Search Results

Search found 125 results on 5 pages for 'servicehost'.

Page 4/5 | < Previous Page | 1 2 3 4 5  | Next Page >

  • debug=true in .svc file?

    - by JohnW
    Our WCF svc files contain the following: <%@ ServiceHost Service="Foo" Factory="Bar" Language="C#" Debug="true" %> What does debug=true mean in this case? web.config has debug=false, but I don't know what this one means and can't find a reference on MSDN.

    Read the article

  • Why do I get a WCF timeout even though my service call and callback are successful?

    - by KallDrexx
    I'm playing around with hooking up an in-game console to a WCF interface, so an external application can send console commands and receive console output. To accomplish this I created the following service contracts: public interface IConsoleNetworkCallbacks { [OperationContract(IsOneWay = true)] void NewOutput(IEnumerable<string> text, string category); } [ServiceContract(SessionMode = SessionMode.Required, CallbackContract = typeof(IConsoleNetworkCallbacks))] public interface IConsoleInterface { [OperationContract] void ProcessInput(string input); [OperationContract] void ChangeCategory(string category); } On the server I implemented it with: public class ConsoleNetworkInterface : IConsoleInterface, IDisposable { public ConsoleNetworkInterface() { ConsoleManager.Instance.RegisterOutputUpdateHandler(OutputHandler); } public void Dispose() { ConsoleManager.Instance.UnregisterOutputHandler(OutputHandler); } public void ProcessInput(string input) { ConsoleManager.Instance.ProcessInput(input); } public void ChangeCategory(string category) { ConsoleManager.Instance.UnregisterOutputHandler(OutputHandler); ConsoleManager.Instance.RegisterOutputUpdateHandler(OutputHandler, category); } protected void OutputHandler(IEnumerable<string> text, string category) { var callbacks = OperationContext.Current.GetCallbackChannel<IConsoleNetworkCallbacks>(); callbacks.NewOutput(text, category); } } On the client I implemented the callback with: public class Callbacks : IConsoleNetworkCallbacks { public void NewOutput(IEnumerable<string> text, string category) { MessageBox.Show(string.Format("{0} lines received for '{1}' category", text.Count(), category)); } } Finally, I establish the service host with the following class: public class ConsoleServiceHost : IDisposable { protected ServiceHost _host; public ConsoleServiceHost() { _host = new ServiceHost(typeof(ConsoleNetworkInterface), new Uri[] { new Uri("net.pipe://localhost") }); _host.AddServiceEndpoint(typeof(IConsoleInterface), new NetNamedPipeBinding(), "FrbConsolePipe"); _host.Open(); } public void Dispose() { _host.Close(); } } and use the following code on my client to establish the connection: protected Callbacks _callbacks; protected IConsoleInterface _proxy; protected void ConnectToConsoleServer() { _callbacks = new Callbacks(); var factory = new DuplexChannelFactory<IConsoleInterface>(_callbacks, new NetNamedPipeBinding(), new EndpointAddress("net.pipe://localhost/FrbConsolePipe")); _proxy = factory.CreateChannel(); _proxy.ProcessInput("Connected"); } So what happens is that my ConnectToConsoleServer() is called and then it gets all the way to _proxy.ProcessInput("Connected");. In my game (on the server) I immediately see the output caused by the ProcessInput call, but the client is still stalled on the _proxy.ProcessInput() call. After a minute my client gets a JIT TimeoutException however at the same time my MessageBox message appears. So obviously not only is my command being sent immediately, my callback is being correctly called. So why am I getting a timeout exception? Note: Even removing the MessageBox call, I still have this issue, so it's not an issue of the GUI blocking the callback response.

    Read the article

  • communication foundation showing plain text / code behind

    - by Michel
    Hi, i have a wcf service which runs perfectly on my dev machine (vs2010, target 3.5) but once deployed, it shows me the code behind of the service (actually the plain text of the .svc file) and not the normal service page: <%@ ServiceHost Language="C#" Debug="true" Service="SilverlightPoc.Web.FinanceData" CodeBehind="FinanceData.svc.cs" %> Anyone any idea why the .svc file is rendered as plain text and not as wcf service?

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Hosting WCF service in Windows Service

    - by DigiMortal
    When building Windows services we often need a way to communicate with them. The natural way to communicate to service is to send signals to it. But this is very limited communication. Usually we need more powerful communication mechanisms with services. In this posting I will show you how to use service-hosted WCF web service to communicate with Windows service. Create Windows service Suppose you have Windows service created and service class is named as MyWindowsService. This is new service and all we have is default code that Visual Studio generates. Create WCF service Add reference to System.ServiceModel assembly to Windows service project and add new interface called IMyService. This interface defines our service contracts. [ServiceContract] public interface IMyService {     [OperationContract]     string SayHello(int value); } We keep this service simple so it is easy for you to follow the code. Now let’s add service implementation: [ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)] public class MyService : IMyService {     public string SayHello(int value)     {         return string.Format("Hello, : {0}", value);     } } With ServiceBehavior attribute we say that we need only one instance of WCF service to serve all requests. Usually this is more than enough for us. Hosting WCF service in Windows Service Now it’s time to host our WCF service and make it available in Windows service. Here is the code in my Windows service: public partial class MyWindowsService : ServiceBase {     private ServiceHost _host;     private MyService _server;       public MyWindowsService()     {         InitializeComponent();     }       protected override void OnStart(string[] args)     {         _server = new MyService();         _host = new ServiceHost(_server);         _host.Open();     }       protected override void OnStop()     {         _host.Close();     } } Our Windows service now hosts our WCF service. WCF service will be available when Windows service is started and it is taken down when Windows service stops. Configuring WCF service To make WCF service usable we need to configure it. Add app.config file to your Windows service project and paste the following XML there: <system.serviceModel>   <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />   <services>     <service name="MyWindowsService.MyService" behaviorConfiguration="def">       <host>         <baseAddresses>           <add baseAddress="http://localhost:8732/MyService/"/>         </baseAddresses>       </host>       <endpoint address="" binding="wsHttpBinding" contract="MyWindowsService.IMyService">       </endpoint>       <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/>     </service>   </services>   <behaviors>     <serviceBehaviors>       <behavior name="def">         <serviceMetadata httpGetEnabled="True"/>         <serviceDebug includeExceptionDetailInFaults="True"/>       </behavior>     </serviceBehaviors>   </behaviors> </system.serviceModel> Now you are ready to test your service. Install Windows service and start it. Open your browser and open the following address: http://localhost:8732/MyService/ You should see your WCF service page now. Conclusion WCF is not only web applications fun. You can use WCF also as self-hosted service. Windows services that lack good communication possibilities can be saved by using WCF self-hosted service as it is the best way to talk to service. We can also revert the context and say that Windows service is good host for our WCF service.

    Read the article

  • svchost.exe @ 100% disk utilization vs. Outlook.ost

    - by Aszurom
    Vista x32 box with Outlook 2007. Outlook is not running. Hasn't been fired up for several reboots. I stopped WMI service and Windows Search service. Machine is mostly quiet, and then servicehost.exe launches an instance and starts banging away at Outlook.ost file. I can't determine what is causing it. I'm watching it in processmon, and trying to investigate it with preocessexplorer. Not having much luck at figuring out why the machine is so interested in that file. NOTHING is running that should be touching it.

    Read the article

  • Integrating WIF with WCF Data Services

    - by cibrax
    A time ago I discussed how a custom REST Starter kit interceptor could be used to parse a SAML token in the Http Authorization header and wrap that into a ClaimsPrincipal that the WCF services could use. The thing is that code was initially created for Geneva framework, so it got deprecated quickly. I recently needed that piece of code for one of projects where I am currently working on so I decided to update it for WIF. As this interceptor can be injected in any host for WCF REST services, also represents an excellent solution for integrating claim-based security into WCF Data Services (previously known as ADO.NET Data Services). The interceptor basically expects a SAML token in the Authorization header. If a token is found, it is parsed and a new ClaimsPrincipal is initialized and injected in the WCF authorization context. public class SamlAuthenticationInterceptor : RequestInterceptor {   SecurityTokenHandlerCollection handlers;   public SamlAuthenticationInterceptor()     : base(false)   {     this.handlers = FederatedAuthentication.ServiceConfiguration.SecurityTokenHandlers;   }   public override void ProcessRequest(ref RequestContext requestContext)   {     SecurityToken token = ExtractCredentials(requestContext.RequestMessage);     if (token != null)     {       ClaimsIdentityCollection claims = handlers.ValidateToken(token);       var principal = new ClaimsPrincipal(claims);       InitializeSecurityContext(requestContext.RequestMessage, principal);     }     else     {       DenyAccess(ref requestContext);     }   }   private void DenyAccess(ref RequestContext requestContext)   {     Message reply = Message.CreateMessage(MessageVersion.None, null);     HttpResponseMessageProperty responseProperty = new HttpResponseMessageProperty() { StatusCode = HttpStatusCode.Unauthorized };     responseProperty.Headers.Add("WWW-Authenticate",           String.Format("Basic realm=\"{0}\"", ""));     reply.Properties[HttpResponseMessageProperty.Name] = responseProperty;     requestContext.Reply(reply);     requestContext = null;   }   private SecurityToken ExtractCredentials(Message requestMessage)   {     HttpRequestMessageProperty request = (HttpRequestMessageProperty)  requestMessage.Properties[HttpRequestMessageProperty.Name];     string authHeader = request.Headers["Authorization"];     if (authHeader != null && authHeader.Contains("<saml"))     {       XmlTextReader xmlReader = new XmlTextReader(new StringReader(authHeader));       var col = SecurityTokenHandlerCollection.CreateDefaultSecurityTokenHandlerCollection();       SecurityToken token = col.ReadToken(xmlReader);                                        return token;     }     return null;   }   private void InitializeSecurityContext(Message request, IPrincipal principal)   {     List<IAuthorizationPolicy> policies = new List<IAuthorizationPolicy>();     policies.Add(new PrincipalAuthorizationPolicy(principal));     ServiceSecurityContext securityContext = new ServiceSecurityContext(policies.AsReadOnly());     if (request.Properties.Security != null)     {       request.Properties.Security.ServiceSecurityContext = securityContext;     }     else     {       request.Properties.Security = new SecurityMessageProperty() { ServiceSecurityContext = securityContext };      }    }    class PrincipalAuthorizationPolicy : IAuthorizationPolicy    {      string id = Guid.NewGuid().ToString();      IPrincipal user;      public PrincipalAuthorizationPolicy(IPrincipal user)      {        this.user = user;      }      public ClaimSet Issuer      {        get { return ClaimSet.System; }      }      public string Id      {        get { return this.id; }      }      public bool Evaluate(EvaluationContext evaluationContext, ref object state)      {        evaluationContext.AddClaimSet(this, new DefaultClaimSet(System.IdentityModel.Claims.Claim.CreateNameClaim(user.Identity.Name)));        evaluationContext.Properties["Identities"] = new List<IIdentity>(new IIdentity[] { user.Identity });        evaluationContext.Properties["Principal"] = user;        return true;      }    } A WCF Data Service, as any other WCF Service, contains a service host where this interceptor can be injected. The following code illustrates how that can be done in the “svc” file. <%@ ServiceHost Language="C#" Debug="true" Service="ContactsDataService"                 Factory="AppServiceHostFactory" %> using System; using System.ServiceModel; using System.ServiceModel.Activation; using Microsoft.ServiceModel.Web; class AppServiceHostFactory : ServiceHostFactory {    protected override ServiceHost CreateServiceHost(Type serviceType, Uri[] baseAddresses)   {     WebServiceHost2 result = new WebServiceHost2(serviceType, true, baseAddresses);     result.Interceptors.Add(new SamlAuthenticationInterceptor());                 return result;   } } WCF Data Services includes an specific WCF host of out the box (DataServiceHost). However, the service is not affected at all if you replace it with a custom one as I am doing in the code above (WebServiceHost2 is part of the REST Starter kit). Finally, the client application needs to pass the SAML token somehow to the data service. In case you are using any Http client library for consuming the data service, that’s easy to do, you only need to include the SAML token as part of the “Authorization” header. If you are using the auto-generated data service proxy, a little piece of code is needed to inject a SAML token into the DataServiceContext instance. That class provides an event “SendingRequest” that any client application can leverage to include custom code that modified the Http request before it is sent to the service. So, you can easily create an extension method for the DataServiceContext that negotiates the SAML token with an existing STS, and adds that token as part of the “Authorization” header. public static class DataServiceContextExtensions {        public static void ConfigureFederatedCredentials(this DataServiceContext context, string baseStsAddress, string realm)   {     string address = string.Format(STSAddressFormat, baseStsAddress, realm);                  string token = NegotiateSecurityToken(address);     context.SendingRequest += (source, args) =>     {       args.RequestHeaders.Add("Authorization", token);     };   } private string NegotiateSecurityToken(string address) { } } I left the NegociateSecurityToken method empty for this extension as it depends pretty much on how you are negotiating tokens from an existing STS. In case you want to end-to-end REST solution that involves an Http endpoint for the STS, you should definitely take a look at the Thinktecture starter STS project in codeplex.

    Read the article

  • Getting WCF Services in a Silverlight solution to play nice on deployment

    - by brendonpage
    I have come across 2 issues with deploying WCF services in a Silverlight solution, admittedly the one is more of a hiccup, and only occurs if you take the easy way out and reference your services through visual studio. The First Issue This occurs when you deploy your WFC services to an IIS server. When browse to the services using your web browser, you are greeted with “This collection already contains an address with scheme http.  There can be at most one address per scheme in this collection.”. When you make a call to this service from your Silverlight application, you get the extremely helpful “NotFound” error, this error message can be found in the error property of the event arguments on the complete event handler for that call. As it did with me this will leave most people scratching their head, because the very same services work just fine on the ASP.NET Development Web Server and on my local IIS server. Now I’m no server/hosting/IIS expert so I did a bit of searching when I first encountered this issue. I found out this happens because IIS supports multiple address bindings per protocol (http/https/ftp … etc) per web site, but WCF only supports binding to one address per protocol. This causes a problem when the WCF service is hosted on a site with multiple address bindings, because IIS provides all of the bindings to the host factory when running the service. While this problem occurs mainly on shared hosting solutions, it is not limited to shared hosting, it just seems like all shared hosting providers setup sites on their servers with multiple address bindings. For interests sake I added functionality to the example project attached to this post to dump the addresses given to the WCF service by IIS into a log file. This was the output on the shared hosting solution I use: http://mydomain.co.za/Services/TestService.svc http://www.mydomain.co.za/Services/TestService.svc http://mydomain-co-za.win13.wadns.net/Services/TestService.svc http://win13/Services/TestService.svc As you can see all these addresses are for the http protocol, which is where it all goes wrong for WCF. Fixes for the First Issue There are a few ways to get around this. The first being the easiest, target .NET 4! Yes that's right in .NET 4 WCF services support multiple addresses per protocol. This functionality is enabled by an option, which is on by default if you create a new project, you will need to turn on if you are upgrading to .NET 4. To do this set the multipleSiteBindingsEnabled property of the serviceHostingEnviroment tag in the web.config file to true, as shown below: <system.serviceModel>     <serviceHostingEnvironment multipleSiteBindingsEnabled="true" /> </system.serviceModel> Beware this ONLY works in .NET 4, so if you don’t have a server with .NET 4 installed on that you can deploy to, you will need to employ one of the other work a rounds. The second option will work for .NET 3.5 & 4. For this option all you need to do is modify the web.config file and add baseAddressPrefixFilters to the serviceHostingEnviroment tag as shown below: <system.serviceModel>     <serviceHostingEnvironment>         <baseAddressPrefixFilters>              <add prefix="http://www.mydomain.co.za"/>         </baseAddressPrefixFilters>     </serviceHostingEnvironment> </system.serviceModel> These will be used to filter the list of base addresses that IIS provides to the host factory. When specifying these prefix filters be sure to specify filters which will only allow 1 result through, otherwise the entire exercise will be pointless. There is however a problem with this work a round, you are only allowed to specify 1 prefix filter per protocol. Which means you can’t add filters for all your environments, this will therefore add to the list of things to do before deploying or switching dev machines. The third option is the one I currently employ, it will work for .NET 3, 3.5 & 4, although it is not needed for .NET 4. For this option you create a custom host factory which inherits from the ServiceHostFactory class. In the implementation of the ServiceHostFactory you employ logic to figure out which of the base addresses, that are give by IIS, to use when creating the service host. The logic you use to do this is completely up to you, I have seen quite a few solutions that simply statically reference an index from the list of base addresses, this works for most situations but falls short in others. For instance, if the order of the base addresses where to change, it might end up returning an address that only resolves on the servers local network, like the last one in the example I gave at the beginning. Another instance, if a request comes in on a different protocol, like https, you will be creating the service host using an address which is on the incorrect protocol, like http. To reliably find the correct address to use, I use the address that the service was requested on. To accomplish this I use the HttpContext, which requires the service to operate with AspNetCompatibilityRequirements set on. If for some reason running you services with AspNetCompatibilityRequirements on isn’t an option, you can still use this method, you will just have to come up with your own logic for selecting the correct address. First you will need to enable AspNetCompatibilityRequirements for your hosting environment, to do this you will need to set it to true in the web.config file as shown below: <system.serviceModel>     <serviceHostingEnvironment AspNetCompatibilityRequirements="true" /> </system.serviceModel> You will then need to mark any services that are going to use the custom host factory, to allow AspNetCompatibilityRequirements, as shown below: [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class TestService { } Now for the custom host factory, this is where the logic lives that selects the correct address to create service host with. The one i use is shown below: public class CustomHostFactory : ServiceHostFactory { protected override ServiceHost CreateServiceHost(Type serviceType, Uri[] baseAddresses) { // // Compose a prefix filter based on the requested uri // string prefixFilter = HttpContext.Current.Request.Url.Scheme + "://" + HttpContext.Current.Request.Url.DnsSafeHost; if (!HttpContext.Current.Request.Url.IsDefaultPort) { prefixFilter += ":" + HttpContext.Current.Request.Url.Port.ToString() + "/"; } // // Find a base address that matches the prefix filter // foreach (Uri baseAddress in baseAddresses) { if (baseAddress.OriginalString.StartsWith(prefixFilter)) { return new ServiceHost(serviceType, baseAddress); } } // // Throw exception if no matching base address was found // throw new Exception("Custom Host Factory: No base address matching '" + prefixFilter + "' was found."); } } The most important line in the custom host factory is the one that returns a new service host. This has to return a service host that specifies only one base address per protocol. Since I filter by the address the request came on in, I only need to create the service host with one address, since this address will always be of the correct protocol. Now you have a custom host factory you have to tell your services to use it. To do this you view the markup of the service by right clicking on it in the solution explorer and choosing “View Markup”. Then you add/set the value of the Factory property to the full namespace path of you custom host factory, as shown below. And that is it done, the service will now use the specified custom host factory. The Second Issue As I mentioned earlier this issue is more of a hiccup, but I thought worthy of a mention so I included it. This issue only occurs when you add a service reference to a Silverlight project. Visual Studio will generate a lot of code for you, part of that generated code is the ServiceReferences.ClientConfig file. This file stores the endpoint configuration that is used when accessing your services using the generated proxy classes. Here is what that file looks like: <configuration>     <system.serviceModel>         <bindings>             <customBinding>                 <binding name="CustomBinding_TestService">                     <binaryMessageEncoding />                     <httpTransport maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" />                 </binding>                 <binding name="CustomBinding_BrokenService">                     <binaryMessageEncoding />                     <httpTransport maxReceivedMessageSize="2147483647" maxBufferSize="2147483647" />                 </binding>             </customBinding>         </bindings>         <client>             <endpoint address="http://localhost:49347/services/TestService.svc"                 binding="customBinding" bindingConfiguration="CustomBinding_TestService"                 contract="TestService.TestService" name="CustomBinding_TestService" />             <endpoint address="http://localhost:49347/Services/BrokenService.svc"                 binding="customBinding" bindingConfiguration="CustomBinding_BrokenService"                 contract="BrokenService.BrokenService" name="CustomBinding_BrokenService" />         </client>     </system.serviceModel> </configuration> As you will notice the addresses for the end points are set to the addresses of the services you added the service references from, so unless you are adding the service references from your live services, you will have to change these addresses before you deploy. This is little more than an annoyance really, but it adds to the list of things to do before you can deploy, and if left unchecked that list can get out of control. Fix for the Second Issue The way you would usually access a service added this way is to create an instance of the proxy class like so: BrokenServiceClient proxy = new BrokenServiceClient(); Closer inspection of these generated proxy classes reveals that there are a few overloaded constructors, one of which allows you to specify the end point address to use when creating the proxy. From here all you have to do is come up with some logic that will provide you with the relative path to your services. Since my WCF services are usually hosted in the same project as my Silverlight app I use the class shown below: public class ServiceProxyHelper { /// <summary> /// Create a broken service proxy /// </summary> /// <returns>A broken service proxy</returns> public static BrokenServiceClient CreateBrokenServiceProxy() { Uri address = new Uri(Application.Current.Host.Source, "../Services/BrokenService.svc"); return new BrokenServiceClient("CustomBinding_BrokenService", address.AbsoluteUri); } } Then I will create an instance of the proxy class using my service helper class like so: BrokenServiceClient proxy = ServiceProxyHelper.CreateBrokenServiceProxy(); The way this works is “Application.Current.Host.Source” will return the URL to the ClientBin folder the Silverlight app is hosted in, the “../Services/BrokenService.svc” is then used as the relative path to the service from the ClientBin folder, combined by the Uri object this gives me the URL to my service. The “CustomBinding_BrokenService” is a reference to the end point configuration in the ServiceReferences.ClientConfig file. Yes this means you still need the ServiceReferences.ClientConfig file. All this is doing is using a different end point address than the one specified in the ServiceReferences.ClientConfig file, all the other settings form the ServiceReferences.ClientConfig file are still used when creating the proxy. I have uploaded an example project which covers the custom host factory solution from the first issue and everything from the second issue. I included the code to write a list of base addresses to a log file in my implementation of the custom host factory, this is not need for the custom host factory to function and can safely be removed. Download (WCFServicesDeploymentExample.zip)

    Read the article

  • Need some critique on .NET/WCF SOA architecture plan

    - by user998101
    I am working on a refactoring of some services and would appreciate some critique on my general approach. I am working with three back-end data systems and need to expose an authenticated front-end API over http binding, JSON, and REST for internal apps as well as 3rd party integration. I've got a rough idea below that's a hybrid of what I have and where I intend to wind up. I intend to build guidance extensions to support this architecture so that devs can build this out quickly. Here's the current idea for our structure: Front-end WCF routing service (spread across multiple IIS servers via hardware load balancer) Load balancing of services behind routing is handled within routing service, probably round-robin One of the services will be a token Multiple bindings per-service exposed to address JSON, REST, and whatever else comes up later All in/out is handled via POCO DTOs Use unity to scan for what services are available and expose them The front-end services behind the routing service do nothing more than expose the API and do conversion of DTO<-Entity Unity inject service implementation to allow mocking automapper for DTO/Entity conversion Invoke WF services where response required immediately Queue to ESB for async WF -- ESB will invoke WF later Business logic WF layer Expose same api as front-end services Implement business logic Wrap transaction context where needed Call out to composite/atomic services Composite/Atomic Services Exposed as WCF One service per back-end system Standard atomic CRUD operations plus composite operations Supports transaction context The questions I have are: Are the separation of concerns outlined above beneficial? Current thought is each layer below is its own project, except the backend stuff, where each system gets one project. The project has a servicehost and all the services are under a services folder. Interfaces live in a separate project at each layer. DTO and Entities are in two separate projects under a shared folder. I am currently planning to build dedicated services for shared functionality such as logging and overload things like tracelistener to call those services. Is this a valid approach? Any other suggestions/comments?

    Read the article

  • Uncompiled WCF on IIS7: The type could not be found

    - by Jimmy
    Hello, I've been trying to follow this tutorial for deploying a WCF sample to IIS . I can't get it to work. This is a hosted site, but I do have IIS Manager access to the server. However, in step 2 of the tutorial, I can't "create a new IIS application that is physically located in this application directory". I can't seem to find a menu item, context menu item, or what not to create a new application. I've been right-clicking everywhere like crazy and still can't figure out how to create a new app. I suppose that's probably the root issue, but I tried a few other things (described below) just in case that actually is not the issue. This is "deployed" at http://test.com.cws1.my-hosting-panel.com/IISHostedCalcService/Service.svc . The error says: The type 'Microsoft.ServiceModel.Samples.CalculatorService', provided as the Service attribute value in the ServiceHost directive, or provided in the configuration element system.serviceModel/serviceHostingEnvironment/serviceActivations could not be found. I also tried to create a virtual dir (IISHostedCalc) in dotnetpanel that points to IISHostedCalcService . When I navigate to http://test.com.cws1.my-hosting-panel.com/IISHostedCalc/Service.svc , then there is a different error: This collection already contains an address with scheme http. There can be at most one address per scheme in this collection. As per the tutorial, there was no compiling involved; I just dropped the files on the server as follow inside the folder IISHostedCalcService: service.svc Web.config Service.cs service.svc contains: <%@ServiceHost language=c# Debug="true" Service="Microsoft.ServiceModel.Samples.CalculatorService"%> (I tried with quotes around the c# attribute, as this looks a little strange without quotes, but it made no difference) Web.config contains: <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.serviceModel> <services> <service name="Microsoft.ServiceModel.Samples.CalculatorService"> <!-- This endpoint is exposed at the base address provided by host: http://localhost/servicemodelsamples/service.svc --> <endpoint address="" binding="wsHttpBinding" contract="Microsoft.ServiceModel.Samples.ICalculator" /> <!-- The mex endpoint is explosed at http://localhost/servicemodelsamples/service.svc/mex --> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services> </system.serviceModel> <system.web> <customErrors mode="Off"/> </system.web> </configuration> Service.cs contains: using System; using System.ServiceModel; namespace Microsoft.ServiceModel.Samples { [ServiceContract] public interface ICalculator { [OperationContract] double Add(double n1, double n2); [OperationContract] double Subtract(double n1, double n2); [OperationContract] double Multiply(double n1, double n2); [OperationContract] double Divide(double n1, double n2); } public class CalculatorService : ICalculator { public double Add(double n1, double n2) { return n1 + n2; } public double Subtract(double n1, double n2) { return n1 - n2; } public double Multiply(double n1, double n2) { return n1 * n2; } public double Divide(double n1, double n2) { return n1 / n2; } } }

    Read the article

  • How to expose service contract interfaces with multiple inheritance in WCF service on single endpoin

    - by Vaibhav Gawali
    I have only simple data types in method signature of service (such as int, string). My service class implements single ServiceContract interface say IMathService, and this interface in turn inherits from some other base interface say IAdderService. I want to expose the MathService using interface contract IAdderService as a service on a single endpoint. However some of the clinet's which know about IMathService should be able to access the extra services provided by IMathService on that single endpoint i.e. by just typecasting IAdderService to IMathService. //Interfaces and classes at server side [ServiceContract] public interface IAdderService { [OperationContract] int Add(int num1, int num2); } [ServiceContract] public interface IMathService : IAdderService { [OperationContract] int Substract(int num1, int num2); } public class MathService : IMathService { #region IMathService Members public int Substract(int num1, int num2) { return num1 - num2; } #endregion #region IAdderService Members public int Add(int num1, int num2) { return num1 + num2; } #endregion } //Run WCF service as a singleton instace MathService mathService = new MathService(); ServiceHost host = new ServiceHost(mathService); host.Open(); Server side Configuration: <configuration> <system.serviceModel> <services> <service name="IAdderService" behaviorConfiguration="AdderServiceServiceBehavior"> <endpoint address="net.pipe://localhost/AdderService" binding="netNamedPipeBinding" bindingConfiguration="Binding1" contract="TestApp.IAdderService" /> <endpoint address="mex" binding="mexNamedPipeBinding" contract="IMetadataExchange" /> <host> <baseAddresses> <add baseAddress="net.pipe://localhost/AdderService"/> </baseAddresses> </host> </service> </services> <bindings> <netNamedPipeBinding> <binding name="Binding1" > <security mode = "None"> </security> </binding > </netNamedPipeBinding> </bindings> <behaviors> <serviceBehaviors> <behavior name="AdderServiceServiceBehavior"> <serviceMetadata /> <serviceDebug includeExceptionDetailInFaults="True" /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> Client Side imeplementation: IAdderService adderService = new ChannelFactory<IAdderService>("AdderService").CreateChannel(); int result = adderService.Add(10, 11); IMathService mathService = adderService as IMathService; result = mathService.Substract(100, 9); Client side configuration: <configuration> <system.serviceModel> <client> <endpoint name="AdderService" address="net.pipe://localhost/AdderService" binding="netNamedPipeBinding" bindingConfiguration="Binding1" contract="TestApp.IAdderService" /> </client> <bindings> <netNamedPipeBinding> <binding name="Binding1" maxBufferSize="65536" maxConnections="10"> <security mode = "None"> </security> </binding > </netNamedPipeBinding> </bindings> </system.serviceModel> </configuration> Using above code and configuration I am not able to typecast IAdderService instnace to IMathService, it fails and I get null instance of IMathService at client side. My observation is if server exposes IMathService to client then client can safely typecast to IAdderService and vice versa is also possible. However if server exposes IAdderService then the typecast fails. Is there any solution to this? or am I doing it in a wrong way.

    Read the article

  • Deploying WCF Tutorial App on IIS7: "The type could not be found"

    - by Jimmy
    Hello, I've been trying to follow this tutorial for deploying a WCF sample to IIS . I can't get it to work. This is a hosted site, but I do have IIS Manager access to the server. However, in step 2 of the tutorial, I can't "create a new IIS application that is physically located in this application directory". I can't seem to find a menu item, context menu item, or what not to create a new application. I've been right-clicking everywhere like crazy and still can't figure out how to create a new app. I suppose that's probably the root issue, but I tried a few other things (described below) just in case that actually is not the issue. Here is a picture of what I see in IIS Manager, in case my words don't do it justice: This is "deployed" at http://test.com.cws1.my-hosting-panel.com/IISHostedCalcService/Service.svc . The error says: The type 'Microsoft.ServiceModel.Samples.CalculatorService', provided as the Service attribute value in the ServiceHost directive, or provided in the configuration element system.serviceModel/serviceHostingEnvironment/serviceActivations could not be found. I also tried to create a virtual dir (IISHostedCalc) in dotnetpanel that points to IISHostedCalcService . When I navigate to http://test.com.cws1.my-hosting-panel.com/IISHostedCalc/Service.svc , then there is a different error: This collection already contains an address with scheme http. There can be at most one address per scheme in this collection. Interestingly enough, if I click on View Applications, it seems like the virtual directory is an application (see image below)... although, as per the error message above, it doesn't work. As per the tutorial, there was no compiling involved; I just dropped the files on the server as follow inside the folder IISHostedCalcService: service.svc Web.config <dir: App_Code> Service.cs service.svc contains: <%@ServiceHost language=c# Debug="true" Service="Microsoft.ServiceModel.Samples.CalculatorService"%> (I tried with quotes around the c# attribute, as this looks a little strange without quotes, but it made no difference) Web.config contains: <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.serviceModel> <services> <service name="Microsoft.ServiceModel.Samples.CalculatorService"> <!-- This endpoint is exposed at the base address provided by host: http://localhost/servicemodelsamples/service.svc --> <endpoint address="" binding="wsHttpBinding" contract="Microsoft.ServiceModel.Samples.ICalculator" /> <!-- The mex endpoint is explosed at http://localhost/servicemodelsamples/service.svc/mex --> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services> </system.serviceModel> <system.web> <customErrors mode="Off"/> </system.web> </configuration> Service.cs contains: using System; using System.ServiceModel; namespace Microsoft.ServiceModel.Samples { [ServiceContract] public interface ICalculator { [OperationContract] double Add(double n1, double n2); [OperationContract] double Subtract(double n1, double n2); [OperationContract] double Multiply(double n1, double n2); [OperationContract] double Divide(double n1, double n2); } public class CalculatorService : ICalculator { public double Add(double n1, double n2) { return n1 + n2; } public double Subtract(double n1, double n2) { return n1 - n2; } public double Multiply(double n1, double n2) { return n1 * n2; } public double Divide(double n1, double n2) { return n1 / n2; } } }

    Read the article

  • WCF endpoint exception

    - by Lijo
    Hi Team, I am just trying with various WCF(in .Net 3.0) scenarios. I am using self hosting. I am getting an exception as "Service 'MyServiceLibrary.NameDecorator' has zero application (non-infrastructure) endpoints. This might be because no configuration file was found for your application, or because no service element matching the service name could be found in the configuration file, or because no endpoints were defined in the service element." I have a config file as follows (which has an endpoint) <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.serviceModel> <services> <service name="Lijo.Samples.NameDecorator" behaviorConfiguration="WeatherServiceBehavior"> <host> <baseAddresses> <add baseAddress="http://localhost:8010/ServiceModelSamples/FreeServiceWorld"/> </baseAddresses> </host> <endpoint address="" binding="wsHttpBinding" contract="Lijo.Samples.IElementaryService" /> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services> <behaviors> <serviceBehaviors> <behavior name="WeatherServiceBehavior"> <serviceMetadata httpGetEnabled="true"/> <serviceDebug includeExceptionDetailInFaults="False"/> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> And a Host as using System.ServiceModel; using System.ServiceModel.Dispatcher; using System.ServiceModel.Channels; using System.ServiceModel.Description; using System.Runtime.Serialization; namespace MySelfHostConsoleApp { class Program { static void Main(string[] args) { System.ServiceModel.ServiceHost myHost = new ServiceHost(typeof(MyServiceLibrary.NameDecorator)); myHost.Open(); Console.ReadLine(); } } } My Service is as follows using System.ServiceModel; using System.Runtime.Serialization; namespace MyServiceLibrary { [ServiceContract(Namespace = "http://Lijo.Samples")] public interface IElementaryService { [OperationContract] CompanyLogo GetLogo(); } public class NameDecorator : IElementaryService { public CompanyLogo GetLogo() { CircleType cirlce = new CircleType(); CompanyLogo logo = new CompanyLogo(cirlce); return logo; } } [DataContract] public abstract class IShape { public abstract string SelfExplain(); } [DataContract(Name = "Circle")] public class CircleType : IShape { public override string SelfExplain() { return "I am a Circle"; } } [DataContract(Name = "Triangle")] public class TriangleType : IShape { public override string SelfExplain() { return "I am a Triangle"; } } [DataContract] [KnownType(typeof(CircleType))] [KnownType(typeof(TriangleType))] public class CompanyLogo { private IShape m_shapeOfLogo; [DataMember] public IShape ShapeOfLogo { get { return m_shapeOfLogo; } set { m_shapeOfLogo = value; } } public CompanyLogo(IShape shape) { m_shapeOfLogo = shape; } } } Could you please help me to understand what I am missing here? Thanks Lijo

    Read the article

  • WCF and Firewalls

    - by Amitd
    Hi guys, As a part of learning WCF, I was trying to use a simple WCF client-server code . http://weblogs.asp.net/ralfw/archive/2007/04/14/a-truely-simple-example-to-get-started-with-wcf.aspx but I'm facing strange issues.I was trying out the following. Client(My) IP address is : 192.168.2.5 (internal behind firewall) Server IP address is : 192.168.50.30 port : 9050 (internal behind firewall) Servers LIVE/External IP (on internet ) : 121.225.xx.xx (accessible from internet) When I specify the above I.P address of server(192.168.50.30), the client connects successfully and can call servers methods. Now suppose if I want to give my friend (outside network/on internet) the client with server's live I.P, i get an ENDPOINTNOTFOUND exceptions. Surprisingly if I run the above client specifying LIVE IP(121.225.xx.xx) of server i also get the same exception. I tried to debug the problem but haven't found anything. Is it a problem with the company firewall not forwarding my request? or is it a problem with the server or client . Is something needed to be added to the server/client to overcome the same problem? Or are there any settings on the firewall that need to be changed like port forwarding? (our network admin has configured the port to be accessible from the internet.) is it a authentication issue? Code is available at . http://www.ralfw.de/weblog/wcfsimple.txt http://weblogs.asp.net/ralfw/archive/2007/04/14/a-truely-simple-example-to-get-started-with-wcf.aspx i have just separated the client and server part in separate assemblies.rest is same. using System; using System.Collections.Generic; using System.Text; using System.ServiceModel; namespace WCFSimple.Contract { [ServiceContract] public interface IService { [OperationContract] string Ping(string name); } } namespace WCFSimple.Server { [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)] class ServiceImplementation : WCFSimple.Contract.IService { #region IService Members public string Ping(string name) { Console.WriteLine("SERVER - Processing Ping('{0}')", name); return "Hello, " + name; } #endregion } public class Program { private static System.Threading.AutoResetEvent stopFlag = new System.Threading.AutoResetEvent(false); public static void Main() { ServiceHost svh = new ServiceHost(typeof(ServiceImplementation)); svh.AddServiceEndpoint( typeof(WCFSimple.Contract.IService), new NetTcpBinding(), "net.tcp://localhost:8000"); svh.Open(); Console.WriteLine("SERVER - Running..."); stopFlag.WaitOne(); Console.WriteLine("SERVER - Shutting down..."); svh.Close(); Console.WriteLine("SERVER - Shut down!"); } public static void Stop() { stopFlag.Set(); } } } namespace WCFSimple { class Program { static void Main(string[] args) { Console.WriteLine("WCF Simple Demo"); // start server System.Threading.Thread thServer = new System.Threading.Thread(WCFSimple.Server.Program.Main); thServer.IsBackground = true; thServer.Start(); System.Threading.Thread.Sleep(1000); // wait for server to start up // run client ChannelFactory<WCFSimple.Contract.IService> scf; scf = new ChannelFactory<WCFSimple.Contract.IService>( new NetTcpBinding(), "net.tcp://localhost:8000"); WCFSimple.Contract.IService s; s = scf.CreateChannel(); while (true) { Console.Write("CLIENT - Name: "); string name = Console.ReadLine(); if (name == "") break; string response = s.Ping(name); Console.WriteLine("CLIENT - Response from service: " + response); } (s as ICommunicationObject).Close(); // shutdown server WCFSimple.Server.Program.Stop(); thServer.Join(); } } } Any help?

    Read the article

  • WCF REST Question, Binding, Configuration

    - by Ethan McGee
    I am working on a WCF rest interface using json. I have wrapped the service in a windows service to host the service but I am now having trouble getting the service to be callable. I am not sure exactly what is wrong. The basic idea is that I want to host the service on a remote server so I want the service mapped to port localhost:7600 so that it can be invoked by posting data to [server_ip]:7600. The problem is most likely in the configuration file, since I am new to WCF and Rest I wasn't really sure what to type for the configuration so sorry if it's a total mess. I removed several chunks of code and comments to make it a little easier to read. These functions should have no bearing on the service since they call only C# functions. WCF Service Code using System; using System.Collections.Generic; using System.Linq; using System.ServiceModel; using System.ServiceModel.Activation; using System.ServiceModel.Web; using System.Text; namespace PCMiler_Connect { public class ZIP_List_Container { public string[] ZIP_List { get; set; } public string Optimized { get; set; } public string Calc_Type { get; set; } public string Cross_International_Borders { get; set; } public string Use_Kilometers { get; set; } public string Hazard_Level { get; set; } public string OK_To_Change_Destination { get; set; } } [ServiceContract] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] [ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)] public class PCMiler_Webservice { [WebInvoke(Method = "POST", UriTemplate = "", ResponseFormat = WebMessageFormat.Json, RequestFormat = WebMessageFormat.Json), OperationContract] public List<string> Calculate_Distance(ZIP_List_Container container) { return new List<string>(){ distance.ToString(), time.ToString() }; } } } XML Config File <?xml version="1.0" encoding="utf-8"?> <configuration> <system.serviceModel> <services> <service name="PCMiler_Connect.PCMiler_Webservice"> <endpoint address="" behaviorConfiguration="jsonBehavior" binding="webHttpBinding" bindingConfiguration="" contract="PCMiler_Connect.PCMiler_Webservice" /> <host> <baseAddresses> <add baseAddress="http://localhost:7600/" /> </baseAddresses> </host> </service> </services> <behaviors> <endpointBehaviors> <behavior name="jsonBehavior"> <enableWebScript/> </behavior> </endpointBehaviors> </behaviors> </system.serviceModel> </configuration> Service Wrapper using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Diagnostics; using System.Linq; using System.ServiceProcess; using System.ServiceModel; using System.Text; using System.Threading; namespace PCMiler_WIN_Service { public partial class Service1 : ServiceBase { ServiceHost host; public Service1() { InitializeComponent(); } protected override void OnStart(string[] args) { host = new ServiceHost(typeof(PCMiler_Connect.PCMiler_Webservice)); Thread thread = new Thread(new ThreadStart(host.Open)); } protected override void OnStop() { if (host != null) { host.Close(); host = null; } } } }

    Read the article

  • WCF zero application endpoint exception

    - by Lijo
    Hi Team, I am just trying with various WCF(in .Net 3.0) scenarios. I am using self hosting. I am getting an exception as "Service 'MyServiceLibrary.NameDecorator' has zero application (non-infrastructure) endpoints. This might be because no configuration file was found for your application, or because no service element matching the service name could be found in the configuration file, or because no endpoints were defined in the service element." I have a config file as follows (which has an endpoint) <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.serviceModel> <services> <service name="Lijo.Samples.NameDecorator" behaviorConfiguration="WeatherServiceBehavior"> <host> <baseAddresses> <add baseAddress="http://localhost:8010/ServiceModelSamples/FreeServiceWorld"/> </baseAddresses> </host> <endpoint address="" binding="wsHttpBinding" contract="Lijo.Samples.IElementaryService" /> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services> <behaviors> <serviceBehaviors> <behavior name="WeatherServiceBehavior"> <serviceMetadata httpGetEnabled="true"/> <serviceDebug includeExceptionDetailInFaults="False"/> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> And a Host as using System.ServiceModel; using System.ServiceModel.Dispatcher; using System.ServiceModel.Channels; using System.ServiceModel.Description; using System.Runtime.Serialization; namespace MySelfHostConsoleApp { class Program { static void Main(string[] args) { System.ServiceModel.ServiceHost myHost = new ServiceHost(typeof(MyServiceLibrary.NameDecorator)); myHost.Open(); Console.ReadLine(); } } } My Service is as follows using System.ServiceModel; using System.Runtime.Serialization; namespace MyServiceLibrary { [ServiceContract(Namespace = "http://Lijo.Samples")] public interface IElementaryService { [OperationContract] CompanyLogo GetLogo(); } public class NameDecorator : IElementaryService { public CompanyLogo GetLogo() { CircleType cirlce = new CircleType(); CompanyLogo logo = new CompanyLogo(cirlce); return logo; } } [DataContract] public abstract class IShape { public abstract string SelfExplain(); } [DataContract(Name = "Circle")] public class CircleType : IShape { public override string SelfExplain() { return "I am a Circle"; } } [DataContract(Name = "Triangle")] public class TriangleType : IShape { public override string SelfExplain() { return "I am a Triangle"; } } [DataContract] [KnownType(typeof(CircleType))] [KnownType(typeof(TriangleType))] public class CompanyLogo { private IShape m_shapeOfLogo; [DataMember] public IShape ShapeOfLogo { get { return m_shapeOfLogo; } set { m_shapeOfLogo = value; } } public CompanyLogo(IShape shape) { m_shapeOfLogo = shape; } } } Could you please help me to understand what I am missing here? Thanks Lijo

    Read the article

  • WCF/REST Get image into picturebox?

    - by Garrith
    So I have wcf rest service which succesfuly runs from a console app, if I navigate to: http://localhost:8000/Service/picture/300/400 my image is displayed note the 300/400 sets the width and height of the image within the body of the html page. The code looks like this: namespace WcfServiceLibrary1 { [ServiceContract] public interface IReceiveData { [OperationContract] [WebInvoke(Method = "GET", BodyStyle = WebMessageBodyStyle.Wrapped, ResponseFormat = WebMessageFormat.Xml, UriTemplate = "picture/{width}/{height}")] Stream GetImage(string width, string height); } public class RawDataService : IReceiveData { public Stream GetImage(string width, string height) { int w, h; if (!Int32.TryParse(width, out w)) { w = 640; } // Handle error if (!Int32.TryParse(height, out h)) { h = 400; } Bitmap bitmap = new Bitmap(w, h); for (int i = 0; i < bitmap.Width; i++) { for (int j = 0; j < bitmap.Height; j++) { bitmap.SetPixel(i, j, (Math.Abs(i - j) < 2) ? Color.Blue : Color.Yellow); } } MemoryStream ms = new MemoryStream(); bitmap.Save(ms, System.Drawing.Imaging.ImageFormat.Jpeg); ms.Position = 0; WebOperationContext.Current.OutgoingResponse.ContentType = "image/jpeg"; return ms; } } } What I want to do now is use a client application "my windows form app" and add that image into a picturebox. Im abit stuck as to how this can be achieved as I would like the width and height of the image from my wcf rest service to be set by the width and height of the picturebox. I have tryed this but on two of the lines have errors and im not even sure if it will work as the code for my wcf rest service seperates width and height with a "/" if you notice in the url. string uri = "http://localhost:8080/Service/picture"; private void button1_Click(object sender, EventArgs e) { StringBuilder sb = new StringBuilder(); sb.AppendLine("<picture>"); sb.AppendLine("<width>" + pictureBox1.Image.Width + "</width>"); // the url looks like this http://localhost:8080/Service/picture/300/400 when accessing the image so I am trying to set this here sb.AppendLine("<height>" + pictureBox1.Image.Height + "</height>"); sb.AppendLine("</picture>"); string picture = sb.ToString(); byte[] getimage = Encoding.UTF8.GetBytes(picture); // not sure this is right HttpWebRequest req = WebRequest.Create(uri); //cant convert webrequest to httpwebrequest req.Method = "GET"; req.ContentType = "image/jpg"; req.ContentLength = getimage.Length; MemoryStream reqStrm = req.GetRequestStream(); //cant convert IO stream to IO Memory stream reqStrm.Write(getimage, 0, getimage.Length); reqStrm.Close(); HttpWebResponse resp = req.GetResponse(); // cant convert web respone to httpwebresponse MessageBox.Show(resp.StatusDescription); pictureBox1.Image = Image.FromStream(reqStrm); reqStrm.Close(); resp.Close(); } So just wondering if some one could help me out with this futile attempt at adding a variable image size from my rest service to a picture box on button click. This is the host app aswell: namespace ConsoleApplication1 { class Program { static void Main(string[] args) { string baseAddress = "http://" + Environment.MachineName + ":8000/Service"; ServiceHost host = new ServiceHost(typeof(RawDataService), new Uri(baseAddress)); host.AddServiceEndpoint(typeof(IReceiveData), new WebHttpBinding(), "").Behaviors.Add(new WebHttpBehavior()); host.Open(); Console.WriteLine("Host opened"); Console.ReadLine();

    Read the article

  • Serious problem with WCF, GridViews, Callbacks and ExecuteReaders exceptions.

    - by barjed
    Hi, I have this problem that is driving me insane. I have a project to deliver before Thursday. Basically an app consiting of three components that communicate with each other in WCF. I have one console app and one Windows Forms app. The console app is a server that's connected to the database. You can add records to it via the Windows Forms client that connectes with the server through the WCF. The code for the client: namespace BankAdministratorClient { [CallbackBehavior(ConcurrencyMode = ConcurrencyMode.Single, UseSynchronizationContext = false)] public partial class Form1 : Form, BankServverReference.BankServerCallback { private BankServverReference.BankServerClient server = null; private SynchronizationContext interfaceContext = null; public Form1() { InitializeComponent(); interfaceContext = SynchronizationContext.Current; server = new BankServverReference.BankServerClient(new InstanceContext(this), "TcpBinding"); server.Open(); server.Subscribe(); refreshGridView(""); } public void refreshClients(string s) { SendOrPostCallback callback = delegate(object state) { refreshGridView(s); }; interfaceContext.Post(callback, s); } public void refreshGridView(string s) { try { userGrid.DataSource = server.refreshDatabaseConnection().Tables[0]; } catch (Exception ex) { MessageBox.Show(ex.ToString()); } } private void buttonAdd_Click(object sender, EventArgs e) { server.addNewAccount(Int32.Parse(inputPIN.Text), Int32.Parse(inputBalance.Text)); } private void Form1_FormClosing(object sender, FormClosingEventArgs e) { try { server.Unsubscribe(); server.Close(); }catch{} } } } The code for the server: namespace SSRfinal_tcp { class Program { static void Main(string[] args) { Console.WriteLine(MessageHandler.dataStamp("The server is starting up")); using (ServiceHost server = new ServiceHost(typeof(BankServer))) { server.Open(); Console.WriteLine(MessageHandler.dataStamp("The server is running")); Console.ReadKey(); } } } [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Single, InstanceContextMode = InstanceContextMode.PerCall, IncludeExceptionDetailInFaults = true)] public class BankServer : IBankServerService { private static DatabaseLINQConnectionDataContext database = new DatabaseLINQConnectionDataContext(); private static List<IBankServerServiceCallback> subscribers = new List<IBankServerServiceCallback>(); public void Subscribe() { try { IBankServerServiceCallback callback = OperationContext.Current.GetCallbackChannel<IBankServerServiceCallback>(); if (!subscribers.Contains(callback)) subscribers.Add(callback); Console.WriteLine(MessageHandler.dataStamp("A new Bank Administrator has connected")); } catch { Console.WriteLine(MessageHandler.dataStamp("A Bank Administrator has failed to connect")); } } public void Unsubscribe() { try { IBankServerServiceCallback callback = OperationContext.Current.GetCallbackChannel<IBankServerServiceCallback>(); if (subscribers.Contains(callback)) subscribers.Remove(callback); Console.WriteLine(MessageHandler.dataStamp("A Bank Administrator has been signed out from the connection list")); } catch { Console.WriteLine(MessageHandler.dataStamp("A Bank Administrator has failed to sign out from the connection list")); } } public DataSet refreshDatabaseConnection() { var q = from a in database.GetTable<Account>() select a; DataTable dt = q.toTable(rec => new object[] { q }); DataSet data = new DataSet(); data.Tables.Add(dt); Console.WriteLine(MessageHandler.dataStamp("A Bank Administrator has requested a database data listing refresh")); return data; } public void addNewAccount(int pin, int balance) { Account acc = new Account() { PIN = pin, Balance = balance, IsApproved = false }; database.Accounts.InsertOnSubmit(acc); database.SubmitChanges(); database.addNewAccount(pin, balance, false); subscribers.ForEach(delegate(IBankServerServiceCallback callback) { callback.refreshClients("New operation is pending approval."); }); } } } This is really simple and it works for a single window. However, when you open multiple instances of the client window and try to add a new record, the windows that is performing the insert operation crashes with the ExecuteReader error and the " requires an open and available connection. the connection's current state is connecting" bla bla stuff. I have no idea what's going on. Please advise.

    Read the article

  • 405 Method Not Allowed Error in WCF

    - by DotnetDude
    Can someone spot the problem with this implementation? I can open it up in the browser and it works, but a call from client side (using both jquery and asp.net ajax fails) Service Contract [OperationContract(Name = "GetTestString")] [WebInvoke(Method = "GET", ResponseFormat = WebMessageFormat.Json )] string GetTestString(); In Web.config among other bindings, I have a webHttp binding <endpoint address="ajax" binding="webHttpBinding" contract="TestService" behaviorConfiguration="AjaxBehavior" /> EndPoint Behavior <endpointBehaviors> <behavior name="AjaxBehavior"> <enableWebScript/> </behavior> </endpointBehaviors> </behaviors> Svc file <%@ ServiceHost Service="TestService" %> Client var serviceUrl = "http://127.0.0.1/Test.svc/ajax/"; var proxy = new ServiceProxy(serviceUrl); I am then using the approach in http://www.west-wind.com/weblog/posts/324917.aspx to call the service

    Read the article

  • "port forwarding": redirect calls to webservice at port 8081 to port 80

    - by niba
    Hi, a colleague of mine wrote a webservice that runs on port 8081 of our Windows 2008 Server. He uses the class ServiceHost, afaik this means its a standalone host (no IIS or ASP involvement). Note: I'm new into WCF ;) Now there are some issues with clients behind a firewall blocking the requests to remote port 8081 of our server (where the webservice runs). The easiest solution would be: run the webservice host at port 80 ... But: there is also a Apache 2.2 webserver running on the Windows Server, hosting some websites. By default it runs on port 80. My solution after some researching: use a virtual host to route requests to a virtual host (lets say http://webservice.[hostname]:80) to the webservice host (http://[hostname]:8081). Is this a good idea? Can Apache handle forwards to standalone webservice hosts? It would be nice if someone could lead me on to the right track :) Best regards, Niels

    Read the article

  • msmq binding wcf

    - by pdiddy
    I have some messages in my queue. Now I notice that after 3 tries the service host faults. Is this a normal behavior? Where does the 3 times comes from? I thought it came from receiveRetryCount. But I set that one to 1. I got 20 messages in my queue waiting to be processed. The WCF operation that is responsible to process the message supports transaction so if it can't process the message it will throw so that the message stays in the queue. I didn't think that it would of Fault the ServiceHost after a number of retry, is this part documented somewhere? I'm running MSMQ service on my winxp machine. I'm more interested in documentation indicating that the service host will fault after a number of retry. Is this part true?

    Read the article

  • Out of Memory on Update or Delete of Service Reference

    - by Kelly
    I have a Service Reference for a WCF project that has just over a hundred endpoints in my ServiceHost web.config. Every time I attempt to update or delete the Service Reference, it fails with an out of memory exception. I am running Vista Ultimate SP2 64-bit with 8GB RAM. I can work around it by going outside the project and deleting the Service References folder, then coming back in and re-adding the Reference. Is this the only workaround that you know of? Thanks!

    Read the article

  • WCF Service Library Reference in a Web Form (asp.net)

    - by Abu Hamzah
    i am not sure if this is the correct way of doing but i read that you not suppose to have a WCF Service Library reference in your web form project rather you add endpoints to your web.config, is that true? here is what i have done: 1) create a WCF service library project 2) create a simple service called "MyService.svc" WebForm: 1) Create a web project 2) create a WCF Service and in it i have this code <%@ ServiceHost Language="C#" Service="WCFJQuery.ContactBLL.Implementation.ContactUs" Factory="System.ServiceModel.Activation.WebScriptServiceHostFactory" %> 3) right click on the web proejct and "Add Reference" and add teh MyService.dll reference from WCF service library project. is this something how you suppose to do?

    Read the article

  • Self host WCF (Windows Communication Foundation) Ajax services

    - by Wayne Lo
    I am having trouble to understand how to expose the WCF services through Javascript. Here are what I found after days of research: Exposing WCF services through Javascript but not self host: http://msdn.microsoft.com/en-us/library/bb472488.aspx In this example, it requires the creation of a .svc file <%@ServiceHost language="c#" Debug="true" Service="Microsoft.Samples.XmlAjaxService.CalculatorService" Factory="System.ServiceModel.Activation.WebServiceHostFactory" %> Self host WCF Ajax services but not exposing the services through Javascript. http://msdn.microsoft.com/en-us/library/bb943471%28v=VS.100%29.aspx Please help. Thanks.

    Read the article

  • Self hosted WCF console output from service

    - by user989056
    quick one: Is it possible to capture the output stream of a WCF service that is hosted via ServiceHost ( self hosted service) ? I have methods within my WCF service that output useful debugging information, is it possible to send these to it's host's console output? Edit: It appears that I have made an obvious blunder - I was using Debug instead of Console. It is possible to output to the console by using the standard Console output commands in your WCF service class. I have marked the answer that I have found the most useful.

    Read the article

< Previous Page | 1 2 3 4 5  | Next Page >