Search Results

Search found 2455 results on 99 pages for 'lambda expressions'.

Page 40/99 | < Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >

  • Developing for 2005 using VS2008!

    - by Vincent Grondin
    I joined a fairly large project recently and it has a particularity… Once finished, everything has to be sent to the client under VS2005 using VB.Net and can target either framework 2.0 or 3.0… A long time ago, the decision to use VS2008 and to target framework 3.0 was taken but people knew they would need to establish a few rules to ensure that each dev would use VS2008 as if it was VS2005… Why is that so? Well simply because the compiler in VS2005 is different from the compiler inside VS2008…  I thought it might be a good idea to note the things that you cannot use in VS2008 if you plan on going back to VS2005. Who knows, this might save someone the headache of going over all their code to fix errors… -        Do not use LinQ keywords (from, in, select, orderby…).   -        Do not use LinQ standard operators under the form of extension methods.   -        Do not use type inference (in VB.Net you can switch it OFF in each project properties). o   This means you cannot use XML Literals.   -        Do not use nullable types under the following declarative form:    Dim myInt as Integer? But using:   Dim myInt as Nullable(Of Integer)     is perfectly fine.   -        Do not test nullable types with     Is Nothing    use    myInt.HasValue     instead.   -        Do not use Lambda expressions (there is no Lambda statements in VB9) so you cannot use the keyword “Function”.   -        Pay attention not to use relaxed delegates because this one is easy to miss in VS2008   -        Do not use Object Initializers   -        Do not use the “ternary If operator” … not the IIf method but this one     If(confition, truepart, falsepart).   As a side note, I talked about not using LinQ keyword nor the extension methods but, this doesn’t mean not to use LinQ in this scenario. LinQ is perfectly accessible from inside VS2005. All you need to do is reference System.Core, use namespace System.Linq and use class “Enumerable” as a helper class… This is one of the many classes containing various methods that VS2008 sees as extensions. The trick is you can use them too! Simply remember that the first parameter of the method is the object you want to query on and then pass in the other parameters needed… That’s pretty much all I see but I could have missed a few… If you know other things that are specific to the VS2008 compiler and which do not work under VS2005, feel free to leave a comment and I’ll modify my list accordingly (and notify our team here…) ! Happy coding all!

    Read the article

  • T-SQL User-Defined Functions: the good, the bad, and the ugly (part 2)

    - by Hugo Kornelis
    In a previous blog post , I demonstrated just how much you can hurt your performance by encapsulating expressions and computations in a user-defined function (UDF). I focused on scalar functions that didn’t include any data access. In this post, I will complete the discussion on scalar UDFs by covering the effect of data access in a scalar UDF. Note that, like the previous post, this all applies to T-SQL user-defined functions only. SQL Server also supports CLR user-defined functions (written in...(read more)

    Read the article

  • Analyzing a programming language

    - by Matt Fenwick
    In SICP, the authors state (Section 1.1) that there are three basic "mechanisms" of programming languages: primitive expressions, which represent the simplest entities the language is concerned with means of combination, by which compound elements are built from simpler ones means of abstraction, by which compound elements can be named and manipulated as units How can I analyze a mainstream programming language (Java, for example) in terms of these elements or mechanisms?

    Read the article

  • T-SQL User-Defined Functions: the good, the bad, and the ugly (part 2)

    - by Hugo Kornelis
    In a previous blog post , I demonstrated just how much you can hurt your performance by encapsulating expressions and computations in a user-defined function (UDF). I focused on scalar functions that didn’t include any data access. In this post, I will complete the discussion on scalar UDFs by covering the effect of data access in a scalar UDF. Note that, like the previous post, this all applies to T-SQL user-defined functions only. SQL Server also supports CLR user-defined functions (written in...(read more)

    Read the article

  • Architecture for a template-building, WYSIWIG application

    - by Sam Selikoff
    I'm building a WYSIWYG designer in Ember.js. The designer will allow users to create campaigns - think MailChimp. To build a campaign, users will choose an existing template. The template will have a defined layout. The user will then be taken to the designer, where he will be able to edit the text and style, and additionally change some layout options. I've been thinking about how best to go about structuring this app, and there are a few hurdles. Specifically, the output of the campaign will be dynamic: eventually, it will be published somewhere, and when the consumers (not my users, but the people clicking on the campaign that my user created) visit the campaign, certain pieces of data will change, depending on the type of consumer viewing the campaign. That means the ultimate output of the designer will be a dynamic site. The data that is dynamic for this site - the end product - will not be manipulated by the user in the designer. However, the data that will be manipulated by the user in the designer are things like copy, styles, layout options, etc. I'll call the first set of variables server-side data, and the second client-side data. It seems, then, that the process will go something like this: I'll need to create templates for this designer that have two dynamic segments. For instance, the server-side data could be Liquid expressions, and the client-side data Handlebars expressions. When the user creates a campaign, I would compile the template on the back end using some dummy data for the server-side variables, and serve up a handlebars template to the Ember app. The user would then edit the template, and the Ember app would save all his edits to the JS variables that were powering the template. This way he'd be able to preview the template. When he saves, he'll send back the selected template, along with all the data and options he's made. When it comes time to publish, the back-end system will have to do two things: compile the template with Handlebars using the campaign data, and then compile the template with Liquid using the server-side data Is my thinking roughly accurate about this, or is there a simpler way?

    Read the article

  • Caching items in Orchard

    - by Bertrand Le Roy
    Orchard has its own caching API that while built on top of ASP.NET's caching feature adds a couple of interesting twists. In addition to its usual work, the Orchard cache API must transparently separate the cache entries by tenant but beyond that, it does offer a more modern API. Here's for example how I'm using the API in the new version of my Favicon module: _cacheManager.Get( "Vandelay.Favicon.Url", ctx => { ctx.Monitor(_signals.When("Vandelay.Favicon.Changed")); var faviconSettings = ...; return faviconSettings.FaviconUrl; }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } There is no need for any code to test for the existence of the cache entry or to later fill that entry. Seriously, how many times have you written code like this: var faviconUrl = (string)cache["Vandelay.Favicon.Url"]; if (faviconUrl == null) { faviconUrl = ...; cache.Add("Vandelay.Favicon.Url", faviconUrl, ...); } Orchard's cache API takes that control flow and internalizes it into the API so that you never have to write it again. Notice how even casting the object from the cache is no longer necessary as the type can be inferred from the return type of the Lambda. The Lambda itself is of course only hit when the cache entry is not found. In addition to fetching the object we're looking for, it also sets up the dependencies to monitor. You can monitor anything that implements IVolatileToken. Here, we are monitoring a specific signal ("Vandelay.Favicon.Changed") that can be triggered by other parts of the application like so: _signals.Trigger("Vandelay.Favicon.Changed"); In other words, you don't explicitly expire the cache entry. Instead, something happens that triggers the expiration. Other implementations of IVolatileToken include absolute expiration or monitoring of the files under a virtual path, but you can also come up with your own.

    Read the article

  • Why don't languages include implication as a logical operator?

    - by Maciej Piechotka
    It might be a strange question, but why there is no implication as a logical operator in many languages (Java, C, C++, Python Haskell - although as last one have user defined operators its trivial to add it)? I find logical implication much clearer to write (particularly in asserts or assert-like expressions) then negation with or: encrypt(buf, key, mode, iv = null) { assert (mode != ECB --> iv != null); assert (mode == ECB || iv != null); assert (implies(mode != ECB, iv != null)); // User-defined function }

    Read the article

  • How to get better at solving Dynamic programming problems

    - by newbie
    I recently came across this question: "You are given a boolean expression consisting of a string of the symbols 'true', 'false', 'and', 'or', and 'xor'. Count the number of ways to parenthesize the expression such that it will evaluate to true. For example, there is only 1 way to parenthesize 'true and false xor true' such that it evaluates to true." I knew it is a dynamic programming problem so i tried to come up with a solution on my own which is as follows. Suppose we have a expression as A.B.C.....D where '.' represents any of the operations and, or, xor and the capital letters represent true or false. Lets say the number of ways for this expression of size K to produce a true is N. when a new boolean value E is added to this expression there are 2 ways to parenthesize this new expression 1. ((A.B.C.....D).E) ie. with all possible parenthesizations of A.B.C.....D we add E at the end. 2. (A.B.C.(D.E)) ie. evaluate D.E first and then find the number of ways this expression of size K can produce true. suppose T[K] is the number of ways the expression with size K produces true then T[k]=val1+val2+val3 where val1,val2,val3 are calculated as follows. 1)when E is grouped with D. i)It does not change the value of D ii)it inverses the value of D in the first case val1=T[K]=N.( As this reduces to the initial A.B.C....D expression ). In the second case re-evaluate dp[K] with value of D reversed and that is val1. 2)when E is grouped with the whole expression. //val2 contains the number of 'true' E will produce with expressions which gave 'true' among all parenthesized instances of A.B.C.......D i) if true.E = true then val2 = N ii) if true.E = false then val2 = 0 //val3 contains the number of 'true' E will produce with expressions which gave 'false' among all parenthesized instances of A.B.C.......D iii) if false.E=true then val3=( 2^(K-2) - N ) = M ie. number of ways the expression with size K produces a false [ 2^(K-2) is the number of ways to parenthesize an expression of size K ]. iv) if false.E=false then val3 = 0 This is the basic idea i had in mind but when i checked for its solution http://people.csail.mit.edu/bdean/6.046/dp/dp_9.swf the approach there was completely different. Can someone tell me what am I doing wrong and how can i get better at solving DP so that I can come up with solutions like the one given above myself. Thanks in advance.

    Read the article

  • Looking for terminology for the relation of a subject and a predicate

    - by kostja
    While writing some predicates for collection filtering I have stumbled over the choice of the right words for the relation of the subject and the predicate (English is a foreign language for me). What I ended up writing was "Subjects matching this predicate..." This seems to be incorrect, since predicates are functions and not regular expressions. But saying "Subjects for which this predicate returns true..." sounds awkward to me as well.. So what would be the correct term?

    Read the article

  • Perl like regular expression in Oracle DB

    - by user13136722
    There's regular expression support in Oracle DB Using Regular Expressions in Database Applications Oracle SQL PERL-Influenced Extensions to POSIX Standard But '\b' is not supported which I believe is quite wideliy used in perl and/or other tools perlre - perldoc.perl.org \b Match a word boundary So, I experimented with '\W' which is non-"word" character When combined with beginning-of-line and end-of-line like below, I think it works exactly the same as '\b' SELECT * FROM TAB1 WHERE regexp_like(TEXTCOL1, '(^|\W)a_word($|\W)', 'i')

    Read the article

  • La force du mot de passe serait corrélée au genre d'un individu, d'après une étude, les informaticiens choisiraient des mots de passe forts

    La force du mot de passe serait corrélée au genre d'un individu d'après une récente étudeLe mot de passe est un des éléments essentiels de la sécurité des systèmes d'information. Il constitue très souvent le premier obstacle que doit franchir un hacker pour avoir accès aux informations personnelles d'un utilisateur lambda.Une récente étude vient d'être menée sur quasiment l'ensemble de la population de l'université américaine de Carnegie Mellon. Elle a porté sur l'analyse des mots de passe de 25000...

    Read the article

  • JSR Updates

    - by heathervc
    JSR 349, Bean Validation 1.1, has published a Public Review. The review closes on 12 November. JSR 331, Constraint Programming API, has published a Maintenance Release. JSR 335, Lambda Expressions for the Java Programming Language, has moved to JCP 2.8!  Check out their java.net project. JSR 107, JCACHE - Java Temporary Caching API, has posted their Early Draft Release.  The review closes on 22 November.

    Read the article

  • Are there any good Java/JVM libraries for my Expression Tree architecture?

    - by Snuggy
    My team and I are developing an enterprise-level application and I have devised an architecture for it that's best described as an "Expression Tree". The basic idea is that the leaf nodes of the tree are very simple expressions (perhaps simple values or strings). Nodes closer to the trunk will get more and more complex, taking the simpler nodes as their inputs and returning more complex results for their parents. Looking at it the other way, the application performs some task, and for this it creates a root expression. The root expression divides its input into smaller units and creates child expressions, which when evaluated it can use to build it's own result. The subdividing process continues until the simplest leaf nodes. There are two very important aspects of this architecture: It must be possible to manipulate nodes of the tree after it is built. The nodes may be given new input values to work with and any change in result for that node needs to be propagated back up the tree to the root node. The application must make best use of available processors and ultimately be scalable to other computers in a grid or in the cloud. Nodes in the tree will often be updating concurrently and notifying other interested nodes in the tree when they get a new value. Unfortunately, I'm not at liberty to discuss my actual application, but to aid understanding a little bit, you might imagine a kind of spreadsheet application being implemented with a similar architecture, where changes to cells in the table are propagated all over the place to other cells that need the result. The spreadsheet could get so massive that applying multi-core multi-computer distributed system to solve it would be of benefit. I've got my prototype "Expression Engine" working nicely on a single multi-core PC but I've started to run into a few concurrency issues (as expected because I haven't been taking too much care so far) so it's now time to start thinking about migrating the Engine to a more robust library, and that leads to a number of related questions: Is there any precedent for my "Expression Tree" architecture that I could research? What programming concepts should I consider. I realise this approach has many similarities to a functional programming style, and I'm already aware of the concepts of using futures and actors. Are there any others? Are there any languages or libraries that I should study? This question is inspired by my accidental discovery of Scala and the Akka library (which has good support for Actors, Futures, Distributed workloads etc.) and I'm wondering if there is anything else I should be looking at as well?

    Read the article

  • DAX Statistical Functions

    Following on from his first four articles on using Data Analysis Expressions (DAX) with tabular databases, Robert Sheldon dives into some of the DAX statistical functions available, demonstrating which are the most useful and examples of how they work. The seven tools in the SQL DBA Bundle support your core SQL Server database administration tasks.Make backups a breeze! Enjoy trouble-free troubleshooting! Make the most of monitoring! Download a free trial now.

    Read the article

  • Overused or abused programming techniques

    - by Anto
    Are there any techniques in programming that you find to be overused (IE used way more excessively than what they should be) or abused, or used a bit for everything, while not being a really good solution to many of the problems which people attempt to solve with it. It could be regular expressions, some kind of design pattern or maybe an algorithm, or something completely different. Maybe you think people abuse multiple inheritance etc.

    Read the article

  • XPath execution utility

    - by TATWORTH
    I have written an XPath test utility at http://commonxpath.codeplex.com/releases/view/96687This is a WPF application that allows you to enter some test XML and and an XPath expression. When writing such expressions it is important to get the XPath expression correct before embedding it into a program.The program is available as source under LGPL so you can run it both on your office and home PCs. There is a link to help on XPATH syntax.

    Read the article

  • Is C++ still a "language"?

    - by slashmais
    Considering that C++ is a conglomerate of at least the following: C C-with-classes (original C++) templates (class, function) template meta-programming variadic templates(pdf) lambda functions preprocessor macros, pragma's each of which requiring specialized knowledge of their distinct implementation semantics. You can use only some of the above and call your code "C++". Still a language?, or else what is it?

    Read the article

  • Customizable Method Bodies in NetBeans IDE 7.3

    - by Geertjan
    In NetBeans IDE 7.3, bodies of newly created methods can now be customized in Tools/Templates/Java/Code Snippets, see below: The content of the first of the two above, "Generated Method Body", is like this: <#-- A built-in Freemarker template (see http://freemarker.sourceforge.net) used for filling the body of methods generated by the IDE. When editing the template, the following predefined variables, that will be then expanded into the corresponding values, could be used together with Java expressions and comments: ${method_return_type}       a return type of a created method ${default_return_value}     a value returned by the method by default ${method_name}              name of the created method ${class_name}               qualified name of the enclosing class ${simple_class_name}        simple name of the enclosing class --> throw new java.lang.UnsupportedOperationException("Not supported yet."); //To change body of generated methods, choose Tools | Templates. The second one, "Overriden Methody Body", is as follows: <#-- A built-in Freemarker template (see http://freemarker.sourceforge.net) used for filling the body of overridden methods generated by the IDE. When editing the template, the following predefined variables, that will be then expanded into the corresponding values, could be used together with Java expressions and comments: ${super_method_call}        a super method call ${method_return_type}       a return type of a created method ${default_return_value}     a value returned by the method by default ${method_name}              name of the created method ${class_name}               qualified name of the enclosing class ${simple_class_name}        simple name of the enclosing class --> <#if method_return_type?? && method_return_type != "void"> return ${super_method_call}; //To change body of generated methods, choose Tools | Templates. <#else> ${super_method_call}; //To change body of generated methods, choose Tools | Templates. </#if>

    Read the article

  • JavaOne 2012 : Oracle présente la spécification JSR 353, l'API Java pour la manipulation avec souplesse du format JSON

    JavaOne 2012 : Oracle présente la spécification JSR 353 l'API Java pour rendre la manipulation des données JSON plus propre et cohérente JavaOne 2012 s'est achevé hier. L'événement Java le plus important de l'année a levé le voile sur un nombre impressionnant de nouveautés, innovations et ambitions pour l'écosystème Java. Oracle pendant ses sessions a présenté sa feuille de route pour le langage et les points sur lesquels l'entreprise travaille actuellement pour la prochaine version de Java, dont l'intégration des expressions lambda, du moteur JavaScript Nashorn, les annotations, la nouvelle API « date and time » et bien ...

    Read the article

  • Interrupted system call during "hg convert"

    - by Aaron Digulla
    When I run "hg convert" to convert a Subversion repository to Mercurial, I get this error: fetching revision log for "/trunk" from 1538 to 0 run hg sink post-conversion action Traceback (most recent call last): File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 46, in _runcatch return _dispatch(ui, args) File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 454, in _dispatch return runcommand(lui, repo, cmd, fullargs, ui, options, d) File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 324, in runcommand ret = _runcommand(ui, options, cmd, d) File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 505, in _runcommand return checkargs() File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 459, in checkargs return cmdfunc() File "/usr/lib/pymodules/python2.6/mercurial/dispatch.py", line 453, in <lambda> d = lambda: util.checksignature(func)(ui, *args, **cmdoptions) File "/usr/lib/pymodules/python2.6/mercurial/util.py", line 386, in check return func(*args, **kwargs) File "/usr/lib/pymodules/python2.6/hgext/convert/__init__.py", line 229, in convert return convcmd.convert(ui, src, dest, revmapfile, **opts) File "/usr/lib/pymodules/python2.6/hgext/convert/convcmd.py", line 398, in convert c.convert(sortmode) File "/usr/lib/pymodules/python2.6/hgext/convert/convcmd.py", line 312, in convert parents = self.walktree(heads) File "/usr/lib/pymodules/python2.6/hgext/convert/convcmd.py", line 109, in walktree commit = self.cachecommit(n) File "/usr/lib/pymodules/python2.6/hgext/convert/convcmd.py", line 267, in cachecommit commit = self.source.getcommit(rev) File "/usr/lib/pymodules/python2.6/hgext/convert/subversion.py", line 433, in getcommit self._fetch_revisions(revnum, stop) File "/usr/lib/pymodules/python2.6/hgext/convert/subversion.py", line 814, in _fetch_revisions for entry in stream: File "/usr/lib/pymodules/python2.6/hgext/convert/subversion.py", line 122, in __iter__ entry = pickle.load(self._stdout) IOError: [Errno 4] Interrupted system call abort: Interrupted system call Apparently, it is possible to restart a read on EINTR but how would I do that with pickle.load()? Also I wonder where that signal comes from? I suspect it's SIGCHILD but shouldn't popen() handle that?

    Read the article

  • Zenoss No space left on device Error

    - by Pastelinux
    Site Error An error was encountered while publishing this resource. Sorry, a site error occurred. Traceback (innermost last): Module ZPublisher.Publish, line 231, in publish_module_standard Module ZPublisher.Publish, line 165, in publish Module Zope2.App.startup, line 211, in __call__ Module Products.ZenUI3.browser, line 105, in __call__ Module Products.Five.browser.pagetemplatefile, line 60, in __call__ Module zope.pagetemplate.pagetemplate, line 115, in pt_render Module zope.tal.talinterpreter, line 271, in __call__ Module zope.tal.talinterpreter, line 343, in interpret Module zope.tal.talinterpreter, line 858, in do_defineMacro Module zope.tal.talinterpreter, line 343, in interpret Module zope.tal.talinterpreter, line 533, in do_optTag_tal Module zope.tal.talinterpreter, line 518, in do_optTag Module zope.tal.talinterpreter, line 513, in no_tag Module zope.tal.talinterpreter, line 343, in interpret Module zope.tal.talinterpreter, line 620, in do_insertText_tal Module Products.PageTemplates.Expressions, line 203, in evaluateText Module Products.PageTemplates.Expressions, line 222, in _handleText Module zope.component._api, line 174, in queryUtility Module zope.component.registry, line 165, in queryUtility Module ZODB.Connection, line 834, in setstate Module ZODB.Connection, line 884, in _setstate Module ZEO.ClientStorage, line 815, in load Module ZEO.cache, line 143, in call Module ZEO.cache, line 607, in store IOError: [Errno 28] No space left on device Went in to check my server through zenoss today and it looks like somehow my server is full. Which when i look at my server its only 85% full: unclebob:~# df -h Filesystem Size Used Avail Use% Mounted on /dev/mapper/unclebob--vg0-unclebob--root 1.9G 1.5G 335M 82% / tmpfs 471M 0 471M 0% /lib/init/rw udev 10M 820K 9.2M 9% /dev tmpfs 471M 0 471M 0% /dev/shm overflow 1.0M 1.0M 0 100% /tmp /dev/hde1 942M 36M 859M 5% /boot unclebob:/tmp# df -i Filesystem Inodes IUsed IFree IUse% Mounted on /dev/mapper/unclebob--vg0-unclebob--root 121920 54844 67076 45% / tmpfs 120489 3 120486 1% /lib/init/rw udev 120489 1520 118969 2% /dev tmpfs 120489 1 120488 1% /dev/shm overflow 120489 14 120475 1% /tmp /dev/hde1 61312 33 61279 1% /boot It looks like theres these two files: .ICE-unix/ .X11-unix/ They had been hidden. I'll remove those. Any idea upon what they maybe? Any ideas on a fix? Probably has something to do with Zenoss

    Read the article

  • Can I sort files A-Z and at the same time Z-A?

    - by The_Buff
    I am trying to sort and rename a large number of files that are labeled #####_## The LEFT side of the underscore are numbers (e.g., 32956715, 32956810, etc.) that do not repeat. The RIGHT side of the underscore are also numbers (e.g., 1, 2, 3, etc.) and they do repeat. (The left side is the number of a scan and the right side is the page of that particular scan.) I would like to be able to sort the left side of the underscore Z-A and the right side A-Z. Example: 3_1 3_2 3_3 2_1 2_2 2_3 1_1 1_2 1_3 I am using ReNamer by den4b (easily the best free renamer out there). It supports regular expressions so I believe there should be an easy way to do this, but I don't know how. (I've been trying to learn regular expressions but I don't use them enough to retain anything.) I'm open for any suggestions that achieve the same result. I've spent enough time trying to figure it out that I could have probably just sorted them myself already but this is a reccuring problem so hopefully someone has a solution that will save me lots of time in the long run. Thank You!

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

< Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >