Search Results

Search found 1058 results on 43 pages for 'compute'.

Page 41/43 | < Previous Page | 37 38 39 40 41 42 43  | Next Page >

  • Find optimal/good-enough strategy and AI for the game 'Proximity'?

    - by smci
    'Proximity' is a strategy game of territorial domination similar to Othello, Go and Risk. Two players, uses a 10x12 hex grid. Game invented by Brian Cable in 2007. Seems to be a worthy game for discussing a) optimal algorithm then b) how to build an AI. Strategies are going to be probabilistic or heuristic-based, due to the randomness factor, and the insane branching factor (20^120). So it will be kind of hard to compare objectively. A compute time limit of 5s per turn seems reasonable. Game: Flash version here and many copies elsewhere on the web Rules: here Object: to have control of the most armies after all tiles have been placed. Each turn you received a randomly numbered tile (value between 1 and 20 armies) to place on any vacant board space. If this tile is adjacent to any ally tiles, it will strengthen each tile's defenses +1 (up to a max value of 20). If it is adjacent to any enemy tiles, it will take control over them if its number is higher than the number on the enemy tile. Thoughts on strategy: Here are some initial thoughts; setting the computer AI to Expert will probably teach a lot: minimizing your perimeter seems to be a good strategy, to prevent flips and minimize worst-case damage like in Go, leaving holes inside your formation is lethal, only more so with the hex grid because you can lose armies on up to 6 squares in one move low-numbered tiles are a liability, so place them away from your main territory, near the board edges and scattered. You can also use low-numbered tiles to plug holes in your formation, or make small gains along the perimeter which the opponent will not tend to bother attacking. a triangle formation of three pieces is strong since they mutually reinforce, and also reduce the perimeter Each tile can be flipped at most 6 times, i.e. when its neighbor tiles are occupied. Control of a formation can flow back and forth. Sometimes you lose part of a formation and plug any holes to render that part of the board 'dead' and lock in your territory/ prevent further losses. Low-numbered tiles are obvious-but-low-valued liabilities, but high-numbered tiles can be bigger liabilities if they get flipped (which is harder). One lucky play with a 20-army tile can cause a swing of 200 (from +100 to -100 armies). So tile placement will have both offensive and defensive considerations. Comment 1,2,4 seem to resemble a minimax strategy where we minimize the maximum expected possible loss (modified by some probabilistic consideration of the value ß the opponent can get from 1..20 i.e. a structure which can only be flipped by a ß=20 tile is 'nearly impregnable'.) I'm not clear what the implications of comments 3,5,6 are for optimal strategy. Interested in comments from Go, Chess or Othello players. (The sequel ProximityHD for XBox Live, allows 4-player -cooperative or -competitive local multiplayer increases the branching factor since you now have 5 tiles in your hand at any given time, of which you can only play one. Reinforcement of ally tiles is increased to +2 per ally.)

    Read the article

  • being able to solve google code jam problem sets

    - by JPro
    This is not a homework question, but rather my intention to know if this is what it takes to learn programming. I keep loggin into TopCoder not to actually participate but to get the basic understand of how the problems are solved. But to my knowledge I don't understand what the problem is and how to translate the problem into an algorithm that can solve it. Just now I happen to look at ACM ICPC 2010 World Finals which is being held in china. The teams were given problem sets and one of them is this: Given at most 100 points on a plan with distinct x-coordinates, find the shortest cycle that passes through each point exactly once, goes from the leftmost point always to the right until it reaches the rightmost point, then goes always to the left until it gets back to the leftmost point. Additionally, two points are given such that the the path from left to right contains the first point, and the path from right to left contains the second point. This seems to be a very simple DP: after processing the last k points, and with the first path ending in point a and the second path ending in point b, what is the smallest total length to achieve that? This is O(n^2) states, transitions in O(n). We deal with the two special points by forcing the first path to contain the first one, and the second path contain the second one. Now I have no idea what I am supposed to solve after reading the problem set. and there's an other one from google code jam: Problem In a big, square room there are two point light sources: one is red and the other is green. There are also n circular pillars. Light travels in straight lines and is absorbed by walls and pillars. The pillars therefore cast shadows: they do not let light through. There are places in the room where no light reaches (black), where only one of the two light sources reaches (red or green), and places where both lights reach (yellow). Compute the total area of each of the four colors in the room. Do not include the area of the pillars. Input * One line containing the number of test cases, T. Each test case contains, in order: * One line containing the coordinates x, y of the red light source. * One line containing the coordinates x, y of the green light source. * One line containing the number of pillars n. * n lines describing the pillars. Each contains 3 numbers x, y, r. The pillar is a disk with the center (x, y) and radius r. The room is the square described by 0 = x, y = 100. Pillars, room walls and light sources are all disjoint, they do not overlap or touch. Output For each test case, output: Case #X: black area red area green area yellow area Is it required that people who program should be should be able to solve these type of problems? I would apprecite if anyone can help me interpret the google code jam problem set as I wish to participate in this years Code Jam to see if I can do anthing or not. Thanks.

    Read the article

  • Why are there 3 conflicting OpenCV camera calibration formulas?

    - by John
    I'm having a problem with OpenCV's various parameterization of coordinates used for camera calibration purposes. The problem is that three different sources of information on image distortion formulae apparently give three non-equivalent description of the parameters and equations involved: (1) In their book "Learning OpenCV…" Bradski and Kaehler write regarding lens distortion (page 376): xcorrected = x * ( 1 + k1 * r^2 + k2 * r^4 + k3 * r^6 ) + [ 2 * p1 * x * y + p2 * ( r^2 + 2 * x^2 ) ], ycorrected = y * ( 1 + k1 * r^2 + k2 * r^4 + k3 * r^6 ) + [ p1 * ( r^2 + 2 * y^2 ) + 2 * p2 * x * y ], where r = sqrt( x^2 + y^2 ). Assumably, (x, y) are the coordinates of pixels in the uncorrected captured image corresponding to world-point objects with coordinates (X, Y, Z), camera-frame referenced, for which xcorrected = fx * ( X / Z ) + cx and ycorrected = fy * ( Y / Z ) + cy, where fx, fy, cx, and cy, are the camera's intrinsic parameters. So, having (x, y) from a captured image, we can obtain the desired coordinates ( xcorrected, ycorrected ) to produced an undistorted image of the captured world scene by applying the above first two correction expressions. However... (2) The complication arises as we look at OpenCV 2.0 C Reference entry under the Camera Calibration and 3D Reconstruction section. For ease of comparison we start with all world-point (X, Y, Z) coordinates being expressed with respect to the camera's reference frame, just as in #1. Consequently, the transformation matrix [ R | t ] is of no concern. In the C reference, it is expressed that: x' = X / Z, y' = Y / Z, x'' = x' * ( 1 + k1 * r'^2 + k2 * r'^4 + k3 * r'^6 ) + [ 2 * p1 * x' * y' + p2 * ( r'^2 + 2 * x'^2 ) ], y'' = y' * ( 1 + k1 * r'^2 + k2 * r'^4 + k3 * r'^6 ) + [ p1 * ( r'^2 + 2 * y'^2 ) + 2 * p2 * x' * y' ], where r' = sqrt( x'^2 + y'^2 ), and finally that u = fx * x'' + cx, v = fy * y'' + cy. As one can see these expressions are not equivalent to those presented in #1, with the result that the two sets of corrected coordinates ( xcorrected, ycorrected ) and ( u, v ) are not the same. Why the contradiction? It seems to me the first set makes more sense as I can attach physical meaning to each and every x and y in there, while I find no physical meaning in x' = X / Z and y' = Y / Z when the camera focal length is not exactly 1. Furthermore, one cannot compute x' and y' for we don't know (X, Y, Z). (3) Unfortunately, things get even murkier when we refer to the writings in Intel's Open Source Computer Vision Library Reference Manual's section Lens Distortion (page 6-4), which states in part: "Let ( u, v ) be true pixel image coordinates, that is, coordinates with ideal projection, and ( u ~, v ~ ) be corresponding real observed (distorted) image coordinates. Similarly, ( x, y ) are ideal (distortion-free) and ( x ~, y ~ ) are real (distorted) image physical coordinates. Taking into account two expansion terms gives the following: x ~ = x * ( 1 + k1 * r^2 + k2 * r^4 ) + [ 2 p1 * x * y + p2 * ( r^2 + 2 * x^2 ) ] y ~ = y * ( 1 + k1 * r^2 + k2 * r^4 ] + [ 2 p2 * x * y + p2 * ( r^2 + 2 * y^2 ) ], where r = sqrt( x^2 + y^2 ). ... "Because u ~ = cx + fx * u and v ~ = cy + fy * v , … the resultant system can be rewritten as follows: u ~ = u + ( u – cx ) * [ k1 * r^2 + k2 * r^4 + 2 * p1 * y + p2 * ( r^2 / x + 2 * x ) ] v ~ = v + ( v – cy ) * [ k1 * r^2 + k2 * r^4 + 2 * p2 * x + p1 * ( r^2 / y + 2 * y ) ] The latter relations are used to undistort images from the camera." Well, it would appear that the expressions involving x ~ and y ~ coincided with the two expressions given at the top of this writing involving xcorrected and ycorrected. However, x ~ and y ~ do not refer to corrected coordinates, according to the given description. I don't understand the distinction between the meaning of the coordinates ( x ~, y ~ ) and ( u ~, v ~ ), or for that matter, between the pairs ( x, y ) and ( u, v ). From their descriptions it appears their only distinction is that ( x ~, y ~ ) and ( x, y ) refer to 'physical' coordinates while ( u ~, v ~ ) and ( u, v ) do not. What is this distinction all about? Aren't they all physical coordinates? I'm lost! Thanks for any input!

    Read the article

  • CSG operations on implicit surfaces with marching cubes

    - by Mads Elvheim
    I render isosurfaces with marching cubes, (or perhaps marching squares as this is 2D) and I want to do set operations like set difference, intersection and union. I thought this was easy to implement, by simply choosing between two vertex scalars from two different implicit surfaces, but it is not. For my initial testing, I tried with two spheres, and the set operation difference. i.e A - B. One sphere is moving and the other one is stationary. Here's the approach I tried when picking vertex scalars and when classifying corner vertices as inside or outside. The code is written in C++. OpenGL is used for rendering, but that's not important. Normal rendering without any CSG operations does give the expected result. void march(const vec2& cmin, //min x and y for the grid cell const vec2& cmax, //max x and y for the grid cell std::vector<vec2>& tri, float iso, float (*cmp1)(const vec2&), //distance from stationary sphere float (*cmp2)(const vec2&) //distance from moving sphere ) { unsigned int squareindex = 0; float scalar[4]; vec2 verts[8]; /* initial setup of the grid cell */ verts[0] = vec2(cmax.x, cmax.y); verts[2] = vec2(cmin.x, cmax.y); verts[4] = vec2(cmin.x, cmin.y); verts[6] = vec2(cmax.x, cmin.y); float s1,s2; /********************************** ********For-loop of interest****** *******Set difference between **** *******two implicit surfaces****** **********************************/ for(int i=0,j=0; i<4; ++i, j+=2){ s1 = cmp1(verts[j]); s2 = cmp2(verts[j]); if((s1 < iso)){ //if inside sphere1 if((s2 < iso)){ //if inside sphere2 scalar[i] = s2; //then set the scalar to the moving sphere } else { scalar[i] = s1; //only inside sphere1 squareindex |= (1<<i); //mark as inside } } else { scalar[i] = s1; //inside neither sphere } } if(squareindex == 0) return; /* Usual interpolation between edge points to compute the new intersection points */ verts[1] = mix(iso, verts[0], verts[2], scalar[0], scalar[1]); verts[3] = mix(iso, verts[2], verts[4], scalar[1], scalar[2]); verts[5] = mix(iso, verts[4], verts[6], scalar[2], scalar[3]); verts[7] = mix(iso, verts[6], verts[0], scalar[3], scalar[0]); for(int i=0; i<10; ++i){ //10 = maxmimum 3 triangles, + one end token int index = triTable[squareindex][i]; //look up our indices for triangulation if(index == -1) break; tri.push_back(verts[index]); } } This gives me weird jaggies: It looks like the CSG operation is done without interpolation. It just "discards" the whole triangle. Do I need to interpolate in some other way, or combine the vertex scalar values? I'd love some help with this. A full testcase can be downloaded HERE

    Read the article

  • What's New in Database Lifecycle Management in Enterprise Manager 12c Release 3

    - by HariSrinivasan
    Enterprise Manager 12c Release 3 includes improvements and enhancements across every area of the product. This blog provides an overview of the new and enhanced features in the Database Lifecycle Management area. I will deep dive into specific features more in depth in subsequent posts. "What's New?"  In this release, we focused on four things: 1. Lifecycle Management Support for new Database12c - Pluggable Databases 2. Management of long running processes, such as a security patch cycle (Change Activity Planner) 3. Management of large number of systems by · Leveraging new framework capabilities for lifecycle operations, such as the new advanced ‘emcli’ script option · Refining features such as configuration search and compliance 4. Minor improvements and quality fixes to existing features · Rollback support for Single instance databases · Improved "OFFLINE" Patching experience · Faster collection of ORACLE_HOME configurations Lifecycle Management Support for new Database 12c - Pluggable Databases Database 12c introduces Pluggable Databases (PDBs), the brand new addition to help you achieve your consolidation goals. Pluggable databases offer unprecedented consolidation at database level and native lifecycle verbs for creating, plugging and unplugging the databases on a container database (CDB). Enterprise Manager can supplement the capabilities of pluggable databases by offering workflows for migrating, provisioning and cloning them using the software library and the deployment procedures. For example, Enterprise Manager can migrate an existing database to a PDB or clone a PDB by storing a versioned copy in the software library. One can also manage the planned downtime related to patching by  migrating the PDBs to a new CDB. While pluggable databases offer these exciting features, it can also pose configuration management and compliance challenges if not managed properly. Enterprise Manager features like inventory management, topology associations and configuration search can mitigate the sprawl of PDBs and also lock them to predefined golden standards using configuration comparison and compliance rules. Learn More ... Management of Long Running datacenter processes - Change Activity Planner (CAP) Currently, customers resort to cumbersome methods to create, execute, track and monitor change activities within their data center. Some customers use traditional tools such as spreadsheets, project planners and in-house custom built solutions. Customers often have weekly sync up meetings across stake holders to collect status and updates. Some of the change activities, for example the quarterly patch set update (PSU) patch rollouts are not single tasks but processes with multiple tasks. Some of those tasks are performed within Enterprise Manager Cloud Control (for example Patch) and some are performed outside of Enterprise Manager Cloud Control. These tasks often run for a longer period of time and involve multiple people or teams. Enterprise Manger Cloud Control supports core data center operations such as configuration management, compliance management, and automation. Enterprise Manager Cloud Control release 12.1.0.3 leverages these capabilities and introduces the Change Activity Planner (CAP). CAP provides the ability to plan, execute, and track change activities in real time. It covers the typical datacenter activities that are spread over a long period of time, across multiple people and multiple targets (even target types). Here are some examples of Change Activity Process in a datacenter: · Patching large environments (PSU/CPU Patching cycles) · Upgrading large number of database environments · Rolling out Compliance Rules · Database Consolidation to Exadata environments CAP provides user flows for Compliance Officers/Managers (incl. lead administrators) and Operators (DBAs and admins). Managers can create change activity plans for various projects, allocate resources, targets, and groups affected. Upon activation of the plan, tasks are created and automatically assigned to individual administrators based on target ownership. Administrators (DBAs) can identify their tasks and understand the context, schedules, and priorities. They can complete tasks using Enterprise Manager Cloud Control automation features such as patch plans (or in some cases outside Enterprise Manager). Upon completion, compliance is evaluated for validations and updates the status of the tasks and the plans. Learn More about CAP ...  Improved Configuration & Compliance Management of a large number of systems Improved Configuration Comparison:  Get to the configuration comparison results faster for simple ad-hoc comparisons. When performing a 1 to 1 comparison, Enterprise Manager will perform the comparison immediately and take the user directly to the results without having to wait for a job to be submitted and executed. Flattened system comparisons reduce comparison setup time and reduce complexity. In addition to the previously existing topological comparison, users now have an option to compare using a “flattened” methodology. Flattening means to remove duplicate target instances within the systems and remove the hierarchy of member targets. The result are much easier to spot differences particularly for specific use cases like comparing patch levels between complex systems like RAC and Fusion Apps. Improved Configuration Search & Advanced EMCLI Script option for Mass Automation Enterprise manager 12c introduces a new framework level capability to be able to script and stitch together multiple tasks using EMCLI. This powerful capability can be leveraged for lifecycle operations, especially when executing a task over a large number of targets. Specific usages of this include, retrieving a qualified list of targets using Configuration Search and then using the resultset for automation. Another example would be executing a patching operation and then re-executing on targets where it may have failed. This is complemented by other enhancements, such as a better usability for designing reusable configuration searches. IN EM 12c Rel 3, a simplified UI makes building adhoc searches even easier. Searching for missing patches is a common use of configuration search. This required the use of the advanced options which are now clearly defined and easy to use. Perform “Configuration Search” using the EMCLI. Users can find and execute Configuration Searches from the EMCLI which can be extremely useful for building sophisticated automation scripts. For an example, Run the Search named “Oracle Databases on Exadata” which finds all Database targets running on top of Exadata. Further filter the results by refining by options like name, host, etc.. emcli get_targets -config_search="Databases on Exadata" –target_name="exa%“ Use this in powerful mass automation operations using the new emcli script option. For example, to solve the use case of – Finding all DBs running on Exadata and housing E-Biz and Patch them. Create a Python script with emcli functions and invoke it in the new EMCLI script option shell. Invoke the script in the new EMCLI with script option directly: $<path to emcli>/emcli @myPSU_Patch.py Richer compliance content:  Now over 50 Oracle Provided Compliance Standards including new standards for Pluggable Database, Fusion Applications, Oracle Identity Manager, Oracle VM and Internet Directory. 9 Oracle provided Real Time Monitoring Standards containing over 900 Compliance Rules across 500 Facets. These new Real time Compliance Standards covers both Exadata Compute nodes and Linux servers. The result is increased Oracle software coverage and faster time to compliance monitoring on Exadata. Enhancements to Patch Management: Overhauled "OFFLINE" Patching experience: Simplified Patch uploads UI to improve the offline experience of patching. There is now a single step process to get the patches into software library. Customers often maintain local repositories of patches, sometimes called software depots, where they host the patches downloaded from My Oracle Support. In the past, you had to move these patches to your desktop then upload them to the Enterprise Manager's Software library through the Enterprise Manager Cloud Control user interface. You can now use the following EMCLI command to upload multiple patches directly from a remote location within the data center: $emcli upload_patches -location <Path to Patch directory> -from_host <HOSTNAME> The upload process filters all of the new patches, automatically selects the relevant metadata files from the location, and uploads the patches to software library. Other Improvements:  Patch rollback for single instance databases, new option in the Patch Plan to rollback the patches added to the patch plans. Upon execution, the procedure would rollback the patch and the SQL applied to the single instance Databases. Improved and faster configuration collection of Oracle Home targets can enable more reliable automation at higher level functions like Provisioning, Patching or Database as a Service. Just to recap, here is a list of database lifecycle management features:  * Red highlights mark – New or Enhanced in the Release 3. • Discovery, inventory tracking and reporting • Database provisioning including o Migration to Pluggable databases o Plugging and unplugging of pluggable databases o Gold image based cloning o Scaling of RAC nodes •Schema and data change management •End-to-end patch management in online and offline modes, including o Patch advisories in online (connected with My Oracle Support) and offline mode o Patch pre-deployment analysis, deployment and rollback (currently only for single instance databases) o Reporting • Upgrade planning and execution of the upgrade process • Configuration management including • Compliance management with out-of-box content • Change Activity Planner for planning, designing and tracking long running processes For more information on Enterprise Manager’s database lifecycle management capabilities, visit http://www.oracle.com/technetwork/oem/lifecycle-mgmt/index.html

    Read the article

  • How can I make this Java code run faster?

    - by Martin Wiboe
    Hello all, I am trying to make a Java port of a simple feed-forward neural network. This obviously involves lots of numeric calculations, so I am trying to optimize my central loop as much as possible. The results should be correct within the limits of the float data type. My current code looks as follows (error handling & initialization removed): /** * Simple implementation of a feedforward neural network. The network supports * including a bias neuron with a constant output of 1.0 and weighted synapses * to hidden and output layers. * * @author Martin Wiboe */ public class FeedForwardNetwork { private final int outputNeurons; // No of neurons in output layer private final int inputNeurons; // No of neurons in input layer private int largestLayerNeurons; // No of neurons in largest layer private final int numberLayers; // No of layers private final int[] neuronCounts; // Neuron count in each layer, 0 is input // layer. private final float[][][] fWeights; // Weights between neurons. // fWeight[fromLayer][fromNeuron][toNeuron] // is the weight from fromNeuron in // fromLayer to toNeuron in layer // fromLayer+1. private float[][] neuronOutput; // Temporary storage of output from previous layer public float[] compute(float[] input) { // Copy input values to input layer output for (int i = 0; i < inputNeurons; i++) { neuronOutput[0][i] = input[i]; } // Loop through layers for (int layer = 1; layer < numberLayers; layer++) { // Loop over neurons in the layer and determine weighted input sum for (int neuron = 0; neuron < neuronCounts[layer]; neuron++) { // Bias neuron is the last neuron in the previous layer int biasNeuron = neuronCounts[layer - 1]; // Get weighted input from bias neuron - output is always 1.0 float activation = 1.0F * fWeights[layer - 1][biasNeuron][neuron]; // Get weighted inputs from rest of neurons in previous layer for (int inputNeuron = 0; inputNeuron < biasNeuron; inputNeuron++) { activation += neuronOutput[layer-1][inputNeuron] * fWeights[layer - 1][inputNeuron][neuron]; } // Store neuron output for next round of computation neuronOutput[layer][neuron] = sigmoid(activation); } } // Return output from network = output from last layer float[] result = new float[outputNeurons]; for (int i = 0; i < outputNeurons; i++) result[i] = neuronOutput[numberLayers - 1][i]; return result; } private final static float sigmoid(final float input) { return (float) (1.0F / (1.0F + Math.exp(-1.0F * input))); } } I am running the JVM with the -server option, and as of now my code is between 25% and 50% slower than similar C code. What can I do to improve this situation? Thank you, Martin Wiboe

    Read the article

  • CodePlex Daily Summary for Friday, June 06, 2014

    CodePlex Daily Summary for Friday, June 06, 2014Popular ReleasesVirto Commerce Enterprise Open Source eCommerce Platform (asp.net mvc): Virto Commerce 1.10: Virto Commerce Community Edition version 1.10. To install the SDK package, please refer to SDK getting started documentation To configure source code package, please refer to Source code getting started documentation This release includes bug fixes and improvements (including Commerce Manager localization and https support). More details about this release can be found on our blog at http://blog.virtocommerce.com.Load Runner - HTTP Pressure Test Tool: Load Runner 1.3: 1. gracefully stop distributed engine 2. added error handling for distributed load tasks if fail to send the tasks. 3. added easter egg ;-) NPOI: NPOI 2.1: Assembly Version: 2.1.0 New Features a. XSSFSheet.CopySheet b. Excel2Html for XSSF c. insert picture in word 2007 d. Implement IfError function in formula engine Bug Fixes a. fix conditional formatting issue b. fix ctFont order issue c. fix vertical alignment issue in XSSF d. add IndexedColors to NPOI.SS.UserModel e. fix decimal point issue in non-English culture f. fix SetMargin issue in XSSF g.fix multiple images insert issue in XSSF h.fix rich text style missing issue in XSSF i. fix cell...HigLabo: HigLabo_20140605: Modify AsciiCharOnly method implementation. Code clean up of RssItem.Description.51Degrees - Device Detection and Redirection: 3.1.2.3: Version 3.1 HighlightsDevice detection algorithm is over 100 times faster. Regular expressions and levenshtein distance calculations are no longer used. The device detection algorithm performance is no longer limited by the number of device combinations contained in the dataset. Two modes of operation are available: Memory – the detection data set is loaded into memory and there is no continuous connection to the source data file. Slower initialisation time but faster detection performanc...CS-Script for Notepad++ (C# intellisense and code execution): Release v1.0.27.0: CodeMap now indicates the type name for all members Implemented running scripts 'as administrator'. Just add '//css_npp asadmin' to the script and run it as usual. 'Prepare script for distribution' now aggregates script dependency assemblies. Various improvements in CodeSnipptet, Autcompletion and MethodInfo interactions with each other. Added printing line number for the entries in CodeMap (subject of configuration value) Improved debugging step indication for classless scripts ...Kartris E-commerce: Kartris v2.6003: Bug fixes: Fixed issue where category could not be saved if parent categories not altered Updated split string function to 500 chars otherwise problems with attribute filtering in PowerPack Improvements: If a user has group pricing below that available through qty discounts, that will show in place of the qty discountClosedXML - The easy way to OpenXML: ClosedXML 0.72.3: 70426e13c415 ClosedXML for .Net 4.0 now uses Open XML SDK 2.5 b9ef53a6654f Merge branch 'master' of https://git01.codeplex.com/forks/vbjay/closedxml 727714e86416 Fix range.Merge(Boolean) for .Net 3.5 eb1ed478e50e Make public range.Merge(Boolean checkIntersects) 6284cf3c3991 More performance improvements when saving.SEToolbox: SEToolbox 01.032.018 Release 1: Added ability to merge/join two ships, regardless of origin. Added Language selection menu to set display text language (for SE resources only), and fixed inherent issues. Added full support for Dedicated Servers, allowing use on PC without Steam present, and only the Dedicated Server install. Added Browse button for used specified save game selection in Load dialog. Installation of this version will replace older version.DNN Blog: 06.00.07: Highlights: Enhancement: Option to show management panel on child modules Fix: Changed SPROC and code to ensure the right people are notified of pending comments. (CP-24018) Fix: Fix to have notification actions authentication assume the right module id so these will work from the messaging center (CP-24019) Fix: Fix to issue in categories in a post that will not save when no categories and no tags selectedTEncoder: 4.0.0: --4.0.0 -Added: Video downloader -Added: Total progress will be updated more smoothly -Added: MP4Box progress will be shown -Added: A tool to create gif image from video -Added: An option to disable trimming -Added: Audio track option won't be used for mpeg sources as default -Fixed: Subtitle position wasn't used -Fixed: Duration info in the file list wasn't updated after trimming -Updated: FFMpegVeraCrypt: VeraCrypt version 1.0d: Changes between 1.0c and 1.0d (03 June 2014) : Correct issue while creating hidden operating system. Minor fixes (look at git history for more details).Microsoft Web Protection Library: AntiXss Library 4.3.0: Download from nuget or the Microsoft Download Center This issue finally addresses the over zealous behaviour of the HTML Sanitizer which should now function as expected once again. HTML encoding has been changed to safelist a few more characters for webforms compatibility. This will be the last version of AntiXSS that contains a sanitizer. Any new releases will be encoding libraries only. We recommend you explore other sanitizer options, for example AntiSamy https://www.owasp.org/index....Z SqlBulkCopy Extensions: SqlBulkCopy Extensions 1.0.0: SqlBulkCopy Extensions provide MUST-HAVE methods with outstanding performance missing from the SqlBulkCopy class like Delete, Update, Merge, Upsert. Compatible with .NET 2.0, SQL Server 2000, SQL Azure and more! Bulk MethodsBulkDelete BulkInsert BulkMerge BulkUpdate BulkUpsert Utility MethodsGetSqlConnection GetSqlTransaction You like this library? Find out how and why you should support Z Project Become a Memberhttp://zzzproject.com/resources/images/all/become-a-member.png|ht...Tweetinvi a friendly Twitter C# API: Tweetinvi 0.9.3.x: Timelines- Added all the parameters available from the Timeline Endpoints in Tweetinvi. - This is available for HomeTimeline, UserTimeline, MentionsTimeline // Simple query var tweets = Timeline.GetHomeTimeline(); // Create a parameter for queries with specific parameters var timelineParameter = Timeline.CreateHomeTimelineRequestParameter(); timelineParameter.ExcludeReplies = true; timelineParameter.TrimUser = true; var tweets = Timeline.GetHomeTimeline(timelineParameter); Tweetinvi 0.9.3.1...Sandcastle Help File Builder: Help File Builder and Tools v2014.5.31.0: General InformationIMPORTANT: On some systems, the content of the ZIP file is blocked and the installer may fail to run. Before extracting it, right click on the ZIP file, select Properties, and click on the Unblock button if it is present in the lower right corner of the General tab in the properties dialog. This release completes removal of the branding transformations and implements the new VS2013 presentation style that utilizes the new lightweight website format. Several breaking cha...Image View Slider: Image View Slider: This is a .NET component. We create this using VB.NET. Here you can use an Image Viewer with several properties to your application form. We wish somebody to improve freely. Try this out! Author : Steven Renaldo Antony Yustinus Arjuna Purnama Putra Andre Wijaya P Martin Lidau PBK GENAP 2014 - TI UKDWAspose for Apache POI: Missing Features of Apache POI WP - v 1.1: Release contain the Missing Features in Apache POI WP SDK in Comparison with Aspose.Words for dealing with Microsoft Word. What's New ?Following Examples: Insert Picture in Word Document Insert Comments Set Page Borders Mail Merge from XML Data Source Moving the Cursor Feedback and Suggestions Many more examples are yet to come here. Keep visiting us. Raise your queries and suggest more examples via Aspose Forums or via this social coding site.babelua: 1.5.6.0: V1.5.6.0 - 2014.5.30New feature: support quick-cocos2d-x project now; support text search in scripts folder now, you can use this function in Search Result Window;Credit Component: Credit Component: This is a sample release of Credit Component that has been made by Microsoft Visual Studio 2010. To try and use it, you need .NET framework 4.0 and Microsoft Visual Studio 2010 or newer as a minimum requirement in this download you will get media player as a sample application that use this component credit component as a main component media player source code as source code and sample usage of credit component credit component source code as source code of credit component important...New ProjectsBack Up Your SharePoint: SPSBackUp is a PowerShell script tool to Backup your SharePoint environment. It's compatible with SharePoint 2010 & 2013.ChoMy: mrkidconsoledemo: a basic app about the knowledge in c# domainDecision Architect Server Client in C#: This project is a client for Decision Architect Server API.InnVIDEO365 Agile SharePoint-Kaltura App: InnVIDEO365 Agile SharePoint - Kaltura App for SharePoint Online is a complete video content solution for Microsoft SharePoint Online.JacOS: JacOS is an open-source operating system created with COSMOSKISS Workflow Foundation: This project was born from the idea that everyone should be able to use Workflow Foundation in best conditions. It contain sample to take WF jump start!Media Player (Technology Area): A now simple, yet somehow complex music, photo viewer I have some plans for the best tools for the player in the futureMetalurgicaInstitucional: MetalurgicaInstitucionalmoodlin8: Moodlin8 try to exploit significant parts of Moodle, the popular LMS, in a mobile or fixed environment based on the Modern Interface of Windows 8.1.NewsletterSystem: This is a test projectpesho2: Ala bala portokalaProyecto web Lab4 Gioia lucas: proyecto para lab4 utn pachecoRallyRacer: TSD Rally Compute helperVideo-JS Webpart for Sharepoint: Video-JS Webpart for SharepointYanZhiwei_CSharp_UtilHelp: ??C#???????????API: ????? Web API

    Read the article

  • Faster method for Matrix vector product for large matrix in C or C++ for use in GMRES

    - by user35959
    I have a large, dense matrix A, and I aim to find the solution to the linear system Ax=b using an iterative method (in MATLAB was the plan using its built in GMRES). For more than 10,000 rows, this is too much for my computer to store in memory, but I know that the entries in A are constructed by two known vectors x and y of length N and the entries satisfy: A(i,j) = .5*(x[i]-x[j])^2+([y[i]-y[j])^2 * log(x[i]-x[j])^2+([y[i]-y[j]^2). MATLAB's GMRES command accepts as input a function call that can compute the matrix vector product A*x, which allows me to handle larger matrices than I can store in memory. To write the matrix-vecotr product function, I first tried this in matlab by going row by row and using some vectorization, but I avoid spawning the entire array A (since it would be too large). This was fairly slow unfortnately in my application for GMRES. My plan was to write a mex file for MATLAB to, which is in C, and ideally should be significantly faster than the matlab code. I'm rather new to C, so this went rather poorly and my naive attempt at writing the code in C was slower than my partially vectorized attempt in Matlab. #include <math.h> #include "mex.h" void Aproduct(double *x, double *ctrs_x, double *ctrs_y, double *b, mwSize n) { mwSize i; mwSize j; double val; for (i=0; i<n; i++) { for (j=0; j<i; j++) { val = pow(ctrs_x[i]-ctrs_x[j],2)+pow(ctrs_y[i]-ctrs_y[j],2); b[i] = b[i] + .5* val * log(val) * x[j]; } for (j=i+1; j<n; j++) { val = pow(ctrs_x[i]-ctrs_x[j],2)+pow(ctrs_y[i]-ctrs_y[j],2); b[i] = b[i] + .5* val * log(val) * x[j]; } } } The above is the computational portion of the code for the matlab mex file (which is slightly modified C, if I understand correctly). Please note that I skip the case i=j, since in that case the variable val will be a 0*log(0), which should be interpreted as 0 for me, so I just skip it. Is there a more efficient or faster way to write this? When I call this C function via the mex file in matlab, it is quite slow, slower even than the matlab method I used. This surprises me since I suspected that C code should be much faster than matlab. The alternative matlab method which is partially vectorized that I am comparing it with is function Ax = Aprod(x,ctrs) n = length(x); Ax = zeros(n,1); for j=1:(n-3) v = .5*((ctrs(j,1)-ctrs(:,1)).^2+(ctrs(j,2)-ctrs(:,2)).^2).*log((ctrs(j,1)-ctrs(:,1)).^2+(ctrs(j,2)-ctrs(:,2)).^2); v(j)=0; Ax(j) = dot(v,x(1:n-3); end (the n-3 is because there is actually 3 extra components, but they are dealt with separately,so I excluded that code). This is partly vectorized and only needs one for loop, so it makes some sense that it is faster. However, I was hoping I could go even faster with C+mex file. Any suggestions or help would be greatly appreciated! Thanks! EDIT: I should be more clear. I am open to any faster method that can help me use GMRES to invert this matrix that I am interested in, which requires a faster way of doing the matrix vector product without explicitly loading the array into memory. Thanks!

    Read the article

  • Matrix Multiplication with C++ AMP

    - by Daniel Moth
    As part of our API tour of C++ AMP, we looked recently at parallel_for_each. I ended that post by saying we would revisit parallel_for_each after introducing array and array_view. Now is the time, so this is part 2 of parallel_for_each, and also a post that brings together everything we've seen until now. The code for serial and accelerated Consider a naïve (or brute force) serial implementation of matrix multiplication  0: void MatrixMultiplySerial(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 1: { 2: for (int row = 0; row < M; row++) 3: { 4: for (int col = 0; col < N; col++) 5: { 6: float sum = 0.0f; 7: for(int i = 0; i < W; i++) 8: sum += vA[row * W + i] * vB[i * N + col]; 9: vC[row * N + col] = sum; 10: } 11: } 12: } We notice that each loop iteration is independent from each other and so can be parallelized. If in addition we have really large amounts of data, then this is a good candidate to offload to an accelerator. First, I'll just show you an example of what that code may look like with C++ AMP, and then we'll analyze it. It is assumed that you included at the top of your file #include <amp.h> 13: void MatrixMultiplySimple(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 14: { 15: concurrency::array_view<const float,2> a(M, W, vA); 16: concurrency::array_view<const float,2> b(W, N, vB); 17: concurrency::array_view<concurrency::writeonly<float>,2> c(M, N, vC); 18: concurrency::parallel_for_each(c.grid, 19: [=](concurrency::index<2> idx) restrict(direct3d) { 20: int row = idx[0]; int col = idx[1]; 21: float sum = 0.0f; 22: for(int i = 0; i < W; i++) 23: sum += a(row, i) * b(i, col); 24: c[idx] = sum; 25: }); 26: } First a visual comparison, just for fun: The beginning and end is the same, i.e. lines 0,1,12 are identical to lines 13,14,26. The double nested loop (lines 2,3,4,5 and 10,11) has been transformed into a parallel_for_each call (18,19,20 and 25). The core algorithm (lines 6,7,8,9) is essentially the same (lines 21,22,23,24). We have extra lines in the C++ AMP version (15,16,17). Now let's dig in deeper. Using array_view and extent When we decided to convert this function to run on an accelerator, we knew we couldn't use the std::vector objects in the restrict(direct3d) function. So we had a choice of copying the data to the the concurrency::array<T,N> object, or wrapping the vector container (and hence its data) with a concurrency::array_view<T,N> object from amp.h – here we used the latter (lines 15,16,17). Now we can access the same data through the array_view objects (a and b) instead of the vector objects (vA and vB), and the added benefit is that we can capture the array_view objects in the lambda (lines 19-25) that we pass to the parallel_for_each call (line 18) and the data will get copied on demand for us to the accelerator. Note that line 15 (and ditto for 16 and 17) could have been written as two lines instead of one: extent<2> e(M, W); array_view<const float, 2> a(e, vA); In other words, we could have explicitly created the extent object instead of letting the array_view create it for us under the covers through the constructor overload we chose. The benefit of the extent object in this instance is that we can express that the data is indeed two dimensional, i.e a matrix. When we were using a vector object we could not do that, and instead we had to track via additional unrelated variables the dimensions of the matrix (i.e. with the integers M and W) – aren't you loving C++ AMP already? Note that the const before the float when creating a and b, will result in the underling data only being copied to the accelerator and not be copied back – a nice optimization. A similar thing is happening on line 17 when creating array_view c, where we have indicated that we do not need to copy the data to the accelerator, only copy it back. The kernel dispatch On line 18 we make the call to the C++ AMP entry point (parallel_for_each) to invoke our parallel loop or, as some may say, dispatch our kernel. The first argument we need to pass describes how many threads we want for this computation. For this algorithm we decided that we want exactly the same number of threads as the number of elements in the output matrix, i.e. in array_view c which will eventually update the vector vC. So each thread will compute exactly one result. Since the elements in c are organized in a 2-dimensional manner we can organize our threads in a two-dimensional manner too. We don't have to think too much about how to create the first argument (a grid) since the array_view object helpfully exposes that as a property. Note that instead of c.grid we could have written grid<2>(c.extent) or grid<2>(extent<2>(M, N)) – the result is the same in that we have specified M*N threads to execute our lambda. The second argument is a restrict(direct3d) lambda that accepts an index object. Since we elected to use a two-dimensional extent as the first argument of parallel_for_each, the index will also be two-dimensional and as covered in the previous posts it represents the thread ID, which in our case maps perfectly to the index of each element in the resulting array_view. The kernel itself The lambda body (lines 20-24), or as some may say, the kernel, is the code that will actually execute on the accelerator. It will be called by M*N threads and we can use those threads to index into the two input array_views (a,b) and write results into the output array_view ( c ). The four lines (21-24) are essentially identical to the four lines of the serial algorithm (6-9). The only difference is how we index into a,b,c versus how we index into vA,vB,vC. The code we wrote with C++ AMP is much nicer in its indexing, because the dimensionality is a first class concept, so you don't have to do funny arithmetic calculating the index of where the next row starts, which you have to do when working with vectors directly (since they store all the data in a flat manner). I skipped over describing line 20. Note that we didn't really need to read the two components of the index into temporary local variables. This mostly reflects my personal choice, in some algorithms to break down the index into local variables with names that make sense for the algorithm, i.e. in this case row and col. In other cases it may i,j,k or x,y,z, or M,N or whatever. Also note that we could have written line 24 as: c(idx[0], idx[1])=sum  or  c(row, col)=sum instead of the simpler c[idx]=sum Targeting a specific accelerator Imagine that we had more than one hardware accelerator on a system and we wanted to pick a specific one to execute this parallel loop on. So there would be some code like this anywhere before line 18: vector<accelerator> accs = MyFunctionThatChoosesSuitableAccelerators(); accelerator acc = accs[0]; …and then we would modify line 18 so we would be calling another overload of parallel_for_each that accepts an accelerator_view as the first argument, so it would become: concurrency::parallel_for_each(acc.default_view, c.grid, ...and the rest of your code remains the same… how simple is that? Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • One letter game problem?

    - by Alex K
    Recently at a job interview I was given the following problem: Write a script capable of running on the command line as python It should take in two words on the command line (or optionally if you'd prefer it can query the user to supply the two words via the console). Given those two words: a. Ensure they are of equal length b. Ensure they are both words present in the dictionary of valid words in the English language that you downloaded. If so compute whether you can reach the second word from the first by a series of steps as follows a. You can change one letter at a time b. Each time you change a letter the resulting word must also exist in the dictionary c. You cannot add or remove letters If the two words are reachable, the script should print out the path which leads as a single, shortest path from one word to the other. You can /usr/share/dict/words for your dictionary of words. My solution consisted of using breadth first search to find a shortest path between two words. But apparently that wasn't good enough to get the job :( Would you guys know what I could have done wrong? Thank you so much. import collections import functools import re def time_func(func): import time def wrapper(*args, **kwargs): start = time.time() res = func(*args, **kwargs) timed = time.time() - start setattr(wrapper, 'time_taken', timed) return res functools.update_wrapper(wrapper, func) return wrapper class OneLetterGame: def __init__(self, dict_path): self.dict_path = dict_path self.words = set() def run(self, start_word, end_word): '''Runs the one letter game with the given start and end words. ''' assert len(start_word) == len(end_word), \ 'Start word and end word must of the same length.' self.read_dict(len(start_word)) path = self.shortest_path(start_word, end_word) if not path: print 'There is no path between %s and %s (took %.2f sec.)' % ( start_word, end_word, find_shortest_path.time_taken) else: print 'The shortest path (found in %.2f sec.) is:\n=> %s' % ( self.shortest_path.time_taken, ' -- '.join(path)) def _bfs(self, start): '''Implementation of breadth first search as a generator. The portion of the graph to explore is given on demand using get_neighboors. Care was taken so that a vertex / node is explored only once. ''' queue = collections.deque([(None, start)]) inqueue = set([start]) while queue: parent, node = queue.popleft() yield parent, node new = set(self.get_neighbours(node)) - inqueue inqueue = inqueue | new queue.extend([(node, child) for child in new]) @time_func def shortest_path(self, start, end): '''Returns the shortest path from start to end using bfs. ''' assert start in self.words, 'Start word not in dictionnary.' assert end in self.words, 'End word not in dictionnary.' paths = {None: []} for parent, child in self._bfs(start): paths[child] = paths[parent] + [child] if child == end: return paths[child] return None def get_neighbours(self, word): '''Gets every word one letter away from the a given word. We do not keep these words in memory because bfs accesses a given vertex only once. ''' neighbours = [] p_word = ['^' + word[0:i] + '\w' + word[i+1:] + '$' for i, w in enumerate(word)] p_word = '|'.join(p_word) for w in self.words: if w != word and re.match(p_word, w, re.I|re.U): neighbours += [w] return neighbours def read_dict(self, size): '''Loads every word of a specific size from the dictionnary into memory. ''' for l in open(self.dict_path): l = l.decode('latin-1').strip().lower() if len(l) == size: self.words.add(l) if __name__ == '__main__': import sys if len(sys.argv) not in [3, 4]: print 'Usage: python one_letter_game.py start_word end_word' else: g = OneLetterGame(dict_path = '/usr/share/dict/words') try: g.run(*sys.argv[1:]) except AssertionError, e: print e

    Read the article

  • Meet the New Windows Azure

    - by ScottGu
    Today we are releasing a major set of improvements to Windows Azure.  Below is a short-summary of just a few of them: New Admin Portal and Command Line Tools Today’s release comes with a new Windows Azure portal that will enable you to manage all features and services offered on Windows Azure in a seamless, integrated way.  It is very fast and fluid, supports filtering and sorting (making it much easier to use for large deployments), works on all browsers, and offers a lot of great new features – including built-in VM, Web site, Storage, and Cloud Service monitoring support. The new portal is built on top of a REST-based management API within Windows Azure – and everything you can do through the portal can also be programmed directly against this Web API. We are also today releasing command-line tools (which like the portal call the REST Management APIs) to make it even easier to script and automate your administration tasks.  We are offering both a Powershell (for Windows) and Bash (for Mac and Linux) set of tools to download.  Like our SDKs, the code for these tools is hosted on GitHub under an Apache 2 license. Virtual Machines Windows Azure now supports the ability to deploy and run durable VMs in the cloud.  You can easily create these VMs using a new Image Gallery built-into the new Windows Azure Portal, or alternatively upload and run your own custom-built VHD images. Virtual Machines are durable (meaning anything you install within them persists across reboots) and you can use any OS with them.  Our built-in image gallery includes both Windows Server images (including the new Windows Server 2012 RC) as well as Linux images (including Ubuntu, CentOS, and SUSE distributions).  Once you create a VM instance you can easily Terminal Server or SSH into it in order to configure and customize the VM however you want (and optionally capture your own image snapshot of it to use when creating new VM instances).  This provides you with the flexibility to run pretty much any workload within Windows Azure.   The new Windows Azure Portal provides a rich set of management features for Virtual Machines – including the ability to monitor and track resource utilization within them.  Our new Virtual Machine support also enables the ability to easily attach multiple data-disks to VMs (which you can then mount and format as drives).  You can optionally enable geo-replication support on these – which will cause Windows Azure to continuously replicate your storage to a secondary data-center at least 400 miles away from your primary data-center as a backup. We use the same VHD format that is supported with Windows virtualization today (and which we’ve released as an open spec), which enables you to easily migrate existing workloads you might already have virtualized into Windows Azure.  We also make it easy to download VHDs from Windows Azure, which also provides the flexibility to easily migrate cloud-based VM workloads to an on-premise environment.  All you need to do is download the VHD file and boot it up locally, no import/export steps required. Web Sites Windows Azure now supports the ability to quickly and easily deploy ASP.NET, Node.js and PHP web-sites to a highly scalable cloud environment that allows you to start small (and for free) and then scale up as your traffic grows.  You can create a new web site in Azure and have it ready to deploy to in under 10 seconds: The new Windows Azure Portal provides built-in administration support for Web sites – including the ability to monitor and track resource utilization in real-time: You can deploy to web-sites in seconds using FTP, Git, TFS and Web Deploy.  We are also releasing tooling updates today for both Visual Studio and Web Matrix that enable developers to seamlessly deploy ASP.NET applications to this new offering.  The VS and Web Matrix publishing support includes the ability to deploy SQL databases as part of web site deployment – as well as the ability to incrementally update database schema with a later deployment. You can integrate web application publishing with source control by selecting the “Set up TFS publishing” or “Set up Git publishing” links on a web-site’s dashboard: Doing do will enable integration with our new TFS online service (which enables a full TFS workflow – including elastic build and testing support), or create a Git repository that you can reference as a remote and push deployments to.  Once you push a deployment using TFS or Git, the deployments tab will keep track of the deployments you make, and enable you to select an older (or newer) deployment and quickly redeploy your site to that snapshot of the code.  This provides a very powerful DevOps workflow experience.   Windows Azure now allows you to deploy up to 10 web-sites into a free, shared/multi-tenant hosting environment (where a site you deploy will be one of multiple sites running on a shared set of server resources).  This provides an easy way to get started on projects at no cost. You can then optionally upgrade your sites to run in a “reserved mode” that isolates them so that you are the only customer within a virtual machine: And you can elastically scale the amount of resources your sites use – allowing you to increase your reserved instance capacity as your traffic scales: Windows Azure automatically handles load balancing traffic across VM instances, and you get the same, super fast, deployment options (FTP, Git, TFS and Web Deploy) regardless of how many reserved instances you use. With Windows Azure you pay for compute capacity on a per-hour basis – which allows you to scale up and down your resources to match only what you need. Cloud Services and Distributed Caching Windows Azure also supports the ability to build cloud services that support rich multi-tier architectures, automated application management, and scale to extremely large deployments.  Previously we referred to this capability as “hosted services” – with this week’s release we are now referring to this capability as “cloud services”.  We are also enabling a bunch of new features with them. Distributed Cache One of the really cool new features being enabled with cloud services is a new distributed cache capability that enables you to use and setup a low-latency, in-memory distributed cache within your applications.  This cache is isolated for use just by your applications, and does not have any throttling limits. This cache can dynamically grow and shrink elastically (without you have to redeploy your app or make code changes), and supports the full richness of the AppFabric Cache Server API (including regions, high availability, notifications, local cache and more).  In addition to supporting the AppFabric Cache Server API, it also now supports the Memcached protocol – allowing you to point code written against Memcached at it (no code changes required). The new distributed cache can be setup to run in one of two ways: 1) Using a co-located approach.  In this option you allocate a percentage of memory in your existing web and worker roles to be used by the cache, and then the cache joins the memory into one large distributed cache.  Any data put into the cache by one role instance can be accessed by other role instances in your application – regardless of whether the cached data is stored on it or another role.  The big benefit with the “co-located” option is that it is free (you don’t have to pay anything to enable it) and it allows you to use what might have been otherwise unused memory within your application VMs. 2) Alternatively, you can add “cache worker roles” to your cloud service that are used solely for caching.  These will also be joined into one large distributed cache ring that other roles within your application can access.  You can use these roles to cache 10s or 100s of GBs of data in-memory very effectively – and the cache can be elastically increased or decreased at runtime within your application: New SDKs and Tooling Support We have updated all of the Windows Azure SDKs with today’s release to include new features and capabilities.  Our SDKs are now available for multiple languages, and all of the source in them is published under an Apache 2 license and and maintained in GitHub repositories. The .NET SDK for Azure has in particular seen a bunch of great improvements with today’s release, and now includes tooling support for both VS 2010 and the VS 2012 RC. We are also now shipping Windows, Mac and Linux SDK downloads for languages that are offered on all of these systems – allowing developers to develop Windows Azure applications using any development operating system. Much, Much More The above is just a short list of some of the improvements that are shipping in either preview or final form today – there is a LOT more in today’s release.  These include new Virtual Private Networking capabilities, new Service Bus runtime and tooling support, the public preview of the new Azure Media Services, new Data Centers, significantly upgraded network and storage hardware, SQL Reporting Services, new Identity features, support within 40+ new countries and territories, and much, much more. You can learn more about Windows Azure and sign-up to try it for free at http://windowsazure.com.  You can also watch a live keynote I’m giving at 1pm June 7th (later today) where I’ll walk through all of the new features.  We will be opening up the new features I discussed above for public usage a few hours after the keynote concludes.  We are really excited to see the great applications you build with them. Hope this helps, Scott

    Read the article

  • Looking for a function that will split profits/loss equally between 2 business partners.

    - by Hamish Grubijan
    This is not homework, for I am not a student. This is for my general curiosity. I apologize if I am reinventing the wheel here.The function I seek can be defined as follows (language agnostic): int getPercentageOfA(double moneyA, double workA, double moneyB, double workB) { // Perhaps you may assume that workA == 0 // Compute result return result; } Suppose Alice and Bob want to do business together ... such as ... selling used books. Alice is only interested in investing money in it and nothing else. Bob might invest some money, but he might have no $ available to invest. He will, however, put in the effort in finding a seller, a buyer, and doing maintenance. There are no tools, education, health insurance costs, or other expenses to consider. Both Alice and Bob wish to split the profits "equally" (A different weight like 40/60 for advanced users). Both are entrepreneurs, so they deal with low ROI/wage, and high income alike. There is no fixed wage, minimum wage, fixed ROI, or minimum ROI. They try to find the best deal possible, assume risks and go for it. Now, let's stick with the 50/50 model. If Alice invests $100, Bob invests work, and they will end up with a profit (or loss) of $60, they will split it equally - either both get $30 for their efforts/investments, or Bob ends up owing $30 to Alice. A second possibility: Both Alice and Bob invest 100, then Bob does all the work, and they end up splitting $60 profit. It looks like Alice should get only $15, because $30 of that profit came from Bob's investment and Bob's effort, so Alice shall have none of it, and the other $30 is to be split 50/50. Both of the examples above are trivial even when A and B want to split it 35/65 or what have you. Now it gets more complicated: What if Alice invests $70, and Bob invests $30 + does all of the work. It appears simple: (70,30) = (30,30) + (40,0) ... but, if only we knew how to weigh the two parts relative to each other. Another complicated (I think) example: what if Alice and Bob invest $70 and $30 respectively, and also put in an equal amount of work? I have a few data points: When A and B put in the same amount of work and the same $ - 50/50. When A puts in 100% of the money, and B does 100% of the work - 50/50. When A does all of the work and puts in all of the money - 100 for A / 0 for B (and vice-versa). When A puts in 50% of the money, and B puts in 50% of the money as well as does all of the work - 25 for A, and 75 for B (and vice-versa). If I fix things such that always workA = 0%, workB = 100% of the total work, then getPercentageOfA becomes a function: height z given x and y. The question is - how do you extrapolate this function between these several points? What is this function? If you can cover the cases when workA does not have to be 0% of the total work, and when investment vs work is split as 85/15 or using some other model, then what would the new function be?

    Read the article

  • HttpClient multithread performance

    - by pepper
    I have an application which downloads more than 4500 html pages from 62 target hosts using HttpClient (4.1.3 or 4.2-beta). It runs on Windows 7 64-bit. Processor - Core i7 2600K. Network bandwidth - 54 Mb/s. At this moment it uses such parameters: DefaultHttpClient and PoolingClientConnectionManager; Also it hasIdleConnectionMonitorThread from http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html; Maximum total connections = 80; Default maximum connections per route = 5; For thread management it uses ForkJoinPool with the parallelism level = 5 (Do I understand correctly that it is a number of working threads?) In this case my network usage (in Windows task manager) does not rise above 2.5%. To download 4500 pages it takes 70 minutes. And in HttpClient logs I have such things: DEBUG ForkJoinPool-2-worker-1 [org.apache.http.impl.conn.PoolingClientConnectionManager]: Connection released: [id: 209][route: {}-http://stackoverflow.com][total kept alive: 6; route allocated: 1 of 5; total allocated: 10 of 80] Total allocated connections do not raise above 10-12, in spite of that I've set it up to 80 connections. If I'll try to rise parallelism level to 20 or 80, network usage remains the same but a lot connection time-outs will be generated. I've read tutorials on hc.apache.org (HttpClient Performance Optimization Guide and HttpClient Threading Guide) but they does not help. Task's code looks like this: public class ContentDownloader extends RecursiveAction { private final HttpClient httpClient; private final HttpContext context; private List<Entry> entries; public ContentDownloader(HttpClient httpClient, List<Entry> entries){ this.httpClient = httpClient; context = new BasicHttpContext(); this.entries = entries; } private void computeDirectly(Entry entry){ final HttpGet get = new HttpGet(entry.getLink()); try { HttpResponse response = httpClient.execute(get, context); int statusCode = response.getStatusLine().getStatusCode(); if ( (statusCode >= 400) && (statusCode <= 600) ) { logger.error("Couldn't get content from " + get.getURI().toString() + "\n" + response.toString()); } else { HttpEntity entity = response.getEntity(); if (entity != null) { String htmlContent = EntityUtils.toString(entity).trim(); entry.setHtml(htmlContent); EntityUtils.consumeQuietly(entity); } } } catch (Exception e) { } finally { get.releaseConnection(); } } @Override protected void compute() { if (entries.size() <= 1){ computeDirectly(entries.get(0)); return; } int split = entries.size() / 2; invokeAll(new ContentDownloader(httpClient, entries.subList(0, split)), new ContentDownloader(httpClient, entries.subList(split, entries.size()))); } } And the question is - what is the best practice to use multi threaded HttpClient, may be there is a some rules for setting up ConnectionManager and HttpClient? How can I use all of 80 connections and raise network usage? If necessary, I will provide more code.

    Read the article

  • Of transactions and Mongo

    - by Nuri Halperin
    Originally posted on: http://geekswithblogs.net/nuri/archive/2014/05/20/of-transactions-and-mongo-again.aspxWhat's the first thing you hear about NoSQL databases? That they lose your data? That there's no transactions? No joins? No hope for "real" applications? Well, you *should* be wondering whether a certain of database is the right one for your job. But if you do so, you should be wondering that about "traditional" databases as well! In the spirit of exploration let's take a look at a common challenge: You are a bank. You have customers with accounts. Customer A wants to pay B. You want to allow that only if A can cover the amount being transferred. Let's looks at the problem without any context of any database engine in mind. What would you do? How would you ensure that the amount transfer is done "properly"? Would you prevent a "transaction" from taking place unless A can cover the amount? There are several options: Prevent any change to A's account while the transfer is taking place. That boils down to locking. Apply the change, and allow A's balance to go below zero. Charge person A some interest on the negative balance. Not friendly, but certainly a choice. Don't do either. Options 1 and 2 are difficult to attain in the NoSQL world. Mongo won't save you headaches here either. Option 3 looks a bit harsh. But here's where this can go: ledger. See, and account doesn't need to be represented by a single row in a table of all accounts with only the current balance on it. More often than not, accounting systems use ledgers. And entries in ledgers - as it turns out – don't actually get updated. Once a ledger entry is written, it is not removed or altered. A transaction is represented by an entry in the ledger stating and amount withdrawn from A's account and an entry in the ledger stating an addition of said amount to B's account. For sake of space-saving, that entry in the ledger can happen using one entry. Think {Timestamp, FromAccountId, ToAccountId, Amount}. The implication of the original question – "how do you enforce non-negative balance rule" then boils down to: Insert entry in ledger Run validation of recent entries Insert reverse entry to roll back transaction if validation failed. What is validation? Sum up the transactions that A's account has (all deposits and debits), and ensure the balance is positive. For sake of efficiency, one can roll up transactions and "close the book" on transactions with a pseudo entry stating balance as of midnight or something. This lets you avoid doing math on the fly on too many transactions. You simply run from the latest "approved balance" marker to date. But that's an optimization, and premature optimizations are the root of (some? most?) evil.. Back to some nagging questions though: "But mongo is only eventually consistent!" Well, yes, kind of. It's not actually true that Mongo has not transactions. It would be more descriptive to say that Mongo's transaction scope is a single document in a single collection. A write to a Mongo document happens completely or not at all. So although it is true that you can't update more than one documents "at the same time" under a "transaction" umbrella as an atomic update, it is NOT true that there' is no isolation. So a competition between two concurrent updates is completely coherent and the writes will be serialized. They will not scribble on the same document at the same time. In our case - in choosing a ledger approach - we're not even trying to "update" a document, we're simply adding a document to a collection. So there goes the "no transaction" issue. Now let's turn our attention to consistency. What you should know about mongo is that at any given moment, only on member of a replica set is writable. This means that the writable instance in a set of replicated instances always has "the truth". There could be a replication lag such that a reader going to one of the replicas still sees "old" state of a collection or document. But in our ledger case, things fall nicely into place: Run your validation against the writable instance. It is guaranteed to have a ledger either with (after) or without (before) the ledger entry got written. No funky states. Again, the ledger writing *adds* a document, so there's no inconsistent document state to be had either way. Next, we might worry about data loss. Here, mongo offers several write-concerns. Write-concern in Mongo is a mode that marshals how uptight you want the db engine to be about actually persisting a document write to disk before it reports to the application that it is "done". The most volatile, is to say you don't care. In that case, mongo would just accept your write command and say back "thanks" with no guarantee of persistence. If the server loses power at the wrong moment, it may have said "ok" but actually no written the data to disk. That's kind of bad. Don't do that with data you care about. It may be good for votes on a pole regarding how cute a furry animal is, but not so good for business. There are several other write-concerns varying from flushing the write to the disk of the writable instance, flushing to disk on several members of the replica set, a majority of the replica set or all of the members of a replica set. The former choice is the quickest, as no network coordination is required besides the main writable instance. The others impose extra network and time cost. Depending on your tolerance for latency and read-lag, you will face a choice of what works for you. It's really important to understand that no data loss occurs once a document is flushed to an instance. The record is on disk at that point. From that point on, backup strategies and disaster recovery are your worry, not loss of power to the writable machine. This scenario is not different from a relational database at that point. Where does this leave us? Oh, yes. Eventual consistency. By now, we ensured that the "source of truth" instance has the correct data, persisted and coherent. But because of lag, the app may have gone to the writable instance, performed the update and then gone to a replica and looked at the ledger there before the transaction replicated. Here are 2 options to deal with this. Similar to write concerns, mongo support read preferences. An app may choose to read only from the writable instance. This is not an awesome choice to make for every ready, because it just burdens the one instance, and doesn't make use of the other read-only servers. But this choice can be made on a query by query basis. So for the app that our person A is using, we can have person A issue the transfer command to B, and then if that same app is going to immediately as "are we there yet?" we'll query that same writable instance. But B and anyone else in the world can just chill and read from the read-only instance. They have no basis to expect that the ledger has just been written to. So as far as they know, the transaction hasn't happened until they see it appear later. We can further relax the demand by creating application UI that reacts to a write command with "thank you, we will post it shortly" instead of "thank you, we just did everything and here's the new balance". This is a very powerful thing. UI design for highly scalable systems can't insist that the all databases be locked just to paint an "all done" on screen. People understand. They were trained by many online businesses already that your placing of an order does not mean that your product is already outside your door waiting (yes, I know, large retailers are working on it... but were' not there yet). The second thing we can do, is add some artificial delay to a transaction's visibility on the ledger. The way that works is simply adding some logic such that the query against the ledger never nets a transaction for customers newer than say 15 minutes and who's validation flag is not set. This buys us time 2 ways: Replication can catch up to all instances by then, and validation rules can run and determine if this transaction should be "negated" with a compensating transaction. In case we do need to "roll back" the transaction, the backend system can place the timestamp of the compensating transaction at the exact same time or 1ms after the original one. Effectively, once A or B visits their ledger, both transactions would be visible and the overall balance "as of now" would reflect no change.  The 2 transactions (attempted/ reverted) would be visible , since we do actually account for the attempt. Hold on a second. There's a hole in the story: what if several transfers from A to some accounts are registered, and 2 independent validators attempt to compute the balance concurrently? Is there a chance that both would conclude non-sufficient-funds even though rolling back transaction 100 would free up enough for transaction 117 (some random later transaction)? Yes. there is that chance. But the integrity of the business rule is not compromised, since the prime rule is don't dispense money you don't have. To minimize or eliminate this scenario, we can also assign a single validation process per origin account. This may seem non-scalable, but it can easily be done as a "sharded" distribution. Say we have 11 validation threads (or processing nodes etc.). We divide the account number space such that each validator is exclusively responsible for a certain range of account numbers. Sounds cunningly similar to Mongo's sharding strategy, doesn't it? Each validator then works in isolation. More capacity needed? Chop the account space into more chunks. So where  are we now with the nagging questions? "No joins": Huh? What are those for? "No transactions": You mean no cross-collection and no cross-document transactions? Granted - but don't always need them either. "No hope for real applications": well... There are more issues and edge cases to slog through, I'm sure. But hopefully this gives you some ideas of how to solve common problems without distributed locking and relational databases. But then again, you can choose relational databases if they suit your problem.

    Read the article

  • Optimizing Python code with many attribute and dictionary lookups

    - by gotgenes
    I have written a program in Python which spends a large amount of time looking up attributes of objects and values from dictionary keys. I would like to know if there's any way I can optimize these lookup times, potentially with a C extension, to reduce the time of execution, or if I need to simply re-implement the program in a compiled language. The program implements some algorithms using a graph. It runs prohibitively slowly on our data sets, so I profiled the code with cProfile using a reduced data set that could actually complete. The vast majority of the time is being burned in one function, and specifically in two statements, generator expressions, within the function: The generator expression at line 202 is neighbors_in_selected_nodes = (neighbor for neighbor in node_neighbors if neighbor in selected_nodes) and the generator expression at line 204 is neighbor_z_scores = (interaction_graph.node[neighbor]['weight'] for neighbor in neighbors_in_selected_nodes) The source code for this function of context provided below. selected_nodes is a set of nodes in the interaction_graph, which is a NetworkX Graph instance. node_neighbors is an iterator from Graph.neighbors_iter(). Graph itself uses dictionaries for storing nodes and edges. Its Graph.node attribute is a dictionary which stores nodes and their attributes (e.g., 'weight') in dictionaries belonging to each node. Each of these lookups should be amortized constant time (i.e., O(1)), however, I am still paying a large penalty for the lookups. Is there some way which I can speed up these lookups (e.g., by writing parts of this as a C extension), or do I need to move the program to a compiled language? Below is the full source code for the function that provides the context; the vast majority of execution time is spent within this function. def calculate_node_z_prime( node, interaction_graph, selected_nodes ): """Calculates a z'-score for a given node. The z'-score is based on the z-scores (weights) of the neighbors of the given node, and proportional to the z-score (weight) of the given node. Specifically, we find the maximum z-score of all neighbors of the given node that are also members of the given set of selected nodes, multiply this z-score by the z-score of the given node, and return this value as the z'-score for the given node. If the given node has no neighbors in the interaction graph, the z'-score is defined as zero. Returns the z'-score as zero or a positive floating point value. :Parameters: - `node`: the node for which to compute the z-prime score - `interaction_graph`: graph containing the gene-gene or gene product-gene product interactions - `selected_nodes`: a `set` of nodes fitting some criterion of interest (e.g., annotated with a term of interest) """ node_neighbors = interaction_graph.neighbors_iter(node) neighbors_in_selected_nodes = (neighbor for neighbor in node_neighbors if neighbor in selected_nodes) neighbor_z_scores = (interaction_graph.node[neighbor]['weight'] for neighbor in neighbors_in_selected_nodes) try: max_z_score = max(neighbor_z_scores) # max() throws a ValueError if its argument has no elements; in this # case, we need to set the max_z_score to zero except ValueError, e: # Check to make certain max() raised this error if 'max()' in e.args[0]: max_z_score = 0 else: raise e z_prime = interaction_graph.node[node]['weight'] * max_z_score return z_prime Here are the top couple of calls according to cProfiler, sorted by time. ncalls tottime percall cumtime percall filename:lineno(function) 156067701 352.313 0.000 642.072 0.000 bpln_contextual.py:204(<genexpr>) 156067701 289.759 0.000 289.759 0.000 bpln_contextual.py:202(<genexpr>) 13963893 174.047 0.000 816.119 0.000 {max} 13963885 69.804 0.000 936.754 0.000 bpln_contextual.py:171(calculate_node_z_prime) 7116883 61.982 0.000 61.982 0.000 {method 'update' of 'set' objects}

    Read the article

  • How to notify client about updated UpdatePanel content on server side

    - by csh1981
    I have a problem with UpdatePanel.Update() which works initially but then stops. I have tumbled with this problem for some time and some background is needed so please read ahead. I have an ASP.net application in which I have a subpage that display computed information in graphs. Each graph is embedded in an UpdatePanel. The graph is a user control that uses the standard asp:Chart for display. My task is to enable this page with AJAX capabilities so the page is responsive during postbacks. When I access this page from another page, during the initial page rendering, I use a wait dialog for each graph and a pageload event on the client side. In the client event, a hidden button is clicked which a server event handles (the hidden button is inside an UpdatePanel so the postback is asynchronous). Each graph is computed and the UpdatePanels are in turn updated with the Chart content. This is done using UpdatePanel.Update. And it is successful. However, I also have some RadioButtons on the page. These are dynamically created. The purpose of them is to switch graph type --- to show the same data in a different way. Same type of time consuming computation is needed in order to do so. I subscribe on each RadioButton's OnCheckedChanged event and the postback is asynchronous since the radiobuttons are inside an UpdatePanel. In the server event handler I determine the type of graph and use this as an input to the Chart control. I then remove the old Chart control from my Panel and adds new Chart and then I call UpdatePanel.Update(). But with no success. Nothing happens, no errors, nothing. Why is this?? I think this is strange because if I compute every Chart data in the initial rendering instead of using the "Wait dialog"-solution described earlier then I can select graph types successfully and all subsequent AJAX requests work as intended. Also, the same code (computing the chart, removal, and adding the Chart control to Panel and UpdatePanel.Update()) is hit during the initial rendering of the page, and it works only the first time. Here is the method that computes the graph and adds it to the panel and update the UpdatePanel: public void UpdateGraph(GraphType type, GraphMapper mapper) { //Panel is the content of UpdatePanelGraph's Panel.Controls.Clear(); chart = new Chart(type, mapper); //Computation happens inside here panel.Controls.Add(chart); //UpdatePanelGraph is in UpdateMode Conditional and has //ChildrenAsTriggers set to false UpdatePanelGraph.Update(); } I really need a way for these radiobuttons to work, possible using some clientside JavaScript or another way of handling things on the server side. I have thought about using a JavaScript postback call on the UpdatePanel instead of the UpdatePanel.Update(). However, the issue I have here is how to notify the client side when the server side is finished with computing the graph? An plausible explanation of the strange behavior is also much appreciated. Any help appreciated, thanks

    Read the article

  • MVC design in Cocoa - are all 3 always necessary? Also: naming conventions, where to put Controller

    - by Nektarios
    I'm new to MVC although I've read a lot of papers and information on the web. I know it's somewhat ambiguous and there are many different interpretations of MVC patterns.. but the differences seem somewhat minimal My main question is - are M, V, and C always going to be necessary to be doing this right? I haven't seen anyone address this in anything I've read. Examples (I'm working in Cocoa/Obj-c although that shouldn't much matter).. 1) If I have a simple image on my GUI, or a text entry field that is just for a user's convenience and isn't saved or modified, these both would be V (view) but there's no M (no data and no domain processing going on), and no C to bridge them. So I just have some aspects that are "V" - seems fine 2) I have 2 different and visible windows that each have a button on them labeled as "ACTIVATE FOO" - when a user clicks the button on either, both buttons press in and change to say "DEACTIVATE FOO" and a third window appears with label "FOO". Clicking the button again will change the button on both windows to "ACTIVATE FOO" and will remove the third "FOO" window. In this case, my V consists of the buttons on both windows, and I guess also the third window (maybe all 3 windows). I definitely have a C, my Controller object will know about these buttons and windows and will get their clicks and hold generic states regarding windows and buttons. However, whether I have 1 button or 10 button, my window is called "FOO" or my window is called "BAR", this doesn't matter. There's no domain knowledge or data here - just control of views. So in this example, I really have "V" and "C" but no "M" - is that ok? 3) Final example, which I am running in to the most. I have a text entry field as my View. When I enter text in this, say a number representing gravity, I keep it in a Model that may do things like compute physics of a ball while taking in to account my gravity parameter. Here I have a V and an M, but I don't understand why I would need to add a C - a controller would just accept the signals from the View and pass it along to the Model, and vice versa. Being as the C is just a pure passthrough, it's really "junk" code and isn't making things any more reusable in my opinion. In most situations, when something changes I will need to change the C and M both in nearly identical ways. I realize it's probably an MVC beginner's mistake to think most situations call for only V and M.. leads me in to next subject 4) In Cocoa / Xcode / IB, I guess my Controllers should always be an instantiated object in IB? That is, I lay all of my "V" components in IB, and for each collection of View objects (things that are related) I should have an instantiated Controller? And then perhaps my Models should NOT be found in IB, and instead only found as classes in Xcode that tie in with Controller code found there. Is this accurate? This could explain why you'd have a Controller that is not really adding value - because you are keeping consistent.. 5) What about naming these things - for my above example about FOO / BAR maybe something that ends in Controller would be the C, like FancyWindowOpeningController, etc? And for models - should I suffix them with like GravityBallPhysicsModel etc, or should I just name those whatever I like? I haven't seen enough code to know what's out there in the wild and I want to get on the right track early on Thank you in advance for setting me straight or letting me know I'm on the right track. I feel like I'm starting to get it and most of what I say here makes sense, but validation of my guessing would help me feel confident..

    Read the article

  • Odd C++ template behaviour with static member vars

    - by jon hanson
    This piece of code is supposed to calculate an approximation to e (i.e. the mathematical constant ~ 2.71828183) at compile-time, using the following approach; e1 = 2 / 1 e2 = (2 * 2 + 1) / (2 * 1) = 5 / 2 = 2.5 e3 = (3 * 5 + 1) / (3 * 2) = 16 / 6 ~ 2.67 e4 = (4 * 16 + 1) / (4 * 6) = 65 / 24 ~ 2.708 ... e(i) = (e(i-1).numer * i + 1) / (e(i-1).denom * i) The computation is returned via the result static member however, after 2 iterations it yields zero instead of the expected value. I've added a static member function f() to compute the same value and that doesn't exhibit the same problem. #include <iostream> #include <iomanip> // Recursive case. template<int ITERS, int NUMERATOR = 2, int DENOMINATOR = 1, int I = 2> struct CalcE { static const double result; static double f () {return CalcE<ITERS, NUMERATOR * I + 1, DENOMINATOR * I, I + 1>::f ();} }; template<int ITERS, int NUMERATOR, int DENOMINATOR, int I> const double CalcE<ITERS, NUMERATOR, DENOMINATOR, I>::result = CalcE<ITERS, NUMERATOR * I + 1, DENOMINATOR * I, I + 1>::result; // Base case. template<int ITERS, int NUMERATOR, int DENOMINATOR> struct CalcE<ITERS, NUMERATOR, DENOMINATOR, ITERS> { static const double result; static double f () {return result;} }; template<int ITERS, int NUMERATOR, int DENOMINATOR> const double CalcE<ITERS, NUMERATOR, DENOMINATOR, ITERS>::result = static_cast<double>(NUMERATOR) / DENOMINATOR; // Test it. int main (int argc, char* argv[]) { std::cout << std::setprecision (8); std::cout << "e2 ~ " << CalcE<2>::result << std::endl; std::cout << "e3 ~ " << CalcE<3>::result << std::endl; std::cout << "e4 ~ " << CalcE<4>::result << std::endl; std::cout << "e5 ~ " << CalcE<5>::result << std::endl; std::cout << std::endl; std::cout << "e2 ~ " << CalcE<2>::f () << std::endl; std::cout << "e3 ~ " << CalcE<3>::f () << std::endl; std::cout << "e4 ~ " << CalcE<4>::f () << std::endl; std::cout << "e5 ~ " << CalcE<5>::f () << std::endl; return 0; } I've tested this with VS 2008 and VS 2010, and get the same results in each case: e2 ~ 2 e3 ~ 2.5 e4 ~ 0 e5 ~ 0 e2 ~ 2 e3 ~ 2.5 e4 ~ 2.6666667 e5 ~ 2.7083333 Why does result not yield the expected values whereas f() does? According to Rotsor's comment below, this does work with GCC, so I guess the question is, am i relying on some type of undefined behaviour with regards to static initialisation order, or is this a bug with Visual Studio?

    Read the article

  • is Boost Library's weighted median broken?

    - by user624188
    I confess that I am no expert in C++. I am looking for a fast way to compute weighted median, which Boost seemed to have. But it seems I am not able to make it work. #include <iostream> #include <boost/accumulators/accumulators.hpp> #include <boost/accumulators/statistics/stats.hpp> #include <boost/accumulators/statistics/median.hpp> #include <boost/accumulators/statistics/weighted_median.hpp> using namespace boost::accumulators; int main() { // Define an accumulator set accumulator_set<double, stats<tag::median > > acc1; accumulator_set<double, stats<tag::median >, float> acc2; // push in some data ... acc1(0.1); acc1(0.2); acc1(0.3); acc1(0.4); acc1(0.5); acc1(0.6); acc2(0.1, weight=0.); acc2(0.2, weight=0.); acc2(0.3, weight=0.); acc2(0.4, weight=1.); acc2(0.5, weight=1.); acc2(0.6, weight=1.); // Display the results ... std::cout << " Median: " << median(acc1) << std::endl; std::cout << "Weighted Median: " << median(acc2) << std::endl; return 0; } produces the following output, which is clearly wrong. Median: 0.3 Weighted Median: 0.3 Am I doing something wrong? Any help will be greatly appreciated. * however, the weighted sum works correctly * @glowcoder: The weighted sum works perfectly fine like this. #include <iostream> #include <boost/accumulators/accumulators.hpp> #include <boost/accumulators/statistics/stats.hpp> #include <boost/accumulators/statistics/sum.hpp> #include <boost/accumulators/statistics/weighted_sum.hpp> using namespace boost::accumulators; int main() { // Define an accumulator set accumulator_set<double, stats<tag::sum > > acc1; accumulator_set<double, stats<tag::sum >, float> acc2; // accumulator_set<double, stats<tag::median >, float> acc2; // push in some data ... acc1(0.1); acc1(0.2); acc1(0.3); acc1(0.4); acc1(0.5); acc1(0.6); acc2(0.1, weight=0.); acc2(0.2, weight=0.); acc2(0.3, weight=0.); acc2(0.4, weight=1.); acc2(0.5, weight=1.); acc2(0.6, weight=1.); // Display the results ... std::cout << " Median: " << sum(acc1) << std::endl; std::cout << "Weighted Median: " << sum(acc2) << std::endl; return 0; } and the result is Sum: 2.1 Weighted Sum: 1.5

    Read the article

  • Java code optimization leads to numerical inaccuracies and errors

    - by rano
    I'm trying to implement a version of the Fuzzy C-Means algorithm in Java and I'm trying to do some optimization by computing just once everything that can be computed just once. This is an iterative algorithm and regarding the updating of a matrix, the clusters x pixels membership matrix U, this is the update rule I want to optimize: where the x are the element of a matrix X (pixels x features) and v belongs to the matrix V (clusters x features). And m is a parameter that ranges from 1.1 to infinity. The distance used is the euclidean norm. If I had to implement this formula in a banal way I'd do: for(int i = 0; i < X.length; i++) { int count = 0; for(int j = 0; j < V.length; j++) { double num = D[i][j]; double sumTerms = 0; for(int k = 0; k < V.length; k++) { double thisDistance = D[i][k]; sumTerms += Math.pow(num / thisDistance, (1.0 / (m - 1.0))); } U[i][j] = (float) (1f / sumTerms); } } In this way some optimization is already done, I precomputed all the possible squared distances between X and V and stored them in a matrix D but that is not enough, since I'm cycling througn the elements of V two times resulting in two nested loops. Looking at the formula the numerator of the fraction is independent of the sum so I can compute numerator and denominator independently and the denominator can be computed just once for each pixel. So I came to a solution like this: int nClusters = V.length; double exp = (1.0 / (m - 1.0)); for(int i = 0; i < X.length; i++) { int count = 0; for(int j = 0; j < nClusters; j++) { double distance = D[i][j]; double denominator = D[i][nClusters]; double numerator = Math.pow(distance, exp); U[i][j] = (float) (1f / (numerator * denominator)); } } Where I precomputed the denominator into an additional column of the matrix D while I was computing the distances: for (int i = 0; i < X.length; i++) { for (int j = 0; j < V.length; j++) { double sum = 0; for (int k = 0; k < nDims; k++) { final double d = X[i][k] - V[j][k]; sum += d * d; } D[i][j] = sum; D[i][B.length] += Math.pow(1 / D[i][j], exp); } } By doing so I encounter numerical differences between the 'banal' computation and the second one that leads to different numerical value in U (not in the first iterates but soon enough). I guess that the problem is that exponentiate very small numbers to high values (the elements of U can range from 0.0 to 1.0 and exp , for m = 1.1, is 10) leads to ver y small values, whereas by dividing the numerator and the denominator and THEN exponentiating the result seems to be better numerically. The problem is it involves much more operations. Am I doing something wrong? Is there a possible solution to get both the code optimized and numerically stable? Any suggestion or criticism will be appreciated.

    Read the article

  • Dot Net Nuke module works in "Edit" mode but not for "View": cache problem?

    - by Godeke
    I have a DNN task that simply runs some Javascript to compute a price based on a few input fields. This module works fine on our production site, but we had a company do a skin for us to improve the look of the site and the module fails under this new system. (DNN 05.06.00 (459) although it was 5.5 prior... I updated in a futile hope that it was a bug in the old revision.) What is incredibly odd about this is that the module works fine when I'm logged in to DNN and using the Edit mode as an administrator. In this case the small snippet of JavaScript loads fine and filling the fields results in a price. On the other hand it I click "View" (or more importantly, if I'm not logged in at all) the page loads a cached copy. Even odder, I have found the cache files in \Portals\2\Cache\Pages are generated and then only the cached data is being used. When the cached copy is loaded, the JavaScript doesn't appear (it is normally created via a Page.ClientScript.RegisterClientScriptBlock(). Additionally, the button which posts the data to the server doesn't execute any of the server side code (confirmed with a debugger) but instead just reloads the cached copy. If I manually delete the files in \Portals\2\Cache\Pages then everything works properly, but I have to do so after every page load: failing to do so simply loads the page as it was last generated repeatedly. Resetting the application (either via the UI or editing web.config) doesn't change this and clearing the cache from the Host Settings page doesn't actually clear these cached pages. I'm guessing that Edit mode bypasses the cache in some way, but I have gone as far as turning off all caching on the site (which is horrible for performance) and the cached version is still loaded. Has anyone seen anything like this? Shouldn't clearing the cache clear the files (I'm using the File provider for caching)? Shouldn't even a cached page go back to the server if the user posts back? EDIT: I should point out that permissions don't appear to be a problem on the cache directory... other pages cached output are deleted from this folder, just this page has this issue. EDIT 2: Clarifying some settings and conditions which I didn't provide. First, this module works fine in production under DNN 5.6.0. In our test environment with the consulting company's changes it fails (the changes are skin and page layout only in theory: the module source itself verifies as unchanged). All cache settings and the like have been verified the same between the two and we only resorted to setting the module cache to 0 and -1 (and disabling the test site's cache entirely) when we couldn't find another cause for the problem. I have watched the cache work correctly on many other pages in test: there is something about this page that is causing the problem. We have punted and are creating an installable skin based on the consultant's work as I suspect they have somehow corrupted the DNN install (database side I think).

    Read the article

  • Calculate the number of ways to roll a certain number

    - by helloworld
    I'm a high school Computer Science student, and today I was given a problem to: Program Description: There is a belief among dice players that in throwing three dice a ten is easier to get than a nine. Can you write a program that proves or disproves this belief? Have the computer compute all the possible ways three dice can be thrown: 1 + 1 + 1, 1 + 1 + 2, 1 + 1 + 3, etc. Add up each of these possibilities and see how many give nine as the result and how many give ten. If more give ten, then the belief is proven. I quickly worked out a brute force solution, as such int sum,tens,nines; tens=nines=0; for(int i=1;i<=6;i++){ for(int j=1;j<=6;j++){ for(int k=1;k<=6;k++){ sum=i+j+k; //Ternary operators are fun! tens+=((sum==10)?1:0); nines+=((sum==9)?1:0); } } } System.out.println("There are "+tens+" ways to roll a 10"); System.out.println("There are "+nines+" ways to roll a 9"); Which works just fine, and a brute force solution is what the teacher wanted us to do. However, it doesn't scale, and I am trying to find a way to make an algorithm that can calculate the number of ways to roll n dice to get a specific number. Therefore, I started generating the number of ways to get each sum with n dice. With 1 die, there is obviously 1 solution for each. I then calculated, through brute force, the combinations with 2 and 3 dice. These are for two: There are 1 ways to roll a 2 There are 2 ways to roll a 3 There are 3 ways to roll a 4 There are 4 ways to roll a 5 There are 5 ways to roll a 6 There are 6 ways to roll a 7 There are 5 ways to roll a 8 There are 4 ways to roll a 9 There are 3 ways to roll a 10 There are 2 ways to roll a 11 There are 1 ways to roll a 12 Which looks straightforward enough; it can be calculated with a simple linear absolute value function. But then things start getting trickier. With 3: There are 1 ways to roll a 3 There are 3 ways to roll a 4 There are 6 ways to roll a 5 There are 10 ways to roll a 6 There are 15 ways to roll a 7 There are 21 ways to roll a 8 There are 25 ways to roll a 9 There are 27 ways to roll a 10 There are 27 ways to roll a 11 There are 25 ways to roll a 12 There are 21 ways to roll a 13 There are 15 ways to roll a 14 There are 10 ways to roll a 15 There are 6 ways to roll a 16 There are 3 ways to roll a 17 There are 1 ways to roll a 18 So I look at that, and I think: Cool, Triangular numbers! However, then I notice those pesky 25s and 27s. So it's obviously not triangular numbers, but still some polynomial expansion, since it's symmetric. So I take to Google, and I come across this page that goes into some detail about how to do this with math. It is fairly easy(albeit long) to find this using repeated derivatives or expansion, but it would be much harder to program that for me. I didn't quite understand the second and third answers, since I have never encountered that notation or those concepts in my math studies before. Could someone please explain how I could write a program to do this, or explain the solutions given on that page, for my own understanding of combinatorics? EDIT: I'm looking for a mathematical way to solve this, that gives an exact theoretical number, not by simulating dice

    Read the article

  • change value upon select

    - by Link
    what i'm aiming is to show the other div when it selects one of the two options Full time and Part Time and if possible compute a different value for each When the user selects Part time the value of PrcA will change to PrcB this is the code i used <!====================================================================================> <script language="javascript"> <!--// function dm(amount) { string = "" + amount; dec = string.length - string.indexOf('.'); if (string.indexOf('.') == -1) return string + '.00'; if (dec == 1) return string + '00'; if (dec == 2) return string + '0'; if (dec > 3) return string.substring(0,string.length-dec+3); return string; } function calculate() { QtyA = 0; TotA = 0; PrcA = 1280; PrcB = 640; if (document.form1.qtyA.value > "") { QtyA = document.form1.qtyA.value }; document.form1.qtyA.value = eval(QtyA); TotA = QtyA * PrcA; document.form1.totalA.value = dm(eval(TotA)); Totamt = eval(TotA) ; document.form1.GrandTotal.value = dm(eval(Totamt)); } //--> </script> <!====================================================================================> <p> <label for="acct" style="margin-right:90px;"><strong>Account Type<strong><font color=red size=3> * </font></strong></label> <select name="acct" style="background-color:white;" class="validate[custom[serv]] select-input" id="acct" value=""> <option value="Full Time">Full-Time</option> <option value="Part Time">Part-Time</option> <option selected="selected" value=""></option> </select></p> <!====================================================================================> <script> $(document).ready(function() { $("input[name$='acct']").select(function() { var test = $(this).val(); $("div.desc").hide(); $("#acct" + test).show(); }); }); </script> <!====================================================================================> <p> <table><tr><td> <lable style="margin-right:91px;"># of Agent(s)<font color=red size=3> * </font></lable> </td><td> <input style="width:25px; margin-left:5px;" type="text" class="validate[custom[agnt]] text-input" name="qtyA" id="qtyA" onchange="calculate()" /> </td><td> <div id="acctFull Time" class="desc"> x 1280 = </div> <div id="acctPart Time" class="desc" style="display:none"> x 640 = </div> </td><td> $<input style="width:80px; margin-left:5px;" type="text" readonly="readonly" name="totalA" id="totalA" onchange="calculate()" /> </p> </td></tr></table> is there any way for me to achieve this?

    Read the article

  • ??OPEN CURSOR?BULK COLLECT

    - by Liu Maclean(???)
    ????T.askmaclean.com?????bulk collect?open cursor???, ?????????  ??????: ???? OPEN_CURSOR ????SQL?? ???????. ?????? ????? ???????????????? ????? test_soruce create table zengfankun_temp01 as select * from dba_objects;select count(*) from zengfankun_temp01;–12,6826analyze table zengfankun_temp01 compute statistics; create or replace procedure test_open_cursor istype type_owner is table of zengfankun_temp01.owner%type index by binary_integer;type type_object_name is table of zengfankun_temp01.object_name%type index by binary_integer;type type_object_id is table of zengfankun_temp01.object_id%type index by binary_integer;type type_object_type is table of zengfankun_temp01.object_type%type index by binary_integer;type type_last_ddl_time is table of zengfankun_temp01.last_ddl_time%type index by binary_integer; l_ary_owner type_owner;l_ary_object_name type_object_name;l_ary_object_id type_object_id;l_ary_object_type type_object_type;l_ary_last_ddl_time type_last_ddl_time; cursor cur_object isselect owner,object_name,object_id,object_type,last_ddl_timefrom zengfankun_temp01order by owner,object_name,object_type,last_ddl_time;OPEN_START number;OPEN_END number;FETCH_START number;FETCH_END number;beginDBMS_OUTPUT.ENABLE (buffer_size=>null) ;OPEN_START:=dbms_utility.get_time();open cur_object;OPEN_END :=dbms_utility.get_time();dbms_output.put_line(‘OPEN_TIME:’||TO_CHAR(OPEN_END-OPEN_START));loopFETCH_START:=dbms_utility.get_time();fetch cur_object bulk collect intol_ary_owner,l_ary_object_name,l_ary_object_id,l_ary_object_type,l_ary_last_ddl_timelimit 10000;FETCH_END:=dbms_utility.get_time();dbms_output.put_line(‘FETCH_TIME:’||TO_CHAR(FETCH_END-FETCH_START)||’ ROWCOUNT:’||cur_object%rowCount); exit when cur_object%notfound or cur_object%notfound is null;end loop;end test_open_cursor; OPEN_TIME:12FETCH_TIME:21 ROWCOUNT:10000FETCH_TIME:3 ROWCOUNT:20000FETCH_TIME:3 ROWCOUNT:30000FETCH_TIME:3 ROWCOUNT:40000FETCH_TIME:3 ROWCOUNT:50000FETCH_TIME:3 ROWCOUNT:60000FETCH_TIME:3 ROWCOUNT:70000FETCH_TIME:3 ROWCOUNT:80000FETCH_TIME:3 ROWCOUNT:90000FETCH_TIME:3 ROWCOUNT:100000FETCH_TIME:3 ROWCOUNT:110000FETCH_TIME:3 ROWCOUNT:120000FETCH_TIME:1 ROWCOUNT:126826 ???? OPEN_TIME:0FETCH_TIME:18 ROWCOUNT:10000FETCH_TIME:3 ROWCOUNT:20000FETCH_TIME:3 ROWCOUNT:30000FETCH_TIME:3 ROWCOUNT:40000FETCH_TIME:3 ROWCOUNT:50000FETCH_TIME:3 ROWCOUNT:60000FETCH_TIME:3 ROWCOUNT:70000FETCH_TIME:3 ROWCOUNT:80000FETCH_TIME:3 ROWCOUNT:90000FETCH_TIME:3 ROWCOUNT:100000FETCH_TIME:3 ROWCOUNT:110000FETCH_TIME:3 ROWCOUNT:120000FETCH_TIME:2 ROWCOUNT:126826 SQL?????????, ????????????.??OPEN CURSOR ????0???????????3??.??N? ??????. ???? ?N? ?????????? ??????. ??????????????? ??????????. ?????????10000??? ???????????????????clear???, ???????????: ?OPEN CURSOR ?????, PL/SQL????SQL????PARSE SQL????????, ??????OPEN CURSOR????SNAPSHOT SCN ??SCN, ??Oracle?????FETCH?????,???????????????? ????FETCH ??????????????,???????Current Block, The most recent version of block , ?????SCN >> Snapshot scn, ????UNDO???? ???SCN ???Best Block ,???Read Consistentcy;???? ???UNDO SNAPSHOT???????????????Best Block??,???????ORA-1555??? ????????, ??????????,???????????????char(2000)????, ???????????????,????bulk collect fetch??fetch 10 ???,????????OPEN CURSOR?????PARSE??SQL????????, ??????????fetch bulk collect??????????10????,??”_trace_pin_time”????Server Process?pin CR block???,??????????Fetch Bulk Collect limit 10??10?buffer?pin? [oracle@nas ~]$ sqlplus / as sysdba SQL*Plus: Release 11.2.0.3.0 Production on Wed Aug 1 11:36:52 2012 Copyright (c) 1982, 2011, Oracle. All rights reserved. Connected to: Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Partitioning, OLAP, Data Mining and Real Application Testing options SQL> select * from global_name; GLOBAL_NAME -------------------------------------------------------------------------------- http://www.askmaclean.com SQL> create table maclean (t1 char(2000)) tablespace users pctfree 99; Table created. SQL> begin 2 for i in 1..200 loop 3 insert into maclean values('MACLEAN'); 4 commit ; 5 end loop; 6 end; 7 / PL/SQL procedure successfully completed. SQL> exec dbms_stats.gather_table_stats('','MACLEAN'); PL/SQL procedure successfully completed. SQL> select count(*) from maclean; COUNT(*) ---------- 200 SQL> select blocks,num_rows from dba_tables where table_name='MACLEAN'; BLOCKS NUM_ROWS ---------- ---------- 244 200 SQL> alter system set "_trace_pin_time"=1 scope=spfile; System altered. SQL> startup force; ORACLE instance started. Total System Global Area 3140026368 bytes Fixed Size 2232472 bytes Variable Size 1795166056 bytes Database Buffers 1325400064 bytes Redo Buffers 17227776 bytes Database mounted. Database opened. SQL> alter session set events '10046 trace name context forever,level 12'; Session altered. SQL> SQL> SQL> declare 2 cursor v_cursor is 3 select * from sys.maclean; 4 type v_type is table of sys.maclean%rowtype index by binary_integer; 5 rec_tab v_type; 6 begin 7 open v_cursor; 8 dbms_lock.sleep(30); 9 loop 10 fetch v_cursor bulk collect 11 into rec_tab limit 10; 12 dbms_lock.sleep(10); 13 exit when v_cursor%notfound; 14 end loop; 15 end; 16 / ?????10046 trace+ pin trace: PARSING IN CURSOR #47499559136872 len=337 dep=0 uid=0 oct=47 lid=0 tim=1343836146412056 hv=496860239 ad='11a11dbb0' sqlid='4zh7954ftuz2g' declare cursor v_cursor is select * from sys.maclean; type v_type is table of sys.maclean%rowtype index by binary_integer; rec_tab v_type; begin open v_cursor; dbms_lock.sleep(30); loop fetch v_cursor bulk collect into rec_tab limit 10; dbms_lock.sleep(10); exit when v_cursor%notfound; end loop; end; END OF STMT PARSE #47499559136872:c=0,e=346,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=1,plh=0,tim=1343836146412051 ===================== PARSING IN CURSOR #47499559126280 len=25 dep=1 uid=0 oct=3 lid=0 tim=1343836146414939 hv=3296884535 ad='11a11d250' sqlid='2mb1493284xtr' SELECT * FROM SYS.MACLEAN END OF STMT PARSE #47499559126280:c=1999,e=2427,p=0,cr=0,cu=0,mis=1,r=0,dep=1,og=1,plh=2568761675,tim=1343836146414937 EXEC #47499559126280:c=0,e=55,p=0,cr=0,cu=0,mis=0,r=0,dep=1,og=1,plh=2568761675,tim=1343836146415104 ????? ? SELECT * FROM SYS.MACLEAN? PARSE ????? , ????FETCH???????pin ????????, ????OPEN CURSOR????? *** 2012-08-01 11:49:36.424 WAIT #47499559136872: nam='PL/SQL lock timer' ela= 30009361 duration=0 p2=0 p3=0 obj#=-1 tim=1343836176424782 ???30s pin ktewh26: kteinpscan dba 0x10a6202:4 time 1039048805 pin ktewh27: kteinmap dba 0x10a6202:4 time 1039048847 pin kdswh11: kdst_fetch dba 0x10a6203:1 time 1039048898 pin kdswh11: kdst_fetch dba 0x10a6204:1 time 1039048961 pin kdswh11: kdst_fetch dba 0x10a6205:1 time 1039049004 pin kdswh11: kdst_fetch dba 0x10a6206:1 time 1039049042 pin kdswh11: kdst_fetch dba 0x10a6207:1 time 1039049089 pin kdswh11: kdst_fetch dba 0x10a6208:1 time 1039049123 pin kdswh11: kdst_fetch dba 0x10a6209:1 time 1039049159 pin kdswh11: kdst_fetch dba 0x10a620a:1 time 1039049191 pin kdswh11: kdst_fetch dba 0x10a620b:1 time 1039049225 pin kdswh11: kdst_fetch dba 0x10a620c:1 time 1039049260 kdst_fetch???fetch??????? , ??fetch?10?? ???????FETCH FETCH #47499559126280:c=0,e=536,p=0,cr=12,cu=0,mis=0,r=10,dep=1,og=1,plh=2568761675,tim=1343836176425542 *** 2012-08-01 11:49:46.428 WAIT #47499559136872: nam='PL/SQL lock timer' ela= 10002694 duration=0 p2=0 p3=0 obj#=-1 tim=134383618642829 ????10s pin kdswh11: kdst_fetch dba 0x10a620d:1 time 1049052211 pin kdswh11: kdst_fetch dba 0x10a620e:1 time 1049052264 pin kdswh11: kdst_fetch dba 0x10a620f:1 time 1049052299 pin kdswh11: kdst_fetch dba 0x10a6211:1 time 1049052332 pin kdswh11: kdst_fetch dba 0x10a6212:1 time 1049052364 pin kdswh11: kdst_fetch dba 0x10a6213:1 time 1049052398 pin kdswh11: kdst_fetch dba 0x10a6214:1 time 1049052430 pin kdswh11: kdst_fetch dba 0x10a6215:1 time 1049052462 pin kdswh11: kdst_fetch dba 0x10a6216:1 time 1049052494 pin kdswh11: kdst_fetch dba 0x10a6217:1 time 1049052525 FETCH #47499559126280:c=0,e=371,p=0,cr=10,cu=0,mis=0,r=10,dep=1,og=1,plh=2568761675,tim=1343836186428807 ??pin 10????, ???fetch ?? WAIT #47499559136872: nam='PL/SQL lock timer' ela= 10002864 duration=0 p2=0 p3=0 obj#=-1 tim=1343836196431754 pin kdswh11: kdst_fetch dba 0x10a6218:1 time 1059055662 pin kdswh11: kdst_fetch dba 0x10a6219:1 time 1059055714 pin kdswh11: kdst_fetch dba 0x10a621a:1 time 1059055748 pin kdswh11: kdst_fetch dba 0x10a621b:1 time 1059055781 pin kdswh11: kdst_fetch dba 0x10a621c:1 time 1059055815 pin kdswh11: kdst_fetch dba 0x10a621d:1 time 1059055848 pin kdswh11: kdst_fetch dba 0x10a621e:1 time 1059055883 pin kdswh11: kdst_fetch dba 0x10a621f:1 time 1059055915 pin kdswh11: kdst_fetch dba 0x10a6221:1 time 1059055953 pin kdswh11: kdst_fetch dba 0x10a6222:1 time 1059055992 FETCH #47499559126280:c=0,e=385,p=0,cr=10,cu=0,mis=0,r=10,dep=1,og=1,plh=2568761675,tim=1343836196432274 ???? ??????? DBA????? ............................ ???? WAIT #47499559136872: nam='PL/SQL lock timer' ela= 10002933 duration=0 p2=0 p3=0 obj#=-1 tim=1343836366495589 pin kdswh11: kdst_fetch dba 0x10a62f6:1 time 1229119497 pin kdswh11: kdst_fetch dba 0x10a62f7:1 time 1229119545 pin kdswh11: kdst_fetch dba 0x10a62f8:1 time 1229119576 pin kdswh11: kdst_fetch dba 0x10a62f9:1 time 1229119610 pin kdswh11: kdst_fetch dba 0x10a62fa:1 time 1229119644 pin kdswh11: kdst_fetch dba 0x10a62fb:1 time 1229119671 pin kdswh11: kdst_fetch dba 0x10a62fc:1 time 1229119703 pin kdswh11: kdst_fetch dba 0x10a62fd:1 time 1229119730 pin kdswh11: kdst_fetch dba 0x10a62fe:1 time 1229119760 pin kdswh11: kdst_fetch dba 0x10a62ff:1 time 1229119787 FETCH #47499559126280:c=0,e=340,p=0,cr=10,cu=0,mis=0,r=10,dep=1,og=1,plh=2568761675,tim=1343836366496067 ??????DBA? 0x10a6203 , ??DBA ? 0x10a62ff ???????DBA??MACLEAN????????,???DBA???Maclean????? getbfno?????dba??????????? CREATE OR REPLACE FUNCTION getbfno (p_dba IN VARCHAR2) RETURN VARCHAR2 IS l_str VARCHAR2 (255) DEFAULT NULL; l_fno VARCHAR2 (15); l_bno VARCHAR2 (15); BEGIN l_fno := DBMS_UTILITY.data_block_address_file (TO_NUMBER (LTRIM (p_dba, '0x'), 'xxxxxxxx' ) ); l_bno := DBMS_UTILITY.data_block_address_block (TO_NUMBER (LTRIM (p_dba, '0x'), 'xxxxxxxx' ) ); l_str := 'datafile# is:' || l_fno || CHR (10) || 'datablock is:' || l_bno || CHR (10) || 'dump command:alter system dump datafile ' || l_fno || ' block ' || l_bno || ';'; RETURN l_str; END; / Function created. SQL> select getbfno('0x10a6203') from dual; GETBFNO('0X10A6203') -------------------------------------------------------------------------------- datafile# is:4 datablock is:680451 dump command:alter system dump datafile 4 block 680451; SQL> select getbfno('0x10a62ff') from dual; GETBFNO('0X10A62FF') -------------------------------------------------------------------------------- datafile# is:4 datablock is:680703 dump command:alter system dump datafile 4 block 680703; SQL> select dbms_rowid.rowid_block_number(min(rowid)),dbms_rowid.rowid_relative_fno(min(rowid)) from maclean; DBMS_ROWID.ROWID_BLOCK_NUMBER(MIN(ROWID)) ----------------------------------------- DBMS_ROWID.ROWID_RELATIVE_FNO(MIN(ROWID)) ----------------------------------------- 680451 4 SQL> select dbms_rowid.rowid_block_number(max(rowid)),dbms_rowid.rowid_relative_fno(max(rowid)) from maclean; DBMS_ROWID.ROWID_BLOCK_NUMBER(MAX(ROWID)) ----------------------------------------- DBMS_ROWID.ROWID_RELATIVE_FNO(MAX(ROWID)) ----------------------------------------- 680703 4 ???????3???: 1.?OPEN CURSOR ?????, PL/SQL????SQL????PARSE SQL????????, ??????OPEN CURSOR????SNAPSHOT SCN ??SCN, ??Oracle?????FETCH?????,???????????????? 2.????FETCH ?????????????? 3. ???open cursor+ fetch bulk collect???”?????????”

    Read the article

  • ?????Exadata????

    - by Liu Maclean(???)
    ??check Exadata Image & OS versions , GI & DB patches sundiag exacheck cellserv ==> imageinfo dbhost ==> /usr/local/bin/imagehistory Also check the version of the switch. Login to Switch and execute the following command [root@myswitch-1 sbin]# version [root@dmorlsw-ib2 sbin]# cd /usr/local/bin [root@dmorlsw-ib2 bin]# ls -lrt version -rwxr-xr-x 1 root root 20356 Apr 4 2011 version Output will look as below. [root@dmorlsw-ib2 ~]# version SUN DCS 36p version: 1.3.3-2 Build time: Apr 4 2011 11:15:19 SP board info: Manufacturing Date: 2009.05.05 Serial Number: "NCD3X0178" Hardware Revision: 0x0006 Firmware Revision: 0x0102 BIOS version: NOW1R112 BIOS date: 04/24/2009 ib8# cat /sys/class/infiniband/is4_0/fw_ver 7.2.300 ib8 # cat /sys/class/dmi/id/bios_version NOW1R112 ib8 # nm2version NM2-36p version: 1.0.1-1 Build time: Sep 14 2009 12:52:51 ComExpress info: Manufacturing Date: 2009.08.19 Serial Number: Hardware Revision: 0x0006 Firmware Revision: 0x0102 { case `uname` in Linux ) ILOM="/usr/bin/ipmitool sunoem cli" ;; SunOS ) ILOM="/opt/ipmitool/bin/ipmitool sunoem cli" ;; esac ; ImageInfo="/opt/oracle.cellos/imageinfo" ; uname -srm ; head -1 /etc/*release ; uptime | cut -d, -f1 ; $ILOM "show /SP system_description system_identifier" | grep = ; $ImageInfo -activated -node -status -ver | grep -v ^$ ; } | tee /tmp/ExaInfo.log $GRID_HOME/OPatch/opatch lsinv -all -oh $GRID_HOME | tee /tmp/OPatchInv.log $ORACLE_HOME/OPatch/opatch lsinv -all | tee -a /tmp/OPatchInv.log cat /tmp/ExaInfo.log Linux 2.6.18-128.1.16.0.1.el5 x86_64 ==> /etc/enterprise-release <== Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) ==> /etc/redhat-release <== Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) 20:37:56 up 458 days system_description = SUN FIRE X4170 SERVER, ILOM v3.0.6.10.b, r52264 system_identifier = Sun Oracle Database Machine Active image version: 11.2.1.2.3 Active image activated: XXXX-XX-XX 12:27:12 +0800 Active image status: success Active node type: COMPUTE Inactive image version: undefined FileName: OPatchInv.log ---------------- ... Oracle Home       : /u01/app/11.2.0/grid Central Inventory : /u01/app/oraInventory   from           : /etc/oraInst.loc OPatch version    : 11.2.0.1.2 OUI version       : 11.2.0.1.0 OUI location      : /u01/app/11.2.0/grid/oui ... -------------------------------------------------------------------------------- List of Oracle Homes:   Name                                       Location   Ora11g_gridinfrahome1         /u01/app/11.2.0/grid   OraDb11g_home1                  /u01/app/oracle/product/11.2.0/dbhome_1 -------------------------------------------------------------------------------- Installed Top-level Products (1): Oracle Grid Infrastructure                                           11.2.0.1.0 ... Interim patches (2) : Patch  9524394      : applied on Thu Jun 03 20:46:05 CST 2010 ... {TRACKING BUG FOR 11.2.0.1 DB MACHINE BUNDLE PATCH 3} Patch  9455587      : applied on Fri Apr 02 18:27:47 CST 2010 ... {MERGE REQUEST ON TOP OF 11.2.0.1.0 FOR BUGS 8483425 8667622 8702731 8730804} Rac system comprising of multiple nodes  Local node = dbserv01  Remote node = dbserv02  Remote node = dbserv03  Remote node = dbserv04 -------------------------------------------------------------------------------- OPatch succeeded. ... Oracle Home       : /u01/app/oracle/product/11.2.0/dbhome_1 ... Oracle Database 11g                                                  11.2.0.1.0 ... Interim patches (5) : Patch  8888434      : applied on Sat Jan 08 00:27:33 CST 2011 ... {AIX-ASM-CF: LMHB TERMINATE INSTANCE WHEN OFFLINE ONE FAILGROUP IN ASM DG} Patch  8730312      : applied on Thu Jun 03 21:30:03 CST 2010 ... {FWD MERGE FOR BASE BUG 8715387 FOR 12G} Patch  9502717      : applied on Thu Jun 03 21:25:54 CST 2010 ... {LMS HIT ORA-600 [KJBLDRMNEXTPKEY:SEEN] AND CRASHED THE INSTANCE} { + same 2 as GI above} ?? cell server Cache Policy cell08# MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' Current Cache Policy: WriteThrough, ReadAheadNone, Direct, No Write Cache if Bad BBU cell09# MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' Current Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU Default Cache Policy: WriteBack, ReadAheadNone, Direct, No Write Cache if Bad BBU Current Cache Policy: WriteThrough, ReadAheadNone, Direct, No Write Cache if Bad BBU Cache policy is in WB Would recommend proactive  battery repalcement. Example : a. /opt/MegaRAID/MegaCli/MegaCli64 -LDGetProp  -Cache -LALL -aALL ####( Will list the cache policy) b. /opt/MegaRAID/MegaCli/MegaCli64 -LDSetProp  -WB  -LALL -aALL ####( Will try to change teh policy from xx to WB)     So policy Change to WB will not come into effect immediately     Set Write Policy to WriteBack on Adapter 0, VD 0 (target id: 0) success     Battery capacity is below the threshold value ??cell BBU??????: cell08# /opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -GetBbuStatus -a0 BBU status for Adapter: 0 BatteryType: iBBU Voltage: 4061 mV Current: 0 mA Temperature: 36 C BBU Firmware Status: Charging Status : None Voltage : OK Temperature : OK Learn Cycle Requested : No Learn Cycle Active : No Learn Cycle Status : OK Learn Cycle Timeout : No I2c Errors Detected : No Battery Pack Missing : No Battery Replacement required : No Remaining Capacity Low : Yes Periodic Learn Required : No Battery state: GasGuageStatus: Fully Discharged : No Fully Charged : Yes Discharging : Yes Initialized : Yes Remaining Time Alarm : No Remaining Capacity Alarm: No Discharge Terminated : No Over Temperature : No Charging Terminated : No Over Charged : No Relative State of Charge: 99 % Charger System State: 49168 Charger System Ctrl: 0 Charging current: 0 mA Absolute state of charge: 21 % Max Error: 2 % Exit Code: 0x00 ????BBU ??: dcli -g ~/cell_group -l root -t '{ uname -srm ; head -1 /etc/*release ; uptime | cut -d, -f1 ; imagehistory ; ipmitool sunoem cli "show /SP system_description system_identifier" | grep = ; ipmitool sunoem cli "show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED /opt/MegaRAID/MegaCli/MegaCli64 -AdpBbuCmd -GetBbuStatus -a0 | egrep -i 'BBU|Battery|Charge:|Fully|Low|Learn' ; }' | tee /tmp/ExaInfo.log Target cells: ['cellserv01', 'cellserv02', 'cellserv03', 'cellserv04', 'cellserv05', 'cellserv06', 'cellserv07'] cellserv01: Linux 2.6.18-128.1.16.0.1.el5 x86_64 cellserv01: ==> /etc/enterprise-release <== cellserv01: Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) cellserv01: cellserv01: ==> /etc/redhat-release <== cellserv01: Enterprise Linux Enterprise Linux Server release 5.3 (Carthage) cellserv01: 01:17:39 up 635 days cellserv01: Version : 11.2.1.2.1 cellserv01: Image activation date : 2011-03-25 11:59:34 -0800 cellserv01: Imaging mode : fresh cellserv01: Imaging status : success cellserv01: cellserv01: Version : 11.2.1.2.3 cellserv01: Image activation date : 2011-04-13 12:15:46 +0800 cellserv01: Imaging mode : patch cellserv01: Imaging status : success cellserv01: cellserv01: Version : 11.2.1.2.6 cellserv01: Image activation date : 2011-05-27 23:08:22 +0800 cellserv01: Imaging mode : patch cellserv01: Imaging status : success cellserv01: cellserv01: system_description = SUN FIRE X4275 SERVER, ILOM v3.0.6.10.b, r52264 cellserv01: system_identifier = Sun Oracle Database Machine cellserv01: Connected. Use ^D to exit. cellserv01: -> show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED cellserv01: show: No matching properties found. cellserv01: cellserv01: -> Session closed cellserv01: Disconnected cellserv01: BBU status for Adapter: 0 cellserv01: BatteryType: iBBU cellserv01: BBU Firmware Status: cellserv01: Learn Cycle Requested : No cellserv01: Learn Cycle Active : No cellserv01: Learn Cycle Status : OK cellserv01: Learn Cycle Timeout : No cellserv01: Battery Pack Missing : No cellserv01: Battery Replacement required : No cellserv01: Remaining Capacity Low : Yes cellserv01: Periodic Learn Required : No cellserv01: Battery state: cellserv01: Fully Discharged : No cellserv01: Fully Charged : Yes cellserv01: Relative State of Charge: 99 % cellserv01: Absolute state of charge: 21 % dcli -l root -g /root/all_group '/opt/MegaRAID/MegAaCli/MegaCli64 -AdpBbuCmd -a0' > BBU.out check ipmi: dcli -g ~/cell_group -l root -t '{ > ipmitool sunoem cli "show /SP/policy FLASH_ACCELERATOR_CARD_INSTALLED" | grep = ; MegaCli64 -LDInfo -Lall -aALL | grep 'Current Cache Policy' ; }' | tee /tmp/ExaCells.log

    Read the article

< Previous Page | 37 38 39 40 41 42 43  | Next Page >