Search Results

Search found 20283 results on 812 pages for 'security context'.

Page 40/812 | < Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >

  • implement acl on field in spring security

    - by Mike
    Hi! I would like implement spring acl for my object fields. does anyone has an idea what do i have to implment for it? for example, i have Purchase object. i would like admin_role to have read on all the fields, and secretary_role to have read only on username and address field

    Read the article

  • ASP.NET WebAPI Security 3: Extensible Authentication Framework

    - by Your DisplayName here!
    In my last post, I described the identity architecture of ASP.NET Web API. The short version was, that Web API (beta 1) does not really have an authentication system on its own, but inherits the client security context from its host. This is fine in many situations (e.g. AJAX style callbacks with an already established logon session). But there are many cases where you don’t use the containing web application for authentication, but need to do it yourself. Examples of that would be token based authentication and clients that don’t run in the context of the web application (e.g. desktop clients / mobile). Since Web API provides a nice extensibility model, it is easy to implement whatever security framework you want on top of it. My design goals were: Easy to use. Extensible. Claims-based. ..and of course, this should always behave the same, regardless of the hosting environment. In the rest of the post I am outlining some of the bits and pieces, So you know what you are dealing with, in case you want to try the code. At the very heart… is a so called message handler. This is a Web API extensibility point that gets to see (and modify if needed) all incoming and outgoing requests. Handlers run after the conversion from host to Web API, which means that handler code deals with HttpRequestMessage and HttpResponseMessage. See Pedro’s post for more information on the processing pipeline. This handler requires a configuration object for initialization. Currently this is very simple, it contains: Settings for the various authentication and credential types Settings for claims transformation Ability to block identity inheritance from host The most important part here is the credential type support, but I will come back to that later. The logic of the message handler is simple: Look at the incoming request. If the request contains an authorization header, try to authenticate the client. If this is successful, create a claims principal and populate the usual places. If not, return a 401 status code and set the Www-Authenticate header. Look at outgoing response, if the status code is 401, set the Www-Authenticate header. Credential type support Under the covers I use the WIF security token handler infrastructure to validate credentials and to turn security tokens into claims. The idea is simple: an authorization header consists of two pieces: the schema and the actual “token”. My configuration object allows to associate a security token handler with a scheme. This way you only need to implement support for a specific credential type, and map that to the incoming scheme value. The current version supports HTTP Basic Authentication as well as SAML and SWT tokens. (I needed to do some surgery on the standard security token handlers, since WIF does not directly support string-ified tokens. The next version of .NET will fix that, and the code should become simpler then). You can e.g. use this code to hook up a username/password handler to the Basic scheme (the default scheme name for Basic Authentication). config.Handler.AddBasicAuthenticationHandler( (username, password) => username == password); You simply have to provide a password validation function which could of course point back to your existing password library or e.g. membership. The following code maps a token handler for Simple Web Tokens (SWT) to the Bearer scheme (the currently favoured scheme name for OAuth2). You simply have to specify the issuer name, realm and shared signature key: config.Handler.AddSimpleWebTokenHandler(     "Bearer",     http://identity.thinktecture.com/trust,     Constants.Realm,     "Dc9Mpi3jaaaUpBQpa/4R7XtUsa3D/ALSjTVvK8IUZbg="); For certain integration scenarios it is very useful if your Web API can consume SAML tokens. This is also easily accomplishable. The following code uses the standard WIF API to configure the usual SAMLisms like issuer, audience, service certificate and certificate validation. Both SAML 1.1 and 2.0 are supported. var registry = new ConfigurationBasedIssuerNameRegistry(); registry.AddTrustedIssuer( "d1 c5 b1 25 97 d0 36 94 65 1c e2 64 fe 48 06 01 35 f7 bd db", "ADFS"); var adfsConfig = new SecurityTokenHandlerConfiguration(); adfsConfig.AudienceRestriction.AllowedAudienceUris.Add( new Uri(Constants.Realm)); adfsConfig.IssuerNameRegistry = registry; adfsConfig.CertificateValidator = X509CertificateValidator.None; // token decryption (read from configuration section) adfsConfig.ServiceTokenResolver = FederatedAuthentication.ServiceConfiguration.CreateAggregateTokenResolver(); config.Handler.AddSaml11SecurityTokenHandler("SAML", adfsConfig); Claims Transformation After successful authentication, if configured, the standard WIF ClaimsAuthenticationManager is called to run claims transformation and validation logic. This stage is used to transform the “technical” claims from the security token into application claims. You can either have a separate transformation logic, or share on e.g. with the containing web application. That’s just a matter of configuration. Adding the authentication handler to a Web API application In the spirit of Web API this is done in code, e.g. global.asax for web hosting: protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     ConfigureApis(GlobalConfiguration.Configuration);     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     BundleTable.Bundles.RegisterTemplateBundles(); } private void ConfigureApis(HttpConfiguration configuration) {     configuration.MessageHandlers.Add( new AuthenticationHandler(ConfigureAuthentication())); } private AuthenticationConfiguration ConfigureAuthentication() {     var config = new AuthenticationConfiguration     {         // sample claims transformation for consultants sample, comment out to see raw claims         ClaimsAuthenticationManager = new ApiClaimsTransformer(),         // value of the www-authenticate header, // if not set, the first scheme added to the handler collection is used         DefaultAuthenticationScheme = "Basic"     };     // add token handlers - see above     return config; } You can find the full source code and some samples here. In the next post I will describe some of the samples in the download, and then move on to authorization. HTH

    Read the article

  • Websphere federated repository for Active Directory

    - by Drakiula
    Hi, What I am trying to achieve is to have Websphere 6.1 use Active Directory users authentication. Websphere is running on Windows 2008 R2. What I've done already: Succesfully setup a federated repository for Windows Active Directory (LDAP); Create a realm definition for the federated repository previously defined; Set the realm definition as the current real definition. Stop the Websphere service. When I attempt to start the Websphere service again, it crashes with the following stacktrace: ------Start of DE processing------ = [9/3/10 2:36:14:133 PDT] , key = com.ibm.websphere.security.EntryNotFoundException com.ibm.ws.security.registry.UserRegistryImpl.createCredential 824 Exception = com.ibm.websphere.security.EntryNotFoundException Source = com.ibm.ws.security.registry.UserRegistryImpl.createCredential probeid = 824 Stack Dump = com.ibm.websphere.wim.exception.EntityNotFoundException: CWWIM4001E The 'null' entity was not found. at com.ibm.ws.wim.registry.util.UniqueIdBridge.getUniqueUserId(UniqueIdBridge.java:233) at com.ibm.ws.wim.registry.WIMUserRegistry$6.run(WIMUserRegistry.java:351) at com.ibm.ws.wim.security.authz.jacc.JACCSecurityManager.runAsSuperUser(JACCSecurityManager.java:500) at com.ibm.ws.wim.security.authz.ProfileSecurityManager.runAsSuperUser(ProfileSecurityManager.java:964) at com.ibm.ws.wim.registry.WIMUserRegistry.getUniqueUserId(WIMUserRegistry.java:340) at com.ibm.ws.security.registry.UserRegistryImpl.createCredential(UserRegistryImpl.java:750) at com.ibm.ws.security.ltpa.LTPAServerObject.authenticate(LTPAServerObject.java:776) at com.ibm.ws.security.server.lm.ltpaLoginModule.login(ltpaLoginModule.java:453) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:79) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:618) at javax.security.auth.login.LoginContext.invoke(LoginContext.java:795) at javax.security.auth.login.LoginContext.access$000(LoginContext.java:209) at javax.security.auth.login.LoginContext$4.run(LoginContext.java:709) at java.security.AccessController.doPrivileged(AccessController.java:246) at javax.security.auth.login.LoginContext.invokePriv(LoginContext.java:706) at javax.security.auth.login.LoginContext.login(LoginContext.java:603) at com.ibm.ws.security.auth.JaasLoginHelper.jaas_login(JaasLoginHelper.java:376) at com.ibm.ws.security.auth.ContextManagerImpl.login(ContextManagerImpl.java:3513) at com.ibm.ws.security.auth.ContextManagerImpl.login(ContextManagerImpl.java:3306) at com.ibm.ws.security.auth.ContextManagerImpl.login(ContextManagerImpl.java:3086) at com.ibm.ws.security.auth.ContextManagerImpl.getServerSubjectInternal(ContextManagerImpl.java:2180) at com.ibm.ws.security.auth.ContextManagerImpl.getServerSubjectInternal(ContextManagerImpl.java:1972) at com.ibm.ws.security.auth.ContextManagerImpl.initialize(ContextManagerImpl.java:2530) at com.ibm.ws.security.auth.ContextManagerImpl.initialize(ContextManagerImpl.java:2560) at com.ibm.ws.security.core.SecurityContext.enable(SecurityContext.java:83) at com.ibm.ws.security.core.distSecurityComponentImpl.initialize(distSecurityComponentImpl.java:379) at com.ibm.ws.security.core.distSecurityComponentImpl.startSecurity(distSecurityComponentImpl.java:336) at com.ibm.ws.security.core.SecurityComponentImpl.startSecurity(SecurityComponentImpl.java:105) at com.ibm.ws.security.core.ServerSecurityComponentImpl.start(ServerSecurityComponentImpl.java:283) at com.ibm.ws.runtime.component.ContainerImpl.startComponents(ContainerImpl.java:977) at com.ibm.ws.runtime.component.ContainerImpl.start(ContainerImpl.java:673) at com.ibm.ws.runtime.component.ApplicationServerImpl.start(ApplicationServerImpl.java:197) at com.ibm.ws.runtime.component.ContainerImpl.startComponents(ContainerImpl.java:977) at com.ibm.ws.runtime.component.ContainerImpl.start(ContainerImpl.java:673) at com.ibm.ws.runtime.component.ServerImpl.start(ServerImpl.java:526) at com.ibm.ws.runtime.WsServerImpl.bootServerContainer(WsServerImpl.java:192) at com.ibm.ws.runtime.WsServerImpl.start(WsServerImpl.java:140) at com.ibm.ws.runtime.WsServerImpl.main(WsServerImpl.java:461) at com.ibm.ws.runtime.WsServer.main(WsServer.java:59) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:79) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:618) at com.ibm.wsspi.bootstrap.WSLauncher.launchMain(WSLauncher.java:183) at com.ibm.wsspi.bootstrap.WSLauncher.main(WSLauncher.java:90) at com.ibm.wsspi.bootstrap.WSLauncher.run(WSLauncher.java:72) at org.eclipse.core.internal.runtime.PlatformActivator$1.run(PlatformActivator.java:78) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:92) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:68) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:400) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:177) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:79) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:618) at org.eclipse.core.launcher.Main.invokeFramework(Main.java:336) at org.eclipse.core.launcher.Main.basicRun(Main.java:280) at org.eclipse.core.launcher.Main.run(Main.java:977) at com.ibm.wsspi.bootstrap.WSPreLauncher.launchEclipse(WSPreLauncher.java:329) at com.ibm.wsspi.bootstrap.WSPreLauncher.main(WSPreLauncher.java:92) Dump of callerThis = Object type = com.ibm.ws.security.registry.UserRegistryImpl com.ibm.ws.security.registry.UserRegistryImpl@68a068a0 Anybody maybe has a hint on this? I followed the exact steps described in the IBM Infocenter for setting this up. Thanks in advance for the help.

    Read the article

  • Derek Brink shares "Worst Practices in IT Security"

    - by Darin Pendergraft
    Derek Brink is Vice President and Research Fellow in IT Security for the Aberdeen Group.  He has established himself as an IT Security Expert having a long and impressive career with companies and organizations ranging from RSA, Sun, HP, the PKI Forum and the Central Intelligence Agency.  So shouldn't he be talking about "Best Practices in IT Security?" In his latest blog he talks about the thought processes that drive the wrong behavior, and very cleverly shows how that incorrect thinking exposes weaknesses in our IT environments. Check out his latest blog post titled: "The Screwtape CISO: Memo #1 (silos, stovepipes and point solutions)"

    Read the article

  • ADF Desktop Integration Security Explained

    - by juan.ruiz
    ADFdi provides a secure access to spreadsheets within MS-Excel. Developers as well as administrators could wonder how the security features work in this mixed layout -having MS-Excel accessing JavaEE business services? and also what do system administrators should expect when deploying an ADF solution that offers ADFdi capabilities? Shaun Logan from the ADFdi team published an excellent article back in January where you can find in a great detail the ADF desktop integration security features and implementation. You can find the article here: http://www.oracle.com/technology/products/jdev/11/collateral/security%20whitepaper%20for%20adfdi%20r1%20final.pdf Enjoy!

    Read the article

  • ASP.NET WebAPI Security 2: Identity Architecture

    - by Your DisplayName here!
    Pedro has beaten me to the punch with a detailed post (and diagram) about the WebAPI hosting architecture. So go read his post first, then come back so we can have a closer look at what that means for security. The first important takeaway is that WebAPI is hosting independent-  currently it ships with two host integration implementations – one for ASP.NET (aka web host) and WCF (aka self host). Pedro nicely shows the integration into the web host. Self hosting is not done yet so we will mainly focus on the web hosting case and I will point out security related differences when they exist. The interesting part for security (amongst other things of course) is the HttpControllerHandler (see Pedro’s diagram) – this is where the host specific representation of an HTTP request gets converted to the WebAPI abstraction (called HttpRequestMessage). The ConvertRequest method does the following: Create a new HttpRequestMessage. Copy URI, method and headers from the HttpContext. Copies HttpContext.User to the Properties<string, object> dictionary on the HttpRequestMessage. The key used for that can be found on HttpPropertyKeys.UserPrincipalKey (which resolves to “MS_UserPrincipal”). So the consequence is that WebAPI receives whatever IPrincipal has been set by the ASP.NET pipeline (in the web hosting case). Common questions are: Are there situations where is property does not get set? Not in ASP.NET – the DefaultAuthenticationModule in the HTTP pipeline makes sure HttpContext.User (and Thread.CurrentPrincipal – more on that later) are always set. Either to some authenticated user – or to an anonymous principal. This may be different in other hosting environments (again more on that later). Why so generic? Keep in mind that WebAPI is hosting independent and may run on a host that materializes identity completely different compared to ASP.NET (or .NET in general). This gives them a way to evolve the system in the future. How does WebAPI code retrieve the current client identity? HttpRequestMessage has an extension method called GetUserPrincipal() which returns the property as an IPrincipal. A quick look at self hosting shows that the moral equivalent of HttpControllerHandler.ConvertRequest() is HttpSelfHostServer.ProcessRequestContext(). Here the principal property gets only set when the host is configured for Windows authentication (inconsisteny). Do I like that? Well – yes and no. Here are my thoughts: I like that it is very straightforward to let WebAPI inherit the client identity context of the host. This might not always be what you want – think of an ASP.NET app that consists of UI and APIs – the UI might use Forms authentication, the APIs token based authentication. So it would be good if the two parts would live in a separate security world. It makes total sense to have this generic hand off point for identity between the host and WebAPI. It also makes total sense for WebAPI plumbing code (especially handlers) to use the WebAPI specific identity abstraction. But – c’mon we are running on .NET. And the way .NET represents identity is via IPrincipal/IIdentity. That’s what every .NET developer on this planet is used to. So I would like to see a User property of type IPrincipal on ApiController. I don’t like the fact that Thread.CurrentPrincipal is not populated. T.CP is a well established pattern as a one stop shop to retrieve client identity on .NET.  That makes a lot of sense – even if the name is misleading at best. There might be existing library code you want to call from WebAPI that makes use of T.CP (e.g. PrincipalPermission, or a simple .Name or .IsInRole()). Having the client identity as an ambient property is useful for code that does not have access to the current HTTP request (for calling GetUserPrincipal()). I don’t like the fact that that the client identity conversion from host to WebAPI is inconsistent. This makes writing security plumbing code harder. I think the logic should always be: If the host has a client identity representation, copy it. If not, set an anonymous principal on the request message. Btw – please don’t annoy me with the “but T.CP is static, and static is bad for testing” chant. T.CP is a getter/setter and, in fact I find it beneficial to be able to set different security contexts in unit tests before calling in some logic. And, in case you have wondered – T.CP is indeed thread static (and the name comes from a time where a logical operation was bound to a thread – which is not true anymore). But all thread creation APIs in .NET actually copy T.CP to the new thread they create. This is the case since .NET 2.0 and is certainly an improvement compared to how Win32 does things. So to sum it up: The host plumbing copies the host client identity to WebAPI (this is not perfect yet, but will surely be improved). or in other words: The current WebAPI bits don’t ship with any authentication plumbing, but solely use whatever authentication (and thus client identity) is set up by the host. WebAPI developers can retrieve the client identity from the HttpRequestMessage. Hopefully my proposed changes around T.CP and the User property on ApiController will be added. In the next post, I will detail how to add WebAPI specific authentication support, e.g. for Basic Authentication and tokens. This includes integrating the notion of claims based identity. After that we will look at the built-in authorization bits and how to improve them as well. Stay tuned.

    Read the article

  • Silverlight Security

    Here are some interesting links about Silverlight security (I learnt a lot from the first document): Silverlight security whitepaper: > http://download.microsoft.com/download/A/1/A/A1A80A28-907C-4C6A-8036-782E3792A408/Silverlight Security Overview.docx This reading gives you a lot of insight into features like Isolated Storage, Local Messaging, Cross-Site Scripting (XSS), Sandbox, Validate input, https, . Shawn Wildermuths session at MIX10: > Securing Microsoft Silverlight Applications ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Ldap invalid credentials not loading authentication failure url

    - by Murari
    Able to do the custom ldap authentication for external db authorities. But when i am trying to test wrong password the authentication failure url is not showing instead my browser prints the exception details.Below is my securitycontext.xml and exption given <http auto-config="false" access-decision-manager-ref="accessDecisionManager" access-denied-page="/accessDenied.jsp"> <!-- Restrict access to ALL other pages --> <intercept-url pattern="/index.jsp" filters="none" /> <!-- Don't set any role restrictions on login.jsp --> <intercept-url pattern="/**" access="IS_AUTHENTICATED_ANONYMOUSLY" /> <intercept-url pattern="/service/**" access="PRIV_Report User, PRIV_305" /> <logout logout-success-url="/index.jsp" /> <form-login authentication-failure-url="/index.jsp?error=1" default-target-url="/home.jsp" /> <anonymous/> </http> <b:bean id="accessDecisionManager" class="org.springframework.security.vote.AffirmativeBased"> <b:property name="decisionVoters"> <b:list> <b:ref bean="roleVoter" /> <b:ref bean="authenticatedVoter" /> </b:list> </b:property> </b:bean> <b:bean id="roleVoter" class="org.springframework.security.vote.RoleVoter"> <b:property name="rolePrefix" value="PRIV_" /> </b:bean> <b:bean id="authenticatedVoter" class="org.springframework.security.vote.AuthenticatedVoter"> </b:bean> <b:bean id="contextSource" class="org.springframework.security.ldap.DefaultSpringSecurityContextSource"> <b:constructor-arg value="ldap://mydomain:389" /> </b:bean> <b:bean id="ldapTemplate" class="org.springframework.ldap.core.LdapTemplate"> <b:constructor-arg ref="contextSource" /> </b:bean> <b:bean id="ldapAuthenticationProvider" class="com.zo.sas.gwt.security.login.server.SASLdapAuthenticationProvider"> <b:property name="authenticator" ref="ldapAuthenticator" /> <custom-authentication-provider /> </b:bean> <b:bean id="ldapAuthenticator" class="com.zo.sas.gwt.security.login.server.SASAuthenticator"> <b:property name="contextSource" ref="contextSource" /> <b:property name="userDnPatterns"> <b:value>uid={0},OU=People</b:value> </b:property> </b:bean> and my exception logs..... org.springframework.ldap.AuthenticationException: [LDAP: error code 49 - Invalid Credentials]; nested exception is javax.naming.AuthenticationException: [LDAP: error code 49 - Invalid Credentials] org.springframework.ldap.support.LdapUtils.convertLdapException(LdapUtils.java:180) org.springframework.ldap.core.support.AbstractContextSource.createContext(AbstractContextSource.java:266) org.springframework.ldap.core.support.AbstractContextSource.getContext(AbstractContextSource.java:106) com.zo.sas.gwt.security.login.server.SASAuthenticator.authenticate(SASAuthenticator.java:55) com.zo.sas.gwt.security.login.server.SASLdapAuthenticationProvider.authenticate(SASLdapAuthenticationProvider.java:45) org.springframework.security.providers.ProviderManager.doAuthentication(ProviderManager.java:188) org.springframework.security.AbstractAuthenticationManager.authenticate(AbstractAuthenticationManager.java:46) org.springframework.security.ui.webapp.AuthenticationProcessingFilter.attemptAuthentication(AuthenticationProcessingFilter.java:82) org.springframework.security.ui.AbstractProcessingFilter.doFilterHttp(AbstractProcessingFilter.java:258) org.springframework.security.ui.SpringSecurityFilter.doFilter(SpringSecurityFilter.java:53) org.springframework.security.util.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:390) org.springframework.security.ui.logout.LogoutFilter.doFilterHttp(LogoutFilter.java:89) org.springframework.security.ui.SpringSecurityFilter.doFilter(SpringSecurityFilter.java:53) org.springframework.security.util.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:390) org.springframework.security.context.HttpSessionContextIntegrationFilter.doFilterHttp(HttpSessionContextIntegrationFilter.java:235) org.springframework.security.ui.SpringSecurityFilter.doFilter(SpringSecurityFilter.java:53) org.springframework.security.util.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:390) org.springframework.security.util.FilterChainProxy.doFilter(FilterChainProxy.java:175) org.springframework.web.filter.DelegatingFilterProxy.invokeDelegate(DelegatingFilterProxy.java:183) org.springframework.web.filter.DelegatingFilterProxy.doFilter(DelegatingFilterProxy.java:138) This is my index.jsp <html> <script type="text/javascript" language="javascript"> var dictionary = { loginErr: "${SPRING_SECURITY_LAST_EXCEPTION.message}", error: "${param.error}" }; </script> <head> </head> <body > <iframe src="javascript:''" id="__gwt_historyFrame" style="width:0;height:0;border:0"></iframe> <script type="text/javascript" language="javascript" src="com.zo.sas.gwt.sasworkflow.home.Home.nocache.js"></script> </body> </html>

    Read the article

  • System Account Logon Failures ever 30 seconds

    - by floyd
    We have two Windows 2008 R2 SP1 servers running in a SQL failover cluster. On one of them we are getting the following events in the security log every 30 seconds. The parts that are blank are actually blank. Has anyone seen similar issues, or assist in tracking down the cause of these events? No other event logs show anything relevant that I can tell. Log Name: Security Source: Microsoft-Windows-Security-Auditing Date: 10/17/2012 10:02:04 PM Event ID: 4625 Task Category: Logon Level: Information Keywords: Audit Failure User: N/A Computer: SERVERNAME.domainname.local Description: An account failed to log on. Subject: Security ID: SYSTEM Account Name: SERVERNAME$ Account Domain: DOMAINNAME Logon ID: 0x3e7 Logon Type: 3 Account For Which Logon Failed: Security ID: NULL SID Account Name: Account Domain: Failure Information: Failure Reason: Unknown user name or bad password. Status: 0xc000006d Sub Status: 0xc0000064 Process Information: Caller Process ID: 0x238 Caller Process Name: C:\Windows\System32\lsass.exe Network Information: Workstation Name: SERVERNAME Source Network Address: - Source Port: - Detailed Authentication Information: Logon Process: Schannel Authentication Package: Kerberos Transited Services: - Package Name (NTLM only): - Key Length: 0 Second event which follows every one of the above events Log Name: Security Source: Microsoft-Windows-Security-Auditing Date: 10/17/2012 10:02:04 PM Event ID: 4625 Task Category: Logon Level: Information Keywords: Audit Failure User: N/A Computer: SERVERNAME.domainname.local Description: An account failed to log on. Subject: Security ID: NULL SID Account Name: - Account Domain: - Logon ID: 0x0 Logon Type: 3 Account For Which Logon Failed: Security ID: NULL SID Account Name: Account Domain: Failure Information: Failure Reason: An Error occured during Logon. Status: 0xc000006d Sub Status: 0x80090325 Process Information: Caller Process ID: 0x0 Caller Process Name: - Network Information: Workstation Name: - Source Network Address: - Source Port: - Detailed Authentication Information: Logon Process: Schannel Authentication Package: Microsoft Unified Security Protocol Provider Transited Services: - Package Name (NTLM only): - Key Length: 0 EDIT UPDATE: I have a bit more information to add. I installed Network Monitor on this machine and did a filter for Kerberos traffic and found the following which corresponds to the timestamps in the security audit log. A Kerberos AS_Request Cname: CN=SQLInstanceName Realm:domain.local Sname krbtgt/domain.local Reply from DC: KRB_ERROR: KDC_ERR_C_PRINCIPAL_UNKOWN I then checked the security audit logs of the DC which responded and found the following: A Kerberos authentication ticket (TGT) was requested. Account Information: Account Name: X509N:<S>CN=SQLInstanceName Supplied Realm Name: domain.local User ID: NULL SID Service Information: Service Name: krbtgt/domain.local Service ID: NULL SID Network Information: Client Address: ::ffff:10.240.42.101 Client Port: 58207 Additional Information: Ticket Options: 0x40810010 Result Code: 0x6 Ticket Encryption Type: 0xffffffff Pre-Authentication Type: - Certificate Information: Certificate Issuer Name: Certificate Serial Number: Certificate Thumbprint: So appears to be related to a certificate installed on the SQL machine, still dont have any clue why or whats wrong with said certificate. It's not expired etc.

    Read the article

  • Security considerations on Importing Bulk Data by Using BULK INSERT or OPENROWSET(BULK...)

    - by Ice
    I do not understand the following article profound. http://msdn.microsoft.com/en-us/library/ms175915(SQL.90).aspx "In contrast, if a SQL Server user logs on by using Windows Authentication, the user can read only those files that can be accessed by the user account, regardless of the security profile of the SQL Server process." What if i define a SQL-Agent Job to perform this bulk-Insert; Is it the OWNER of the Job who gives the security-context?

    Read the article

  • Simple, current how-to install mod-security on cPanel server?

    - by linux911
    Does anyone have or know of a simple, up to date how to for installing mod-security on cPanel and configuring it after install? Every how to on the web I've found is at least two years old and is based on a mod-security addon function in cPanel which doesn't exist anymore. There are a couple of free add ons to simplify selecting rule files (configserver's for example) but there's no documentation on which rules a cPanel system "should" be using and so on.

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Define Servlet Context in WAR-File

    - by er4z0r
    Hi, How can I tell e.g. Tomcat to use a specific context path when given my WAR-File? Example: I have a war file created by maven build and the resulting name of the file is rather long. So I do not want the tomcat manager application to use the filename of the war as the context. Supplying a context.xml in META-INF did not produce the desired results I also found this in the documentation for the path attribute of Context: The value of this field must not be set except when statically defining a Context in server.xml, as it will be inferred from the filenames used for either the .xml context file or the docBase. So it does not seem to be the right way to tell the application-server what the path for my WAR should be. Any more hints?

    Read the article

  • Getting invalid context errors

    - by Andrew
    I don't have much code thus far, only this to start: UIGraphicsBeginImageContextWithOptions(bounds.size, NO, 0); CGContextRef context = UIGraphicsGetCurrentContext(); CGMutablePathRef outerPath; CGMutablePathRef highlightPath; CGRect outerRect = rectForRectWithInset(bounds, 1); CGRect highlightRect = CGRectMake(outerRect.origin.x, outerRect.origin.y + 1, outerRect.size.width, outerRect.size.height); And then the problematic bit, which when commented out, the error goes away: CGContextSaveGState(context); CGContextAddPath(context, highlightPath); CGContextSetFillColorWithColor(context, [[UIColor colorWithWhite:1.0 alpha:0.05]CGColor]); CGContextFillPath(context); CGContextRestoreGState(context); Below that is simply: UIImage *image = UIGraphicsGetImageFromCurrentImageContext(); UIGraphicsEndImageContext();

    Read the article

  • Django template context not working with imported class

    - by Andy Hume
    I'm using Django's templating on appengine, and am having a problem whereby a class I'm importing from another package is not correctly being made available to the template context. Broadly speaking, this is the code. The prop1 is not available in the template in the first example below, but is in the second. MyClass is identical in both cases. This does not work: from module import MyClass context = MyClass() self.response.out.write(template.render(path, context)) This does: class MyClass(object): def __init__(self): self.prop1 = "prop1" context = MyClass() self.response.out.write(template.render(path, context)) If I log the context in the above code I get: <module.MyClass object at 0x107b1e450> when it's imported, and: <__main__.MyClass object at 0x103759390> when it's defined in the same file. Any clues as to what might cause this kind of behaviour?

    Read the article

  • How expensive is a context switch? Is it better to implement a manual task switch than to rely on OS

    - by Vilx-
    The title says it all. Imagine I have two (three, four, whatever) tasks that have to run in parallel. Now, the easy way to do this would be to create separate threads and forget about it. But on a plain old single-core CPU that would mean a lot of context switching - and we all know that context switching is big, bad, slow, and generally simply Evil. It should be avoided, right? On that note, if I'm writing the software from ground up anyway, I could go the extra mile and implement my own task-switching. Split each task in parts, save the state inbetween, and then switch among them within a single thread. Or, if I detect that there are multiple CPU cores, I could just give each task to a separate thread and all would be well. The second solution does have the advantage of adapting to the number of available CPU cores, but will the manual task-switch really be faster than the one in the OS core? Especially if I'm trying to make the whole thing generic with a TaskManager and an ITask, etc?

    Read the article

  • iphone encode problem with ffmpeg

    - by samantha
    Hi, I need to encode a video from image. I use ffmpeg and compiling rigth. My problem is that when i try to opne video with quicktime on iphone, this give me a message "this movie format is not supported". I create a file mp4 with this parameter on context: context-time_base.num = 1; context-time_base.den = 15; context-codec_type = CODEC_TYPE_VIDEO; context-codec_id = CODEC_ID_H264; context-bit_rate = 1000000; context-width = width; context-height = height; context-keyint_min = 10; context-i_quant_factor = 0.71; context-bit_rate_tolerance = 20000; context-rc_max_rate = 100000; context-rc_buffer_size = 8835000; context-qcompress = 0.6; context-qmin = 10; context-qmax = 30; context-max_qdiff = 4; context-gop_size = 30; context->time_base.num = 1; context-time_base.den = 30; context-sample_aspect_ratio = av_d2q(1, 255); context-profile = 30; context-pix_fmt = PIX_FMT_YUV420P; context-flags |= CODEC_FLAG_LOOP_FILTER; where is my mistake?? thanks

    Read the article

  • Corliss Expert Group Home Security: How to Secure Your Home without Spending Too Much?

    - by Mika Esmond
    HOME SECURITY: HOW TO SECURE YOUR HOME WITHOUT SPENDING TOO MUCH Imagine if there were no burglar or criminals who threaten the safety of our homes; we will be surprised how much savings we would have on several things we do to secure ourselves and our loved ones. We would not need fences, gates with locks, doors locks, window grills, CCTV cams, perimeter lighting, shotguns and baseball bats. The cost of maintaining these things can run up to the entire cost of building another room or, in some cases, a whole new house. The rationale for home security is the same for national security. A nation maintains an army whether it has enemies or not; so, whether burglars will come or not, we have to prepare for the eventuality. Hence, we end up spending for something we might never put into the actual use it was intended for. You buy a pistol and when a burglar breaks in you fire the gun either to scare or disable the intruder. We hope we will never have to use these things; but we still buy them for the peace of mind that comes from knowing we can secure or protect our family and home.

    Read the article

  • SQL03070: This statement is not recognized in this context

    - by prash
    Recently I have started working with VS2010 and Fx4. There have been various challenges. We also introduced a new Database Project in our solution. And found this error. The reason for this error is: the project system expects the stored procedure as a create statement only.  The additional statements to drop if existing are not necessary within the project system.  Project deployment takes care of detecting if the sproc already exists and if it needs to be updated. To resolve this error you can simply remove the additional statements other then your create SP, Function etc. OR Exclude the file from build. Right Click on your file in Solution Explorer, Click Properties > Build Action > Not in Build

    Read the article

  • Security Trimmed Cross Site Collection Navigation

    - by Sahil Malik
    Ad:: SharePoint 2007 Training in .NET 3.5 technologies (more information). This article will serve as documentation of a fully functional codeplex project that I just created. This project will give you a WebPart that will give you security trimmed navigation across site collections. The first question is, why create such a project? In every single SharePoint project you will do, one question you will always be faced with is, what should the boundaries of sites be, and what should the boundaries of site collections be? There is no good or bad answer to this, because it really really depends on your needs. There are some factors in play here. Site Collections will allow you to scale, as a Site collection is the smallest entity you can put inside a content database Site collections will allow you to offer different levels of SLAs, because you put a site collection on a separate content database, and put that database on a separate server. Site collections are a security boundary – and they can be moved around at will without affecting other site collections. Site collections are also a branding boundary. They are also a feature deployment boundary, so you can have two site collections on the same web application with completely different nature of services. But site collections break navigation, i.e. a site collection at “/”, and a site collection at “/sites/mySiteCollection”, are completely independent of each other. If you have access to both, the navigation of / won’t show you a link to /sites/mySiteCollection. Some people refer to this as a huge issue in SharePoint. Luckily, some workarounds exist. A long time ago, I had blogged about “Implementing Consistent Navigation across Site Collections”. That approach was a no-code solution, it worked – it gave you a consistent navigation across site collections. But, it didn’t work in a security trimmed fashion! i.e., if I don’t have access to Site Collection ‘X’, it would still show me a link to ‘X’. Well this project gets around that issue. Simply deploy this project, and it’ll give you a WebPart. You can use that WebPart as either a webpart or as a server control dropped via SharePoint designer, and it will give you Security Trimmed Cross Site Collection Navigation. The code has been written for SP2010, but it will work in SP2007 with the help of http://spwcfsupport.codeplex.com . What do I need to do to make it work? I’m glad you asked! Simple! Deploy the .wsp (which you can download here). This will give you a site collection feature called “Winsmarts Cross Site Collection Navigation” as shown below. Go ahead and activate it, and this will give you a WebPart called “Winsmarts Navigation Web Part” as shown below: Just drop this WebPart on your page, and it will show you all site collections that the currently logged in user has access to. Really it’s that easy! This is shown as below - In the above example, I have two site collections that I created at /sites/SiteCollection1 and /sites/SiteCollection2. The navigation shows the titles. You see some extraneous crap as well, you might want to clean that – I’ll talk about that in a minute. What? You’re running into problems? If the problem you’re running into is that you are prompted to login three times, and then it shows a blank webpart that says “Loading your applications ..” and then craps out!, then most probably you’re using a different authentication scheme. Behind the scenes I use a custom WCF service to perform this job. OOTB, I’ve set it to work with NTLM, but if you need to make it work alternate authentications such as forms based auth, or client side certs, you will need to edit the %14%\ISAPI\Winsmarts.CrossSCNav\web.config file, specifically, this section - 1: <bindings> 2: <webHttpBinding> 3: <binding name="customWebHttpBinding"> 4: <security mode="TransportCredentialOnly"> 5: <transport clientCredentialType="Ntlm"/> 6: </security> 7: </binding> 8: </webHttpBinding> 9: </bindings> For Kerberos, change the “clientCredentialType” to “Windows” For Forms auth, remove that transport line For client certs – well that’s a bit more involved, but it’s just web.config changes – hit a good book on WCF or hire me for a billion trillion $. But fair warning, I might be too busy to help immediately. If you’re running into a different problem, please leave a comment below, but the code is pretty rock solid, so .. hmm .. check what you’re doing! BTW, I don’t  make any guarantee/warranty on this – if this code makes you sterile, unpopular, bad hairstyle, anything else, that is your problem! But, there are some known issues - I wrote this as a concept – you can easily extend it to be more flexible. Example, hierarchical nav, or, horizontal nav, jazzy effects with jquery or silverlight– all those are possible very very easily. This webpart is not smart enough to co-exist with another instance of itself on the same page. I can easily extend it to do so, which I will do in my spare(!?) time! Okay good! But that’s not all! As you can see, just dropping the WebPart may show you many extraneous site collections, or maybe you want to restrict which site collections are shown, or exclude a certain site collection to be shown from the navigation. To support that, I created a property on the WebPart called “UrlMatchPattern”, which is a regex expression you specify to trim the results :). So, just edit the WebPart, and specify a string property of “http://sp2010/sites/” as shown below. Note that you can put in whatever regex expression you want! So go crazy, I don’t care! And this gives you a cleaner look.   w00t! Enjoy! Comment on the article ....

    Read the article

  • [GEEK SCHOOL] Network Security 4: Windows Firewall: Your System’s Best Defense

    - by Ciprian Rusen
    If you have your computer connected to a network, or directly to your Internet connection, then having a firewall is an absolute necessity. In this lesson we will discuss the Windows Firewall – one of the best security features available in Windows! The Windows Firewall made its debut in Windows XP. Prior to that, Windows system needed to rely on third-party solutions or dedicated hardware to protect them from network-based attacks. Over the years, Microsoft has done a great job with it and it is one of the best firewalls you will ever find for Windows operating systems. Seriously, it is so good that some commercial vendors have decided to piggyback on it! Let’s talk about what you will learn in this lesson. First, you will learn about what the Windows Firewall is, what it does, and how it works. Afterward, you will start to get your hands dirty and edit the list of apps, programs, and features that are allowed to communicate through the Windows Firewall depending on the type of network you are connected to. Moving on from there, you will learn how to add new apps or programs to the list of allowed items and how to remove the apps and programs that you want to block. Last but not least, you will learn how to enable or disable the Windows Firewall, for only one type of networks or for all network connections. By the end of this lesson, you should know enough about the Windows Firewall to use and manage it effectively. What is the Windows Firewall? Windows Firewall is an important security application that’s built into Windows. One of its roles is to block unauthorized access to your computer. The second role is to permit authorized data communications to and from your computer. Windows Firewall does these things with the help of rules and exceptions that are applied both to inbound and outbound traffic. They are applied depending on the type of network you are connected to and the location you have set for it in Windows, when connecting to the network. Based on your choice, the Windows Firewall automatically adjusts the rules and exceptions applied to that network. This makes the Windows Firewall a product that’s silent and easy to use. It bothers you only when it doesn’t have any rules and exceptions for what you are trying to do or what the programs running on your computer are trying to do. If you need a refresher on the concept of network locations, we recommend you to read our How-To Geek School class on Windows Networking. Another benefit of the Windows Firewall is that it is so tightly and nicely integrated into Windows and all its networking features, that some commercial vendors decided to piggyback onto it and use it in their security products. For example, products from companies like Trend Micro or F-Secure no longer provide their proprietary firewall modules but use the Windows Firewall instead. Except for a few wording differences, the Windows Firewall works the same in Windows 7 and Windows 8.x. The only notable difference is that in Windows 8.x you will see the word “app” being used instead of “program”. Where to Find the Windows Firewall By default, the Windows Firewall is turned on and you don’t need to do anything special in order for it work. You will see it displaying some prompts once in a while but they show up so rarely that you might forget that is even working. If you want to access it and configure the way it works, go to the Control Panel, then go to “System and Security” and select “Windows Firewall”. Now you will see the Windows Firewall window where you can get a quick glimpse on whether it is turned on and the type of network you are connected to: private networks or public network. For the network type that you are connected to, you will see additional information like: The state of the Windows Firewall How the Windows Firewall deals with incoming connections The active network When the Windows Firewall will notify you You can easily expand the other section and view the default settings that apply when connecting to networks of that type. If you have installed a third-party security application that also includes a firewall module, chances are that the Windows Firewall has been disabled, in order to avoid performance issues and conflicts between the two security products. If that is the case for your computer or device, you won’t be able to view any information in the Windows Firewall window and you won’t be able to configure the way it works. Instead, you will see a warning that says: “These settings are being managed by vendor application – Application Name”. In the screenshot below you can see an example of how this looks. How to Allow Desktop Applications Through the Windows Firewall Windows Firewall has a very comprehensive set of rules and most Windows programs that you install add their own exceptions to the Windows Firewall so that they receive network and Internet access. This means that you will see prompts from the Windows Firewall on occasion, generally when you install programs that do not add their own exceptions to the Windows Firewall’s list. In a Windows Firewall prompt, you are asked to select the network locations to which you allow access for that program: private networks or public networks. By default, Windows Firewall selects the checkbox that’s appropriate for the network you are currently using. You can decide to allow access for both types of network locations or just to one of them. To apply your setting press “Allow access”. If you want to block network access for that program, press “Cancel” and the program will be set as blocked for both network locations. At this step you should note that only administrators can set exceptions in the Windows Firewall. If you are using a standard account without administrator permissions, the programs that do not comply with the Windows Firewall rules and exceptions are automatically blocked, without any prompts being shown. You should note that in Windows 8.x you will never see any Windows Firewall prompts related to apps from the Windows Store. They are automatically given access to the network and the Internet based on the assumption that you are aware of the permissions they require based on the information displayed by the Windows Store. Windows Firewall rules and exceptions are automatically created for each app that you install from the Windows Store. However, you can easily block access to the network and the Internet for any app, using the instructions in the next section. How to Customize the Rules for Allowed Apps Windows Firewall allows any user with an administrator account to change the list of rules and exceptions applied for apps and desktop programs. In order to do this, first start the Windows Firewall. On the column on the left, click or tap “Allow an app or feature through Windows Firewall” (in Windows 8.x) or “Allow a program or feature through Windows Firewall” (in Windows 7). Now you see the list of apps and programs that are allowed to communicate through the Windows Firewall. At this point, the list is grayed out and you can only view which apps, features, and programs have rules that are enabled in the Windows Firewall.

    Read the article

< Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >