Search Results

Search found 79 results on 4 pages for 'nonexistent'.

Page 4/4 | < Previous Page | 1 2 3 4 

  • How to Reuse Your Old Wi-Fi Router as a Network Switch

    - by Jason Fitzpatrick
    Just because your old Wi-Fi router has been replaced by a newer model doesn’t mean it needs to gather dust in the closet. Read on as we show you how to take an old and underpowered Wi-Fi router and turn it into a respectable network switch (saving your $20 in the process). Image by mmgallan. Why Do I Want To Do This? Wi-Fi technology has changed significantly in the last ten years but Ethernet-based networking has changed very little. As such, a Wi-Fi router with 2006-era guts is lagging significantly behind current Wi-Fi router technology, but the Ethernet networking component of the device is just as useful as ever; aside from potentially being only 100Mbs instead of 1000Mbs capable (which for 99% of home applications is irrelevant) Ethernet is Ethernet. What does this matter to you, the consumer? It means that even though your old router doesn’t hack it for your Wi-Fi needs any longer the device is still a perfectly serviceable (and high quality) network switch. When do you need a network switch? Any time you want to share an Ethernet cable among multiple devices, you need a switch. For example, let’s say you have a single Ethernet wall jack behind your entertainment center. Unfortunately you have four devices that you want to link to your local network via hardline including your smart HDTV, DVR, Xbox, and a little Raspberry Pi running XBMC. Instead of spending $20-30 to purchase a brand new switch of comparable build quality to your old Wi-Fi router it makes financial sense (and is environmentally friendly) to invest five minutes of your time tweaking the settings on the old router to turn it from a Wi-Fi access point and routing tool into a network switch–perfect for dropping behind your entertainment center so that your DVR, Xbox, and media center computer can all share an Ethernet connection. What Do I Need? For this tutorial you’ll need a few things, all of which you likely have readily on hand or are free for download. To follow the basic portion of the tutorial, you’ll need the following: 1 Wi-Fi router with Ethernet ports 1 Computer with Ethernet jack 1 Ethernet cable For the advanced tutorial you’ll need all of those things, plus: 1 copy of DD-WRT firmware for your Wi-Fi router We’re conducting the experiment with a Linksys WRT54GL Wi-Fi router. The WRT54 series is one of the best selling Wi-Fi router series of all time and there’s a good chance a significant number of readers have one (or more) of them stuffed in an office closet. Even if you don’t have one of the WRT54 series routers, however, the principles we’re outlining here apply to all Wi-Fi routers; as long as your router administration panel allows the necessary changes you can follow right along with us. A quick note on the difference between the basic and advanced versions of this tutorial before we proceed. Your typical Wi-Fi router has 5 Ethernet ports on the back: 1 labeled “Internet”, “WAN”, or a variation thereof and intended to be connected to your DSL/Cable modem, and 4 labeled 1-4 intended to connect Ethernet devices like computers, printers, and game consoles directly to the Wi-Fi router. When you convert a Wi-Fi router to a switch, in most situations, you’ll lose two port as the “Internet” port cannot be used as a normal switch port and one of the switch ports becomes the input port for the Ethernet cable linking the switch to the main network. This means, referencing the diagram above, you’d lose the WAN port and LAN port 1, but retain LAN ports 2, 3, and 4 for use. If you only need to switch for 2-3 devices this may be satisfactory. However, for those of you that would prefer a more traditional switch setup where there is a dedicated WAN port and the rest of the ports are accessible, you’ll need to flash a third-party router firmware like the powerful DD-WRT onto your device. Doing so opens up the router to a greater degree of modification and allows you to assign the previously reserved WAN port to the switch, thus opening up LAN ports 1-4. Even if you don’t intend to use that extra port, DD-WRT offers you so many more options that it’s worth the extra few steps. Preparing Your Router for Life as a Switch Before we jump right in to shutting down the Wi-Fi functionality and repurposing your device as a network switch, there are a few important prep steps to attend to. First, you want to reset the router (if you just flashed a new firmware to your router, skip this step). Following the reset procedures for your particular router or go with what is known as the “Peacock Method” wherein you hold down the reset button for thirty seconds, unplug the router and wait (while still holding the reset button) for thirty seconds, and then plug it in while, again, continuing to hold down the rest button. Over the life of a router there are a variety of changes made, big and small, so it’s best to wipe them all back to the factory default before repurposing the router as a switch. Second, after resetting, we need to change the IP address of the device on the local network to an address which does not directly conflict with the new router. The typical default IP address for a home router is 192.168.1.1; if you ever need to get back into the administration panel of the router-turned-switch to check on things or make changes it will be a real hassle if the IP address of the device conflicts with the new home router. The simplest way to deal with this is to assign an address close to the actual router address but outside the range of addresses that your router will assign via the DHCP client; a good pick then is 192.168.1.2. Once the router is reset (or re-flashed) and has been assigned a new IP address, it’s time to configure it as a switch. Basic Router to Switch Configuration If you don’t want to (or need to) flash new firmware onto your device to open up that extra port, this is the section of the tutorial for you: we’ll cover how to take a stock router, our previously mentioned WRT54 series Linksys, and convert it to a switch. Hook the Wi-Fi router up to the network via one of the LAN ports (consider the WAN port as good as dead from this point forward, unless you start using the router in its traditional function again or later flash a more advanced firmware to the device, the port is officially retired at this point). Open the administration control panel via  web browser on a connected computer. Before we get started two things: first,  anything we don’t explicitly instruct you to change should be left in the default factory-reset setting as you find it, and two, change the settings in the order we list them as some settings can’t be changed after certain features are disabled. To start, let’s navigate to Setup ->Basic Setup. Here you need to change the following things: Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable Save with the “Save Settings” button and then navigate to Setup -> Advanced Routing: Operating Mode: Router This particular setting is very counterintuitive. The “Operating Mode” toggle tells the device whether or not it should enable the Network Address Translation (NAT)  feature. Because we’re turning a smart piece of networking hardware into a relatively dumb one, we don’t need this feature so we switch from Gateway mode (NAT on) to Router mode (NAT off). Our next stop is Wireless -> Basic Wireless Settings: Wireless SSID Broadcast: Disable Wireless Network Mode: Disabled After disabling the wireless we’re going to, again, do something counterintuitive. Navigate to Wireless -> Wireless Security and set the following parameters: Security Mode: WPA2 Personal WPA Algorithms: TKIP+AES WPA Shared Key: [select some random string of letters, numbers, and symbols like JF#d$di!Hdgio890] Now you may be asking yourself, why on Earth are we setting a rather secure Wi-Fi configuration on a Wi-Fi router we’re not going to use as a Wi-Fi node? On the off chance that something strange happens after, say, a power outage when your router-turned-switch cycles on and off a bunch of times and the Wi-Fi functionality is activated we don’t want to be running the Wi-Fi node wide open and granting unfettered access to your network. While the chances of this are next-to-nonexistent, it takes only a few seconds to apply the security measure so there’s little reason not to. Save your changes and navigate to Security ->Firewall. Uncheck everything but Filter Multicast Firewall Protect: Disable At this point you can save your changes again, review the changes you’ve made to ensure they all stuck, and then deploy your “new” switch wherever it is needed. Advanced Router to Switch Configuration For the advanced configuration, you’ll need a copy of DD-WRT installed on your router. Although doing so is an extra few steps, it gives you a lot more control over the process and liberates an extra port on the device. Hook the Wi-Fi router up to the network via one of the LAN ports (later you can switch the cable to the WAN port). Open the administration control panel via web browser on the connected computer. Navigate to the Setup -> Basic Setup tab to get started. In the Basic Setup tab, ensure the following settings are adjusted. The setting changes are not optional and are required to turn the Wi-Fi router into a switch. WAN Connection Type: Disabled Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable In addition to disabling the DHCP server, also uncheck all the DNSMasq boxes as the bottom of the DHCP sub-menu. If you want to activate the extra port (and why wouldn’t you), in the WAN port section: Assign WAN Port to Switch [X] At this point the router has become a switch and you have access to the WAN port so the LAN ports are all free. Since we’re already in the control panel, however, we might as well flip a few optional toggles that further lock down the switch and prevent something odd from happening. The optional settings are arranged via the menu you find them in. Remember to save your settings with the save button before moving onto a new tab. While still in the Setup -> Basic Setup menu, change the following: Gateway/Local DNS : [IP address of primary router, e.g. 192.168.1.1] NTP Client : Disable The next step is to turn off the radio completely (which not only kills the Wi-Fi but actually powers the physical radio chip off). Navigate to Wireless -> Advanced Settings -> Radio Time Restrictions: Radio Scheduling: Enable Select “Always Off” There’s no need to create a potential security problem by leaving the Wi-Fi radio on, the above toggle turns it completely off. Under Services -> Services: DNSMasq : Disable ttraff Daemon : Disable Under the Security -> Firewall tab, uncheck every box except “Filter Multicast”, as seen in the screenshot above, and then disable SPI Firewall. Once you’re done here save and move on to the Administration tab. Under Administration -> Management:  Info Site Password Protection : Enable Info Site MAC Masking : Disable CRON : Disable 802.1x : Disable Routing : Disable After this final round of tweaks, save and then apply your settings. Your router has now been, strategically, dumbed down enough to plod along as a very dependable little switch. Time to stuff it behind your desk or entertainment center and streamline your cabling.     

    Read the article

  • Load application context problem in Maven managed spring-test TestNg

    - by joejax
    I try to setup a project with spring-test using TestNg in Maven. The code is like: @ContextConfiguration(locations={"test-context.xml"}) public class AppTest extends AbstractTestNGSpringContextTests { @Test public void testApp() { assert true; } } A test-context.xml simply defined a bean: <bean id="app" class="org.sonatype.mavenbook.simple.App"/> I got error for Failed to load ApplicationContext when running mvn test from command line, seems it cannot find the test-context.xml file; however, I can get it run correctly inside Eclipse (with TestNg plugin). So, test-context.xml is under src/test/resources/, how do I indicate this in the pom.xml so that 'mvn test' command will work? Thanks, UPDATE: Thanks for the reply. Cannot load context file error was caused by I moved the file arround in different location since I though the classpath was the problem. Now I found the context file seems loaded from the Maven output, but the test is failed: Running TestSuite May 25, 2010 9:55:13 AM org.springframework.beans.factory.xml.XmlBeanDefinitionReader loadBeanDefinitions INFO: Loading XML bean definitions from class path resource [test-context.xml] May 25, 2010 9:55:13 AM org.springframework.context.support.AbstractApplicationContext prepareRefresh INFO: Refreshing org.springframework.context.support.GenericApplicationContext@171bbc9: display name [org.springframework.context.support.GenericApplicationContext@171bbc9]; startup date [Tue May 25 09:55:13 PDT 2010]; root of context hierarchy May 25, 2010 9:55:13 AM org.springframework.context.support.AbstractApplicationContext obtainFreshBeanFactory INFO: Bean factory for application context [org.springframework.context.support.GenericApplicationContext@171bbc9]: org.springframework.beans.factory.support.DefaultListableBeanFactory@1df8b99 May 25, 2010 9:55:13 AM org.springframework.beans.factory.support.DefaultListableBeanFactory preInstantiateSingletons INFO: Pre-instantiating singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@1df8b99: defining beans [app,org.springframework.context.annotation.internalCommonAnnotationProcessor,org.springframework.context.annotation.internalAutowiredAnnotationProcessor,org.springframework.context.annotation.internalRequiredAnnotationProcessor]; root of factory hierarchy Tests run: 3, Failures: 2, Errors: 0, Skipped: 1, Time elapsed: 0.63 sec If I use spring-test version 3.0.2.RELEASE, the error becomes: org.springframework.test.context.testng.AbstractTestNGSpringContextTests.springTestContextPrepareTestInstance() is depending on nonexistent method null Here is the structure of the project: simple |-- pom.xml `-- src |-- main | `-- java `-- test |-- java `-- resources |-- test-context.xml `-- testng.xml testng.xml: <suite name="Suite" parallel="false"> <test name="Test"> <classes> <class name="org.sonatype.mavenbook.simple.AppTest"/> </classes> </test> </suite> test-context.xml: <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd" default-lazy-init="true"> <bean id="app" class="org.sonatype.mavenbook.simple.App"/> </beans> In the pom.xml, I add testng, spring, and spring-test artifacts, and plugin: <dependency> <groupId>org.testng</groupId> <artifactId>testng</artifactId> <version>5.1</version> <classifier>jdk15</classifier> <scope>test</scope> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring</artifactId> <version>2.5.6</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-test</artifactId> <version>2.5.6</version> <scope>test</scope> </dependency> <build> <finalName>simple</finalName> <plugins> <plugin> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.6</source> <target>1.6</target> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <configuration> <suiteXmlFiles> <suiteXmlFile>src/test/resources/testng.xml</suiteXmlFile> </suiteXmlFiles> </configuration> </plugin> </plugins> Basically, I replaced 'A Simple Maven Project' Junit with TestNg, hope it works.

    Read the article

  • springTestContextBeforeTestMethod failed in Maven spring-test

    - by joejax
    I try to setup a project with spring-test using TestNg in Maven. The code is like: @ContextConfiguration(locations={"test-context.xml"}) public class AppTest extends AbstractTestNGSpringContextTests { @Test public void testApp() { assert true; } } A test-context.xml simply defined a bean: <bean id="app" class="org.sonatype.mavenbook.simple.App"/> I got error for Failed to load ApplicationContext when running mvn test from command line, seems it cannot find the test-context.xml file; however, I can get it run correctly inside Eclipse (with TestNg plugin). So, test-context.xml is under src/test/resources/, how do I indicate this in the pom.xml so that 'mvn test' command will work? Thanks, UPDATE: Thanks for the reply. Cannot load context file error was caused by I moved the file arround in different location since I though the classpath was the problem. Now I found the context file seems loaded from the Maven output, but the test is failed: Running TestSuite May 25, 2010 9:55:13 AM org.springframework.beans.factory.xml.XmlBeanDefinitionReader loadBeanDefinitions INFO: Loading XML bean definitions from class path resource [test-context.xml] May 25, 2010 9:55:13 AM org.springframework.context.support.AbstractApplicationContext prepareRefresh INFO: Refreshing org.springframework.context.support.GenericApplicationContext@171bbc9: display name [org.springframework.context.support.GenericApplicationContext@171bbc9]; startup date [Tue May 25 09:55:13 PDT 2010]; root of context hierarchy May 25, 2010 9:55:13 AM org.springframework.context.support.AbstractApplicationContext obtainFreshBeanFactory INFO: Bean factory for application context [org.springframework.context.support.GenericApplicationContext@171bbc9]: org.springframework.beans.factory.support.DefaultListableBeanFactory@1df8b99 May 25, 2010 9:55:13 AM org.springframework.beans.factory.support.DefaultListableBeanFactory preInstantiateSingletons INFO: Pre-instantiating singletons in org.springframework.beans.factory.support.DefaultListableBeanFactory@1df8b99: defining beans [app,org.springframework.context.annotation.internalCommonAnnotationProcessor,org.springframework.context.annotation.internalAutowiredAnnotationProcessor,org.springframework.context.annotation.internalRequiredAnnotationProcessor]; root of factory hierarchy Tests run: 3, Failures: 2, Errors: 0, Skipped: 1, Time elapsed: 0.63 sec <<< FAILURE! Results : Failed tests: springTestContextBeforeTestMethod(org.sonatype.mavenbook.simple.AppTest) springTestContextAfterTestMethod(org.sonatype.mavenbook.simple.AppTest) Tests run: 3, Failures: 2, Errors: 0, Skipped: 1 If I use spring-test version 3.0.2.RELEASE, the error becomes: org.springframework.test.context.testng.AbstractTestNGSpringContextTests.springTestContextPrepareTestInstance() is depending on nonexistent method null Here is the structure of the project: simple |-- pom.xml `-- src |-- main | `-- java `-- test |-- java `-- resources |-- test-context.xml `-- testng.xml testng.xml: <suite name="Suite" parallel="false"> <test name="Test"> <classes> <class name="org.sonatype.mavenbook.simple.AppTest"/> </classes> </test> </suite> test-context.xml: <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd" default-lazy-init="true"> <bean id="app" class="org.sonatype.mavenbook.simple.App"/> </beans> In the pom.xml, I add testng, spring, and spring-test artifacts, and plugin: <dependency> <groupId>org.testng</groupId> <artifactId>testng</artifactId> <version>5.1</version> <classifier>jdk15</classifier> <scope>test</scope> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring</artifactId> <version>2.5.6</version> </dependency> <dependency> <groupId>org.springframework</groupId> <artifactId>spring-test</artifactId> <version>2.5.6</version> <scope>test</scope> </dependency> <build> <finalName>simple</finalName> <plugins> <plugin> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.6</source> <target>1.6</target> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <configuration> <suiteXmlFiles> <suiteXmlFile>src/test/resources/testng.xml</suiteXmlFile> </suiteXmlFiles> </configuration> </plugin> </plugins> Basically, I replaced 'A Simple Maven Project' Junit with TestNg, hope it works. UPDATE: I think I got the problem (still don't know why) - Whenever I extends AbstractTestNGSpringContextTests or AbstractTransactionalTestNGSpringContextTests, the test will failed with this error: Failed tests: springTestContextBeforeTestMethod(org.sonatype.mavenbook.simple.AppTest) springTestContextAfterTestMethod(org.sonatype.mavenbook.simple.AppTest) So, eventually the error went away when I override the two methods. I don't think this is the right way, didn't find much info from spring-test doc. If you know spring test framework, please shred some light on this.

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 3 – Table per Concrete Type (TPC) and Choosing Strategy Guidelines

    - by mortezam
    This is the third (and last) post in a series that explains different approaches to map an inheritance hierarchy with EF Code First. I've described these strategies in previous posts: Part 1 – Table per Hierarchy (TPH) Part 2 – Table per Type (TPT)In today’s blog post I am going to discuss Table per Concrete Type (TPC) which completes the inheritance mapping strategies supported by EF Code First. At the end of this post I will provide some guidelines to choose an inheritance strategy mainly based on what we've learned in this series. TPC and Entity Framework in the Past Table per Concrete type is somehow the simplest approach suggested, yet using TPC with EF is one of those concepts that has not been covered very well so far and I've seen in some resources that it was even discouraged. The reason for that is just because Entity Data Model Designer in VS2010 doesn't support TPC (even though the EF runtime does). That basically means if you are following EF's Database-First or Model-First approaches then configuring TPC requires manually writing XML in the EDMX file which is not considered to be a fun practice. Well, no more. You'll see that with Code First, creating TPC is perfectly possible with fluent API just like other strategies and you don't need to avoid TPC due to the lack of designer support as you would probably do in other EF approaches. Table per Concrete Type (TPC)In Table per Concrete type (aka Table per Concrete class) we use exactly one table for each (nonabstract) class. All properties of a class, including inherited properties, can be mapped to columns of this table, as shown in the following figure: As you can see, the SQL schema is not aware of the inheritance; effectively, we’ve mapped two unrelated tables to a more expressive class structure. If the base class was concrete, then an additional table would be needed to hold instances of that class. I have to emphasize that there is no relationship between the database tables, except for the fact that they share some similar columns. TPC Implementation in Code First Just like the TPT implementation, we need to specify a separate table for each of the subclasses. We also need to tell Code First that we want all of the inherited properties to be mapped as part of this table. In CTP5, there is a new helper method on EntityMappingConfiguration class called MapInheritedProperties that exactly does this for us. Here is the complete object model as well as the fluent API to create a TPC mapping: public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } }          public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } }          public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } }      public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; }              protected override void OnModelCreating(ModelBuilder modelBuilder)     {         modelBuilder.Entity<BankAccount>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("BankAccounts");         });         modelBuilder.Entity<CreditCard>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("CreditCards");         });                 } } The Importance of EntityMappingConfiguration ClassAs a side note, it worth mentioning that EntityMappingConfiguration class turns out to be a key type for inheritance mapping in Code First. Here is an snapshot of this class: namespace System.Data.Entity.ModelConfiguration.Configuration.Mapping {     public class EntityMappingConfiguration<TEntityType> where TEntityType : class     {         public ValueConditionConfiguration Requires(string discriminator);         public void ToTable(string tableName);         public void MapInheritedProperties();     } } As you have seen so far, we used its Requires method to customize TPH. We also used its ToTable method to create a TPT and now we are using its MapInheritedProperties along with ToTable method to create our TPC mapping. TPC Configuration is Not Done Yet!We are not quite done with our TPC configuration and there is more into this story even though the fluent API we saw perfectly created a TPC mapping for us in the database. To see why, let's start working with our object model. For example, the following code creates two new objects of BankAccount and CreditCard types and tries to add them to the database: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount();     CreditCard creditCard = new CreditCard() { CardType = 1 };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Running this code throws an InvalidOperationException with this message: The changes to the database were committed successfully, but an error occurred while updating the object context. The ObjectContext might be in an inconsistent state. Inner exception message: AcceptChanges cannot continue because the object's key values conflict with another object in the ObjectStateManager. Make sure that the key values are unique before calling AcceptChanges. The reason we got this exception is because DbContext.SaveChanges() internally invokes SaveChanges method of its internal ObjectContext. ObjectContext's SaveChanges method on its turn by default calls AcceptAllChanges after it has performed the database modifications. AcceptAllChanges method merely iterates over all entries in ObjectStateManager and invokes AcceptChanges on each of them. Since the entities are in Added state, AcceptChanges method replaces their temporary EntityKey with a regular EntityKey based on the primary key values (i.e. BillingDetailId) that come back from the database and that's where the problem occurs since both the entities have been assigned the same value for their primary key by the database (i.e. on both BillingDetailId = 1) and the problem is that ObjectStateManager cannot track objects of the same type (i.e. BillingDetail) with the same EntityKey value hence it throws. If you take a closer look at the TPC's SQL schema above, you'll see why the database generated the same values for the primary keys: the BillingDetailId column in both BankAccounts and CreditCards table has been marked as identity. How to Solve The Identity Problem in TPC As you saw, using SQL Server’s int identity columns doesn't work very well together with TPC since there will be duplicate entity keys when inserting in subclasses tables with all having the same identity seed. Therefore, to solve this, either a spread seed (where each table has its own initial seed value) will be needed, or a mechanism other than SQL Server’s int identity should be used. Some other RDBMSes have other mechanisms allowing a sequence (identity) to be shared by multiple tables, and something similar can be achieved with GUID keys in SQL Server. While using GUID keys, or int identity keys with different starting seeds will solve the problem but yet another solution would be to completely switch off identity on the primary key property. As a result, we need to take the responsibility of providing unique keys when inserting records to the database. We will go with this solution since it works regardless of which database engine is used. Switching Off Identity in Code First We can switch off identity simply by placing DatabaseGenerated attribute on the primary key property and pass DatabaseGenerationOption.None to its constructor. DatabaseGenerated attribute is a new data annotation which has been added to System.ComponentModel.DataAnnotations namespace in CTP5: public abstract class BillingDetail {     [DatabaseGenerated(DatabaseGenerationOption.None)]     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } As always, we can achieve the same result by using fluent API, if you prefer that: modelBuilder.Entity<BillingDetail>()             .Property(p => p.BillingDetailId)             .HasDatabaseGenerationOption(DatabaseGenerationOption.None); Working With The Object Model Our TPC mapping is ready and we can try adding new records to the database. But, like I said, now we need to take care of providing unique keys when creating new objects: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount()      {          BillingDetailId = 1                          };     CreditCard creditCard = new CreditCard()      {          BillingDetailId = 2,         CardType = 1     };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Polymorphic Associations with TPC is Problematic The main problem with this approach is that it doesn’t support Polymorphic Associations very well. After all, in the database, associations are represented as foreign key relationships and in TPC, the subclasses are all mapped to different tables so a polymorphic association to their base class (abstract BillingDetail in our example) cannot be represented as a simple foreign key relationship. For example, consider the the domain model we introduced here where User has a polymorphic association with BillingDetail. This would be problematic in our TPC Schema, because if User has a many-to-one relationship with BillingDetail, the Users table would need a single foreign key column, which would have to refer both concrete subclass tables. This isn’t possible with regular foreign key constraints. Schema Evolution with TPC is Complex A further conceptual problem with this mapping strategy is that several different columns, of different tables, share exactly the same semantics. This makes schema evolution more complex. For example, a change to a base class property results in changes to multiple columns. It also makes it much more difficult to implement database integrity constraints that apply to all subclasses. Generated SQLLet's examine SQL output for polymorphic queries in TPC mapping. For example, consider this polymorphic query for all BillingDetails and the resulting SQL statements that being executed in the database: var query = from b in context.BillingDetails select b; Just like the SQL query generated by TPT mapping, the CASE statements that you see in the beginning of the query is merely to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type). TPC's SQL Queries are Union Based As you can see in the above screenshot, the first SELECT uses a FROM-clause subquery (which is selected with a red rectangle) to retrieve all instances of BillingDetails from all concrete class tables. The tables are combined with a UNION operator, and a literal (in this case, 0 and 1) is inserted into the intermediate result; (look at the lines highlighted in yellow.) EF reads this to instantiate the correct class given the data from a particular row. A union requires that the queries that are combined, project over the same columns; hence, EF has to pad and fill up nonexistent columns with NULL. This query will really perform well since here we can let the database optimizer find the best execution plan to combine rows from several tables. There is also no Joins involved so it has a better performance than the SQL queries generated by TPT where a Join is required between the base and subclasses tables. Choosing Strategy GuidelinesBefore we get into this discussion, I want to emphasize that there is no one single "best strategy fits all scenarios" exists. As you saw, each of the approaches have their own advantages and drawbacks. Here are some rules of thumb to identify the best strategy in a particular scenario: If you don’t require polymorphic associations or queries, lean toward TPC—in other words, if you never or rarely query for BillingDetails and you have no class that has an association to BillingDetail base class. I recommend TPC (only) for the top level of your class hierarchy, where polymorphism isn’t usually required, and when modification of the base class in the future is unlikely. If you do require polymorphic associations or queries, and subclasses declare relatively few properties (particularly if the main difference between subclasses is in their behavior), lean toward TPH. Your goal is to minimize the number of nullable columns and to convince yourself (and your DBA) that a denormalized schema won’t create problems in the long run. If you do require polymorphic associations or queries, and subclasses declare many properties (subclasses differ mainly by the data they hold), lean toward TPT. Or, depending on the width and depth of your inheritance hierarchy and the possible cost of joins versus unions, use TPC. By default, choose TPH only for simple problems. For more complex cases (or when you’re overruled by a data modeler insisting on the importance of nullability constraints and normalization), you should consider the TPT strategy. But at that point, ask yourself whether it may not be better to remodel inheritance as delegation in the object model (delegation is a way of making composition as powerful for reuse as inheritance). Complex inheritance is often best avoided for all sorts of reasons unrelated to persistence or ORM. EF acts as a buffer between the domain and relational models, but that doesn’t mean you can ignore persistence concerns when designing your classes. SummaryIn this series, we focused on one of the main structural aspect of the object/relational paradigm mismatch which is inheritance and discussed how EF solve this problem as an ORM solution. We learned about the three well-known inheritance mapping strategies and their implementations in EF Code First. Hopefully it gives you a better insight about the mapping of inheritance hierarchies as well as choosing the best strategy for your particular scenario. Happy New Year and Happy Code-Firsting! References ADO.NET team blog Java Persistence with Hibernate book a { color: #5A99FF; } a:visited { color: #5A99FF; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } .exception { background-color: #f0f0f0; font-style: italic; padding-bottom: 5px; padding-left: 5px; padding-top: 5px; padding-right: 5px; }

    Read the article

< Previous Page | 1 2 3 4