Search Results

Search found 3677 results on 148 pages for 'concurrent vector'.

Page 40/148 | < Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >

  • Is valgrind crazy or is this is a genuine std map iterator memory leak?

    - by Alberto Toglia
    Well, I'm very new to Valgrind and memory leak profilers in general. And I must say it is a bit scary when you start using them cause you can't stop wondering how many leaks you might have left unsolved before! To the point, as I'm not an experienced in c++ programmer, I would like to check if this is certainly a memory leak or is it that Valgrind is doing a false positive? typedef std::vector<int> Vector; typedef std::vector<Vector> VectorVector; typedef std::map<std::string, Vector*> MapVector; typedef std::pair<std::string, Vector*> PairVector; typedef std::map<std::string, Vector*>::iterator IteratorVector; VectorVector vv; MapVector m1; MapVector m2; vv.push_back(Vector()); m1.insert(PairVector("one", &vv.back())); vv.push_back(Vector()); m2.insert(PairVector("two", &vv.back())); IteratorVector i = m1.find("one"); i->second->push_back(10); m2.insert(PairVector("one", i->second)); m2.clear(); m1.clear(); vv.clear(); Why is that? Shouldn't the clear command call the destructor of every object and every vector? Now after doing some tests I found different solutions to the leak: 1) Deleting the line i-second-push_back(10); 2) adding a delete i-second; after it's been used. 3) Deleting the second vv.push_back(Vector()); and m2.insert(PairVector("two", &vv.back())); statements. Using solution 2) makes Valgring print: 10 allocs, 11 frees Is that OK? As I'm not using new why should I delete? Thanks, for any help!

    Read the article

  • Too many concurrent connections Exchange 2010. What else is there to check?

    - by hydroparadise
    I thought that I had this under control before. But for some reason during our last email marketing promo, I start receiving from our mass email client (built in house).. The message could not be sent to the SMTP server. The transport error code is 0x800ccc67. The server repsonse was 421 4.3.2 The maximum number of concurrent connections has exceeded a limit, closing transmission channel again. There's several places I've checked to make sure that wouldn't be an issue. First I checked that receive connector was set to receive an adequate number of connections on our relay connector (1000 connections). Then, I would later find out about Throttling Policies. I created one and set all the properties I knew to set in terms of the policy following properties to 1000; EWSMaxConcurrency, OWAMaxConcurrency, CPAMaxConcurrency, and CPAMaxConcurrency. Still, the email client starts receiving the error shortly after 100 has been sent and takes about 15-30 seconds. The process is then repeatable, but still the error gets received at the same spot everytime. Is there a rate setting that I am missing? Was there a windows update that I missed looking at? Should the software have it's own throttling feature?

    Read the article

  • Jboss Error-Cannot process metadata

    - by Nila
    Hi! I'm trying to implement stateless session bean ejb3 in jboss5 using netbeans6.8 as a editor. When I tried deploying my application, I'm getting the following error. What is the issue with this? 17:45:04,901 ERROR [AbstractKernelController] Error installing to PostClassLoader: name=vfszip:/E:/Shalini/jboss-5.1.0.GA/server/default/deploy/InsighIT1.1-ejb.jar/ state=ClassLoader mode=Manual requiredState=PostClassLoader org.jboss.deployers.spi.DeploymentException: Cannot process metadata at org.jboss.deployers.spi.DeploymentException.rethrowAsDeploymentException(DeploymentException.java:49) at org.jboss.deployment.AnnotationMetaDataDeployer.deploy(AnnotationMetaDataDeployer.java:181) at org.jboss.deployment.AnnotationMetaDataDeployer.deploy(AnnotationMetaDataDeployer.java:93) at org.jboss.deployers.plugins.deployers.DeployerWrapper.deploy(DeployerWrapper.java:171) at org.jboss.deployers.plugins.deployers.DeployersImpl.doDeploy(DeployersImpl.java:1439) at org.jboss.deployers.plugins.deployers.DeployersImpl.doInstallParentFirst(DeployersImpl.java:1157) at org.jboss.deployers.plugins.deployers.DeployersImpl.doInstallParentFirst(DeployersImpl.java:1210) at org.jboss.deployers.plugins.deployers.DeployersImpl.install(DeployersImpl.java:1098) at org.jboss.dependency.plugins.AbstractControllerContext.install(AbstractControllerContext.java:348) at org.jboss.dependency.plugins.AbstractController.install(AbstractController.java:1631) at org.jboss.dependency.plugins.AbstractController.incrementState(AbstractController.java:934) at org.jboss.dependency.plugins.AbstractController.resolveContexts(AbstractController.java:1082) at org.jboss.dependency.plugins.AbstractController.resolveContexts(AbstractController.java:984) at org.jboss.dependency.plugins.AbstractController.change(AbstractController.java:822) at org.jboss.dependency.plugins.AbstractController.change(AbstractController.java:553) at org.jboss.deployers.plugins.deployers.DeployersImpl.process(DeployersImpl.java:781) at org.jboss.deployers.plugins.main.MainDeployerImpl.process(MainDeployerImpl.java:702) at org.jboss.system.server.profileservice.repository.MainDeployerAdapter.process(MainDeployerAdapter.java:117) at org.jboss.system.server.profileservice.hotdeploy.HDScanner.scan(HDScanner.java:362) at org.jboss.system.server.profileservice.hotdeploy.HDScanner.run(HDScanner.java:255) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:441) at java.util.concurrent.FutureTask$Sync.innerRunAndReset(FutureTask.java:317) at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:150) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$101(ScheduledThreadPoolExecutor.java:98) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.runPeriodic(ScheduledThreadPoolExecutor.java:181) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:205) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:885) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:907) at java.lang.Thread.run(Thread.java:619) Caused by: java.lang.ClassNotFoundException: tomcat.Main from BaseClassLoader@1d6d136{VFSClassLoaderPolicy@41312b{name=vfszip:/E:/hh/jboss-5.1.0.GA/server/default/deploy/InsighIT1.1-ejb.jar/

    Read the article

  • Deadlock in ThreadPoolExecutor

    - by Vitaly
    Encountered a situation when ThreadPoolExecutor is parked in execute(Runnable) function while all the ThreadPool threads are waiting in getTask func, workQueue is empty. Does anybody have any ideas? The ThreadPoolExecutor is created with ArrayBlockingQueue, corePoolSize == maximumPoolSize = 4 [Edit] To be more precise, the thread is blocked in ThreadPoolExecutor.exec(Runnable command) func. It has the task to execute, but doesn't do it. [Edit2] The executor is blocked somewhere inside the working queue (ArrayBlockingQueue). [Edit3] The callstack: thread = front_end(224) at sun.misc.Unsafe.park(Native methord) at java.util.concurrent.locks.LockSupport.park(LockSupport.java:158) at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:747) at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireQueued(AbstractQueuedSynchronizer.java:778) at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire(AbstractQueuedSynchronizer.java:1114) at java.util.concurrent.locks.ReentrantLock$NonfairSync.lock(ReentrantLock.java:186) at java.util.concurrent.locks.ReentrantLock.lock(ReentrantLock.java:262) at java.util.concurrent.ArrayBlockingQueue.offer(ArrayBlockingQueue.java:224) at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:653) at net.listenThread.WorkersPool.execute(WorkersPool.java:45) at the same time the workQueue is empty (checked using remote debug) [Edit4] Code working with ThreadPoolExecutor: public WorkersPool(int size) { pool = new ThreadPoolExecutor(size, size, IDLE_WORKER_THREAD_TIMEOUT, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(WORK_QUEUE_CAPACITY), new ThreadFactory() { @NotNull private final AtomicInteger threadsCount = new AtomicInteger(0); @NotNull public Thread newThread(@NotNull Runnable r) { final Thread thread = new Thread(r); thread.setName("net_worker_" + threadsCount.incrementAndGet()); return thread; } }, new RejectedExecutionHandler() { public void rejectedExecution(@Nullable Runnable r, @Nullable ThreadPoolExecutor executor) { Verify.warning("new task " + r + " is discarded"); } }); } public void execute(@NotNull Runnable task) { pool.execute(task); } public void stopWorkers() throws WorkersTerminationFailedException { pool.shutdownNow(); try { pool.awaitTermination(THREAD_TERMINATION_WAIT_TIME, TimeUnit.SECONDS); } catch (InterruptedException e) { throw new WorkersTerminationFailedException("Workers-pool termination failed", e); } } }

    Read the article

  • trying to append a list, but something breaks

    - by romunov
    I'm trying to create an empty list which will have as many elements as there are num.of.walkers. I then try to append, to each created element, a new sub-list (length of new sub-list corresponds to a value in a. When I fiddle around in R everything goes smooth: list.of.dist[[1]] <- vector("list", a[1]) list.of.dist[[2]] <- vector("list", a[2]) list.of.dist[[3]] <- vector("list", a[3]) list.of.dist[[4]] <- vector("list", a[4]) I then try to write a function. Here is my feeble attempt that results in an error. Can someone chip in what am I doing wrong? countNumberOfWalks <- function(walk.df) { list.of.walkers <- sort(unique(walk.df$label)) num.of.walkers <- length(unique(walk.df$label)) #Pre-allocate objects for further manipulation list.of.dist <- vector("list", num.of.walkers) a <- c() # Count the number of walks per walker. for (i in list.of.walkers) { a[i] <- nrow(walk.df[walk.df$label == i,]) } a <- as.vector(a) # Add a sublist (length = number of walks) for each walker. for (i in i:num.of.walkers) { list.of.dist[[i]] <- vector("list", a[i]) } return(list.of.dist) } > num.of.walks.per.walker <- countNumberOfWalks(walk.df) Error in vector("list", a[i]) : vector size cannot be NA

    Read the article

  • transfering a container of data to different classes

    - by user340699
    I am passing a vector of bids from Trader class to Simulator class.which class then passes it on to the auctioneer class.something seems messed up, can anyone spot it please. Below is part of the code: Error: 199 expected primary-expression before '&' token //Class of Origin of the vector. class Trader { private: int nextBidId; public: Trader(); ~Trader(){}; Bid getNextBid(); Bid getNextBid(int trdId, int qty, int price, char type); void loadRange( vector <Bid> & bids ) {} ; void loadRange(BidList &, int trdId, int qty, int price, char type, int size); }; //To be received by the Simulator class Simulator { vector <Bid> list; Trader trader; Auctioneer auctioneer; public: void run(); }; // Passing the vector into a function in simulator Simulator::accept_bids(bid_vector::const_iterator begin, bid_vector::const_iterator end){ vector<Bid>::iterator itr; } //Its journey should end with the Auctioneer. who displays the data class Auctioneer { public: vector <Bid>v2;// created a new vector to hold the objects void accept_bids(vector<Bid> & bids); void displayBids(){return bids} };

    Read the article

  • C++ design question, container of instances and pointers

    - by Tom
    Hi all, Im wondering something. I have class Polygon, which composes a vector of Line (another class here) class Polygon { std::vector<Line> lines; public: const_iterator begin() const; const_iterator end() const; } On the other hand, I have a function, that calculates a vector of pointers to lines, and based on those lines, should return a pointer to a Polygon. Polygon* foo(Polygon& p){ std::vector<Line> lines = bar (p.begin(),p.end()); return new Polygon(lines); } Here's the question: I can always add a Polygon (vector Is there a better way that dereferencing each element of the vector and assigning it to the existing vector container? //for line in vector<Line*> v //vcopy is an instance of vector<Line> vcopy.push_back(*(v.at(i)) I think not, but I dont really like that approach. Hopefully, I will be able to convince the author of the class to change it, but I cant base my coding right now to that fact (and i'm scared of a performance hit). Thanks in advance.

    Read the article

  • C++ design question, container of instances and pointers

    - by Tom
    Hi all, Im wondering something. I have class Polygon, which composes a vector of Line (another class here) class Polygon { std::vector<Line> lines; public: const_iterator begin() const; const_iterator end() const; } On the other hand, I have a function, that calculates a vector of pointers to lines, and based on those lines, should return a pointer to a Polygon. Polygon* foo(Polygon& p){ std::vector<Line> lines = bar (p.begin(),p.end()); return new Polygon(lines); } Here's the question: I can always add a Polygon (vector Is there a better way that dereferencing each element of the vector and assigning it to the existing vector container? //for line in vector<Line*> v //vcopy is an instance of vector<Line> vcopy.push_back(*(v.at(i)) I think not, but I dont really like that approach. Hopefully, I will be able to convince the author of the class to change it, but I cant base my coding right now to that fact (and i'm scared of a performance hit). Thanks in advance.

    Read the article

  • C++ design question, container of instances and pointers

    - by Tom
    Hi all, Im wondering something. I have class Polygon, which composes a vector of Line (another class here) class Polygon { std::vector<Line> lines; public: const_iterator begin() const; const_iterator end() const; } On the other hand, I have a function, that calculates a vector of pointers to lines, and based on those lines, should return a pointer to a Polygon. Polygon* foo(Polygon& p){ std::vector<Line> lines = bar (p.begin(),p.end()); return new Polygon(lines); } Here's the question: I can always add a Polygon (vector Is there a better way that dereferencing each element of the vector and assigning it to the existing vector container? //for line in vector<Line*> v //vcopy is an instance of vector<Line> vcopy.push_back(*(v.at(i)) I think not, but I dont really like that approach. Hopefully, I will be able to convince the author of the class to change it, but I cant base my coding right now to that fact (and i'm scared of a performance hit). Thanks in advance.

    Read the article

  • How do i find if an object is before or after a waypoint?

    - by BoMann Andersen
    Im working on a racing game for a school project. Using Visual studio 10 pro, and Irrlicht. Sorry for bad grammar ., and its my first question so not sure if its done right. How i want it to work is that i make waypoints at different points on the track, and then i run my waypoint check to see if a car is past its next waypoint (the next it "needs" to go past), if yes then it updates the next waypoint, else nothing. The way i hope this will work is, i make a vector from n to n+1, then find the vector that is perpendicular to the first vector at n. Then i see if the object is in front or behind that vector. I found a Gamedev.net forumpost that helped me make this function: void Engine::checkWaypoint(Vehicle* vehicle) { btVector3 vector = waypoints[vehicle->nextWaypoint]; // n btVector3 nextVector = waypoints[vehicle->nextWaypoint + 1]; // n+1 vector = nextVector - vector; // First vector btVector3 pos = btVector3(vehicle->position.X,vehicle->position.Y,vehicle->position.Z); float product = vector.dot(pos - waypoints[vehicle->nextWaypoint]); // positiv = before, negative = behind if(product < 0) vehicle->nextWaypoint += 1; } Current bugs with this is: Updates the nextwaypoint more then ones without going past a new point. When it gets to the end and resets, it stops triggering on the first waypoints. So my questions: Is this an good way to do this? Did i do it right?

    Read the article

  • How do I resolve this exercise on C++? [closed]

    - by user40630
    (Card Shuffling and Dealing) Create a program to shuffle and deal a deck of cards. The program should consist of class Card, class DeckOfCards and a driver program. Class Card should provide: a) Data members face and suit of type int. b) A constructor that receives two ints representing the face and suit and uses them to initialize the data members. c) Two static arrays of strings representing the faces and suits. d) A toString function that returns the Card as a string in the form “face of suit.” You can use the + operator to concatenate strings. Class DeckOfCards should contain: a) A vector of Cards named deck to store the Cards. b) An integer currentCard representing the next card to deal. c) A default constructor that initializes the Cards in the deck. The constructor should use vector function push_back to add each Card to the end of the vector after the Card is created and initialized. This should be done for each of the 52 Cards in the deck. d) A shuffle function that shuffles the Cards in the deck. The shuffle algorithm should iterate through the vector of Cards. For each Card, randomly select another Card in the deck and swap the two Cards. e) A dealCard function that returns the next Card object from the deck. f) A moreCards function that returns a bool value indicating whether there are more Cards to deal. The driver program should create a DeckOfCards object, shuffle the cards, then deal the 52 cards. This above is the exercise I'm trying to solve. I'd be very much appreciated if someone could solve it and explain it to me. The main idea of the program is quite simple. What I don't get is how to build the constructor for the class DeckOfCards and how to generate the 52 cards of the deck with different suits and faces. Untill now I've managed to do this: #include <iostream> #include <vector> using namespace std; /* * */ /* a) Data members face and suit of type int. b) A constructor that receives two ints representing the face and suit and uses them to initialize the data members. c) Two static arrays of strings representing the faces and suits. d) A toString function that returns the Card as a string in the form “face of suit.” You can use the + operator to concatenate strings. */ class Card { public: Card(int, int); string toString(); private: int suit, face; static string faceNames[13]; static string suitNames[4]; }; string Card::faceNames[13] = {"Ace","Two","Three","Four","Five","Six","Seven","Eight","Nine","Ten","Queen","Jack","King"}; string Card::suitNames[4] = {"Diamonds","Clubs","Hearts","Spades"}; string Card::toString() { return faceNames[face]+" of "+suitNames[suit]; } Card::Card(int f, int s) :face(f), suit(s) { } /* Class DeckOfCards should contain: a) A vector of Cards named deck to store the Cards. b) An integer currentCard representing the next card to deal. c) A default constructor that initializes the Cards in the deck. The constructor should use vector function push_back to add each Card to the end of the vector after the Card is created and initialized. This should be done for each of the 52 Cards in the deck. d) A shuffle function that shuffles the Cards in the deck. The shuffle algorithm should iterate through the vector of Cards. For each Card, randomly select another Card in the deck and swap the two Cards. e) A dealCard function that returns the next Card object from the deck. f) A moreCards function that returns a bool value indicating whether there are more Cards to deal. */ class DeckOfCards { public: DeckOfCards(); void shuffleCards(); Card dealCard(); bool moreCards(); private: vector<Card> deck(52); int currentCard; }; int main(int argc, char** argv) { return 0; } DeckOfCards::DeckOfCards() { //I'm stuck here I have no idea of what to take out of here. //I still don't fully get the idea of class inside class and that's turning out as a problem. I try to find a way to set the suits and faces members of the class Card but I can't figure out how. for(int i=0; i<deck.size(); i++) { deck[i]//....There is no function to set them. They must be set when initialized. But how?? } } For easier reading: http://pastebin.com/pJeXMH0f

    Read the article

  • Applications: The Mathematics of Movement, Part 3

    - by TechTwaddle
    Previously: Part 1, Part 2 As promised in the previous post, this post will cover two variations of the marble move program. The first one, Infinite Move, keeps the marble moving towards the click point, rebounding it off the screen edges and changing its direction when the user clicks again. The second version, Finite Move, is the same as first except that the marble does not move forever. It moves towards the click point, rebounds off the screen edges and slowly comes to rest. The amount of time that it moves depends on the distance between the click point and marble. Infinite Move This case is simple (actually both cases are simple). In this case all we need is the direction information which is exactly what the unit vector stores. So when the user clicks, you calculate the unit vector towards the click point and then keep updating the marbles position like crazy. And, of course, there is no stop condition. There’s a little more additional code in the bounds checking conditions. Whenever the marble goes off the screen boundaries, we need to reverse its direction.  Here is the code for mouse up event and UpdatePosition() method, //stores the unit vector double unitX = 0, unitY = 0; double speed = 6; //speed times the unit vector double incrX = 0, incrY = 0; private void Form1_MouseUp(object sender, MouseEventArgs e) {     double x = e.X - marble1.x;     double y = e.Y - marble1.y;     //calculate distance between click point and current marble position     double lenSqrd = x * x + y * y;     double len = Math.Sqrt(lenSqrd);     //unit vector along the same direction (from marble towards click point)     unitX = x / len;     unitY = y / len;     timer1.Enabled = true; } private void UpdatePosition() {     //amount by which to increment marble position     incrX = speed * unitX;     incrY = speed * unitY;     marble1.x += incrX;     marble1.y += incrY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;         unitX *= -1;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;         unitX *= -1;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;         unitY *= -1;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;         unitY *= -1;     } } So whenever the user clicks we calculate the unit vector along that direction and also the amount by which the marble position needs to be incremented. The speed in this case is fixed at 6. You can experiment with different values. And under bounds checking, whenever the marble position goes out of bounds along the x or y direction we reverse the direction of the unit vector along that direction. Here’s a video of it running;   Finite Move The code for finite move is almost exactly same as that of Infinite Move, except for the difference that the speed is not fixed and there is an end condition, so the marble comes to rest after a while. Code follows, //unit vector along the direction of click point double unitX = 0, unitY = 0; //speed of the marble double speed = 0; private void Form1_MouseUp(object sender, MouseEventArgs e) {     double x = 0, y = 0;     double lengthSqrd = 0, length = 0;     x = e.X - marble1.x;     y = e.Y - marble1.y;     lengthSqrd = x * x + y * y;     //length in pixels (between click point and current marble pos)     length = Math.Sqrt(lengthSqrd);     //unit vector along the same direction as vector(x, y)     unitX = x / length;     unitY = y / length;     speed = length / 12;     timer1.Enabled = true; } private void UpdatePosition() {     marble1.x += speed * unitX;     marble1.y += speed * unitY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;         unitX *= -1;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;         unitX *= -1;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;         unitY *= -1;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;         unitY *= -1;     }     //reduce speed by 3% in every loop     speed = speed * 0.97f;     if ((int)speed <= 0)     {         timer1.Enabled = false;     } } So the only difference is that the speed is calculated as a function of length when the mouse up event occurs. Again, this can be experimented with. Bounds checking is same as before. In the update and draw cycle, we reduce the speed by 3% in every cycle. Since speed is calculated as a function of length, speed = length/12, the amount of time it takes speed to reach zero is directly proportional to length. Note that the speed is in ‘pixels per 40ms’ because the timeout value of the timer is 40ms.  The readability can be improved by representing speed in ‘pixels per second’. This would require you to add some more calculations to the code, which I leave out as an exercise. Here’s a video of this second version,

    Read the article

  • How to render 3D models as SVG vector graphics? (planar projection)

    - by Jan
    This image (original SVG from Wikipedia, public domain) was created using the following procedure: Create a 3D model in Google sketchup Export as PDF Import in Inkscape Save as SVG Is there a straightforward way to produce such a SVG with software that runs (natively) on Ubuntu? (Pantograph, a Blender plugin, has only broken download links; VRM, another Blender plugin works with Belnder 2.4x, but not with Blender 2.6x.)

    Read the article

  • Can GJK be used with the same "direction finding method" every time?

    - by the_Seppi
    In my deliberations on GJK (after watching http://mollyrocket.com/849) I came up with the idea that it ins not neccessary to use different methods for getting the new direction in the doSimplex function. E.g. if the point A is closest to the origin, the video author uses the negative position vector AO as the direction in which the next point is searched. If an edge (with A as an endpoint) is closest, he creates a normal vector to this edge, lying in the plane the edge and AO form. If a face is the feature closest to the origin, he uses even another method (which I can't recite from memory right now) However, while thinking about the implementation of GJK in my current came, I noticed that the negative direction vector of the newest simplex point would always make a good direction vector. Of course, the next vertex found by the support function could form a simplex that less likely encases the origin, but I assume it would still work. Since I'm currently experiencing problems with my (yet unfinished) implementation, I wanted to ask whether this method of forming the direction vector is usable or not.

    Read the article

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

  • Is it possible to have an inconsistent branch/tag with SVN due to concurrent commit action?

    - by maraspin
    I'm trying to understand whether subversion has its own mechanisms for regulating concurrent user activities on the trunk (IE a branch/tag action and a commit action happening at the same time) or if it's up to the users to sync between themselves before acting on the trunk. I've been trying to find documentation about this on the net but haven't been able to come up with something, so I appreciate if someone can enlighten me on the topic. Thank you in advance!

    Read the article

  • Getting pixel averages of a vector sitting atop a bitmap...

    - by user346511
    I'm currently involved in a hardware project where I am mapping triangular shaped LED to traditional bitmap images. I'd like to overlay a triangle vector onto an image and get the average pixel data within the bounds of that vector. However, I'm unfamiliar with the math needed to calculate this. Does anyone have an algorithm or a link that could send me in the right direction? (I tagged this as Python, which is preferred, but I'd be happy with the general algorithm!) I've created a basic image of what I'm trying to capture here: http://imgur.com/Isjip.gif

    Read the article

  • Need to get pixel averages of a vector sitting on a bitmap...

    - by user346511
    I'm currently involved in a hardware project where I am mapping triangular shaped LED to traditional bitmap images. I'd like to overlay a triangle vector onto an image and get the average pixel data within the bounds of that vector. However, I'm unfamiliar with the math needed to calculate this. Does anyone have an algorithm or a link that could send me in the right direction? I'm not even clear what this type of math is called. I've created a basic image of what I'm trying to capture here: http://imgur.com/Isjip.gif

    Read the article

  • Spring.Net how does WebApplicationContext.GetObject handle concurrent requests?

    - by Alfamale
    Apologies if I have missed something obvious here but having gone through the documentation, forums and googled for a number of hours, I just can't find a definitive answer to the following questions: How does the WebApplicationContext.GetObject() method handle concurrent requests? Are the requests serialized or executed in parallel? Is there any performance data available to demonstrate how it behaves under load? Thanks in advance for your help, Andrew

    Read the article

< Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >