Search Results

Search found 2995 results on 120 pages for 'logical operators'.

Page 40/120 | < Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >

  • Macro and array crossing

    - by Thomas
    I am having a problem with a lisp macro. I would like to create a macro which generate a switch case according to an array. Here is the code to generate the switch-case: (defun split-elem(val) `(,(car val) ',(cdr val))) (defmacro generate-switch-case (var opts) `(case ,var ,(mapcar #'split-elem opts))) I can use it with a code like this: (generate-switch-case onevar ((a . A) (b . B))) But when I try to do something like this: (defparameter *operators* '((+ . OPERATOR-PLUS) (- . OPERATOR-MINUS) (/ . OPERATOR-DIVIDE) (= . OPERATOR-EQUAL) (* . OPERATOR-MULT))) (defmacro tokenize (data ops) (let ((sym (string->list data))) (mapcan (lambda (x) (generate-switch-case x ops)) sym))) (tokenize data *operators*) I got this error: *** - MAPCAR: A proper list must not end with OPS. But I don't understand why. When I print the type of ops I get SYMBOL I was expecting CONS, is it related? Also, for my function tokenize how many times the lambda is evaluated (or the macro expanded)?

    Read the article

  • PDFParsing & extracting the images only in iPhone application.

    - by sagar
    Hello - Every one. ** : My Query : ** I want to extract only images from entire pdf document. ( Using Objective C - for iPhone Application ) : My Efforts : I have gone through this link which has details regarding different operators of PDF Document. ( http://mail-archives.apache.org/mod_mbox/pdfbox-commits/200912.mbox/%[email protected]%3E ) I also studied this document - ( http://developer.apple.com/mac/library/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/dq_pdf_scan/dq_pdf_scan.html#//apple_ref/doc/uid/TP30001066-CH220-TPXREF101 ) I also have gone through entire document of PDFReference.pdf ( From original Adobe Site ) PDFReference.pdf (Adobe Document - says that - for image there are following operators ) q Q BI EI I have placed following table get the image myTable = CGPDFOperatorTableCreate(); CGPDFOperatorTableSetCallback(myTable, "q", arrayCallback2); CGPDFOperatorTableSetCallback(myTable, "TJ", arrayCallback); CGPDFOperatorTableSetCallback(myTable, "Tj", stringCallback); I have following arrayCallback2 method for getting image void arrayCallback2(CGPDFScannerRef inScanner, void *userInfo) { // how to extract image from this code // means I have tried too many different ways. following is incorrect way & not giving image // CGPDFStreamRef stream; // represents a sequence of bytes // if (CGPDFDictionaryGetStream (d, "BI", &stream)){ // CGPDFDataFormat t=CGPDFDataFormatJPEG2000; // CFDataRef data = CGPDFStreamCopyData (stream, &t); // } } above arrayCallback2 method is called for operator "q", But I don't know How to extract the image from it. In short. What should be the solution for extracting the images from the pdf documents? Thanks in advance for your kind help. Sagar kothari.

    Read the article

  • Why does $('#id') return true if id doesn't exist?

    - by David
    I always wondered why jQuery returns true if I'm trying to find elements by id selector that doesnt exist in the DOM structure. Like this: <div id="one">one</div> <script> console.log( !!$('#one') ) // prints true console.log( !!$('#two') ) // is also true! (empty jQuery object) console.log( !!document.getElementById('two') ) // prints false </script> I know I can use !!$('#two').length since length === 0 if the object is empty, but it seems logical to me that a selector would return the element if found, otherwise null (like the native document.getElementById does). F.ex, this logic can't be done in jQuery: var div = $('#two') || $('<div id="two"></div>'); Wouldnt it be more logical if the ID selector returned null if not found? anyone?

    Read the article

  • is there an easy way to convert jquery code to javascript?

    - by davidsleeps
    hopefully the question doesn't sound stupid, but there are lots of examples out there of achieving certain things in javascript/dom using jQuery. Using jQuery is not always an option (or even a want) which can make understanding the examples of javascript solutions written in jQuery hard. Is there an easy way to convert jQuery code to regular javascript? I guess without having to access or understand the jQuery source code... edit (future readers): pretend there is a logical reason why jQuery isn't available! edit (almost 3 years since I asked this): there is no logical reason why jQuery isn't available :P

    Read the article

  • Evaluate an expression tree

    - by Phronima
    Hi, This project that I'm working on requires that an expression tree be constructed from a string of single digit operands and operators both represented as type char. I did the implmentation and the program up to that point works fine. I'm able to print out the inorder, preorder and postorder traversals in the correct way. The last part calls for evaulating the expression tree. The parameters are an expression tree "t" and its root "root". The expression tree is ((3+2)+(6+2)) which is equal to 13. Instead I get 11 as the answer. Clearly I'm missing something here and I've done everything short of bashing my head against the desk. I would greatly appreciate it if someone can point me in the right direction. (Note that at this point I'm only testing addition and will add in the other operators when I get this method working.) public int evalExpression( LinkedBinaryTree t, BTNode root ) { if( t.isInternal( root ) ) { int x = 0, y = 0, value = 0; char operator = root.element(); if( root.getLeft() != null ) x = evalExpression(t, t.left( root ) ); if( root.getRight() != null ) y = evalExpression(t, t.right( root ) ); if( operator == '+' ) { value = value + Character.getNumericValue(x) + Character.getNumericValue(y); } return value; } else { return root.element(); } }

    Read the article

  • Problem with loading compiled c code in R x64 using dyn.load

    - by Sacha Epskamp
    I recently went from a 32bit laptop to a 64bit desktop (both win7). I just found out that I get an error now when loading dll's using dyn.load. I guess this is a simple mistake and I am overlooking something. For example, I write this simple c function (foo.c): void foo( int *x) {*x = *x + 1;} Then compile it in command prompt: R CMD SHLIB foo.c Then in 32bit R I can use it in R: > setwd("R") > dyn.load("foo.dll") > .C("foo",as.integer(1)) [[1]] [1] 2 but in 64bit R I get: > dyn.load("foo.dll") Error in inDL(x, as.logical(local), as.logical(now), ...) : unable to load shared object 'C:/Users/Sacha/Documents/R/foo.dll': LoadLibrary failure: %1 is not a valid Win32 application. nd.

    Read the article

  • Fully automated MS SQL Restore

    - by hasen j
    I'm not very fluent with MS-SQL commands. I need a script to restore a database from a .bak file and move the logical_data and logical_log files to a specific path. I can do: restore filelistonly from disk='D:\backups\my_backup.bak' This will give me a result set with a column LogicalName, next I need to use the logical names from the result set in the restore command: restore database my_db_name from disk='d:\backups\my_backups.bak' with file=1, move 'logical_data_file' to 'd:\data\mydb.mdf', move 'logical_log_file' to 'd:\data\mylog.ldf' How do I capture the logical names from the first result set into variables that can be supplied to the "move" command? I think the solution might be trivial, but I'm pretty new to mssql.

    Read the article

  • Handling download abort in PHP

    - by Aron Rotteveel
    Is it somehow possible to handle a download abort in PHP? In this specific case I am not speaking of a connection abort, but handling the event that triggers when the 'cancel' button in the browser download dialog button is clicked. Since this dialog already interprets the headers of the file that is to be download but does not actually start the download, it only seems logical there should be some way to catch this. Small (pseudo) code example to clear things up: // set some headers header('...'); // Question: what happens between the part where the headers are sent // and the actual data is being outputted to the client? IE: this is the part // where the download dialog should show up // Logical question that follows is: is there a way to detect a 'cancel'? $filename = '/some/file.txt'; $handle = fopen($filename, 'rb'); // output data to client while (!feof($handle)) { echo fread($handle, 8096); } fclose($handle);

    Read the article

  • database table design

    - by e.b.white
    I design the tables as below for the system which looks like a package delivering system For example, after user received the package, postman should record in system, and the state(history table) is "delivered",and operator is this postman, the current state(state table) is of course "delivered" history table: +---------------+--------------------------+ | Field | Desc | +---------------+--------------------------+ | id | PRIMARY KEY | +---------------+--------------------------+ | package_id | package_tacking_id | +---------------+--------------------------+ | state | package_state | +---------------+--------------------------+ | operators | operators | +---------------+--------------------------+ | create_time| create_time | +---------------+--------------------------+ state table: +---------------+--------------------------+ | Field | Desc | +---------------+--------------------------+ | id | PRIMARY KEY | +---------------+--------------------------+ | package_id | package_tacking_id | +---------------+--------------------------+ | state | latest_package_state | +---------------+--------------------------+ Above is just the basic information to record, some other information( like invoice, destination,...) should be recored as well. But there are different service types like s1 and s2, for s1 it is not needed to record invoice but s1 need, and maybe s1 need some other information to record (like the tel of end user). After all, at delivering way stations there are additional information to record, and for different service type the information type is different. My question is: 1. For different service type, shall I need to declare different tables(option A) or just one big table which can record all information for all types(option B)? 2. If option A, since the basic information above is MUST, how can prevent from declaring there duplicate fields in different tables?

    Read the article

  • Tidying up a list

    - by Jonas
    I'm fairly sure there should be an elegant solution to this (in Matlab), but I just can't think of it right now. I have a list with [classIndex, start, end], and I want to collapse consecutive class indices into one group like so: This 1 1 40 2 46 53 2 55 55 2 57 64 2 67 67 3 68 91 1 94 107 Should turn into this 1 1 40 2 46 67 3 68 91 1 94 107 How do I do that? EDIT Never mind, I think I got it - it's almost like fmarc's solution, but gets the indices right a=[ 1 1 40 2 46 53 2 55 55 2 57 64 2 67 67 3 68 91 1 94 107]; d = diff(a(:,1)); startIdx = logical([1;d]); endIdx = logical([d;1]); b = [a(startIdx,1),a(startIdx,2),a(endIdx,3)];

    Read the article

  • Operator overloading in generic struct: can I create overloads for specific kinds(?) of generic?

    - by Carson Myers
    I'm defining physical units in C#, using generic structs, and it was going okay until I got the error: One of the parameters of a binary operator must be the containing type when trying to overload the mathematical operators so that they convert between different units. So, I have something like this: public interface ScalarUnit { } public class Duration : ScalarUnit { } public struct Scalar<T> where T : ScalarUnit { public readonly double Value; public Scalar(double Value) { this.Value = Value; } public static implicit operator double(Scalar<T> Value) { return Value.Value; } } public interface VectorUnit { } public class Displacement : VectorUnit { } public class Velocity : VectorUnit { } public struct Vector<T> where T : VectorUnit { #... public static Vector<Velocity> operator /(Vector<Displacement> v1, Scalar<Duration> v2) { return new Vector<Velocity>(v1.Magnitude / v2, v1.Direction); } } There aren't any errors for the + and - operators, where I'm just working on a Vector<T>, but when I substitute a unit for T, suddenly it doesn't like it. Is there a way to make this work? I figured it would work, since Displacement implements the VectorUnit interface, and I have where T : VectorUnit in the struct header. Am I at least on the right track here? I'm new to C# so I have difficulty understanding what's going on sometimes.

    Read the article

  • MDX: Filtering a member set by a measure's table values

    - by oyvinro
    I have some numbers in a fact table, and have generated a measure which use the SUM aggregator to summarize the numbers. But the problem is that I only want to sum the numbers that are higher than, say 10. I tried using a generic expression in the measure definition, and that works of course, but the problem is that I need to be able to dynamically set that value, because it's not always 10, meaning users should be able to select it themselves. More specifically, my current MDX looks like this: WITH SET [Email Measures] AS '{[Measures].[Number Of Answered Cases], [Measures].[Max Expedition Time First In Case], [Measures].[Avg Expedition Times First In Case], [Measures].[Number Of Incoming Email Requests], [Measures].[Avg Number Of Emails In Cases], [Measures].[Avg Expedition Times Total],[Measures].[Number Of Answered Incoming Emails]}' SET [Organizations] AS '{[Organization.Id].[860]}' SET [Operators] AS '{[Operator.Id].[3379],[Operator.Id].[3181]}' SET [Email Accounts] AS '{[Email Account.Id].[6]}' MEMBER [Time.Date].[Date Period] AS Aggregate ({[Time.Date].[2008].[11].[11] :[Time.Date].[2009].[1].[2] }) MEMBER [Email.Type].[Email Types] AS Aggregate ({[Email.Type].[0]}) SELECT {[Email Measures]} ON columns, [Operators] ON rows FROM [Email_Fact] WHERE ( [Time.Date].[Date Period] ) Now, the member in question is the calculated member [Avg Expedition Times Total]. This member takes in two measures; [Sum Expedition Times] and [Nr of Expedition Times] and splits one on the other to get the average, all this presently works. However, I want [Sum Expedition Times] to only summarize values over or under a parameter of my/the user's wish. How do I filter the numbers [Sum Expedition Times] iterates through, rather than filtering on the sum that the measure gives me in the end?

    Read the article

  • When is (true == x) === !!x false?

    - by Paul S.
    JavaScript has different equality comparison operators Equal == Strict equal === It also has a logical NOT ! and I've tended to think of using a double logical NOT, !!x, as basically the same as true == x. However I know this is not always the case, e.g. x = [] because [] is truthy for ! but falsy for ==. So, for which xs would (true == x) === !!x give false? Alternatively, what is falsy by == but not !! (or vice versa)?

    Read the article

  • Prevent auto mounting Android sdcard under Linux Mint

    - by BullShark
    I recently obtained an older Android phone, so that I could test Android Apps on it. I've needed it because I have a Nexus 7 but not older Android versions, hardware, etc. to test on. I'm having a problem with it under Linux Mint with Cinnamon. When I plug the phone in, or remove and plug the sdcard from the phone back to it while the phone is plugged in, Linux automatically mounts the sdcard. This is a problem because once it is mounted under Linux, it dismounts from the phone running Android 2.3.5, and I can no longer test Android Apps I write that require the sdcard to be present, writable. I went to Menu System Tools System Settings System Details Removable Media, and it brings up this window. I have changed the settings to always "Ask what to do" on "Select how media should be handled". However, the sdcard still gets mounted and then I am asked how I want to open these files (media players, photo importers, file browser, etc.). If I click the checkbox for "Never prompt or start programs on media insertion", then the sdcard is mounted, and I am not asked how to open these files. Eject is just a noob word for Ubuntu users that means umount (unmount) like "Adminstrator" is another ubuntu noob word for the root user. And if I unmount the sdcard, the phone doesn't recognize it again until I take the sdcard out and plug it back in. The phone sees it for a brief moment until Linux Mint takes it over. There are 2 possible solutions and maybe more: 1) Prevent Linux from automounting sdcards some how 2) Tell Android not to allow the computer it is plugged into to take over the sdcard, HOW? Edit: I found out how to prevent the sdcard from being automatically mounted: Now it gets recognized by Linux: bullshark@beastlinux ~ $ dmesg | tail -n 25 [597212.218323] sd 21:0:0:0: [sde] Attached SCSI removable disk [597212.218639] sr 21:0:0:1: Attached scsi CD-ROM sr2 [597212.218910] sr 21:0:0:1: Attached scsi generic sg7 type 5 [597217.139373] sd 21:0:0:0: [sde] 3862528 512-byte logical blocks: (1.97 GB/1.84 GiB) [597217.140726] sd 21:0:0:0: [sde] No Caching mode page present [597217.140735] sd 21:0:0:0: [sde] Assuming drive cache: write through [597217.143595] sd 21:0:0:0: [sde] No Caching mode page present [597217.143602] sd 21:0:0:0: [sde] Assuming drive cache: write through [597217.152240] sde: sde1 [597389.751008] 4:2:1: cannot get freq at ep 0x84 [597390.238742] 4:2:1: cannot get freq at ep 0x84 [597624.903132] sde: detected capacity change from 1977614336 to 0 [597637.677763] sd 21:0:0:0: [sde] 3862528 512-byte logical blocks: (1.97 GB/1.84 GiB) [597637.679616] sd 21:0:0:0: [sde] No Caching mode page present [597637.679626] sd 21:0:0:0: [sde] Assuming drive cache: write through [597637.682508] sd 21:0:0:0: [sde] No Caching mode page present [597637.682515] sd 21:0:0:0: [sde] Assuming drive cache: write through [597637.692758] sde: sde1 [597661.857979] sde: detected capacity change from 1977614336 to 0 [597688.775455] sd 21:0:0:0: [sde] 3862528 512-byte logical blocks: (1.97 GB/1.84 GiB) [597688.776814] sd 21:0:0:0: [sde] No Caching mode page present [597688.776823] sd 21:0:0:0: [sde] Assuming drive cache: write through [597688.780055] sd 21:0:0:0: [sde] No Caching mode page present [597688.780062] sd 21:0:0:0: [sde] Assuming drive cache: write through [597688.788639] sde: sde1 bullshark@beastlinux ~ $ However, the phone still unmounts the sdcard upon being detected by Linux. Linux detects but does not mount, and a few seconds later: Edit #2 (Solution): I solved this one by changing the usb connection type (was usb mass storage) :

    Read the article

  • wondering how much data bandwidth can a 3G gsm cell tower can support?

    - by Karim
    i was always wondering how many simaltinues users can a 3G tower supports with its data rates? i mean they advertize 28.8Mb/Sec for the 3G Data but in reallity if a lot of people use it say 10 , it wont give 288Mb/Sec bandwidth. i didnt find anywhere where such information is published so i thought to ask here. dont know why the cell operators keep it such a secret :)

    Read the article

  • How much data bandwidth can a 3G gsm cell tower can support?

    - by Karim
    I was always wondering how many simultaneous users can a 3G tower supports with its data rates? I mean they advertise 28.8Mb/Sec for the 3G Data but in reality if a lot of people use it say 10 , it wont give 288Mb/Sec bandwidth. I didn't find anywhere where such information is published so I thought to ask here. Don' know why the cell operators keep it such a secret :)

    Read the article

  • What super-calculator do you use?

    - by Jeremy Rudd
    Windows Calculator can switch into a "Scientific" mode, getting more math and logical operators, but that's not good enough. I know there are tons of features its missing, such as the ones we see in the Windows 7 calc, or simply making things more visual. Its been years and I still haven't found a good calculator replacement. Suggestions? And hopefully your calc replaces MS Calc when I press the dedicated "calculator key" on my Keyboard, so I don't have to hunt around for a shortcut.

    Read the article

  • windows 2008 R2 TS printer security - can't take owership

    - by Ian
    I have a Windows 2008 R2 server with Terminal server role installed. I'm seeing a problem with an ordinary user who is member of local printer operators group on the server. If the user opens a cmd window using ‘run as administrator’ they can run printmanager.msc without needing to enter their password again. In printmanager they can change the ownership of redirected (easy print) printers without problems. If, from the same cmd window, they use subinacl to try and change the onwership of the queue to themselves they get access denied: >subinacl.exe /printer "_#MyPrinter (2 redirected)" /setowner="MyDom\MyUsr" Elapsed Time: 00 00:00:00 Done: 1, Modified 0, Failed 1, Syntax errors 0 Last Done : _#MyPrinter (2 redirected) Last Failed: _#MyPrinter (2 redirected) - OpenPrinter Error : 5 Access denied so, same context, same action but one works and one doesn't. Any ideas for this odd behaviour? I'm using subinacl x86 on an x64 server as I can't find anything more up to date. I've tried with icacls and others but couldn't get them to do anything with printers. EDIT: added after Gregs comments regarding setacl below If I log into the TS server as Testusr and open Admin Tools Printer Admin (as administrator) and then type mydomain\testusr and the testusr's password, then I can change the ownership of the printer queue and set testusr as the owner. However if I open cmd as administrator and, again, type mydomain\testusr and the users password when I try to change the ownership of my redirected printer I get the following: C:\>setacl -on "Bullzip PDF Printer (12 redireccionado)" -ot prn -actn setowner -ownr n:mydom\testusr WARNING: Privilege 'Back up files and directories' could not be enabled. SetACL's powers are restricted. WARNING: Privilege 'Restore files and directories' could not be enabled. SetACL's powers are restricted. INFORMATION: Processing ACL of: <Bullzip PDF Printer (12 redireccionado)> ERROR: Enabling the privilege SeTakeOwnershipPrivilege failed with: No todos los privilegios o grupos a los que se hace referencia son asignados al llamador. [meaning not all referenced privs or groups are assigned to the caller] SetACL finished with error(s): SetACL error message: A privilege could not be enabled maybe I'm getting something wrong but if the built in windows tool can do it with just membership of the 'print operators' group then setacl should be able to as well, no? However setacl seems to depend on other privileges, which in reality are not required to do this.

    Read the article

  • Do something by operator dial specified number in Asterisk?

    - by Rev
    I want to make ability for Asterisk phone Operators to able do something like this: While operator talking to caller, if Operator dial specified number like 244 (or something like that but not Sip-Userid's), do something (like play sound for caller or etc) for that call. So, Is this possible? Is need to change dialplan? ¦¦¦¦¦ I found this. in first paragraph it's say someething like: if operator dial exten go voiceMail.

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Why the “Toilet” Analogy for SQL might be bad

    - by Jonathan Kehayias
    Robert Davis(blog/twitter) recently blogged The Toilet Analogy … or Why I Never Recommend Increasing Worker Threads , in which he uses an analogy for why increasing the value for the ‘max worker threads’ sp_configure option can be bad inside of SQL Server.  While I can’t make an argument against Robert’s assertion that increasing worker threads may not improve performance, I can make an argument against his suggestion that, simply increasing the number of logical processors, for example from...(read more)

    Read the article

  • Where did I hide my TSQL mojo?

    - by fatherjack
    LiveJournal Tags: How To,SQL Server,Tips and Tricks,TSQL,Reporting Services A little while ago I wrote a piece about finding database objects that rely on other objects that no longer exist - OK, I have my database ready, now what's missing? . This is linked to that sort of process. Many SQL Server installations are associated in some way with a Reporting Services installation, it's a very logical way to distribute your database contents to system users so they can work effectively. Databases,...(read more)

    Read the article

  • What is the actual difference between Computer Programmers and Software Engineers? Is this description accurate?

    - by Ari
    According to the Bureau of Labor Statistics, this is the difference: Computer programmers write programs. After computer software engineers and systems analysts design software programs, the programmer converts that design into a logical series of instructions that the computer can follow They predict employment to increase for software engineers by 34% but to decline for programmers. Is there actually any such real distinction between the 2 jobs? How can one get a job designing programs (to be implemented by others)?

    Read the article

  • Qml and QfileSystemModel interaction problem

    - by user136432
    I'm having some problem in realizing an interaction between QML and C++ to obtain a very basic file browser that is shown within a ListView. I tried to use as model for my data the QT class QFileSystemModel, but it did't work as I expected, probably I didn't fully understand the QT class documentation about the use of this model or the example I found on the internet. Here is the code that I am using: File main.cpp #include <QModelIndex> #include <QFileSystemModel> #include <QQmlContext> #include <QApplication> #include "qtquick2applicationviewer.h" int main(int argc, char *argv[]) { QApplication app(argc, argv); QFileSystemModel* model = new QFileSystemModel; model->setRootPath("C:/"); model->setFilter(QDir::Files | QDir::AllDirs); QtQuick2ApplicationViewer viewer; // Make QFileSystemModel* available for QML use. viewer.rootContext()->setContextProperty("myFileModel", model); viewer.setMainQmlFile(QStringLiteral("qml/ProvaQML/main.qml")); viewer.showExpanded(); return app.exec(); } File main.qml Rectangle { id: main width: 800 height: 600 ListView { id: view property string root_path: "C:/Users" x: 40 y: 20 width: parent.width - (2*x) height: parent.height - (2*y) VisualDataModel { id: myVisualModel model: myFileModel // Get the model QFileSystemModel exposed from C++ delegate { Rectangle { width: 210; height: 20; radius: 5; border.width: 2; border.color: "orange"; color: "yellow"; Text { text: fileName; x: parent.x + 10; } MouseArea { anchors.fill: parent onDoubleClicked: { myVisualModel.rootIndex = myVisualModel.modelIndex(index) } } } } } highlight: Rectangle { color: "lightsteelblue"; radius: 5 } focus: true } } The first problem with this code is that first elements that I can see within my list are my PC logical drives even if I set a specific path. Then when I first double click on drive "C:\" it shows the list of files and directories on that path, but when I double click on a directory a second time the screen flickers for one moment and then it shows again the PC logical drives. Can anyone tell me how should I use the QFileSystemModel class with a ListView QML object? Thanks in advance! Carlo

    Read the article

  • The importance of Unit Testing in BI

    - by Davide Mauri
    One of the main steps in the process we internally use to develop a BI solution is the implementation of Unit Test of you BI Data. As you may already know, I’ve create a simple (for now) tool that leverages NUnit to allow us to quickly create Unit Testing without having to resort to use Visual Studio Database Professional: http://queryunit.codeplex.com/ Once you have a tool like this one, you can start also to make sure that your BI solution (DWH and CUBE) is not only structurally sound (I mean, the cube or the report gets processed correctly), but you can also check that the logical integrity of your business rules is enforced. For example let’s say that the customer tell you that they will never create an invoice for a specific product-line in 2010 since that product-line is dismissed and will never be sold again. Ok we know that this in theory is true, but a lot of this business rule effectiveness depends on the fact the people does not do a mistake while inserting new orders/invoices and the ERP used implements a check for this business logic. Unfortunately these last two hypotesis are not always true, so you may find yourself really having some invoices for a product line that doesn’t exists anymore. Maybe this kind of situation in future will be solved using Master Data Management but, meanwhile, how you can give and idea of the data quality to your customers? How can you check that logical integrity of the analytical data you produce is exactly what you expect? Well, Unit Testing of a DWH or a CUBE can be a solution. Once you have defined your test suite, by writing SQL and MDX queries that checks that your data is what you expect to be, if you use NUnit (and QueryUnit does), you can then use a tool like NUnit2Report to create a nice HTML report that can be shipped via email to give information of data quality: In addition to that, since NUnit produces an XML file as a result, you can also import it into a SQL Server Database and then monitor the quality of data over time. I’ll be speaking about this approach (and more in general about how to “engineer” a BI solution) at the next European SQL PASS Adaptive BI Best Practices http://www.sqlpass.org/summit/eu2010/Agenda/ProgramSessions/AdaptiveBIBestPratices.aspx I’ll enjoy discussing with you all about this, so see you there! And remember: “if ain't tested it's broken!” (Sorry I don’t remember how said that in first place :-)) Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

< Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >