Search Results

Search found 1627 results on 66 pages for 'scenarios'.

Page 4/66 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • When to use JOINs

    - by waiwai933
    It seems to me that there are two scenarios in which to use JOINs: When data would otherwise be duplicated When data from one query would otherwise be used in another query Are these scenarios right? Are there any other scenarios in which to use JOIN?

    Read the article

  • Using SQL Server Integration Services and StreamInsight Together

    The purpose of this paper is to provide guidance for enriching data integration scenarios by integrating StreamInsight with SQL Server Integration Services. Specifically, we looked at the technical challenges and solutions for such integration, by using a case study based on a customer scenarios in the telecommunications sector. NEW! SQL Monitor 2.0Monitor SQL Server Central's servers withRed Gate's new SQL Monitor.No installation required. Find out more.

    Read the article

  • Transactional Messaging in the Windows Azure Service Bus

    - by Alan Smith
    Introduction I’m currently working on broadening the content in the Windows Azure Service Bus Developer Guide. One of the features I have been looking at over the past week is the support for transactional messaging. When using the direct programming model and the WCF interface some, but not all, messaging operations can participate in transactions. This allows developers to improve the reliability of messaging systems. There are some limitations in the transactional model, transactions can only include one top level messaging entity (such as a queue or topic, subscriptions are no top level entities), and transactions cannot include other systems, such as databases. As the transaction model is currently not well documented I have had to figure out how things work through experimentation, with some help from the development team to confirm any questions I had. Hopefully I’ve got the content mostly correct, I will update the content in the e-book if I find any errors or improvements that can be made (any feedback would be very welcome). I’ve not had a chance to look into the code for transactions and asynchronous operations, maybe that would make a nice challenge lab for my Windows Azure Service Bus course. Transactional Messaging Messaging entities in the Windows Azure Service Bus provide support for participation in transactions. This allows developers to perform several messaging operations within a transactional scope, and ensure that all the actions are committed or, if there is a failure, none of the actions are committed. There are a number of scenarios where the use of transactions can increase the reliability of messaging systems. Using TransactionScope In .NET the TransactionScope class can be used to perform a series of actions in a transaction. The using declaration is typically used de define the scope of the transaction. Any transactional operations that are contained within the scope can be committed by calling the Complete method. If the Complete method is not called, any transactional methods in the scope will not commit.   // Create a transactional scope. using (TransactionScope scope = new TransactionScope()) {     // Do something.       // Do something else.       // Commit the transaction.     scope.Complete(); }     In order for methods to participate in the transaction, they must provide support for transactional operations. Database and message queue operations typically provide support for transactions. Transactions in Brokered Messaging Transaction support in Service Bus Brokered Messaging allows message operations to be performed within a transactional scope; however there are some limitations around what operations can be performed within the transaction. In the current release, only one top level messaging entity, such as a queue or topic can participate in a transaction, and the transaction cannot include any other transaction resource managers, making transactions spanning a messaging entity and a database not possible. When sending messages, the send operations can participate in a transaction allowing multiple messages to be sent within a transactional scope. This allows for “all or nothing” delivery of a series of messages to a single queue or topic. When receiving messages, messages that are received in the peek-lock receive mode can be completed, deadlettered or deferred within a transactional scope. In the current release the Abandon method will not participate in a transaction. The same restrictions of only one top level messaging entity applies here, so the Complete method can be called transitionally on messages received from the same queue, or messages received from one or more subscriptions in the same topic. Sending Multiple Messages in a Transaction A transactional scope can be used to send multiple messages to a queue or topic. This will ensure that all the messages will be enqueued or, if the transaction fails to commit, no messages will be enqueued.     An example of the code used to send 10 messages to a queue as a single transaction from a console application is shown below.   QueueClient queueClient = messagingFactory.CreateQueueClient(Queue1);   Console.Write("Sending");   // Create a transaction scope. using (TransactionScope scope = new TransactionScope()) {     for (int i = 0; i < 10; i++)     {         // Send a message         BrokeredMessage msg = new BrokeredMessage("Message: " + i);         queueClient.Send(msg);         Console.Write(".");     }     Console.WriteLine("Done!");     Console.WriteLine();       // Should we commit the transaction?     Console.WriteLine("Commit send 10 messages? (yes or no)");     string reply = Console.ReadLine();     if (reply.ToLower().Equals("yes"))     {         // Commit the transaction.         scope.Complete();     } } Console.WriteLine(); messagingFactory.Close();     The transaction scope is used to wrap the sending of 10 messages. Once the messages have been sent the user has the option to either commit the transaction or abandon the transaction. If the user enters “yes”, the Complete method is called on the scope, which will commit the transaction and result in the messages being enqueued. If the user enters anything other than “yes”, the transaction will not commit, and the messages will not be enqueued. Receiving Multiple Messages in a Transaction The receiving of multiple messages is another scenario where the use of transactions can improve reliability. When receiving a group of messages that are related together, maybe in the same message session, it is possible to receive the messages in the peek-lock receive mode, and then complete, defer, or deadletter the messages in one transaction. (In the current version of Service Bus, abandon is not transactional.)   The following code shows how this can be achieved. using (TransactionScope scope = new TransactionScope()) {       while (true)     {         // Receive a message.         BrokeredMessage msg = q1Client.Receive(TimeSpan.FromSeconds(1));         if (msg != null)         {             // Wrote message body and complete message.             string text = msg.GetBody<string>();             Console.WriteLine("Received: " + text);             msg.Complete();         }         else         {             break;         }     }     Console.WriteLine();       // Should we commit?     Console.WriteLine("Commit receive? (yes or no)");     string reply = Console.ReadLine();     if (reply.ToLower().Equals("yes"))     {         // Commit the transaction.         scope.Complete();     }     Console.WriteLine(); }     Note that if there are a large number of messages to be received, there will be a chance that the transaction may time out before it can be committed. It is possible to specify a longer timeout when the transaction is created, but It may be better to receive and commit smaller amounts of messages within the transaction. It is also possible to complete, defer, or deadletter messages received from more than one subscription, as long as all the subscriptions are contained in the same topic. As subscriptions are not top level messaging entities this scenarios will work. The following code shows how this can be achieved. try {     using (TransactionScope scope = new TransactionScope())     {         // Receive one message from each subscription.         BrokeredMessage msg1 = subscriptionClient1.Receive();         BrokeredMessage msg2 = subscriptionClient2.Receive();           // Complete the message receives.         msg1.Complete();         msg2.Complete();           Console.WriteLine("Msg1: " + msg1.GetBody<string>());         Console.WriteLine("Msg2: " + msg2.GetBody<string>());           // Commit the transaction.         scope.Complete();     } } catch (Exception ex) {     Console.WriteLine(ex.Message); }     Unsupported Scenarios The restriction of only one top level messaging entity being able to participate in a transaction makes some useful scenarios unsupported. As the Windows Azure Service Bus is under continuous development and new releases are expected to be frequent it is possible that this restriction may not be present in future releases. The first is the scenario where messages are to be routed to two different systems. The following code attempts to do this.   try {     // Create a transaction scope.     using (TransactionScope scope = new TransactionScope())     {         BrokeredMessage msg1 = new BrokeredMessage("Message1");         BrokeredMessage msg2 = new BrokeredMessage("Message2");           // Send a message to Queue1         Console.WriteLine("Sending Message1");         queue1Client.Send(msg1);           // Send a message to Queue2         Console.WriteLine("Sending Message2");         queue2Client.Send(msg2);           // Commit the transaction.         Console.WriteLine("Committing transaction...");         scope.Complete();     } } catch (Exception ex) {     Console.WriteLine(ex.Message); }     The results of running the code are shown below. When attempting to send a message to the second queue the following exception is thrown: No active Transaction was found for ID '35ad2495-ee8a-4956-bbad-eb4fedf4a96e:1'. The Transaction may have timed out or attempted to span multiple top-level entities such as Queue or Topic. The server Transaction timeout is: 00:01:00..TrackingId:947b8c4b-7754-4044-b91b-4a959c3f9192_3_3,TimeStamp:3/29/2012 7:47:32 AM.   Another scenario where transactional support could be useful is when forwarding messages from one queue to another queue. This would also involve more than one top level messaging entity, and is therefore not supported.   Another scenario that developers may wish to implement is performing transactions across messaging entities and other transactional systems, such as an on-premise database. In the current release this is not supported.   Workarounds for Unsupported Scenarios There are some techniques that developers can use to work around the one top level entity limitation of transactions. When sending two messages to two systems, topics and subscriptions can be used. If the same message is to be sent to two destinations then the subscriptions would have the default subscriptions, and the client would only send one message. If two different messages are to be sent, then filters on the subscriptions can route the messages to the appropriate destination. The client can then send the two messages to the topic in the same transaction.   In scenarios where a message needs to be received and then forwarded to another system within the same transaction topics and subscriptions can also be used. A message can be received from a subscription, and then sent to a topic within the same transaction. As a topic is a top level messaging entity, and a subscription is not, this scenario will work.

    Read the article

  • Anti-Forgery Request Recipes For ASP.NET MVC And AJAX

    - by Dixin
    Background To secure websites from cross-site request forgery (CSRF, or XSRF) attack, ASP.NET MVC provides an excellent mechanism: The server prints tokens to cookie and inside the form; When the form is submitted to server, token in cookie and token inside the form are sent in the HTTP request; Server validates the tokens. To print tokens to browser, just invoke HtmlHelper.AntiForgeryToken():<% using (Html.BeginForm()) { %> <%: this.Html.AntiForgeryToken(Constants.AntiForgeryTokenSalt)%> <%-- Other fields. --%> <input type="submit" value="Submit" /> <% } %> This invocation generates a token then writes inside the form:<form action="..." method="post"> <input name="__RequestVerificationToken" type="hidden" value="J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP" /> <!-- Other fields. --> <input type="submit" value="Submit" /> </form> and also writes into the cookie: __RequestVerificationToken_Lw__= J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP When the above form is submitted, they are both sent to server. In the server side, [ValidateAntiForgeryToken] attribute is used to specify the controllers or actions to validate them:[HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult Action(/* ... */) { // ... } This is very productive for form scenarios. But recently, when resolving security vulnerabilities for Web products, some problems are encountered. Specify validation on controller (not on each action) The server side problem is, It is expected to declare [ValidateAntiForgeryToken] on controller, but actually it has be to declared on each POST actions. Because POST actions are usually much more then controllers, the work would be a little crazy. Problem Usually a controller contains actions for HTTP GET and actions for HTTP POST requests, and usually validations are expected for HTTP POST requests. So, if the [ValidateAntiForgeryToken] is declared on the controller, the HTTP GET requests become invalid:[ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public class SomeController : Controller // One [ValidateAntiForgeryToken] attribute. { [HttpGet] public ActionResult Index() // Index() cannot work. { // ... } [HttpPost] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] public ActionResult PostAction2(/* ... */) { // ... } // ... } If browser sends an HTTP GET request by clicking a link: http://Site/Some/Index, validation definitely fails, because no token is provided. So the result is, [ValidateAntiForgeryToken] attribute must be distributed to each POST action:public class SomeController : Controller // Many [ValidateAntiForgeryToken] attributes. { [HttpGet] public ActionResult Index() // Works. { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction2(/* ... */) { // ... } // ... } This is a little bit crazy, because one application can have a lot of POST actions. Solution To avoid a large number of [ValidateAntiForgeryToken] attributes (one for each POST action), the following ValidateAntiForgeryTokenWrapperAttribute wrapper class can be helpful, where HTTP verbs can be specified:[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false, Inherited = true)] public class ValidateAntiForgeryTokenWrapperAttribute : FilterAttribute, IAuthorizationFilter { private readonly ValidateAntiForgeryTokenAttribute _validator; private readonly AcceptVerbsAttribute _verbs; public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs) : this(verbs, null) { } public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs, string salt) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = salt }; } public void OnAuthorization(AuthorizationContext filterContext) { string httpMethodOverride = filterContext.HttpContext.Request.GetHttpMethodOverride(); if (this._verbs.Verbs.Contains(httpMethodOverride, StringComparer.OrdinalIgnoreCase)) { this._validator.OnAuthorization(filterContext); } } } When this attribute is declared on controller, only HTTP requests with the specified verbs are validated:[ValidateAntiForgeryTokenWrapper(HttpVerbs.Post, Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { // GET actions are not affected. // Only HTTP POST requests are validated. } Now one single attribute on controller turns on validation for all POST actions. Maybe it would be nice if HTTP verbs can be specified on the built-in [ValidateAntiForgeryToken] attribute, which is easy to implemented. Specify Non-constant salt in runtime By default, the salt should be a compile time constant, so it can be used for the [ValidateAntiForgeryToken] or [ValidateAntiForgeryTokenWrapper] attribute. Problem One Web product might be sold to many clients. If a constant salt is evaluated in compile time, after the product is built and deployed to many clients, they all have the same salt. Of course, clients do not like this. Even some clients might want to specify a custom salt in configuration. In these scenarios, salt is required to be a runtime value. Solution In the above [ValidateAntiForgeryToken] and [ValidateAntiForgeryTokenWrapper] attribute, the salt is passed through constructor. So one solution is to remove this parameter:public class ValidateAntiForgeryTokenWrapperAttribute : FilterAttribute, IAuthorizationFilter { public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = AntiForgeryToken.Value }; } // Other members. } But here the injected dependency becomes a hard dependency. So the other solution is moving validation code into controller to work around the limitation of attributes:public abstract class AntiForgeryControllerBase : Controller { private readonly ValidateAntiForgeryTokenAttribute _validator; private readonly AcceptVerbsAttribute _verbs; protected AntiForgeryControllerBase(HttpVerbs verbs, string salt) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = salt }; } protected override void OnAuthorization(AuthorizationContext filterContext) { base.OnAuthorization(filterContext); string httpMethodOverride = filterContext.HttpContext.Request.GetHttpMethodOverride(); if (this._verbs.Verbs.Contains(httpMethodOverride, StringComparer.OrdinalIgnoreCase)) { this._validator.OnAuthorization(filterContext); } } } Then make controller classes inheriting from this AntiForgeryControllerBase class. Now the salt is no long required to be a compile time constant. Submit token via AJAX For browser side, once server side turns on anti-forgery validation for HTTP POST, all AJAX POST requests will fail by default. Problem In AJAX scenarios, the HTTP POST request is not sent by form. Take jQuery as an example:$.post(url, { productName: "Tofu", categoryId: 1 // Token is not posted. }, callback); This kind of AJAX POST requests will always be invalid, because server side code cannot see the token in the posted data. Solution Basically, the tokens must be printed to browser then sent back to server. So first of all, HtmlHelper.AntiForgeryToken() need to be called somewhere. Now the browser has token in both HTML and cookie. Then jQuery must find the printed token in the HTML, and append token to the data before sending:$.post(url, { productName: "Tofu", categoryId: 1, __RequestVerificationToken: getToken() // Token is posted. }, callback); To be reusable, this can be encapsulated into a tiny jQuery plugin:/// <reference path="jquery-1.4.2.js" /> (function ($) { $.getAntiForgeryToken = function (tokenWindow, appPath) { // HtmlHelper.AntiForgeryToken() must be invoked to print the token. tokenWindow = tokenWindow && typeof tokenWindow === typeof window ? tokenWindow : window; appPath = appPath && typeof appPath === "string" ? "_" + appPath.toString() : ""; // The name attribute is either __RequestVerificationToken, // or __RequestVerificationToken_{appPath}. tokenName = "__RequestVerificationToken" + appPath; // Finds the <input type="hidden" name={tokenName} value="..." /> from the specified. // var inputElements = $("input[type='hidden'][name='__RequestVerificationToken" + appPath + "']"); var inputElements = tokenWindow.document.getElementsByTagName("input"); for (var i = 0; i < inputElements.length; i++) { var inputElement = inputElements[i]; if (inputElement.type === "hidden" && inputElement.name === tokenName) { return { name: tokenName, value: inputElement.value }; } } return null; }; $.appendAntiForgeryToken = function (data, token) { // Converts data if not already a string. if (data && typeof data !== "string") { data = $.param(data); } // Gets token from current window by default. token = token ? token : $.getAntiForgeryToken(); // $.getAntiForgeryToken(window). data = data ? data + "&" : ""; // If token exists, appends {token.name}={token.value} to data. return token ? data + encodeURIComponent(token.name) + "=" + encodeURIComponent(token.value) : data; }; // Wraps $.post(url, data, callback, type). $.postAntiForgery = function (url, data, callback, type) { return $.post(url, $.appendAntiForgeryToken(data), callback, type); }; // Wraps $.ajax(settings). $.ajaxAntiForgery = function (settings) { settings.data = $.appendAntiForgeryToken(settings.data); return $.ajax(settings); }; })(jQuery); In most of the scenarios, it is Ok to just replace $.post() invocation with $.postAntiForgery(), and replace $.ajax() with $.ajaxAntiForgery():$.postAntiForgery(url, { productName: "Tofu", categoryId: 1 }, callback); // Token is posted. There might be some scenarios of custom token, where $.appendAntiForgeryToken() is useful:data = $.appendAntiForgeryToken(data, token); // Token is already in data. No need to invoke $.postAntiForgery(). $.post(url, data, callback); And there are scenarios that the token is not in the current window. For example, an HTTP POST request can be sent by an iframe, while the token is in the parent window. Here, token's container window can be specified for $.getAntiForgeryToken():data = $.appendAntiForgeryToken(data, $.getAntiForgeryToken(window.parent)); // Token is already in data. No need to invoke $.postAntiForgery(). $.post(url, data, callback); If you have better solution, please do tell me.

    Read the article

  • What should be the architecture of an urban game system?

    - by pmichna
    I'm going to develop an urban game using a telco API for phone geolocation and sending/receiving messages. A player would pick up one of the scenarios, move around the city and when he hits a given location, he gets a message and possibly has to answer it. I'm wondering, what approach would be the best in my case. I came up with this general idea: Web application as a user interface (user registration, players ranking, scenarios editing) written in Ruby on Rails. Game server (hosting games, game logic like checking players location, sending and receiving messages) written in Ruby. Database (users, scores, scenarios etc.), probably MySQL or someother open source DB. I want to learn Ruby and RoR, that's why I chose these language and framework. Do you think it's a good choice for a game server? Another question: is this project division good? I mean, I have little experience with Ruby and Rails - that's why I'm asking. Maybe it's better to have web application merged with game server and somehow have the server hosting RoR application do the tasks like mobile phone pinging and message sending? How would that be performed? Maybe this is worth mentioning: the API is RESTful, most results are JSON, few are XML.

    Read the article

  • Insurance Outlook: Just Right of Center

    - by Chuck Johnston Admin
    On Tuesday June 21st, PwC lead a session at the International Insurance Society meeting in Toronto focused on the opportunity in insurance.  The scenarios focusing on globalization, regulation and new areas of insurance opportunity were well defined and thought provoking, but the most interesting part of the session was the audience participation. PwC used a favorite strategic planning tool of mine, scenario planning, to highlight the important financial, political, social and technological dimensions that impact the insurance industry. Using wireless polling keypads, the audience was able to participate in scoring a range of possibilities across each dimension using a 1 to 5 ranking; 1 being generally negative or highly pessimistic scenarios and 5 being very positive or more confident scenarios. The results were then displayed on a screen with a line or "center" in the middle. "Left of center" was defined as being highly cautious and conservative, while "right of center" was defined as a more optimistic outlook for the industry's future. This session was attended by insurance carriers' senior leadership, leading insurance academics, senior regulators, and the occasional insurance technology executive. In general, the average answer fell just right of center, i.e. a little more positive or optimistic than center. Three years ago, after the 2008 financial crisis, I suspect the answers would have skewed more sharply to the left of center. This sense that things are generally getting better for insurers and that there is the potential for positive change pervaded the conference. There is still caution and concern around economic factors, regulation (especially the potential pitfalls of regulatory convergence with banking) and talent management, but in general, the industry outlook is more positive than it's been in several years. Chuck Johnston is vice president of industry strategy, Oracle Insurance. 

    Read the article

  • BizTalk 2009 - BizTalk Benchmark Wizard: Running a Test

    - by StuartBrierley
    The BizTalk Benchmark Wizard is a ultility that can be used to gain some validation of a BizTalk installation, giving a level of guidance on whether it is performing as might be expected.  It should be used after BizTalk Server has been installed and before any solutions are deployed to the environment.  This will ensure that you are getting consistent and clean results from the BizTalk Benchmark Wizard. The BizTalk Benchmark Wizard applies load to the BizTalk Server environment under a choice of specific scenarios. During these scenarios performance counter information is collected and assessed against statistics that are appropriate to the BizTalk Server environment. For details on installing the Benchmark Wizard see my previous post. The BizTalk Benchmarking Wizard provides two simple test scenarios, one for messaging and one for Orchestrations, which can be used to test your BizTalk implementation. Messaging Loadgen generates a new XML message and sends it over NetTCP A WCF-NetTCP Receive Location receives a the xml document from Loadgen. The PassThruReceive pipeline performs no processing and the message is published by the EPM to the MessageBox. The WCF One-Way Send Port, which is the only subscriber to the message, retrieves the message from the MessageBox The PassThruTransmit pipeline provides no additional processing The message is delivered to the back end WCF service by the WCF NetTCP adapter Orchestrations Loadgen generates a new XML message and sends it over NetTCP A WCF-NetTCP Receive Location receives a the xml document from Loadgen. The XMLReceive pipeline performs no processing and the message is published by the EPM to the MessageBox. The message is delivered to a simple Orchestration which consists of a receive location and a send port The WCF One-Way Send Port, which is the only subscriber to the Orchestration message, retrieves the message from the MessageBox The PassThruTransmit pipeline provides no additional processing The message is delivered to the back end WCF service by the WCF NetTCP adapter Below is a quick outline of how to run the BizTalk Benchmark Wizard on a single server, although it should be noted that this is not ideal as this server is then both generating and processing the load.  In order to separate this load out you should run the "Indigo" service on a seperate server. To start the BizTalk Benchmark Wizard click Start > All Programs > BizTalk Benchmark Wizard > BizTalk Benchmark Wizard. On this screen click next, you will then get the following pop up window. Check the server and database names and check the "check prerequsites" check-box before pressing ok.  The wizard will then check that the appropriate test scenarios are installed. You should then choose the test scenario that wish to run (messaging or orchestration) and the architecture that most closely matches your environment. You will then be asked to confirm the host server for each of the host instances. Next you will be presented with the prepare screen.  You will need to start the indigo service before pressing the Test Indigo Service Button. If you are running the indigo service on a separate server you can enter the server name here.  To start the indigo service click Start > All Programs > BizTalk Benchmark Wizard > Start Indigo Service.   While the test is running you will be presented with two speed dial type displays - one for the received messages per second and one for the processed messages per second. The green dial shows the current rate and the red dial shows the overall average rate.  Optionally you can view the CPU usage of the various servers involved in processing the tests. For my development environment I expected low results and this is what I got.  Although looking at the online high scores table and comparing to the quad core system listed, the results are perhaps not really that bad. At some time I may look at what improvements I can make to this score, but if you are interested in that now take a look at Benchmark your BizTalk Server (Part 3).

    Read the article

  • Anti-Forgery Request Helpers for ASP.NET MVC and jQuery AJAX

    - by Dixin
    Background To secure websites from cross-site request forgery (CSRF, or XSRF) attack, ASP.NET MVC provides an excellent mechanism: The server prints tokens to cookie and inside the form; When the form is submitted to server, token in cookie and token inside the form are sent in the HTTP request; Server validates the tokens. To print tokens to browser, just invoke HtmlHelper.AntiForgeryToken():<% using (Html.BeginForm()) { %> <%: this.Html.AntiForgeryToken(Constants.AntiForgeryTokenSalt)%> <%-- Other fields. --%> <input type="submit" value="Submit" /> <% } %> This invocation generates a token then writes inside the form:<form action="..." method="post"> <input name="__RequestVerificationToken" type="hidden" value="J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP" /> <!-- Other fields. --> <input type="submit" value="Submit" /> </form> and also writes into the cookie: __RequestVerificationToken_Lw__= J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP When the above form is submitted, they are both sent to server. In the server side, [ValidateAntiForgeryToken] attribute is used to specify the controllers or actions to validate them:[HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult Action(/* ... */) { // ... } This is very productive for form scenarios. But recently, when resolving security vulnerabilities for Web products, some problems are encountered. Specify validation on controller (not on each action) The server side problem is, It is expected to declare [ValidateAntiForgeryToken] on controller, but actually it has be to declared on each POST actions. Because POST actions are usually much more then controllers, this is a little crazy Problem Usually a controller contains actions for HTTP GET and actions for HTTP POST requests, and usually validations are expected for HTTP POST requests. So, if the [ValidateAntiForgeryToken] is declared on the controller, the HTTP GET requests become invalid:[ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public class SomeController : Controller // One [ValidateAntiForgeryToken] attribute. { [HttpGet] public ActionResult Index() // Index() cannot work. { // ... } [HttpPost] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] public ActionResult PostAction2(/* ... */) { // ... } // ... } If browser sends an HTTP GET request by clicking a link: http://Site/Some/Index, validation definitely fails, because no token is provided. So the result is, [ValidateAntiForgeryToken] attribute must be distributed to each POST action:public class SomeController : Controller // Many [ValidateAntiForgeryToken] attributes. { [HttpGet] public ActionResult Index() // Works. { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction2(/* ... */) { // ... } // ... } This is a little bit crazy, because one application can have a lot of POST actions. Solution To avoid a large number of [ValidateAntiForgeryToken] attributes (one for each POST action), the following ValidateAntiForgeryTokenAttribute wrapper class can be helpful, where HTTP verbs can be specified:[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false, Inherited = true)] public class ValidateAntiForgeryTokenWrapperAttribute : FilterAttribute, IAuthorizationFilter { private readonly ValidateAntiForgeryTokenAttribute _validator; private readonly AcceptVerbsAttribute _verbs; public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs) : this(verbs, null) { } public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs, string salt) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = salt }; } public void OnAuthorization(AuthorizationContext filterContext) { string httpMethodOverride = filterContext.HttpContext.Request.GetHttpMethodOverride(); if (this._verbs.Verbs.Contains(httpMethodOverride, StringComparer.OrdinalIgnoreCase)) { this._validator.OnAuthorization(filterContext); } } } When this attribute is declared on controller, only HTTP requests with the specified verbs are validated:[ValidateAntiForgeryTokenWrapper(HttpVerbs.Post, Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { // GET actions are not affected. // Only HTTP POST requests are validated. } Now one single attribute on controller turns on validation for all POST actions. Maybe it would be nice if HTTP verbs can be specified on the built-in [ValidateAntiForgeryToken] attribute, which is easy to implemented. Submit token via AJAX The browser side problem is, if server side turns on anti-forgery validation for POST, then AJAX POST requests will fail be default. Problem For AJAX scenarios, when request is sent by jQuery instead of form:$.post(url, { productName: "Tofu", categoryId: 1 // Token is not posted. }, callback); This kind of AJAX POST requests will always be invalid, because server side code cannot see the token in the posted data. Solution The tokens are printed to browser then sent back to server. So first of all, HtmlHelper.AntiForgeryToken() must be called somewhere. Now the browser has token in HTML and cookie. Then jQuery must find the printed token in the HTML, and append token to the data before sending:$.post(url, { productName: "Tofu", categoryId: 1, __RequestVerificationToken: getToken() // Token is posted. }, callback); To be reusable, this can be encapsulated into a tiny jQuery plugin:/// <reference path="jquery-1.4.2.js" /> (function ($) { $.getAntiForgeryToken = function (tokenWindow, appPath) { // HtmlHelper.AntiForgeryToken() must be invoked to print the token. tokenWindow = tokenWindow && typeof tokenWindow === typeof window ? tokenWindow : window; appPath = appPath && typeof appPath === "string" ? "_" + appPath.toString() : ""; // The name attribute is either __RequestVerificationToken, // or __RequestVerificationToken_{appPath}. tokenName = "__RequestVerificationToken" + appPath; // Finds the <input type="hidden" name={tokenName} value="..." /> from the specified. // var inputElements = $("input[type='hidden'][name='__RequestVerificationToken" + appPath + "']"); var inputElements = tokenWindow.document.getElementsByTagName("input"); for (var i = 0; i < inputElements.length; i++) { var inputElement = inputElements[i]; if (inputElement.type === "hidden" && inputElement.name === tokenName) { return { name: tokenName, value: inputElement.value }; } } return null; }; $.appendAntiForgeryToken = function (data, token) { // Converts data if not already a string. if (data && typeof data !== "string") { data = $.param(data); } // Gets token from current window by default. token = token ? token : $.getAntiForgeryToken(); // $.getAntiForgeryToken(window). data = data ? data + "&" : ""; // If token exists, appends {token.name}={token.value} to data. return token ? data + encodeURIComponent(token.name) + "=" + encodeURIComponent(token.value) : data; }; // Wraps $.post(url, data, callback, type). $.postAntiForgery = function (url, data, callback, type) { return $.post(url, $.appendAntiForgeryToken(data), callback, type); }; // Wraps $.ajax(settings). $.ajaxAntiForgery = function (settings) { settings.data = $.appendAntiForgeryToken(settings.data); return $.ajax(settings); }; })(jQuery); In most of the scenarios, it is Ok to just replace $.post() invocation with $.postAntiForgery(), and replace $.ajax() with $.ajaxAntiForgery():$.postAntiForgery(url, { productName: "Tofu", categoryId: 1 }, callback); // Token is posted. There might be some scenarios of custom token. Here $.appendAntiForgeryToken() is provided:data = $.appendAntiForgeryToken(data, token); // Token is already in data. No need to invoke $.postAntiForgery(). $.post(url, data, callback); And there are scenarios that the token is not in the current window. For example, an HTTP POST request can be sent by iframe, while the token is in the parent window. Here window can be specified for $.getAntiForgeryToken():data = $.appendAntiForgeryToken(data, $.getAntiForgeryToken(window.parent)); // Token is already in data. No need to invoke $.postAntiForgery(). $.post(url, data, callback); If you have better solution, please do tell me.

    Read the article

  • Windows Azure VMs - New "Stopped" VM Options Provide Cost-effective Flexibility for On-Demand Workloads

    - by KeithMayer
    Originally posted on: http://geekswithblogs.net/KeithMayer/archive/2013/06/22/windows-azure-vms---new-stopped-vm-options-provide-cost-effective.aspxDidn’t make it to TechEd this year? Don’t worry!  This month, we’ll be releasing a new article series that highlights the Best of TechEd announcements and technical information for IT Pros.  Today’s article focuses on a new, much-heralded enhancement to Windows Azure Infrastructure Services to make it more cost-effective for spinning VMs up and down on-demand on the Windows Azure cloud platform. NEW! VMs that are shutdown from the Windows Azure Management Portal will no longer continue to accumulate compute charges while stopped! Previous to this enhancement being available, the Azure platform maintained fabric resource reservations for VMs, even in a shutdown state, to ensure consistent resource availability when starting those VMs in the future.  And, this meant that VMs had to be exported and completely deprovisioned when not in use to avoid compute charges. In this article, I'll provide more details on the scenarios that this enhancement best fits, and I'll also review the new options and considerations that we now have for performing safe shutdowns of Windows Azure VMs. Which scenarios does the new enhancement best fit? Being able to easily shutdown VMs from the Windows Azure Management Portal without continued compute charges is a great enhancement for certain cloud use cases, such as: On-demand dev/test/lab environments - Freely start and stop lab VMs so that they are only accumulating compute charges when being actively used.  "Bursting" load-balanced web applications - Provision a number of load-balanced VMs, but keep the minimum number of VMs running to support "normal" loads. Easily start-up the remaining VMs only when needed to support peak loads. Disaster Recovery - Start-up "cold" VMs when needed to recover from disaster scenarios. BUT ... there is a consideration to keep in mind when using the Windows Azure Management Portal to shutdown VMs: although performing a VM shutdown via the Windows Azure Management Portal causes that VM to no longer accumulate compute charges, it also deallocates the VM from fabric resources to which it was previously assigned.  These fabric resources include compute resources such as virtual CPU cores and memory, as well as network resources, such as IP addresses.  This means that when the VM is later started after being shutdown from the portal, the VM could be assigned a different IP address or placed on a different compute node within the fabric. In some cases, you may want to shutdown VMs using the old approach, where fabric resource assignments are maintained while the VM is in a shutdown state.  Specifically, you may wish to do this when temporarily shutting down or restarting a "7x24" VM as part of a maintenance activity.  Good news - you can still revert back to the old VM shutdown behavior when necessary by using the alternate VM shutdown approaches listed below.  Let's walk through each approach for performing a VM Shutdown action on Windows Azure so that we can understand the benefits and considerations of each... How many ways can I shutdown a VM? In Windows Azure Infrastructure Services, there's three general ways that can be used to safely shutdown VMs: Shutdown VM via Windows Azure Management Portal Shutdown Guest Operating System inside the VM Stop VM via Windows PowerShell using Windows Azure PowerShell Module Although each of these options performs a safe shutdown of the guest operation system and the VM itself, each option handles the VM shutdown end state differently. Shutdown VM via Windows Azure Management Portal When clicking the Shutdown button at the bottom of the Virtual Machines page in the Windows Azure Management Portal, the VM is safely shutdown and "deallocated" from fabric resources.  Shutdown button on Virtual Machines page in Windows Azure Management Portal  When the shutdown process completes, the VM will be shown on the Virtual Machines page with a "Stopped ( Deallocated )" status as shown in the figure below. Virtual Machine in a "Stopped (Deallocated)" Status "Deallocated" means that the VM configuration is no longer being actively associated with fabric resources, such as virtual CPUs, memory and networks. In this state, the VM will not continue to allocate compute charges, but since fabric resources are deallocated, the VM could receive a different internal IP address ( called "Dynamic IPs" or "DIPs" in Windows Azure ) the next time it is started.  TIP: If you are leveraging this shutdown option and consistency of DIPs is important to applications running inside your VMs, you should consider using virtual networks with your VMs.  Virtual networks permit you to assign a specific IP Address Space for use with VMs that are assigned to that virtual network.  As long as you start VMs in the same order in which they were originally provisioned, each VM should be reassigned the same DIP that it was previously using. What about consistency of External IP Addresses? Great question! External IP addresses ( called "Virtual IPs" or "VIPs" in Windows Azure ) are associated with the cloud service in which one or more Windows Azure VMs are running.  As long as at least 1 VM inside a cloud service remains in a "Running" state, the VIP assigned to a cloud service will be preserved.  If all VMs inside a cloud service are in a "Stopped ( Deallocated )" status, then the cloud service may receive a different VIP when VMs are next restarted. TIP: If consistency of VIPs is important for the cloud services in which you are running VMs, consider keeping one VM inside each cloud service in the alternate VM shutdown state listed below to preserve the VIP associated with the cloud service. Shutdown Guest Operating System inside the VM When performing a Guest OS shutdown or restart ( ie., a shutdown or restart operation initiated from the Guest OS running inside the VM ), the VM configuration will not be deallocated from fabric resources. In the figure below, the VM has been shutdown from within the Guest OS and is shown with a "Stopped" VM status rather than the "Stopped ( Deallocated )" VM status that was shown in the previous figure. Note that it may require a few minutes for the Windows Azure Management Portal to reflect that the VM is in a "Stopped" state in this scenario, because we are performing an OS shutdown inside the VM rather than through an Azure management endpoint. Virtual Machine in a "Stopped" Status VMs shown in a "Stopped" status will continue to accumulate compute charges, because fabric resources are still being reserved for these VMs.  However, this also means that DIPs and VIPs are preserved for VMs in this state, so you don't have to worry about VMs and cloud services getting different IP addresses when they are started in the future. Stop VM via Windows PowerShell In the latest version of the Windows Azure PowerShell Module, a new -StayProvisioned parameter has been added to the Stop-AzureVM cmdlet. This new parameter provides the flexibility to choose the VM configuration end result when stopping VMs using PowerShell: When running the Stop-AzureVM cmdlet without the -StayProvisioned parameter specified, the VM will be safely stopped and deallocated; that is, the VM will be left in a "Stopped ( Deallocated )" status just like the end result when a VM Shutdown operation is performed via the Windows Azure Management Portal.  When running the Stop-AzureVM cmdlet with the -StayProvisioned parameter specified, the VM will be safely stopped but fabric resource reservations will be preserved; that is the VM will be left in a "Stopped" status just like the end result when performing a Guest OS shutdown operation. So, with PowerShell, you can choose how Windows Azure should handle VM configuration and fabric resource reservations when stopping VMs on a case-by-case basis. TIP: It's important to note that the -StayProvisioned parameter is only available in the latest version of the Windows Azure PowerShell Module.  So, if you've previously downloaded this module, be sure to download and install the latest version to get this new functionality. Want to Learn More about Windows Azure Infrastructure Services? To learn more about Windows Azure Infrastructure Services, be sure to check-out these additional FREE resources: Become our next "Early Expert"! Complete the Early Experts "Cloud Quest" and build a multi-VM lab network in the cloud for FREE!  Build some cool scenarios! Check out our list of over 20+ Step-by-Step Lab Guides based on key scenarios that IT Pros are implementing on Windows Azure Infrastructure Services TODAY!  Looking forward to seeing you in the Cloud! - Keith Build Your Lab! Download Windows Server 2012 Don’t Have a Lab? Build Your Lab in the Cloud with Windows Azure Virtual Machines Want to Get Certified? Join our Windows Server 2012 "Early Experts" Study Group

    Read the article

  • Writing the tests for FluentPath

    - by Bertrand Le Roy
    Writing the tests for FluentPath is a challenge. The library is a wrapper around a legacy API (System.IO) that wasn’t designed to be easily testable. If it were more testable, the sensible testing methodology would be to tell System.IO to act against a mock file system, which would enable me to verify that my code is doing the expected file system operations without having to manipulate the actual, physical file system: what we are testing here is FluentPath, not System.IO. Unfortunately, that is not an option as nothing in System.IO enables us to plug a mock file system in. As a consequence, we are left with few options. A few people have suggested me to abstract my calls to System.IO away so that I could tell FluentPath – not System.IO – to use a mock instead of the real thing. That in turn is getting a little silly: FluentPath already is a thin abstraction around System.IO, so layering another abstraction between them would double the test surface while bringing little or no value. I would have to test that new abstraction layer, and that would bring us back to square one. Unless I’m missing something, the only option I have here is to bite the bullet and test against the real file system. Of course, the tests that do that can hardly be called unit tests. They are more integration tests as they don’t only test bits of my code. They really test the successful integration of my code with the underlying System.IO. In order to write such tests, the techniques of BDD work particularly well as they enable you to express scenarios in natural language, from which test code is generated. Integration tests are being better expressed as scenarios orchestrating a few basic behaviors, so this is a nice fit. The Orchard team has been successfully using SpecFlow for integration tests for a while and I thought it was pretty cool so that’s what I decided to use. Consider for example the following scenario: Scenario: Change extension Given a clean test directory When I change the extension of bar\notes.txt to foo Then bar\notes.txt should not exist And bar\notes.foo should exist This is human readable and tells you everything you need to know about what you’re testing, but it is also executable code. What happens when SpecFlow compiles this scenario is that it executes a bunch of regular expressions that identify the known Given (set-up phases), When (actions) and Then (result assertions) to identify the code to run, which is then translated into calls into the appropriate methods. Nothing magical. Here is the code generated by SpecFlow: [NUnit.Framework.TestAttribute()] [NUnit.Framework.DescriptionAttribute("Change extension")] public virtual void ChangeExtension() { TechTalk.SpecFlow.ScenarioInfo scenarioInfo = new TechTalk.SpecFlow.ScenarioInfo("Change extension", ((string[])(null))); #line 6 this.ScenarioSetup(scenarioInfo); #line 7 testRunner.Given("a clean test directory"); #line 8 testRunner.When("I change the extension of " + "bar\\notes.txt to foo"); #line 9 testRunner.Then("bar\\notes.txt should not exist"); #line 10 testRunner.And("bar\\notes.foo should exist"); #line hidden testRunner.CollectScenarioErrors();} The #line directives are there to give clues to the debugger, because yes, you can put breakpoints into a scenario: The way you usually write tests with SpecFlow is that you write the scenario first, let it fail, then write the translation of your Given, When and Then into code if they don’t already exist, which results in running but failing tests, and then you write the code to make your tests pass (you implement the scenario). In the case of FluentPath, I built a simple Given method that builds a simple file hierarchy in a temporary directory that all scenarios are going to work with: [Given("a clean test directory")] public void GivenACleanDirectory() { _path = new Path(SystemIO.Path.GetTempPath()) .CreateSubDirectory("FluentPathSpecs") .MakeCurrent(); _path.GetFileSystemEntries() .Delete(true); _path.CreateFile("foo.txt", "This is a text file named foo."); var bar = _path.CreateSubDirectory("bar"); bar.CreateFile("baz.txt", "bar baz") .SetLastWriteTime(DateTime.Now.AddSeconds(-2)); bar.CreateFile("notes.txt", "This is a text file containing notes."); var barbar = bar.CreateSubDirectory("bar"); barbar.CreateFile("deep.txt", "Deep thoughts"); var sub = _path.CreateSubDirectory("sub"); sub.CreateSubDirectory("subsub"); sub.CreateFile("baz.txt", "sub baz") .SetLastWriteTime(DateTime.Now); sub.CreateFile("binary.bin", new byte[] {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0xFF}); } Then, to implement the scenario that you can read above, I had to write the following When: [When("I change the extension of (.*) to (.*)")] public void WhenIChangeTheExtension( string path, string newExtension) { var oldPath = Path.Current.Combine(path.Split('\\')); oldPath.Move(p => p.ChangeExtension(newExtension)); } As you can see, the When attribute is specifying the regular expression that will enable the SpecFlow engine to recognize what When method to call and also how to map its parameters. For our scenario, “bar\notes.txt” will get mapped to the path parameter, and “foo” to the newExtension parameter. And of course, the code that verifies the assumptions of the scenario: [Then("(.*) should exist")] public void ThenEntryShouldExist(string path) { Assert.IsTrue(_path.Combine(path.Split('\\')).Exists); } [Then("(.*) should not exist")] public void ThenEntryShouldNotExist(string path) { Assert.IsFalse(_path.Combine(path.Split('\\')).Exists); } These steps should be written with reusability in mind. They are building blocks for your scenarios, not implementation of a specific scenario. Think small and fine-grained. In the case of the above steps, I could reuse each of those steps in other scenarios. Those tests are easy to write and easier to read, which means that they also constitute a form of documentation. Oh, and SpecFlow is just one way to do this. Rob wrote a long time ago about this sort of thing (but using a different framework) and I highly recommend this post if I somehow managed to pique your interest: http://blog.wekeroad.com/blog/make-bdd-your-bff-2/ And this screencast (Rob always makes excellent screencasts): http://blog.wekeroad.com/mvc-storefront/kona-3/ (click the “Download it here” link)

    Read the article

  • Windows Azure: Import/Export Hard Drives, VM ACLs, Web Sockets, Remote Debugging, Continuous Delivery, New Relic, Billing Alerts and More

    - by ScottGu
    Two weeks ago we released a giant set of improvements to Windows Azure, as well as a significant update of the Windows Azure SDK. This morning we released another massive set of enhancements to Windows Azure.  Today’s new capabilities include: Storage: Import/Export Hard Disk Drives to your Storage Accounts HDInsight: General Availability of our Hadoop Service in the cloud Virtual Machines: New VM Gallery, ACL support for VIPs Web Sites: WebSocket and Remote Debugging Support Notification Hubs: Segmented customer push notification support with tag expressions TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services Developer Analytics: New Relic support for Web Sites + Mobile Services Service Bus: Support for partitioned queues and topics Billing: New Billing Alert Service that sends emails notifications when your bill hits a threshold you define All of these improvements are now available to use immediately (note that some features are still in preview).  Below are more details about them. Storage: Import/Export Hard Disk Drives to Windows Azure I am excited to announce the preview of our new Windows Azure Import/Export Service! The Windows Azure Import/Export Service enables you to move large amounts of on-premises data into and out of your Windows Azure Storage accounts. It does this by enabling you to securely ship hard disk drives directly to our Windows Azure data centers. Once we receive the drives we’ll automatically transfer the data to or from your Windows Azure Storage account.  This enables you to import or export massive amounts of data more quickly and cost effectively (and not be constrained by available network bandwidth). Encrypted Transport Our Import/Export service provides built-in support for BitLocker disk encryption – which enables you to securely encrypt data on the hard drives before you send it, and not have to worry about it being compromised even if the disk is lost/stolen in transit (since the content on the transported hard drives is completely encrypted and you are the only one who has the key to it).  The drive preparation tool we are shipping today makes setting up bitlocker encryption on these hard drives easy. How to Import/Export your first Hard Drive of Data You can read our Getting Started Guide to learn more about how to begin using the import/export service.  You can create import and export jobs via the Windows Azure Management Portal as well as programmatically using our Server Management APIs. It is really easy to create a new import or export job using the Windows Azure Management Portal.  Simply navigate to a Windows Azure storage account, and then click the new Import/Export tab now available within it (note: if you don’t have this tab make sure to sign-up for the Import/Export preview): Then click the “Create Import Job” or “Create Export Job” commands at the bottom of it.  This will launch a wizard that easily walks you through the steps required: For more comprehensive information about Import/Export, refer to Windows Azure Storage team blog.  You can also send questions and comments to the [email protected] email address. We think you’ll find this new service makes it much easier to move data into and out of Windows Azure, and it will dramatically cut down the network bandwidth required when working on large data migration projects.  We hope you like it. HDInsight: 100% Compatible Hadoop Service in the Cloud Last week we announced the general availability release of Windows Azure HDInsight. HDInsight is a 100% compatible Hadoop service that allows you to easily provision and manage Hadoop clusters for big data processing in Windows Azure.  This release is now live in production, backed by an enterprise SLA, supported 24x7 by Microsoft Support, and is ready to use for production scenarios. HDInsight allows you to use Apache Hadoop tools, such as Pig and Hive, to process large amounts of data in Windows Azure Blob Storage. Because data is stored in Windows Azure Blob Storage, you can choose to dynamically create Hadoop clusters only when you need them, and then shut them down when they are no longer required (since you pay only for the time the Hadoop cluster instances are running this provides a super cost effective way to use them).  You can create Hadoop clusters using either the Windows Azure Management Portal (see below) or using our PowerShell and Cross Platform Command line tools: The import/export hard drive support that came out today is a perfect companion service to use with HDInsight – the combination allows you to easily ingest, process and optionally export a limitless amount of data.  We’ve also integrated HDInsight with our Business Intelligence tools, so users can leverage familiar tools like Excel in order to analyze the output of jobs.  You can find out more about how to get started with HDInsight here. Virtual Machines: VM Gallery Enhancements Today’s update of Windows Azure brings with it a new Virtual Machine gallery that you can use to create new VMs in the cloud.  You can launch the gallery by doing New->Compute->Virtual Machine->From Gallery within the Windows Azure Management Portal: The new Virtual Machine Gallery includes some nice enhancements that make it even easier to use: Search: You can now easily search and filter images using the search box in the top-right of the dialog.  For example, simply type “SQL” and we’ll filter to show those images in the gallery that contain that substring. Category Tree-view: Each month we add more built-in VM images to the gallery.  You can continue to browse these using the “All” view within the VM Gallery – or now quickly filter them using the category tree-view on the left-hand side of the dialog.  For example, by selecting “Oracle” in the tree-view you can now quickly filter to see the official Oracle supplied images. MSDN and Supported checkboxes: With today’s update we are also introducing filters that makes it easy to filter out types of images that you may not be interested in. The first checkbox is MSDN: using this filter you can exclude any image that is not part of the Windows Azure benefits for MSDN subscribers (which have highly discounted pricing - you can learn more about the MSDN pricing here). The second checkbox is Supported: this filter will exclude any image that contains prerelease software, so you can feel confident that the software you choose to deploy is fully supported by Windows Azure and our partners. Sort options: We sort gallery images by what we think customers are most interested in, but sometimes you might want to sort using different views. So we’re providing some additional sort options, like “Newest,” to customize the image list for what suits you best. Pricing information: We now provide additional pricing information about images and options on how to cost effectively run them directly within the VM Gallery. The above improvements make it even easier to use the VM Gallery and quickly create launch and run Virtual Machines in the cloud. Virtual Machines: ACL Support for VIPs A few months ago we exposed the ability to configure Access Control Lists (ACLs) for Virtual Machines using Windows PowerShell cmdlets and our Service Management API. With today’s release, you can now configure VM ACLs using the Windows Azure Management Portal as well. You can now do this by clicking the new Manage ACL command in the Endpoints tab of a virtual machine instance: This will enable you to configure an ordered list of permit and deny rules to scope the traffic that can access your VM’s network endpoints. For example, if you were on a virtual network, you could limit RDP access to a Windows Azure virtual machine to only a few computers attached to your enterprise. Or if you weren’t on a virtual network you could alternatively limit traffic from public IPs that can access your workloads: Here is the default behaviors for ACLs in Windows Azure: By default (i.e. no rules specified), all traffic is permitted. When using only Permit rules, all other traffic is denied. When using only Deny rules, all other traffic is permitted. When there is a combination of Permit and Deny rules, all other traffic is denied. Lastly, remember that configuring endpoints does not automatically configure them within the VM if it also has firewall rules enabled at the OS level.  So if you create an endpoint using the Windows Azure Management Portal, Windows PowerShell, or REST API, be sure to also configure your guest VM firewall appropriately as well. Web Sites: Web Sockets Support With today’s release you can now use Web Sockets with Windows Azure Web Sites.  This feature enables you to easily integrate real-time communication scenarios within your web based applications, and is available at no extra charge (it even works with the free tier).  Higher level programming libraries like SignalR and socket.io are also now supported with it. You can enable Web Sockets support on a web site by navigating to the Configure tab of a Web Site, and by toggling Web Sockets support to “on”: Once Web Sockets is enabled you can start to integrate some really cool scenarios into your web applications.  Check out the new SignalR documentation hub on www.asp.net to learn more about some of the awesome scenarios you can do with it. Web Sites: Remote Debugging Support The Windows Azure SDK 2.2 we released two weeks ago introduced remote debugging support for Windows Azure Cloud Services. With today’s Windows Azure release we are extending this remote debugging support to also work with Windows Azure Web Sites. With live, remote debugging support inside of Visual Studio, you are able to have more visibility than ever before into how your code is operating live in Windows Azure. It is now super easy to attach the debugger and quickly see what is going on with your application in the cloud. Remote Debugging of a Windows Azure Web Site using VS 2013 Enabling the remote debugging of a Windows Azure Web Site using VS 2013 is really easy.  Start by opening up your web application’s project within Visual Studio. Then navigate to the “Server Explorer” tab within Visual Studio, and click on the deployed web-site you want to debug that is running within Windows Azure using the Windows Azure->Web Sites node in the Server Explorer.  Then right-click and choose the “Attach Debugger” option on it: When you do this Visual Studio will remotely attach the debugger to the Web Site running within Windows Azure.  The debugger will then stop the web site’s execution when it hits any break points that you have set within your web application’s project inside Visual Studio.  For example, below I set a breakpoint on the “ViewBag.Message” assignment statement within the HomeController of the standard ASP.NET MVC project template.  When I hit refresh on the “About” page of the web site within the browser, the breakpoint was triggered and I am now able to debug the app remotely using Visual Studio: Note above how we can debug variables (including autos/watchlist/etc), as well as use the Immediate and Command Windows. In the debug session above I used the Immediate Window to explore some of the request object state, as well as to dynamically change the ViewBag.Message property.  When we click the the “Continue” button (or press F5) the app will continue execution and the Web Site will render the content back to the browser.  This makes it super easy to debug web apps remotely. Tips for Better Debugging To get the best experience while debugging, we recommend publishing your site using the Debug configuration within Visual Studio’s Web Publish dialog. This will ensure that debug symbol information is uploaded to the Web Site which will enable a richer debug experience within Visual Studio.  You can find this option on the Web Publish dialog on the Settings tab: When you ultimately deploy/run the application in production we recommend using the “Release” configuration setting – the release configuration is memory optimized and will provide the best production performance.  To learn more about diagnosing and debugging Windows Azure Web Sites read our new Troubleshooting Windows Azure Web Sites in Visual Studio guide. Notification Hubs: Segmented Push Notification support with tag expressions In August we announced the General Availability of Windows Azure Notification Hubs - a powerful Mobile Push Notifications service that makes it easy to send high volume push notifications with low latency from any mobile app back-end.  Notification hubs can be used with any mobile app back-end (including ones built using our Mobile Services capability) and can also be used with back-ends that run in the cloud as well as on-premises. Beginning with the initial release, Notification Hubs allowed developers to send personalized push notifications to both individual users as well as groups of users by interest, by associating their devices with tags representing the logical target of the notification. For example, by registering all devices of customers interested in a favorite MLB team with a corresponding tag, it is possible to broadcast one message to millions of Boston Red Sox fans and another message to millions of St. Louis Cardinals fans with a single API call respectively. New support for using tag expressions to enable advanced customer segmentation With today’s release we are adding support for even more advanced customer targeting.  You can now identify customers that you want to send push notifications to by defining rich tag expressions. With tag expressions, you can now not only broadcast notifications to Boston Red Sox fans, but take that segmenting a step farther and reach more granular segments. This opens up a variety of scenarios, for example: Offers based on multiple preferences—e.g. send a game day vegetarian special to users tagged as both a Boston Red Sox fan AND a vegetarian Push content to multiple segments in a single message—e.g. rain delay information only to users who are tagged as either a Boston Red Sox fan OR a St. Louis Cardinal fan Avoid presenting subsets of a segment with irrelevant content—e.g. season ticket availability reminder to users who are tagged as a Boston Red Sox fan but NOT also a season ticket holder To illustrate with code, consider a restaurant chain app that sends an offer related to a Red Sox vs Cardinals game for users in Boston. Devices can be tagged by your app with location tags (e.g. “Loc:Boston”) and interest tags (e.g. “Follows:RedSox”, “Follows:Cardinals”), and then a notification can be sent by your back-end to “(Follows:RedSox || Follows:Cardinals) && Loc:Boston” in order to deliver an offer to all devices in Boston that follow either the RedSox or the Cardinals. This can be done directly in your server backend send logic using the code below: var notification = new WindowsNotification(messagePayload); hub.SendNotificationAsync(notification, "(Follows:RedSox || Follows:Cardinals) && Loc:Boston"); In your expressions you can use all Boolean operators: AND (&&), OR (||), and NOT (!).  Some other cool use cases for tag expressions that are now supported include: Social: To “all my group except me” - group:id && !user:id Events: Touchdown event is sent to everybody following either team or any of the players involved in the action: Followteam:A || Followteam:B || followplayer:1 || followplayer:2 … Hours: Send notifications at specific times. E.g. Tag devices with time zone and when it is 12pm in Seattle send to: GMT8 && follows:thaifood Versions and platforms: Send a reminder to people still using your first version for Android - version:1.0 && platform:Android For help on getting started with Notification Hubs, visit the Notification Hub documentation center.  Then download the latest NuGet package (or use the Notification Hubs REST APIs directly) to start sending push notifications using tag expressions.  They are really powerful and enable a bunch of great new scenarios. TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services With today’s Windows Azure release we are making it really easy to enable continuous delivery support with Windows Azure and Team Foundation Services.  Team Foundation Services is a cloud based offering from Microsoft that provides integrated source control (with both TFS and Git support), build server, test execution, collaboration tools, and agile planning support.  It makes it really easy to setup a team project (complete with automated builds and test runners) in the cloud, and it has really rich integration with Visual Studio. With today’s Windows Azure release it is now really easy to enable continuous delivery support with both TFS and Git based repositories hosted using Team Foundation Services.  This enables a workflow where when code is checked in, built successfully on an automated build server, and all tests pass on it – I can automatically have the app deployed on Windows Azure with zero manual intervention or work required. The below screen-shots demonstrate how to quickly setup a continuous delivery workflow to Windows Azure with a Git-based ASP.NET MVC project hosted using Team Foundation Services. Enabling Continuous Delivery to Windows Azure with Team Foundation Services The project I’m going to enable continuous delivery with is a simple ASP.NET MVC project whose source code I’m hosting using Team Foundation Services.  I did this by creating a “SimpleContinuousDeploymentTest” repository there using Git – and then used the new built-in Git tooling support within Visual Studio 2013 to push the source code to it.  Below is a screen-shot of the Git repository hosted within Team Foundation Services: I can access the repository within Visual Studio 2013 and easily make commits with it (as well as branch, merge and do other tasks).  Using VS 2013 I can also setup automated builds to take place in the cloud using Team Foundation Services every time someone checks in code to the repository: The cool thing about this is that I don’t have to buy or rent my own build server – Team Foundation Services automatically maintains its own build server farm and can automatically queue up a build for me (for free) every time someone checks in code using the above settings.  This build server (and automated testing) support now works with both TFS and Git based source control repositories. Connecting a Team Foundation Services project to Windows Azure Once I have a source repository hosted in Team Foundation Services with Automated Builds and Testing set up, I can then go even further and set it up so that it will be automatically deployed to Windows Azure when a source code commit is made to the repository (assuming the Build + Tests pass).  Enabling this is now really easy.  To set this up with a Windows Azure Web Site simply use the New->Compute->Web Site->Custom Create command inside the Windows Azure Management Portal.  This will create a dialog like below.  I gave the web site a name and then made sure the “Publish from source control” checkbox was selected: When we click next we’ll be prompted for the location of the source repository.  We’ll select “Team Foundation Services”: Once we do this we’ll be prompted for our Team Foundation Services account that our source repository is hosted under (in this case my TFS account is “scottguthrie”): When we click the “Authorize Now” button we’ll be prompted to give Windows Azure permissions to connect to the Team Foundation Services account.  Once we do this we’ll be prompted to pick the source repository we want to connect to.  Starting with today’s Windows Azure release you can now connect to both TFS and Git based source repositories.  This new support allows me to connect to the “SimpleContinuousDeploymentTest” respository we created earlier: Clicking the finish button will then create the Web Site with the continuous delivery hooks setup with Team Foundation Services.  Now every time someone pushes source control to the repository in Team Foundation Services, it will kick off an automated build, run all of the unit tests in the solution , and if they pass the app will be automatically deployed to our Web Site in Windows Azure.  You can monitor the history and status of these automated deployments using the Deployments tab within the Web Site: This enables a really slick continuous delivery workflow, and enables you to build and deploy apps in a really nice way. Developer Analytics: New Relic support for Web Sites + Mobile Services With today’s Windows Azure release we are making it really easy to enable Developer Analytics and Monitoring support with both Windows Azure Web Site and Windows Azure Mobile Services.  We are partnering with New Relic, who provide a great dev analytics and app performance monitoring offering, to enable this - and we have updated the Windows Azure Management Portal to make it really easy to configure. Enabling New Relic with a Windows Azure Web Site Enabling New Relic support with a Windows Azure Web Site is now really easy.  Simply navigate to the Configure tab of a Web Site and scroll down to the “developer analytics” section that is now within it: Clicking the “add-on” button will display some additional UI.  If you don’t already have a New Relic subscription, you can click the “view windows azure store” button to obtain a subscription (note: New Relic has a perpetually free tier so you can enable it even without paying anything): Clicking the “view windows azure store” button will launch the integrated Windows Azure Store experience we have within the Windows Azure Management Portal.  You can use this to browse from a variety of great add-on services – including New Relic: Select “New Relic” within the dialog above, then click the next button, and you’ll be able to choose which type of New Relic subscription you wish to purchase.  For this demo we’ll simply select the “Free Standard Version” – which does not cost anything and can be used forever:  Once we’ve signed-up for our New Relic subscription and added it to our Windows Azure account, we can go back to the Web Site’s configuration tab and choose to use the New Relic add-on with our Windows Azure Web Site.  We can do this by simply selecting it from the “add-on” dropdown (it is automatically populated within it once we have a New Relic subscription in our account): Clicking the “Save” button will then cause the Windows Azure Management Portal to automatically populate all of the needed New Relic configuration settings to our Web Site: Deploying the New Relic Agent as part of a Web Site The final step to enable developer analytics using New Relic is to add the New Relic runtime agent to our web app.  We can do this within Visual Studio by right-clicking on our web project and selecting the “Manage NuGet Packages” context menu: This will bring up the NuGet package manager.  You can search for “New Relic” within it to find the New Relic agent.  Note that there is both a 32-bit and 64-bit edition of it – make sure to install the version that matches how your Web Site is running within Windows Azure (note: you can configure your Web Site to run in either 32-bit or 64-bit mode using the Web Site’s “Configuration” tab within the Windows Azure Management Portal): Once we install the NuGet package we are all set to go.  We’ll simply re-publish the web site again to Windows Azure and New Relic will now automatically start monitoring the application Monitoring a Web Site using New Relic Now that the application has developer analytics support with New Relic enabled, we can launch the New Relic monitoring portal to start monitoring the health of it.  We can do this by clicking on the “Add Ons” tab in the left-hand side of the Windows Azure Management Portal.  Then select the New Relic add-on we signed-up for within it.  The Windows Azure Management Portal will provide some default information about the add-on when we do this.  Clicking the “Manage” button in the tray at the bottom will launch a new browser tab and single-sign us into the New Relic monitoring portal associated with our account: When we do this a new browser tab will launch with the New Relic admin tool loaded within it: We can now see insights into how our app is performing – without having to have written a single line of monitoring code.  The New Relic service provides a ton of great built-in monitoring features allowing us to quickly see: Performance times (including browser rendering speed) for the overall site and individual pages.  You can optionally set alert thresholds to trigger if the speed does not meet a threshold you specify. Information about where in the world your customers are hitting the site from (and how performance varies by region) Details on the latency performance of external services your web apps are using (for example: SQL, Storage, Twitter, etc) Error information including call stack details for exceptions that have occurred at runtime SQL Server profiling information – including which queries executed against your database and what their performance was And a whole bunch more… The cool thing about New Relic is that you don’t need to write monitoring code within your application to get all of the above reports (plus a lot more).  The New Relic agent automatically enables the CLR profiler within applications and automatically captures the information necessary to identify these.  This makes it super easy to get started and immediately have a rich developer analytics view for your solutions with very little effort. If you haven’t tried New Relic out yet with Windows Azure I recommend you do so – I think you’ll find it helps you build even better cloud applications.  Following the above steps will help you get started and deliver you a really good application monitoring solution in only minutes. Service Bus: Support for partitioned queues and topics With today’s release, we are enabling support within Service Bus for partitioned queues and topics. Enabling partitioning enables you to achieve a higher message throughput and better availability from your queues and topics. Higher message throughput is achieved by implementing multiple message brokers for each partitioned queue and topic.  The  multiple messaging stores will also provide higher availability. You can create a partitioned queue or topic by simply checking the Enable Partitioning option in the custom create wizard for a Queue or Topic: Read this article to learn more about partitioned queues and topics and how to take advantage of them today. Billing: New Billing Alert Service Today’s Windows Azure update enables a new Billing Alert Service Preview that enables you to get proactive email notifications when your Windows Azure bill goes above a certain monetary threshold that you configure.  This makes it easier to manage your bill and avoid potential surprises at the end of the month. With the Billing Alert Service Preview, you can now create email alerts to monitor and manage your monetary credits or your current bill total.  To set up an alert first sign-up for the free Billing Alert Service Preview.  Then visit the account management page, click on a subscription you have setup, and then navigate to the new Alerts tab that is available: The alerts tab allows you to setup email alerts that will be sent automatically once a certain threshold is hit.  For example, by clicking the “add alert” button above I can setup a rule to send myself email anytime my Windows Azure bill goes above $100 for the month: The Billing Alert Service will evolve to support additional aspects of your bill as well as support multiple forms of alerts such as SMS.  Try out the new Billing Alert Service Preview today and give us feedback. Summary Today’s Windows Azure release enables a ton of great new scenarios, and makes building applications hosted in the cloud even easier. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • What's the difference between starting a process from the dock vs. the command line on OS X

    - by Josh Knauer
    I'm debugging an issue on OS X that only occurs when the application is started from the dock. It does not happen when the app is started from the command line. What is the difference between the two scenarios? The code I'm working with is a c++ based bundled plug-in being loaded in a third party app. I've attached to the process with GDB in both scenarios and the only difference I can see is that a couple of extra dylibs are loaded in the process when running from the command line and that the base address of my library is slightly different in the two scenarios. I've tried changing my linkage to i-prebind and/or -bind_at_load to no avail.

    Read the article

  • Professional WCF 4.0: Windows Communication Foundation with .NET 4.0

    - by cibrax
    The book in which I been working on since last year finally went to the light this week. It has been the result of hard work between me and three other Connected Systems MVP, my friend Fabio Cozzolino, Kurt Claeys and Johann Grabner. If you are interested in learning the new features in WCF 4.0, but also WCF in general and how to apply in real world scenarios, this book is for you. I dedicated three chapters of this book to one of my favorites topics, Security, from the basics to more complicated scenarios with Claim-Based security and Federated authentication using WCF services with Windows Identity Foundation. You can find more information about the book and the table of contents in the Wrox web site here.

    Read the article

  • Dynamic Permissions for roles in Asp.NET mvc

    - by Muhammad Adeel Zahid
    Hello, we have been developing a web application in asp.net mvc. we have scenarios where many actions on web page are dependent upon role of a specific user. For example a memo page has actions of edit, forward, approve, flag etc. these actions are granted to different roles and may be revoked at some later stage. what is the best approach to implement such scenarios in Asp.net mvc framework. i have heard about windows workflow foundation but really have no idea how it works. i m open to any suggestions. regards

    Read the article

  • StreamInsight/SSIS Integration White Paper

    - by Roman Schindlauer
    This has been tweeted all over the place, but we still want to give it proper attention here in our blog: SSIS (SQL Server Integration Service) is widely used by today’s customers to transform data from different sources and load into a SQL Server data warehouse or other targets. StreamInsight can process large amount of real-time as well as historical data, making it easy to do temporal and incremental processing.  We have put together a white paper to discuss how to bring StreamInsight and SSIS together and leverage both platforms to get crucial insights faster and easier. From the paper’s abstract: The purpose of this paper is to provide guidance for enriching data integration scenarios by integrating StreamInsight with SQL Server Integration Services. Specifically, we looked at the technical challenges and solutions for such integration, by using a case study based on a customer scenarios in the telecommunications sector. Please take a look at this paper and send us your feedback! Using SQL Server Integration Services and StreamInsight Together Regards, Ping Wang

    Read the article

  • What resources will help me understand the data model for QC 10.0 in order to write my SQL queries?

    - by srihari
    I am a fresher in Quality Center 10.0 HP software testing tool. As per my understanding in order to generate reports from QC and to troubleshoot the scenarios, we need to write SQL queries in the QC back end database. In my case it is SQL db. I downloaded the database reference help file but I could not understand from where I can start. It just gave the table name and its information. For a starter like me are there any online tutorials or helpful websites,hands on exercises,scenario's where I can better understand how to write queries for the QC data model? I am very confident about the SQL coding itself, what I want to know is how to query on the QC database tables based on the scenarios that occur in QC tool. Please suggest. Thanks, Srihari

    Read the article

  • SQLAuthority News – Great Time Spent at Great Indian Developers Summit 2014

    - by Pinal Dave
    The Great Indian Developer Conference (GIDS) is one of the most popular annual event held in Bangalore. This year GIDS is scheduled on April 22, 25. I will be presented total four sessions at this event and each session is very different from each other. Here are the details of four of my sessions, which I presented there. Pluralsight Shades This event was a great event and I had fantastic fun presenting a technology over here. I was indeed very excited that along with me, I had many of my friends presenting at the event as well. I want to thank all of you to attend my session and having standing room every single time. I have already sent resources in my newsletter. You can sign up for the newsletter over here. Indexing is an Art I was amazed with the crowd present in the sessions at GIDS. There was a great interest in the subject of SQL Server and Performance Tuning. Audience at GIDS I believe event like such provides a great platform to meet and share knowledge. Pinal at Pluralsight Booth Here are the abstract of the sessions which I had presented. They were recorded so at some point in time they will be available, but if you want the content of all the courses immediately, I suggest you check out my video courses on the same subject on Pluralsight. Indexes, the Unsung Hero Relevant Pluralsight Course Slow Running Queries are the most common problem that developers face while working with SQL Server. While it is easy to blame SQL Server for unsatisfactory performance, the issue often persists with the way queries have been written, and how Indexes has been set up. The session will focus on the ways of identifying problems that slow down SQL Server, and Indexing tricks to fix them. Developers will walk out with scripts and knowledge that can be applied to their servers, immediately post the session. Indexes are the most crucial objects of the database. They are the first stop for any DBA and Developer when it is about performance tuning. There is a good side as well evil side to indexes. To master the art of performance tuning one has to understand the fundamentals of indexes and the best practices associated with the same. We will cover various aspects of Indexing such as Duplicate Index, Redundant Index, Missing Index as well as best practices around Indexes. SQL Server Performance Troubleshooting: Ancient Problems and Modern Solutions Relevant Pluralsight Course Many believe Performance Tuning and Troubleshooting is an art which has been lost in time. However, truth is that art has evolved with time and there are more tools and techniques to overcome ancient troublesome scenarios. There are three major resources that when bottlenecked creates performance problems: CPU, IO, and Memory. In this session we will focus on High CPU scenarios detection and their resolutions. If time permits we will cover other performance related tips and tricks. At the end of this session, attendees will have a clear idea as well as action items regarding what to do when facing any of the above resource intensive scenarios. Developers will walk out with scripts and knowledge that can be applied to their servers, immediately post the session. To master the art of performance tuning one has to understand the fundamentals of performance, tuning and the best practices associated with the same. We will discuss about performance tuning in this session with the help of Demos. Pinal Dave at GIDS MySQL Performance Tuning – Unexplored Territory Relevant Pluralsight Course Performance is one of the most essential aspects of any application. Everyone wants their server to perform optimally and at the best efficiency. However, not many people talk about MySQL and Performance Tuning as it is an extremely unexplored territory. In this session, we will talk about how we can tune MySQL Performance. We will also try and cover other performance related tips and tricks. At the end of this session, attendees will not only have a clear idea, but also carry home action items regarding what to do when facing any of the above resource intensive scenarios. Developers will walk out with scripts and knowledge that can be applied to their servers, immediately post the session. To master the art of performance tuning one has to understand the fundamentals of performance, tuning and the best practices associated with the same. You will also witness some impressive performance tuning demos in this session. Hidden Secrets and Gems of SQL Server We Bet You Never Knew Relevant Pluralsight Course SQL Trio Session! It really amazes us every time when someone says SQL Server is an easy tool to handle and work with. Microsoft has done an amazing work in making working with complex relational database a breeze for developers and administrators alike. Though it looks like child’s play for some, the realities are far away from this notion. The basics and fundamentals though are simple and uniform across databases, the behavior and understanding the nuts and bolts of SQL Server is something we need to master over a period of time. With a collective experience of more than 30+ years amongst the speakers on databases, we will try to take a unique tour of various aspects of SQL Server and bring to you life lessons learnt from working with SQL Server. We will share some of the trade secrets of performance, configuration, new features, tuning, behaviors, T-SQL practices, common pitfalls, productivity tips on tools and more. This is a highly demo filled session for practical use if you are a SQL Server developer or an Administrator. The speakers will be able to stump you and give you answers on almost everything inside the Relational database called SQL Server. I personally attended the session of Vinod Kumar, Balmukund Lakhani, Abhishek Kumar and my favorite Govind Kanshi. Summary If you have missed this event here are two action items 1) Sign up for Resource Newsletter 2) Watch my video courses on Pluralsight Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: MySQL, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQLAuthority Author Visit, SQLAuthority News, T SQL Tagged: GIDS

    Read the article

  • How can I get the business analysts more involved in BDD?

    - by Robert S.
    I am a proponent of Behavior Driven Development, mainly with Cucumber and RSpec, and at my current gig (a Microsoft shop) I am introducing SpecFlow as a tool to help with testing. I'd like to get the business analysts on my team involved in writing the features and scenarios, but they are put off by the "technical" aspect of it, meaning creating the files in Visual Studio (or even having Visual Studio on their machines). They want to know if we can put all the scenarios for a feature in Jira. What I'm looking for is suggestions for a workflow that will work well with BA types that are accustomed to project management/work tracking tools like Jira (we also use Greenhopper).

    Read the article

  • Visual Tree Enumeration

    - by codingbloke
    I feel compelled to post this blog because I find I’m repeatedly posting this same code in silverlight and windows-phone-7 answers in Stackoverflow. One common task that we feel we need to do is burrow into the visual tree in a Silverlight or Windows Phone 7 application (actually more recently I found myself doing this in WPF as well).  This allows access to details that aren’t exposed directly by some controls.  A good example of this sort of requirement is found in the “Restoring exact scroll position of a listbox in Windows Phone 7”  question on stackoverflow.  This required that the scroll position of the scroll viewer internal to a listbox be accessed. A caveat One caveat here is that we should seriously challenge the need for this burrowing since it may indicate that there is a design problem.  Burrowing into the visual tree or indeed burrowing out to containing ancestors could represent significant coupling between module boundaries and that generally isn’t a good idea. Why isn’t this idea just not cast aside as a no-no?  Well the whole concept of a “Templated Control”, which are in extensive use in these applications, opens the coupling between the content of the visual tree and the internal code of a control.   For example, I can completely change the appearance and positioning of elements that make up a ComboBox.  The ComboBox control relies on specific template parts having set names of a specified type being present in my template.  Rightly or wrongly this does kind of give license to writing code that has similar coupling. Hasn’t this been done already? Yes it has.  There are number of blogs already out there with similar solutions.  In fact if you are using Silverlight toolkit the VisualTreeExtensions class already provides this feature.  However I prefer my specific code because of the simplicity principle I hold to.  Only write the minimum code necessary to give all the features needed.  In this case I add just two extension methods Ancestors and Descendents, note I don’t bother with “Get” or “Visual” prefixes.  Also I haven’t added Parent or Children methods nor additional “AndSelf” methods because all but Children is achievable with the addition of some other Linq methods.  I decided to give Descendents an additional overload for depth hence a depth of 1 is equivalent to Children but this overload is a little more flexible than simply Children. So here is the code:- VisualTreeEnumeration public static class VisualTreeEnumeration {     public static IEnumerable<DependencyObject> Descendents(this DependencyObject root, int depth)     {         int count = VisualTreeHelper.GetChildrenCount(root);         for (int i = 0; i < count; i++)         {             var child = VisualTreeHelper.GetChild(root, i);             yield return child;             if (depth > 0)             {                 foreach (var descendent in Descendents(child, --depth))                     yield return descendent;             }         }     }     public static IEnumerable<DependencyObject> Descendents(this DependencyObject root)     {         return Descendents(root, Int32.MaxValue);     }     public static IEnumerable<DependencyObject> Ancestors(this DependencyObject root)     {         DependencyObject current = VisualTreeHelper.GetParent(root);         while (current != null)         {             yield return current;             current = VisualTreeHelper.GetParent(current);         }     } }   Usage examples The following are some examples of how to combine the above extension methods with Linq to generate the other axis scenarios that tree traversal code might require. Missing Axis Scenarios var parent = control.Ancestors().Take(1).FirstOrDefault(); var children = control.Descendents(1); var previousSiblings = control.Ancestors().Take(1)     .SelectMany(p => p.Descendents(1).TakeWhile(c => c != control)); var followingSiblings = control.Ancestors().Take(1)     .SelectMany(p => p.Descendents(1).SkipWhile(c => c != control).Skip(1)); var ancestorsAndSelf = Enumerable.Repeat((DependencyObject)control, 1)     .Concat(control.Ancestors()); var descendentsAndSelf = Enumerable.Repeat((DependencyObject)control, 1)     .Concat(control.Descendents()); You might ask why I don’t just include these in the VisualTreeEnumerator.  I don’t on the principle of only including code that is actually needed.  If you find that one or more of the above  is needed in your code then go ahead and create additional methods.  One of the downsides to Extension methods is that they can make finding the method you actually want in intellisense harder. Here are some real world usage scenarios for these methods:- Real World Scenarios //Gets the internal scrollviewer of a ListBox ScrollViewer sv = someListBox.Descendents().OfType<ScrollViewer>().FirstOrDefault(); // Get all text boxes in current UserControl:- var textBoxes = this.Descendents().OfType<TextBox>(); // All UIElement direct children of the layout root grid:- var topLevelElements = LayoutRoot.Descendents(0).OfType<UIElement>(); // Find the containing `ListBoxItem` for a UIElement:- var container = elem.Ancestors().OfType<ListBoxItem>().FirstOrDefault(); // Seek a button with the name "PinkElephants" even if outside of the current Namescope:- var pinkElephantsButton = this.Descendents()     .OfType<Button>()     .FirstOrDefault(b => b.Name == "PinkElephants"); //Clear all checkboxes with the name "Selector" in a Treeview foreach (CheckBox checkBox in elem.Descendents()     .OfType<CheckBox>().Where(c => c.Name == "Selector")) {     checkBox.IsChecked = false; }   The last couple of examples above demonstrate a common requirement of finding controls that have a specific name.  FindName will often not find these controls because they exist in a different namescope. Hope you find this useful, if not I’m just glad to be able to link to this blog in future stackoverflow answers.

    Read the article

  • BDD: Getting started

    - by thom
    I'm starting with BDD and this is my story: Feature: Months and days to days In order to see months and days as days As a date conversion fan I need a webpage where users can enter days and months and convert them to days. I have some doubts ... Should I write my scenarios before coding anything or should I first write a scenario and then write code, write a scenario again and then write code, and so on ... ? If I should write my scenarios before, can my steps be approved and production code still does not get done? When should I do refactoring on my code? After the feature is done or after each scenario implementation?

    Read the article

  • More on Map Testing

    - by Michael Stephenson
    I have been chatting with Maurice den Heijer recently about his codeplex project for the BizTalk Map Testing Framework (http://mtf.codeplex.com/). Some of you may remember the article I did for BizTalk 2009 and 2006 about how to test maps but with Maurice's project he is effectively looking at how to improve productivity and quality by building some useful testing features within the framework to simplify the process of testing maps. As part of our discussion we realized that we both had slightly different approaches to how we validate the output from the map. Put simple Maurice does some xpath validation of the data in various nodes where as my approach for most standard cases is to use serialization to allow you to validate the output using normal MSTest assertions. I'm not really going to go into the pro's and con's of each approach because I think there is a place for both and also I'm sure others have various approaches which work too. What would be great is for the map testing framework to provide support for different ways of testing which can cover everything from simple cases to some very specialized scenarios. So as agreed with Maurice I have done the sample which I will talk about in the rest of this article to show how we can use the serialization approach to create and compare the input and output from a map in normal development testing. Prerequisites One of the common patterns I usually implement when developing BizTalk solutions is to use xsd.exe to create .net classes for most of the schemas used within the solution. In the testing pattern I will take advantage of these .net classes. The Map In this sample the map we will use is very simple and just concatenates some data from the input message to the output message. Hopefully the below picture illustrates this well. The Test In the test I'm basically taking the following actions: Use the .net class generated from the schema to create an input message for the map Serialize the input object to a file Run the map from .net using the standard BizTalk test method which was generated for running the map Deserialize the output file from the map execution to a .net class representing the output schema Use MsTest assertions to validate things about the output message The below picture shows this: As you can see the code for this is pretty simple and it's all strongly typed which means changes to my schema which can affect the tests can be easily picked up as compilation errors. I can then chose to have one test which validates most of the output from the map, or to have many specific tests covering individual scenarios within the map. Summary Hopefully this post illustrates a powerful yet simple way of effectively testing many BizTalk mapping scenarios. I will probably have more conversations with Maurice about these approaches and perhaps some of the above will be included in the mapping test framework.   The sample can be downloaded from here: http://cid-983a58358c675769.office.live.com/self.aspx/Blog%20Samples/More%20Map%20Testing/MapTestSample.zip

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >