Search Results

Search found 4613 results on 185 pages for 'circular references'.

Page 40/185 | < Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >

  • SQL Server 2008: The columns in table do not match an existing primary key or unique constraint

    - by 109221793
    Hi guys, I need to make some changes to a SQL Server 2008 database. This requires the creation of a new table, and inserting a foreign key in the new table that references the Primary key of an already existing table. So I want to set up a relationship between my new tblTwo, which references the primary key of tblOne. However when I tried to do this (through SQL Server Management Studio) I got the following error: The columns in table 'tblOne' do not match an existing primary key or UNIQUE constraint I'm not really sure what this means, and I was wondering if there was any way around it?

    Read the article

  • Javascript looping only through defined properties of array. How?

    - by Beck
    For example if i'm keeping array of references via id like that: if(typeof channel_boards[misc.channel_id] == 'undefined') { channel_boards[misc.channel_id] = $('<div class="channel" channel_id="'+misc.channel_id+'"></div>').appendTo('#board'); } And then i'm looping through array to find required reference. I'm looping through undefined properties as well. Is it possible to loop only through defined properties? for(i=0;i<channel_boards.length;i++) { if(channel_boards[i] != undefined) { if(channel_boards[i].attr('channel_id') != visible) {channel_boards[i].addClass('hidden_board');} else {channel_boards[i].removeClass('hidden_board');} } } Maybe i should change the way i'm storing references? Via object for example, but how i'll be able to find proper reference via id number.

    Read the article

  • Change master table PK and update related table FK (changing PK from Autoincrement to UUID on Mysql)

    - by eleonzx
    I have two related tables: Groups and Clients. Clients belongs to Groups so I have a foreign key "group_id" that references the group a client belongs to. I'm changing the Group id from an autoincrement to a UUID. So what I need is to generate a UUID for each Group and update the Clients table at once to reflect the changes and keep the records related. Is there a way to do this with multiple-table update on MySQL? Adding tables definitions for clarification. CREATE TABLE `groups` ( `id` char(36) NOT NULL, `name` varchar(255) DEFAULT NULL, `created` datetime DEFAULT NULL, `modified` datetime DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8$$ CREATE TABLE `clients` ( `id` char(36) NOT NULL, `name` varchar(255) NOT NULL, `group_id` char(36) DEFAULT NULL, `active` tinyint(1) DEFAULT '1' PRIMARY KEY (`id`), KEY `fkgp` (`group_id`), CONSTRAINT `fkgp` FOREIGN KEY (`group_id`) REFERENCES `groups` (`id`) ON DELETE NO ACTION ON UPDATE CASCADE ) ENGINE=InnoDB DEFAULT CHARSET=utf8$$

    Read the article

  • MySQL foreign key constraint disappearing

    - by Bramjam
    This is my table: /* oefenreeks leerplan */ CREATE TABLE leerplan_oefenreeks ( leerplan_oefenreeks_id INT PRIMARY KEY AUTO_INCREMENT NOT NULL, leerplan_id INT NOT NULL, oefenreeks_id INT NOT NULL, plaats INT NOT NULL ); /* fk */ ALTER TABLE leerplan_oefenreeks ADD CONSTRAINT fk_leerp_oefenr_leerplan FOREIGN KEY(leerplan_id) REFERENCES leerplan (leerplan_id) ON DELETE CASCADE; ALTER TABLE leerplan_oefenreeks ADD CONSTRAINT fk_leerp_oefenr_oefenreeks FOREIGN KEY(oefenreeks_id) REFERENCES oefenreeks (oefenreeks_id) ON DELETE CASCADE; /* when I execute the nexline, my fk_leerp_oefenr_leerplan constraint vanishes/disappears*/ ALTER TABLE leerplan_oefenreeks ADD CONSTRAINT un_leerp_oefenr UNIQUE(leerplan_id, oefenreeks_id); ALTER TABLE leerplan_oefenreeks ADD CONSTRAINT un_leerp_oefenr_plaats UNIQUE(leerplan_id, plaats); When I go and check only 3 constraints exist. fk_leerp_oefenr_leerplan disappears. I don't understand why this happens.

    Read the article

  • Visual Studio Snippets: How to reference an assembly that is not in the GAC

    - by user334220
    Hi, I have a 3rd party non-signed assembly that I want to reference in several projects. So I created a snippet to add the reference and the relative imports I tried the following, and several variations with full paths, without file:// etc, to no avail. Any ideas? ... <Snippet> <References> <Reference> <Assembly>MyAssemly.dll</Assembly> <Url>file://C:\Program Files\MyProduct</Url> </Reference> </References> <Imports> <Import> ...

    Read the article

  • How to copy referenced assembly's dependecies to ASP.NET output bin folder?

    - by LD2008
    Hi all, In Visual Studio 2010, I have project A (asp.net application). Project A references project B (class library). Project B references assembly C (direct reference to a DLL). When building project A, only project A and project B binaries are present in the /bin directory of project A, but not the assembly C. Why is that? If project B depends on assembly C, why is assembly C not copied together to the output folder? "Copy local" is already set to "true" for assembly C. Any information would be appreciated. Thanks!

    Read the article

  • How is the implicit segment register of a near pointer determined?

    - by Daniel Trebbien
    In section 4.3 of Intel 64® and IA-32 Architectures Software Developer's Manual. Volume 1: Basic Architecture, it says: A near pointer is a 32-bit offset ... within a segment. Near pointers are used for all memory references in a flat memory model or for references in a segmented model where the identity of the segment being accessed is implied. This leads me to wondering: how is the implied segment register determined? I know that (%eip) and displaced (%eip) (e.g. -4(%eip)) addresses use %cs by default, and that (%esp) and displaced (%esp) addresses use %ss, but what about (%eax), (%edx), (%edi), (%ebp) etc., and can the implicit segment register depend also on the instruction that the memory address operand appears in?

    Read the article

  • In Android, does _id have to be present in any table created?

    - by Andy
    I am trying to create a table to only has a foreign key, not a primary key. I am getting this error: java.lang.IllegalArgumentException: column '_id' does not exist I read a tutorial that the primary key must be _id, with no explanation. And that is fine. But what if I do not want a primary key! What if I only want a foreign key. I am assuming this is where my problem lies. The schemas below are what I have. But the third one is where I assume this is coming from. database.execSQL("CREATE TABLE events (" + "_id INTEGER PRIMARY KEY, event_name TEXT" + ")"); database.execSQL("CREATE TABLE reminders(_id INTEGER PRIMARY KEY, event_name TEXT" + ")"); database.execSQL("CREATE TABLE events_info (_id INTEGER, event_name TEXT, all_day INTEGER, " + "start_date INTEGER, start_time INTEGER, end_date INTEGER, end_time INTEGER," + " location TEXT, reminder_id INTEGER, notes TEXT, repeat TEXT," + "FOREIGN KEY(_id) REFERENCES events(_id), FOREIGN KEY(reminder_id) REFERENCES reminders(_id))" );

    Read the article

  • Timeout loading application on GAE using web2py

    - by Charles P.
    I am uploading an app to GAE. Through some experimentation I've found that if I don't include wsgihandler.py, the app loads very slowly. It feels like it's looking for this file and them timing out. Besides the slow loading, everything works perfectly without wsgihandler.py, so I want to know if there is a simple way to remove the references to the file. I tried poking around the files, but it doesn't look like there are direct references. Also, I asked before what I need at a minimum to get an application to work, and I found that I need: web2py/app.yaml web2py/gaehandler.py web2py/VERSION web2py/gluon/* (and subfolders, this is web2py) web2py/applications/theoneappyouwanttodeploy/* (and subfolders)

    Read the article

  • What Is The Best Scripting Language To Learn?

    - by Strider
    I have been learning C and C++ for sometime now. But, they do not allow me to do a lot of things like writing a script/program to get a bunch of files from the internet easily. So, I want to learn a scripting language which is fun and which is useful for everyday chores. Which one would you recommend, and why? Other information that might be useful: References to tutorials / helpful information on how to learn the language. References to implementations of the language. Niches where you have found it to be particularly useful.

    Read the article

  • visual c# 2010 communicating between two projects

    - by cake is a joke
    I am trying to create a windows form project, and use speech recognition for the Kinect with the Kinect to Windows SDK. I have the form application project (p1) and the Kinect speech project (p2) which is a command prompt. I made it a command prompt because it was the easiest way to do things. Anyway, I have read and found two things about this. 1)I found out how to run two projects at the same time in the same solution. 2) I also found out how to add references to get classes from each project to the other. So, how would I get variables from each project? Just by using project references, or something? P2 can recognize speech and save it to variables, if that counts for anything.

    Read the article

  • Mysql Constraint problem

    - by Bramjam
    this is my table /* oefenreeks leerplan */ CREATE TABLE leerplan_oefenreeks ( leerplan_oefenreeks_id INT PRIMARY KEY AUTO_INCREMENT NOT NULL, leerplan_id INT NOT NULL, oefenreeks_id INT NOT NULL, plaats INT NOT NULL ); /* fk */ ALTER TABLE leerplan_oefenreeks ADD CONSTRAINT fk_leerp_oefenr_leerplan FOREIGN KEY(leerplan_id) REFERENCES leerplan (leerplan_id) ON DELETE CASCADE; ALTER TABLE leerplan_oefenreeks ADD CONSTRAINT fk_leerp_oefenr_oefenreeks FOREIGN KEY(oefenreeks_id) REFERENCES oefenreeks (oefenreeks_id) ON DELETE CASCADE; /* unique s *//*when I execute the nexline, my fk_leerp_oefenr_leerplan constraint vanishes/disappears*/ ALTER TABLE leerplan_oefenreeks ADD CONSTRAINT un_leerp_oefenr UNIQUE(leerplan_id, oefenreeks_id); ALTER TABLE leerplan_oefenreeks ADD CONSTRAINT un_leerp_oefenr_plaats UNIQUE(leerplan_id, plaats); when I go and check only 3 constraints exist (fk_leerp_oefenr_leerplan is gone) I don't understand why this happens, plz tell me (if you need more info just ask ;)

    Read the article

  • How clean is deleting a computer object?

    - by Kevin
    Though quite skilled at software development, I'm a novice when it comes to Active Directory. I've noticed that AD seems to have a lot of stuff buried in the directory and schema which does not appear superficially when using simplified tools such as Active Directory Users and Computers. It kind of feels like the Windows registry, where COM classes have all kinds of intertwined references, many of which are purely by GUID, such that it's not enough to just search for anything referencing "GadgetXyz" by name in order to cleanly remove GadgetXyz. This occasionally leads to the uneasy feeling that I may have useless garbage building up in there which I have no idea how to weed out. For instance, I made the mistake a while back of trying to rename a DC, figuring I could just do it in the usual manner from Control Panel. I found references to the old name buried all over the place which made it impossible to reuse that name without considerable manual cleanup. Even long after I got it all working, I've stumbled upon the old name hidden away in LDAP. (There were no other DCs left in the picture at that time so I don't think it was a tombstone issue.) More specifically, I'm worried about the case of just outright deleting a computer from AD. I understand the cleanest way to do it is to log into the computer itself and tell it to leave the domain. (As an aside, doing this in Windows 8 seems to only disable the computer object and not delete it outright!) My concern is cases where this is not possible, for instance because it was on an already-deleted VM image. I can simply go into Active Directory Users and Computers, find the computer object, click it, and press Delete, and it seems to go away. My question is, is it totally, totally gone, or could this leave hanging references in any Active Directory nook or cranny I won't know to look in? (Excluding of course the expected tombstone records which expire after a set time.) If so, is there any good way to clean up the mess? Thank you for any insight! Kevin ps., It was over a year ago so I don't remember the exact details, but here's the gist of the DC renaming issue. I started with a single 2008 DC named ABC in a physical machine and wanted to end up instead with a DC of the same name running in a vSphere VM. Not wanting to mess with imaging the physical machine, my plan instead was: Rename ABC to XYZ. Fresh install 2008 on a VM, name it ABC, and join it to the domain. (I may have done the latter in the same step as promoting to DC; I don't recall.) dcpromo the new ABC as a 2nd DC, including GC. Make sure the new ABC replicated correctly from XYZ and then transfer the FSMO roles from XYZ to it. Once everything was confirmed to work with the new ABC alone, demote XYZ, remove the AD role, and remove it from the domain. Eventually I managed to do this but it was a much bumpier ride than expected. In particular, I got errors trying to join the new ABC to the domain. These included "The pre-windows 2000 name is already in use" and "No mapping between account names and security IDs was done." I eventually found that the computer object for XYZ had attributes that still referred to it as ABC. Among these were servicePrincipalName, msDS-AdditionalDnsHostName, and msDS-AdditionalSamAccountName. The latter I could not edit via Attribute Editor and instead had to run this against XYZ: NETDOM computername <simple-name> /add:<FQDN> There were some other hitches I don't remember exactly.

    Read the article

  • SBS2003 to SBS2011 Migration - Installation Error

    - by Shawn Gradwell
    Microsoft Small Business Server 2003 to 2011 Migration. I followed the Migration Guide from Microsoft and the source server had no errors when running the various tests prior to the migration. I have completed the destination server setup using the Answer File and the server is up and running. It all looks good, I can access Exchange and AD and the only problem is the error message when you log in stating that the setup did not complete and to check the logs. Because all looks good I am continuing the migration to the destination server. I also have to state that this client does not use Sharepoint at all. Do I have to redo everything? Herewith the logs: [4992] 121016.225454.5905: Task: Starting Add User or Group access VSS registry. [4992] 121016.225454.7645: TaskManagement: In TaskScheduler.RunTasks(): The "ConfigureSharePointVSSRegistryTask" Task threw an Exception during the Run() call:System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) [4992] 121016.225454.7655: Setup: An error was encountered on the TME thread: System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter._RunTasks(Object sender, DoWorkEventArgs e) [4956] 121016.225455.0685: Setup: _UnhandledExceptionHandler: Setup encountered an error: System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. ---> System.Reflection.TargetInvocationException: The TME thread failed (see the inner exception). ---> System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter._RunTasks(Object sender, DoWorkEventArgs e) at System.ComponentModel.BackgroundWorker.WorkerThreadStart(Object argument) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter.TasksCompleted(Object sender, RunWorkerCompletedEventArgs e) --- End of inner exception stack trace --- at System.RuntimeMethodHandle._InvokeMethodFast(IRuntimeMethodInfo method, Object target, Object[] arguments, SignatureStruct& sig, MethodAttributes methodAttributes, RuntimeType typeOwner) at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean skipVisibilityChecks) at System.Delegate.DynamicInvokeImpl(Object[] args) at System.Windows.Forms.Control.InvokeMarshaledCallbackDo(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbackHelper(Object obj) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Forms.Control.InvokeMarshaledCallback(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbacks() at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.NativeWindow.DebuggableCallback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam) at System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW(MSG& msg) at System.Windows.Forms.Application.ComponentManager.System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(IntPtr dwComponentID, Int32 reason, Int32 pvLoopData) at System.Windows.Forms.Application.ThreadContext.RunMessageLoopInner(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at Microsoft.WindowsServerSolutions.Common.Wizards.Framework.WizardChainEngine.Launch() at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass._LaunchWizard() at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass.RealMain(String[] args) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass.Main(String[] args) [4956] 121016.225455.0865: Setup: Removed the password. [4956] 121016.225455.0905: Setup: Deleting scheduled task at path Microsoft\Windows\Windows Small Business Server 2011 Standard with name Setup [4956] 121016.225455.8055: Setup: Removed SBSSetup from the RunOnce.

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • How to fix “Add Host to Workflow Farm problem” when installing Windows Azure Workflow in SharePoint2013 Preview

    - by ybbest
    Problem: When I try to configure the windows Azure workflow in SharePoint2013 preview, I got the following error see screenshot below. Detailed log can be found here. Solution: I asked the question in SharePoint StackExchange , Rajat’s help me to fix the problem .The solution for this is quite simple, instead of using the short form for your RunAs account, you should use the fully qualified name. So change administrator@YBBEST to [email protected] make the problem go away as shown below. References: How to: Set up and configure SharePoint 2013 workflows

    Read the article

  • An XEvent a Day (13 of 31) – The system_health Session

    - by Jonathan Kehayias
    Today’s post was originally planned for this coming weekend, but seems I’ve caught whatever bug my kids had over the weekend so I am changing up today’s blog post with one that is easier to cover and shorter.  If you’ve been running some of the queries from the posts in this series, you have no doubt come across an Event Session running on your server with the name of system_health.  In today’s post I’ll go over this session and provide links to references related to it. When Extended Events...(read more)

    Read the article

  • No mapping between account names and security IDs was done

    - by ybbest
    When I try to install SQL Server 2008 R2, I got the error “No mapping between account names and security IDs was done” when I try to set the SQL Server Database engine services identity to a domain user name. The reason I am getting the error is that I create a base VM forgot to run sysprep, before I copy the VM and used to install SQL servers. You need to run the sysprep as follows: References: How to Sysprep in Windows Server 2008 R2 and Windows 7

    Read the article

  • Getting MySQL work with Entity Framework 4.0

    - by DigiMortal
    Does MySQL work with Entity Framework 4.0? The answer is: yes, it works! I just put up one experimental project to play with MySQL and Entity Framework 4.0 and in this posting I will show you how to get MySQL data to EF. Also I will give some suggestions how to deploy your applications to hosting and cloud environments. MySQL stuff As you may guess you need MySQL running somewhere. I have MySQL installed to my development machine so I can also develop stuff when I’m offline. The other thing you need is MySQL Connector for .NET Framework. Currently there is available development version of MySQL Connector/NET 6.3.5 that supports Visual Studio 2010. Before you start download MySQL and Connector/NET: MySQL Community Server Connector/NET 6.3.5 If you are not big fan of phpMyAdmin then you can try out free desktop client for MySQL – HeidiSQL. I am using it and I am really happy with this program. NB! If you just put up MySQL then create also database with couple of table there. To use all features of Entity Framework 4.0 I suggest you to use InnoDB or other engine that has support for foreign keys. Connecting MySQL to Entity Framework 4.0 Now create simple console project using Visual Studio 2010 and go through the following steps. 1. Add new ADO.NET Entity Data Model to your project. For model insert the name that is informative and that you are able later recognize. Now you can choose how you want to create your model. Select “Generate from database” and click OK. 2. Set up database connection Change data connection and select MySQL Database as data source. You may also need to set provider – there is only one choice. Select it if data provider combo shows empty value. Click OK and insert connection information you are asked about. Don’t forget to click test connection button to see if your connection data is okay. If everything works then click OK. 3. Insert context name Now you should see the following dialog. Insert your data model name for application configuration file and click OK. Click next button. 4. Select tables for model Now you can select tables and views your classes are based on. I have small database with events data. Uncheck the checkbox “Include foreign key columns in the model” – it is damn annoying to get them away from model later. Also insert informative and easy to remember name for your model. Click finish button. 5. Define your classes Now it’s time to define your classes. Here you can see what Entity Framework generated for you. Relations were detected automatically – that’s why we needed foreign keys. The names of classes and their members are not nice yet. After some modifications my class model looks like on the following diagram. Note that I removed attendees navigation property from person class. Now my classes look nice and they follow conventions I am using when naming classes and their members. NB! Don’t forget to see properties of classes (properties windows) and modify their set names if set names contain numbers (I changed set name for Entity from Entity1 to Entities). 6. Let’s test! Now let’s write simple testing program to see if MySQL data runs through Entity Framework 4.0 as expected. My program looks for events where I attended. using(var context = new MySqlEntities()) {     var myEvents = from e in context.Events                     from a in e.Attendees                     where a.Person.FirstName == "Gunnar" &&                             a.Person.LastName == "Peipman"                     select e;       Console.WriteLine("My events: ");       foreach(var e in myEvents)     {         Console.WriteLine(e.Title);     } }   Console.ReadKey(); And when I run it I get the result shown on screenshot on right. I checked out from database and these results are correct. At first run connector seems to work slow but this is only the effect of first run. As connector is loaded to memory by Entity Framework it works fast from this point on. Now let’s see what we have to do to get our program work in hosting and cloud environments where MySQL connector is not installed. Deploying application to hosting and cloud environments If your hosting or cloud environment has no MySQL connector installed you have to provide MySQL connector assemblies with your project. Add the following assemblies to your project’s bin folder and include them to your project (otherwise they are not packaged by WebDeploy and Azure tools): MySQL.Data MySQL.Data.Entity MySQL.Web You can also add references to these assemblies and mark references as local so these assemblies are copied to binary folder of your application. If you have references to these assemblies then you don’t have to include them to your project from bin folder. Also add the following block to your application configuration file. <?xml version="1.0" encoding="utf-8"?> <configuration> ...   <system.data>     <DbProviderFactories>         <add              name=”MySQL Data Provider”              invariant=”MySql.Data.MySqlClient”              description=”.Net Framework Data Provider for MySQL”              type=”MySql.Data.MySqlClient.MySqlClientFactory, MySql.Data,                   Version=6.2.0.0, Culture=neutral,                   PublicKeyToken=c5687fc88969c44d”          />     </DbProviderFactories>   </system.data> ... </configuration> Conclusion It was not hard to get MySQL connector installed and MySQL connected to Entity Framework 4.0. To use full power of Entity Framework we used InnoDB engine because it supports foreign keys. It was also easy to query our model. To get our project online we needed some easy modifications to our project and configuration files.

    Read the article

  • Including additional DLL’s in an MSBuild script for Module Packaging

    - by Chris Hammond
    Late last year I created a blog post and video about a new version of the module development template that I released on Codeplex . This new template uses MSBuild scripts instead of NANT scripts to automate the packaging process for the modules built with the template. The MSBuild script works well out of the box, to package your module you simple change into RELEASE mode and then execute the build. If your project contains references to DLLs (in the website’s BIN folder) that you also need to package...(read more)

    Read the article

  • How can I bend an object in OpenGL?

    - by mindnoise
    Is there a way one could bend an object, like a cylinder or a plane using OpenGL? I'm an OpenGL beginner (I'm using OpenGL ES 2.0, if that matters, although I suspect, math matters most in this case, so it's somehow version independent), I understand the basics: translate, rotate, matrix transformations, etc. I was wondering if there is a technique which allows you to actually change the geometry of your objects (in this case by bending them)? Any links, tutorials or other references are welcomed!

    Read the article

  • Customize Team Build 2010 – Part 16: Specify the relative reference path

    In the series the following parts have been published Part 1: Introduction Part 2: Add arguments and variables Part 3: Use more complex arguments Part 4: Create your own activity Part 5: Increase AssemblyVersion Part 6: Use custom type for an argument Part 7: How is the custom assembly found Part 8: Send information to the build log Part 9: Impersonate activities (run under other credentials) Part 10: Include Version Number in the Build Number Part 11: Speed up opening my build process template Part 12: How to debug my custom activities Part 13: Get control over the Build Output Part 14: Execute a PowerShell script Part 15: Fail a build based on the exit code of a console application Part 16: Specify the relative reference path As I have already blogged about, it is not intuitive how to specify the paths where the build server has to look for references that are stored in Source Control. It is a common practice to store 3rd party libraries in Source Control, so they are available to everyone, everyone uses the same version of the libraries and updating a library can be done centrally. In Team Build 2010 these paths are specified as a parameter for MSBuild. What we will do in this post is building the values for this parameter based on the values in an argument. You are now pretty aware how to customize the build template, so let’s do the modifications in another way. Instead of opening the xaml file in the workflow designer, we open it in the XML editor. You can open it in the XML Editor by either selecting the Open with menu (see the context menu), or by choosing the View code option. To add this functionality we need to: Specify a new argument Add the argument to the metadata Build the absolute paths for the references and add these paths to the MSBuild arguments 1. Specify a new argument Locate at the top of the document the Members (which are the arguments) of the XAML and add the following line <x:Property Name="ReferencePaths" Type="InArgument(s:String[])" /> 2. Add the argument to the metadata Then locate the line <mtbw:ProcessParameterMetadataCollection> and paste the following line <mtbw:ProcessParameterMetadata Category="Misc" Description="The list of reference paths, relative to the root path in the Workspace mapping." DisplayName="Reference paths" ParameterName="ReferencePaths" /> 3. Build the absolute paths for the references and add these paths to the MSBuild arguments Now locate the place where the assignments are done to the variables used in the agent. And add the following lines after the last Assign activity         <Sequence DisplayName="Initialize ReferencePath" sap:VirtualizedContainerService.HintSize="464,428">           <Sequence.Variables>             <Variable x:TypeArguments="x:String" Name="ReferencePathsArgument">               <Variable.Default>                 <Literal x:TypeArguments="x:String" Value="" />               </Variable.Default>             </Variable>           </Sequence.Variables>           <sap:WorkflowViewStateService.ViewState>             <scg:Dictionary x:TypeArguments="x:String, x:Object">               <x:Boolean x:Key="IsExpanded">True</x:Boolean>             </scg:Dictionary>           </sap:WorkflowViewStateService.ViewState>           <ForEach x:TypeArguments="x:String" DisplayName="Iterate through the paths" sap:VirtualizedContainerService.HintSize="287,206" mtbwt:BuildTrackingParticipant.Importance="Low" Values="[ReferencePaths]">             <ActivityAction x:TypeArguments="x:String">               <ActivityAction.Argument>                 <DelegateInArgument x:TypeArguments="x:String" Name="path" />               </ActivityAction.Argument>               <Assign x:TypeArguments="x:String" DisplayName="Build ReferencePath argument" sap:VirtualizedContainerService.HintSize="257,100" mtbwt:BuildTrackingParticipant.Importance="Low"  To="[ReferencePathsArgument]" Value="[If(String.IsNullOrEmpty(ReferencePathsArgument), &quot;&quot;, ReferencePathsArgument + &quot;;&quot;) + IO.Path.Combine(SourcesDirectory, path)]" />             </ActivityAction>           </ForEach>           <Assign DisplayName="Append the reference paths to the MSBuild Arguments" sap:VirtualizedContainerService.HintSize="287,58">             <Assign.To>               <OutArgument x:TypeArguments="x:String">[MSBuildArguments]</OutArgument>             </Assign.To>             <Assign.Value>               <InArgument x:TypeArguments="x:String">[String.Format("{0} /p:ReferencePath=""{1}""", MSBuildArguments, ReferencePathsArgument)]</InArgument>             </Assign.Value>           </Assign>         </Sequence> Now you can use the template to specify the paths relative to SourcesDirectory. You can download the full solution at BuildProcess.zip. It will include the sources of every part and will continue to evolve.

    Read the article

  • Microsoft F#

    - by Aamir Hasan
    F# brings you type safe, succinct, efficient and expressive functional programming language on the .NET platform. It is a simple and pragmatic language, and has particular strengths in data-oriented programming, parallel I/O programming, parallel CPU programming, scripting and algorithmic development. F# cannot solve any problem C# could. F# is a functional language, statically typed. F# is a functional language that supports O-O-Programming References:http://msdn.microsoft.com/en-us/fsharp/cc835246.aspx http://research.microsoft.com/en-us/um/cambridge/projects/fsharp/

    Read the article

  • Masking a redirection in IIS7

    - by SydxPages
    My tools: IIS7 1 x Windows 2008 Server IIS URL Rewrite Module 2 (installed) My requirement: Mask the redirection of www.bob.com to www.abc.com/bob/index.html - the end user should not see the www.abc.com The user should then be able to browse the website as normal. I have found references to installing AAR, however this seems to be more for load balancing etc? Then others have said use a 3rd party tool etc.

    Read the article

< Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >