=Missouri/L=CHESTERFIELD/O=Oracle_Corp, Inc./OU=Oracle/CN=some.thing.com        A server certificate includes a heading called Friendly Name. Go ahead and save the content of it into a file called: my_key_crt.pem. Include all the content from BEGIN CERTIFICATE TO END CERTIFICATE, both included.5. Create a Trust Keystore and import the Root certificate into it. $ keytool -import -trustcacerts -file my_key_root.pem -alias my_key_root -keystore my_key_trust.jks -storepass <store_pass> -keypass <key_pass>Expected Output: Certificate already exists in system-wide CA keystore under alias <geotrustglobalca> Do you still want to add it to your own keystore? [no]: yes Certificate was added to keystore6. Generate an Identity Keystore and import Server into it. $java utils.ImportPrivateKey -keystore my_key_identity.jks -storepass <store_pass> -storetype JKS -keypass <key_pass> -alias server_identity -certfile my_key_crt.pem -keyfile my_key_pk.pem -keyfilepass <pfx_password> With these instructions, two jks files will be produced: my_key_identity.jks my_key_trust.jks With both files, the next step is to configure Custom Identity and Custom Trust on WebLogic Server.

    Read the article

  • Padding error when using RSA Encryption in C# and Decryption in Java

    - by Matt Shaver
    Currently I am receiving the following error when using Java to decrypt a Base64 encoded RSA encrypted string that was made in C#: javax.crypto.BadPaddingException: Not PKCS#1 block type 2 or Zero padding The setup process between the exchange from .NET and Java is done by creating a private key in the .NET key store then from the PEM file extracted, created use keytool to create a JKS version with the private key. Java loads the already created JKS and decodes the Base64 string into a byte array and then uses the private key to decrypt. Here is the code that I have in C# that creates the encrypted string: public string Encrypt(string value) { byte[] baIn = null; byte[] baRet = null; string keyContainerName = "test"; CspParameters cp = new CspParameters(); cp.Flags = CspProviderFlags.UseMachineKeyStore; cp.KeyContainerName = keyContainerName; RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(cp); // Convert the input string to a byte array baIn = UnicodeEncoding.Unicode.GetBytes(value); // Encrypt baRet = rsa.Encrypt(baIn, false); // Convert the encrypted byte array to a base64 string return Convert.ToBase64String(baRet); } Here is the code that I have in Java that decrypts the inputted string: public void decrypt(String base64String) { String keyStorePath = "C:\Key.keystore"; String storepass = "1234"; String keypass = "abcd"; byte[] data = Base64.decode(base64String); byte[] cipherData = null; keystore = KeyStore.getInstance("JKS"); keystore.load(new FileInputStream(keyStorePath), storepass.toCharArray()); RSAPrivateKey privateRSAKey = (RSAPrivateKey) keystore.getKey(alias, keypass.toCharArray()); Cipher cipher = Cipher.getInstance("RSA/ECB/PKCS1Padding"); cipher.init(Cipher.DECRYPT_MODE, privateRSAKey); cipherData = cipher.doFinal(data); System.out.println(new String(cipherData)); } Does anyone see a step missing or where the padding or item needs to be changed? I have done hours of reading on this site and others but haven't really found a concrete solution. You're help is vastly appreciated. Thanks. -Matt

    Read the article

  • SSLException: Keystore does not support enabled cipher suites

    - by wurfkeks
    I want to implement a small android application, that works as SSL Server. After lot of problems with the right format of the keystore, I solved this and run into the next one. My keystore file is properly loaded by the KeyStore class. But when I try to open the server socket (socket.accept()) the following error is raised: javax.net.ssl.SSLException: Could not find any key store entries to support the enabled cipher suites. I generated my keystore with this command: keytool -genkey -keystore test.keystore -keyalg RSA -keypass ssltest -storepass ssltest -storetype BKS -provider org.bouncycastle.jce.provider.BouncyCastleProvider -providerpath bcprov.jar with the Unlimited Strength Jurisdiction Policy for Java SE6 applied to my jre6. I got a list of supported ciphers suites by calling socket.getSupportedCipherSuites() that prints a long list with very different combinations. But I don't know how to get a supported key. I also tried the android debug keystore after converting it to BKS format using portecle but get still the same error. Can anyone help and tell how I can generate a key that is compatible with one of the cipher suites? Version Information: targetSDK: 15 tested on emulator running 4.0.3 and real device running 2.3.3 BounceCastle 1.46 portecle 1.7 Code of my test application: public class SSLTestActivity extends Activity implements Runnable { SSLServerSocket mServerSocket; ToggleButton tglBtn; /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); this.tglBtn = (ToggleButton)findViewById(R.id.toggleButton1); tglBtn.setOnCheckedChangeListener(new CompoundButton.OnCheckedChangeListener() { @Override public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) { if (isChecked) { new Thread(SSLTestActivity.this).run(); } else { try { if (mServerSocket != null) mServerSocket.close(); } catch (IOException e) { Log.e("SSLTestActivity", e.toString()); } } } }); } @Override public void run() { try { KeyStore keyStore = KeyStore.getInstance(KeyStore.getDefaultType()); keyStore.load(getAssets().open("test.keystore"), "ssltest".toCharArray()); ServerSocketFactory socketFactory = SSLServerSocketFactory.getDefault(); mServerSocket = (SSLServerSocket) socketFactory.createServerSocket(8080); while (!mServerSocket.isClosed()) { Socket client = mServerSocket.accept(); PrintWriter output = new PrintWriter(client.getOutputStream(), true); output.println("So long, and thanks for all the fish!"); client.close(); } } catch (Exception e) { Log.e("SSLTestActivity", e.toString()); } } }

    Read the article

  • Quick guide to Oracle IRM 11g: Configuring SSL

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g index So far in this guide we have an IRM Server up and running, however I skipped over SSL configuration in the previous article because I wanted to focus in more detail now. You can, if you wish, not bother with setting up SSL, but considering this is a security technology it is worthwhile doing. Contents Setting up a one way, self signed SSL certificate in WebLogic Setting up an official SSL certificate in Apache 2.x Configuring Apache to proxy traffic to the IRM server There are two common scenarios in which an Oracle IRM server is configured. For a development or evaluation system, people usually communicate directly to the WebLogic Server running the IRM service. However in a production environment and for some proof of concept evaluations that require a setup reflecting a production system, the traffic to the IRM server travels via a web server proxy, commonly Apache. In this guide we are building an Oracle Enterprise Linux based IRM service and this article will go over the configuration of SSL in WebLogic and also in Apache. Like in the past articles, we are going to use two host names in the configuration below,irm.company.com will refer to the public Apache server irm.company.internal will refer to the internal WebLogic IRM server Setting up a one way, self signed SSL certificate in WebLogic First lets look at creating just a simple self signed SSL certificate to be used in WebLogic. This is a quick and easy way to get SSL working in your environment, however the downside is that no browsers are going to trust this certificate you create and you'll need to manually install the certificate onto any machine's communicating with the server. This is fine for development or when you have only a few users evaluating the system, but for any significant use it's usually better to have a fully trusted certificate in use and I explain that in the next section. But for now lets go through creating, installing and testing a self signed certificate. We use a library in Java to create the certificates, open a console and running the following commands. Note you should choose your own secure passwords whenever you see password below. [oracle@irm /] source /oracle/middleware/wlserver_10.3/server/bin/setWLSEnv.sh [oracle@irm /] cd /oracle/middleware/user_projects/domains/irm_domain/config/fmwconfig/ [oracle@irm /] java utils.CertGen -selfsigned -certfile MyOwnSelfCA.cer -keyfile MyOwnSelfKey.key -keyfilepass password -cn "irm.oracle.demo" [oracle@irm /] java utils.ImportPrivateKey -keystore MyOwnIdentityStore.jks -storepass password -keypass password -alias trustself -certfile MyOwnSelfCA.cer.pem -keyfile MyOwnSelfKey.key.pem -keyfilepass password [oracle@irm /] keytool -import -trustcacerts -alias trustself -keystore TrustMyOwnSelf.jks -file MyOwnSelfCA.cer.der -keyalg RSA We now have two Java Key Stores, MyOwnIdentityStore.jks and TrustMyOwnSelf.jks. These contain keys and certificates which we will use in WebLogic Server. Now we need to tell the IRM server to use these stores when setting up SSL connections for incoming requests. Make sure the Admin server is running and login into the WebLogic Console at http://irm.company.intranet:7001/console and do the following; In the menu on the left, select the + next to Environment to expose the submenu, then click on Servers. You will see two servers in the list, AdminServer(admin) and IRM_server1. If the IRM server is running, shut it down either by hitting CONTROL + C in the console window it was started from, or you can switch to the CONTROL tab, select IRM_server1 and then select the Shutdown menu and then Force Shutdown Now. In the Configuration tab select IRM_server1 and switch to the Keystores tab. By default WebLogic Server uses it's own demo identity and trust. We are now going to switch to the self signed one's we've just created. So select the Change button and switch to Custom Identity and Custom Trust and hit save. Now we have to complete the resulting fields, the setting's i've used in my evaluation server are below. IdentityCustom Identity Keystore: /oracle/middleware/user_projects/domains/irm_domain/config/fmwconfig/MyOwnIdentityStore.jks Custom Identity Keystore Type: JKS Custom Identity Keystore Passphrase: password Confirm Custom Identity Keystore Passphrase: password TrustCustom Trust Keystore: /oracle/middleware/user_projects/domains/irm_domain/config/fmwconfig/TrustMyOwnSelf.jks Custom Trust Keystore Type: JKS Custom Trust Keystore Passphrase: password Confirm Custom Trust Keystore Passphrase: password Now click on the SSL tab for the IRM_server1 and enter in the alias and passphrase, in my demo here the details are; IdentityPrivate Key Alias: trustself Private Key Passphrase: password Confirm Private Key Passphrase: password And hit save. Now lets test a connection to the IRM server over HTTPS using SSL. Go back to a console window and start the IRM server, a quick reminder on how to do this is... [oracle@irm /] cd /oracle/middleware/user_projects/domains/irm_domain/bin [oracle@irm /] ./startManagedWeblogic IRM_server1 Once running, open a browser and head to the SSL port of the server. By default the IRM server will be listening on the URL https://irm.company.intranet:16101/irm_rights. Note in the example image on the right the port is 7002 because it's a system that has the IRM services installed on the Admin server, this isn't typical (or advisable). Your system is going to have a separate managed server which will be listening on port 16101. Once you open this address you will notice that your browser is going to complain that the server certificate is untrusted. The images on the right show how Firefox displays this error. You are going to be prompted every time you create a new SSL session with the server, both from the browser and more annoyingly from the IRM Desktop. If you plan on always using a self signed certificate, it is worth adding it to the Windows certificate store so that when you are accessing sealed content you do not keep being informed this certificate is not trusted. Follow these instructions (which are for Internet Explorer 8, they may vary for your version of IE.) Start Internet Explorer and open the URL to your IRM server over SSL, e.g. https://irm.company.intranet:16101/irm_rights. IE will complain that about the certificate, click on Continue to this website (not recommended). From the IE Tools menu select Internet Options and from the resulting dialog select Security and then click on Trusted Sites and then the Sites button. Add to the list of trusted sites a URL which mates the server you are accessing, e.g. https://irm.company.intranet/ and select OK. Now refresh the page you were accessing and next to the URL you should see a red cross and the words Certificate Error. Click on this button and select View Certificates. You will now see a dialog with the details of the self signed certificate and the Install Certificate... button should be enabled. Click on this to start the wizard. Click next and you'll be asked where you should install the certificate. Change the option to Place all certificates in the following store. Select browse and choose the Trusted Root Certification Authorities location and hit OK. You'll then be prompted to install the certificate and answer yes. You also need to import the root signed certificate into the same location, so once again select the red Certificate Error option and this time when viewing the certificate, switch to the Certification Path tab and you should see a CertGenCAB certificate. Select this and then click on View Certificate and go through the same process as above to import the certificate into the store. Finally close all instances of the IE browser and re-access the IRM server URL again, this time you should not receive any errors. Setting up an official SSL certificate in Apache 2.x At this point we now have an IRM server that you can communicate with over SSL. However this certificate isn't trusted by any browser because it's path of trust doesn't end in a recognized certificate authority (CA). Also you are communicating directly to the WebLogic Server over a non standard SSL port, 16101. In a production environment it is common to have another device handle the initial public internet traffic and then proxy this to the WebLogic server. The diagram below shows a very simplified view of this type of deployment. What i'm going to walk through next is configuring Apache to proxy traffic to a WebLogic server and also to use a real SSL certificate from an official CA. First step is to configure Apache to handle incoming requests over SSL. In this guide I am configuring the IRM service in Oracle Enterprise Linux 5 update 3 and Apache 2.2.3 which came with OpenSSL and mod_ssl components. Before I purchase an SSL certificate, I need to generate a certificate request from the server. Oracle.com uses Verisign and for my own personal needs I use cheaper certificates from GoDaddy. The following instructions are specific to Apache, but there are many references out there for other web servers. For Apache I have OpenSSL and the commands are; [oracle@irm /] cd /usr/bin [oracle@irm bin] openssl genrsa -des3 -out irm-apache-server.key 2048 Generating RSA private key, 2048 bit long modulus ............................+++ .........+++ e is 65537 (0x10001) Enter pass phrase for irm-apache-server.key: Verifying - Enter pass phrase for irm-apache-server.key: [oracle@irm bin] openssl req -new -key irm-apache-server.key -out irm-apache-server.csr Enter pass phrase for irm-apache-server.key: You are about to be asked to enter information that will be incorporated into your certificate request. What you are about to enter is what is called a Distinguished Name or a DN. There are quite a few fields but you can leave some blank For some fields there will be a default value, If you enter '.', the field will be left blank. ----- Country Name (2 letter code) [GB]:US State or Province Name (full name) [Berkshire]:CA Locality Name (eg, city) [Newbury]:San Francisco Organization Name (eg, company) [My Company Ltd]:Oracle Organizational Unit Name (eg, section) []:Security Common Name (eg, your name or your server's hostname) []:irm.company.com Email Address []:[email protected] Please enter the following 'extra' attributes to be sent with your certificate request A challenge password []:testing An optional company name []: You must make sure to remember the pass phrase you used in the initial key generation, you will need this when later configuring Apache. In the /usr/bin directory there are now two new files. The irm-apache-server.csr contains our certificate request and is what you cut and paste, or upload, to your certificate authority when you purchase and validate your SSL certificate. In response you will typically get two files. Your server certificate and another certificate file that will likely contain a set of certificates from your CA which validate your certificate's trust. Next we need to configure Apache to use these files. Typically there is an ssl.conf file which is where all the SSL configuration is done. On my Oracle Enterprise Linux server this file is located in /etc/httpd/conf.d/ssl.conf and i've added the following lines. <VirtualHost irm.company.com> # Setup SSL for irm.company.com ServerName irm.company.com SSLEngine On SSLCertificateFile /oracle/secure/irm.company.com.crt SSLCertificateKeyFile /oracle/secure/irm.company.com.key SSLCertificateChainFile /oracle/secure/gd_bundle.crt </VirtualHost> Restarting Apache (apachectl restart) and I can now attempt to connect to the Apache server in a web browser, https://irm.company.com/. If all is configured correctly I should now see an Apache test page delivered to me over HTTPS. Configuring Apache to proxy traffic to the IRM server Final piece in setting up SSL is to have Apache proxy requests for the IRM server but do so securely. So the requests to Apache will be over HTTPS using a legitimate certificate, but we can also configure Apache to proxy these requests internally across to the IRM server using SSL with the self signed certificate we generated at the start of this article. To do this proxying we use the WebLogic Web Server plugin for Apache which you can download here from Oracle. Download the zip file and extract onto the server. The file extraction reveals a set of zip files, each one specific to a supported web server. In my instance I am using Apache 2.2 32bit on an Oracle Enterprise Linux, 64 bit server. If you are not sure what version your Apache server is, run the command /usr/sbin/httpd -V and you'll see version and it its 32 or 64 bit. Mine is a 32bit server so I need to extract the file WLSPlugin1.1-Apache2.2-linux32-x86.zip. The from the resulting lib folder copy the file mod_wl.so into /usr/lib/httpd/modules/. First we want to test that the plug in will work for regular HTTP traffic. Edit the httpd.conf for Apache and add the following section at the bottom. LoadModule weblogic_module modules/mod_wl.so <IfModule mod_weblogic.c>    WebLogicHost irm.company.internal    WebLogicPort 16100    WLLogFile /tmp/wl-proxy.log </IfModule> <Location /irm_rights>    SetHandler weblogic-handler </Location> <Location /irm_desktop>    SetHandler weblogic-handler </Location> <Location /irm_sealing>    SetHandler weblogic-handler </Location> <Location /irm_services>    SetHandler weblogic-handler </Location> Now restart Apache again (apachectl restart) and now open a browser to http://irm.company.com/irm_rights. Apache will proxy the HTTP traffic from the port 80 of your Apache server to the IRM service listening on port 16100 of the WebLogic Managed server. Note above I have included all four of the Locations you might wish to proxy. http://irm.company.internalirm_rights is the URL to the management website, /irm_desktop is the URL used for the IRM Desktop to communicate. irm_sealing is for web services based document sealing and irm_services is for IRM server web services. The last two are typically only used when you have the IRM server integrated with another application and it is unlikely you'd be accessing these resources from the public facing Apache server. However, just in case, i've mentioned them above. Now let's enable SSL communication from Apache to WebLogic. In the ZIP file we extracted were some more modules we need to copy into the Apache folder. Looking back in the lib that we extracted, there are some more files. Copy the following into the /usr/lib/httpd/modules/ folder. libwlssl.so libnnz11.so libclntsh.so.11.1 Now the documentation states that should only need to do this, but I found that I also needed to create an environment variable called LD_LIBRARY_PATH and point this to the folder /usr/lib/httpd/modules/. If I didn't do this, starting Apache with the WebLogic module configured to SSL would throw the error. [crit] (20014)Internal error: WL SSL Init failed for server: (null) on 0 So I had to edit the file /etc/profile and add the following lines at the bottom. You may already have the LD_LIBRARY_PATH variable defined, therefore simply add this path to it. LD_LIBRARY_PATH=/usr/lib/httpd/modules/ export LD_LIBRARY_PATH Now the WebLogic plug in uses an Oracle Wallet to store the required certificates.You'll need to copy the self signed certificate from the IRM server over to the Apache server. Copy over the MyOwnSelfCA.cer.der into the same folder where you are storing your public certificates, in my example this is /oracle/secure. It's worth mentioning these files should ONLY be readable by root (the user Apache runs as). Now lets create an Oracle Wallet and import the self signed certificate from the IRM server. The file orapki was included in the bin folder of the Apache 1.1 plugin zip you extracted. orapki wallet create -wallet /oracle/secure/my-wallet -auto_login_only orapki wallet add -wallet /oracle/secure/my-wallet -trusted_cert -cert MyOwnSelfCA.cer.der -auto_login_only Finally change the httpd.conf to reflect that we want the WebLogic Apache plug-in to use HTTPS/SSL and not just plain HTTP. <IfModule mod_weblogic.c>    WebLogicHost irm.company.internal    WebLogicPort 16101    SecureProxy ON    WLSSLWallet /oracle/secure/my-wallet    WLLogFile /tmp/wl-proxy.log </IfModule> Then restart Apache once more and you can go back to the browser to test the communication. Opening the URL https://irm.company.com/irm_rights will proxy your request to the WebLogic server at https://irm.company.internal:16101/irm_rights. At this point you have a fully functional Oracle IRM service, the next step is to create a sealed document and test the entire system.

    Read the article

  • Quick guide to Oracle IRM 11g: Server configuration

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g index Welcome to the second article in this quick quide to Oracle IRM 11g. Hopefully you've just finished the first article which takes you through deploying the software onto a Linux server. This article walks you through the configuration of this new service and contains a subset of information from the official documentation and is focused on installing the server on Oracle Enterprise Linux. If you are planning to deploy on a non-Linux platform, you will need to reference the documentation for platform specific information. Contents Introduction Create IRM WebLogic Domain Starting the Admin Server and initial configuration Introduction In the previous article the database was prepared, the WebLogic Application Server installed and the files required for an IRM server installed. But we don't actually have a configured system yet. We need to now create a WebLogic Domain in which the IRM server will run, then configure some of the settings and crypography so that we can create a context and be ready to seal some content and test it all works. This article doesn't cover the configuration of SSL communication from client to server. This is quite a big topic and a separate article has been dedicated for this area. In these articles I also use the hostname, irm.company.internal to reference the IRM server and later on use the hostname irm.company.com in reference to the public facing service. Create IRM WebLogic Domain First step is creating the WebLogic domain, in a console switch to the newly created IRM installation folder as shown below and we will run the domain configuration wizard. [oracle@irm /]$ cd /oracle/middleware/Oracle_IRM/common/bin [oracle@irm bin]$ ./config.sh First thing the wizard will ask is if you wish to create a new or extend an existing domain. This guide is creating a standalone system so you should select to create a new domain. Next step is to choose what technologies from the Oracle ECM Suite you wish this domain to host. You are only interested in selecting the option "Oracle Information Rights Management". When you select this check box you will notice that it also selects "Oracle Enterprise Manager" and "Oracle JRF" as these are dependencies of the IRM server. You then need to specify where you wish to place the domain files. I usually just change the domain name from base_domain or irm_domain and leave the others with their defaults. Now the domain will have a single user initially and by default this user is called "weblogic". I usually change this account name to "sysadmin" or "administrator", but in this guide lets just accept the default. With respects to the next dialog, again for eval or dev reasons, leave the server startup mode as development. The JDK should also be automatically detected. We now need to provide details of the database. This guide is using the Oracle 11gR2 database and the settings I used can be seen in the image to the right. There is a lot of configuration that can now be done for the admin server, any managed servers and where the deployments reside. In this guide I am leaving all of these to their defaults so do not check any of the boxes. However I will on this blog be detailing later how you can go back and setup things such as automated startup of an IRM server which require changes to these default settings. But for now, lets leave it all alone and just click next. Now we are ready to install. Note that from this dialog you can scroll the left window and see there are going to be two servers created from the defaults. The AdminServer which is where you modify settings for the WebLogic Server and also hosts the Oracle Enterprise Manager for IRM which allows to monitor the IRM service performance and also make service related settings (which we shortly do below) and the IRM_server1 which hosts the actual IRM services themselves. So go right ahead and hit create, the process is pretty quick and usually under 10 minutes. When the domain creation ends, it will give you the URL to the admin server. It's worth noting this down and the URL is usually; http://irm.company.internal:7001 Starting the Admin Server and initial configuration First thing to do is to start the WebLogic Admin server and review the initial IRM server settings. In this guide we are going to run the Admin server and IRM server in console windows, in another article I will discuss running these as background services. So for now, start a console and run the Admin server by doing the following. cd /oracle/middleware/user_projects/domains/irm_domain/ ./startWebLogic.sh Wait for the server to start, you are looking for the following line to be reported in the console window. <BEA-00360><Server started in RUNNING mode> First step is configuring the IRM service via Enterprise Manager. Now that the Admin server is running you can point a browser at http://irm.company.internal:7001/em. Login with the username and password you supplied when you created the domain. In Enterprise Manager the IRM service administrator is able to make server wide configuration. However finding where to access the pages with these settings can be a bit of a challenge. After logging in on the left you'll see a tree containing elements of the Enterprise Manager farm Farm_irm_domain. Open up Content Management, then Information Rights Management and finally select the IRM node. On the right then select the IRM menu item, navigate to the Administration section and now we have four options, for now, we are just going to look at General Settings. The image on the right proves that a picture is worth a thousand words (or 113 in this case). The General Settings page allows you to set the cryptographic algorithms used for protecting sealed content. Unless you have a burning need to increase the key lengths or you need to comply to a regulation or government mandate, AES192 is a good start. You can change this later on without worry. The most important setting here we need to make is the Server URL. In this blog article I go over why this URL is so important, basically every single piece of content you protect with Oracle IRM is going to have this URL embedded in it, so if it's wrong or unresolvable, then nobody can open the secured documents. Note that in our environment we have yet to do any SSL configuration of the service. If you intend to build a server without SSL, then use http as the protocol instead of https. But I would recommend using SSL and setting this up is described in the next article. I would also probably up the device count from 1 to 3. This means that any user can retrieve rights to access content onto 3 computers at any one time. The default of 1 doesn't really make sense in development, evaluation nor even production environments and my experience is that 3 is a better number. Next step is to create the keystore for the IRM server. When a classification (called a context) is created, Oracle IRM generates a unique set of symmetric keys which are used to secure the content itself. These keys are then encrypted with a set of "wrapper" asymmetric cryptography keys which are stored externally to the server either in a Java Key Store or a HSM. These keys need to be generated and the following shows my commands and the resulting output. I have greyed out the responses from the commands so you can see the input a little easier. [oracle@irmsrv ~]$ cd /oracle/middleware/wlserver_10.3/server/bin/ [oracle@irmsrv bin]$ ./setWLSEnv.sh CLASSPATH=/oracle/middleware/patch_wls1033/profiles/default/sys_manifest_classpath/weblogic_patch.jar:/oracle/middleware/patch_ocp353/profiles/default/sys_manifest_classpath/weblogic_patch.jar:/usr/java/jdk1.6.0_18/lib/tools.jar:/oracle/middleware/wlserver_10.3/server/lib/weblogic_sp.jar:/oracle/middleware/wlserver_10.3/server/lib/weblogic.jar:/oracle/middleware/modules/features/weblogic.server.modules_10.3.3.0.jar:/oracle/middleware/wlserver_10.3/server/lib/webservices.jar:/oracle/middleware/modules/org.apache.ant_1.7.1/lib/ant-all.jar:/oracle/middleware/modules/net.sf.antcontrib_1.1.0.0_1-0b2/lib/ant-contrib.jar: PATH=/oracle/middleware/wlserver_10.3/server/bin:/oracle/middleware/modules/org.apache.ant_1.7.1/bin:/usr/java/jdk1.6.0_18/jre/bin:/usr/java/jdk1.6.0_18/bin:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/home/oracle/bin Your environment has been set. [oracle@irmsrv bin]$ cd /oracle/middleware/user_projects/domains/irm_domain/config/fmwconfig/ [oracle@irmsrv fmwconfig]$ keytool -genkeypair -alias oracle.irm.wrap -keyalg RSA -keysize 2048 -keystore irm.jks Enter keystore password: Re-enter new password: What is your first and last name? [Unknown]: Simon Thorpe What is the name of your organizational unit? [Unknown]: Oracle What is the name of your organization? [Unknown]: Oracle What is the name of your City or Locality? [Unknown]: San Francisco What is the name of your State or Province? [Unknown]: CA What is the two-letter country code for this unit? [Unknown]: US Is CN=Simon Thorpe, OU=Oracle, O=Oracle, L=San Francisco, ST=CA, C=US correct? [no]: yes Enter key password for (RETURN if same as keystore password): At this point we now have an irm.jks in the directory /oracle/middleware/user_projects/domains/irm_domain/config/fmwconfig. The reason we store it here is this folder would be backed up as part of a domain backup. As with any cryptographic technology, DO NOT LOSE THESE KEYS OR THIS KEY STORE. Once you've sealed content against a context, the keys will be wrapped with these keys, lose these keys, and you can't get access to any secured content, pretty important. Now we've got the keys created, we need to go back to the IRM Enterprise Manager and set the location of the key store. Going back to the General Settings page in Enterprise Manager scroll down to Keystore Settings. Leave the type as JKS but change the location to; /oracle/Middleware/user_projects/domains/irm_domain/config/fmwconfig/irm.jks and hit Apply. The final step with regards to the key store is we need to tell the server what the password is for the Java Key Store so that it can be opened and the keys accessed. Once more fire up a console window and run these commands (again i've greyed out the clutter to see the commands easier). You will see dummy passed into the commands, this is because the command asks for a username, but in this instance we don't use one, hence the value dummy is passed and it isn't used. [oracle@irmsrv fmwconfig]$ cd /oracle/middleware/Oracle_IRM/common/bin/ [oracle@irmsrv bin]$ ./wlst.sh ... lots of settings fly by... Welcome to WebLogic Server Administration Scripting Shell Type help() for help on available commands wls:/offline>connect('weblogic','password','t3://irmsrv.us.oracle.com:7001') Connecting to t3://irmsrv.us.oracle.com:7001 with userid weblogic ... Successfully connected to Admin Server 'AdminServer' that belongs to domain 'irm_domain'. Warning: An insecure protocol was used to connect to the server. To ensure on-the-wire security, the SSL port or Admin port should be used instead. wls:/irm_domain/serverConfig>createCred("IRM","keystore:irm.jks","dummy","password") Location changed to domainRuntime tree. This is a read-only tree with DomainMBean as the root. For more help, use help(domainRuntime)wls:/irm_domain/serverConfig>createCred("IRM","key:irm.jks:oracle.irm.wrap","dummy","password") Already in Domain Runtime Tree wls:/irm_domain/serverConfig> At last we are now ready to fire up the IRM server itself. The domain creation created a managed server called IRM_server1 and we need to start this, use the following commands in a new console window. cd /oracle/middleware/user_projects/domains/irm_domain/bin/ ./startManagedWebLogic.sh IRM_server1 This will start up the server in the console, unlike the Admin server, you need to provide the username and password for the service to start. Enter in your weblogic username and password when prompted. You can change this behavior by putting the password into a boot.properties file, read more about this in the WebLogic Server documentation. Once running, wait until you see the line; <Notice><WebLogicServer><BEA-000360><Server started in RUNNING mode> At this point we can now login to the Oracle IRM Management Website at the URL. http://irm.company.internal:1600/irm_rights/ The server is just configured for HTTP at the moment, no SSL involved. Just want to ensure we can get a working system up and running. You should now see a login like the image on the right and you can now login using your weblogic username and password. The next article in this guide goes over adding SSL and now testing your server by actually adding a few users, sealing some content and opening this content as a user.

    Read the article

  • Can't connect to SSL web service with WS-Security using PHP SOAP extension - certificate, complex WSDL

    - by BillF
    Using the PHP5 SOAP extension I have been unable to connect to a web service having an https endpoint, with client certificate and using WS-Security, although I can connect using soapUI with the exact same wsdl and client certificate, and obtain the normal response to the request. There is no HTTP authentication and no proxy is involved. The message I get is 'Could not connect to host'. Have been able to verify that I am NOT hitting the host server. (Earlier I wrongly said that I was hitting the server.) The self-signed client SSL certificate is a .pem file converted by openssl from a .p12 keystore which in turn was converted by keytool from a .jks keystore having a single entry consisting of private key and client certificate. In soapUI I did not need to supply a server private certificate, the only two files I gave it were the wdsl and pem. I did have to supply the pem and its passphrase to be able to connect. I am speculating that despite the error message my problem might actually be in the formation of the XML request rather than the SSL connection itself. The wsdl I have been given has nested complex types. The php server is on my Windows XP laptop with IIS. The code, data values and WSDL extracts are shown below. (The WSSoapClient class simply extends SoapClient, adding a WS-Security Username Token header with mustUnderstand = true and including a nonce, both of which the soapUI call had required.) Would so much appreciate any help. I'm a newbie thrown in at the deep end, and how! Have done vast amounts of Googling on this over many days, following many suggestions and have read Pro PHP by Kevin McArthur. An attempt to use classmaps in place of nested arrays also fell flat. The Code class STEeService { public function invokeWebService(array $connection, $operation, array $request) { try { $localCertificateFilespec = $connection['localCertificateFilespec']; $localCertificatePassphrase = $connection['localCertificatePassphrase']; $sslOptions = array( 'ssl' => array( 'local_cert' => $localCertificateFilespec, 'passphrase' => $localCertificatePassphrase, 'allow_self-signed' => true, 'verify_peer' => false ) ); $sslContext = stream_context_create($sslOptions); $clientArguments = array( 'stream_context' => $sslContext, 'local_cert' => $localCertificateFilespec, 'passphrase' => $localCertificatePassphrase, 'trace' => true, 'exceptions' => true, 'encoding' => 'UTF-8', 'soap_version' => SOAP_1_1 ); $oClient = new WSSoapClient($connection['wsdlFilespec'], $clientArguments); $oClient->__setUsernameToken($connection['username'], $connection['password']); return $oClient->__soapCall($operation, $request); } catch (exception $e) { throw new Exception("Exception in eServices " . $operation . " ," . $e->getMessage(), "\n"); } } } $connection is as follows: array(5) { ["username"]=> string(8) "DFU00050" ["password"]=> string(10) "Fabricate1" ["wsdlFilespec"]=> string (63) "c:/inetpub/wwwroot/DMZExternalService_Concrete_WSDL_Staging.xml" ["localCertificateFilespec"]=> string(37) "c:/inetpub/wwwroot/ClientKeystore.pem" ["localCertificatePassphrase"]=> string(14) "password123456" } $clientArguments is as follows: array(7) { ["stream_context"]=> resource(8) of type (stream-context) ["local_cert"]=> string(37) "c:/inetpub/wwwroot/ClientKeystore.pem" ["passphrase"]=> string(14) "password123456" ["trace"]=> bool(true) ["exceptions"]=> bool(true) ["encoding"]=> string(5) "UTF-8" ["soap_version"]=> int(1) } $operation is as follows: 'getConsignmentDetails' $request is as follows: array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } Note how there is an extra level of nesting, an array wrapping the request which is itself an array. This was suggested in a post although I don't see the reason, but it seems to help avoid other exceptions. The exception thrown by ___soapCall is as follows: object(SoapFault)#6 (9) { ["message":protected]=> string(25) "Could not connect to host" ["string":"Exception":private]=> string(0) "" ["code":protected]=> int(0) ["file":protected]=> string(43) "C:\Inetpub\wwwroot\eServices\WSSecurity.php" ["line":protected]=> int(85) ["trace":"Exception":private]=> array(5) { [0]=> array(6) { ["file"]=> string(43) "C:\Inetpub\wwwroot\eServices\WSSecurity.php" ["line"]=> int(85) ["function"]=> string(11) "__doRequest" ["class"]=> string(10) "SoapClient" ["type"]=> string(2) "->" ["args"]=> array(4) { [0]=> string(1240) " DFU00050 Fabricate1 E0ByMUA= 2010-10-28T13:13:52Z customerA10072906GKQ00000085 " [1]=> string(127) "https://services.startrackexpress.com.au:7560/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1" [2]=> string(104) "/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1/getConsignmentDetails" [3]=> int(1) } } [1]=> array(4) { ["function"]=> string(11) "__doRequest" ["class"]=> string(39) "startrackexpress\eservices\WSSoapClient" ["type"]=> string(2) "->" ["args"]=> array(5) { [0]=> string(1240) " DFU00050 Fabricate1 E0ByMUA= 2010-10-28T13:13:52Z customerA10072906GKQ00000085 " [1]=> string(127) "https://services.startrackexpress.com.au:7560/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1" [2]=> string(104) "/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1/getConsignmentDetails" [3]=> int(1) [4]=> int(0) } } [2]=> array(6) { ["file"]=> string(43) "C:\Inetpub\wwwroot\eServices\WSSecurity.php" ["line"]=> int(70) ["function"]=> string(10) "__soapCall" ["class"]=> string(10) "SoapClient" ["type"]=> string(2) "->" ["args"]=> array(4) { [0]=> string(21) "getConsignmentDetails" [1]=> array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } [2]=> NULL [3]=> object(SoapHeader)#5 (4) { ["namespace"]=> string(81) "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" ["name"]=> string(8) "Security" ["data"]=> object(SoapVar)#4 (2) { ["enc_type"]=> int(147) ["enc_value"]=> string(594) " DFU00050 Fabricate1 E0ByMUA= 2010-10-28T13:13:52Z " } ["mustUnderstand"]=> bool(true) } } } [3]=> array(6) { ["file"]=> string(42) "C:\Inetpub\wwwroot\eServices\eServices.php" ["line"]=> int(87) ["function"]=> string(10) "__soapCall" ["class"]=> string(39) "startrackexpress\eservices\WSSoapClient" ["type"]=> string(2) "->" ["args"]=> array(2) { [0]=> string(21) "getConsignmentDetails" [1]=> array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } } } [4]=> array(6) { ["file"]=> string(58) "C:\Inetpub\wwwroot\eServices\EnquireConsignmentDetails.php" ["line"]=> int(44) ["function"]=> string(16) "invokeWebService" ["class"]=> string(38) "startrackexpress\eservices\STEeService" ["type"]=> string(2) "->" ["args"]=> array(3) { [0]=> array(5) { ["username"]=> string(10) "DFU00050 " ["password"]=> string(12) "Fabricate1 " ["wsdlFilespec"]=> string(63) "c:/inetpub/wwwroot/DMZExternalService_Concrete_WSDL_Staging.xml" ["localCertificateFilespec"]=> string(37) "c:/inetpub/wwwroot/ClientKeystore.pem" ["localCertificatePassphrase"]=> string(14) "password123456" } [1]=> string(21) "getConsignmentDetails" [2]=> array(1) { [0]=> array(2) { ["header"]=> array(2) { ["source"]=> string(9) "customerA" ["accountNo"]=> string(8) "10072906" } ["consignmentId"]=> string(11) "GKQ00000085" } } } } } ["previous":"Exception":private]=> NULL ["faultstring"]=> string(25) "Could not connect to host" ["faultcode"]=> string(4) "HTTP" } Here are some WSDL extracts (TIBCO BusinessWorks): <xsd:complexType name="TransactionHeaderType"> <xsd:sequence> <xsd:element name="source" type="xsd:string"/> <xsd:element name="accountNo" type="xsd:integer"/> <xsd:element name="userId" type="xsd:string" minOccurs="0"/> <xsd:element name="transactionId" type="xsd:string" minOccurs="0"/> <xsd:element name="transactionDatetime" type="xsd:dateTime" minOccurs="0"/> </xsd:sequence> </xsd:complexType> <xsd:element name="getConsignmentDetailRequest"> <xsd:complexType> <xsd:sequence> <xsd:element name="header" type="prim:TransactionHeaderType"/> <xsd:element name="consignmentId" type="prim:ID" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="getConsignmentDetailResponse"> <xsd:complexType> <xsd:sequence> <xsd:element name="consignment" type="freight:consignmentType" minOccurs="0" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="getConsignmentDetailRequest"> <xsd:complexType> <xsd:sequence> <xsd:element name="header" type="prim:TransactionHeaderType"/> <xsd:element name="consignmentId" type="prim:ID" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <xsd:element name="getConsignmentDetailResponse"> <xsd:complexType> <xsd:sequence> <xsd:element name="consignment" type="freight:consignmentType" minOccurs="0" maxOccurs="unbounded"/> </xsd:sequence> </xsd:complexType> </xsd:element> <wsdl:operation name="getConsignmentDetails"> <wsdl:input message="tns:getConsignmentDetailsRequest"/> <wsdl:output message="tns:getConsignmentDetailsResponse"/> <wsdl:fault name="fault1" message="tns:fault"/> </wsdl:operation> <wsdl:service name="ExternalOps"> <wsdl:port name="OperationsEndpoint1" binding="tns:OperationsEndpoint1Binding"> <soap:address location="https://services.startrackexpress.com.au:7560/DMZExternalService/InterfaceServices/ExternalOps.serviceagent/OperationsEndpoint1"/> </wsdl:port> </wsdl:service> And here in case it's relevant is the WSSoapClient class: <?PHP namespace startrackexpress\eservices; use SoapClient, SoapVar, SoapHeader; class WSSoapClient extends SoapClient { private $username; private $password; /*Generates a WS-Security header*/ private function wssecurity_header() { $timestamp = gmdate('Y-m-d\TH:i:s\Z'); $nonce = mt_rand(); $passdigest = base64_encode(pack('H*', sha1(pack('H*', $nonce).pack('a*', $timestamp).pack('a*', $this->password)))); $auth = ' <wsse:Security SOAP-ENV:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <wsse:UsernameToken> <wsse:Username>' . $this->username . '</wsse:Username> <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">' . $this->password . '</wsse:Password> <wsse:Nonce>' . base64_encode(pack('H*', $nonce)).'</wsse:Nonce> <wsu:Created xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">' . $timestamp . '</wsu:Created> </wsse:UsernameToken> </wsse:Security> '; $authvalues = new SoapVar($auth, XSD_ANYXML); $header = new SoapHeader("http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd", "Security",$authvalues, true); return $header; } // Sets a username and passphrase public function __setUsernameToken($username,$password) { $this->username=$username; $this->password=$password; } // Overwrites the original method, adding the security header public function __soapCall($function_name, $arguments, $options=null, $input_headers=null, $output_headers=null) { try { $result = parent::__soapCall($function_name, $arguments, $options, $this->wssecurity_header()); return $result; } catch (exception $e) { throw new Exception("Exception in __soapCall, " . $e->getMessage(), "\n"); } } } ?> Update: The request XML would have been as follows: <?xml version="1.0" encoding="UTF-8"?> <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns1="http://startrackexpress/Common/Primitives/v1" xmlns:ns2="http://startrackexpress/Common/actions/externals/Consignment/v1" xmlns:ns3="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <SOAP-ENV:Header> <wsse:Security SOAP-ENV:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <wsse:UsernameToken> <wsse:Username>DFU00050</wsse:Username> <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">Fabricate1</wsse:Password> <wsse:Nonce>M4FIeGA=</wsse:Nonce> <wsu:Created xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">2010-10-29T14:05:27Z</wsu:Created> </wsse:UsernameToken> </wsse:Security> </SOAP-ENV:Header> <SOAP-ENV:Body><ns2:getConsignmentDetailRequest> <ns2:header><ns1:source>customerA</ns1:source><ns1:accountNo>10072906</ns1:accountNo></ns2:header> <ns2:consignmentId>GKQ00000085</ns2:consignmentId> </ns2:getConsignmentDetailRequest></SOAP-ENV:Body> </SOAP-ENV:Envelope> This was obtained with the following code in WSSoapClient: public function __doRequest($request, $location, $action, $version) { echo "<p> " . htmlspecialchars($request) . " </p>" ; return parent::__doRequest($request, $location, $action, $version); }

    Read the article

< Previous Page | 1 2 3 4