Search Results

Search found 58985 results on 2360 pages for 'value object'.

Page 41/2360 | < Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >

  • Does Ruby have a special stack for return value?

    - by prosseek
    The following Ruby code def a(b,c) b+c end is the same as follows with Python def a(b,c): return b+c It looks like that ruby has the special stack that stores the final evaluation result and returns the value when a function is called. If so, what's the name of the stack, and how can I get that stack? If not, how does the Ruby code work without returning something?

    Read the article

  • Is there a way to get the end value of an animation in jQuery?

    - by George Edison
    I have a script that animates an element as follows: var item_height = $('#item').height(); $('#item').height(0); $('#item').animate({ height: item_height }); Now suppose the animation needs to be stopped before it is complete: $('#item').stop(); How can I get the end value of the animation? (The total height of the element when the animation would have been complete)

    Read the article

  • Problems in Binary Search Tree

    - by user2782324
    This is my first ever trial at implementing the BST, and I am unable to get it done. Please help The problem is that When I delete the node if the node is in the right subtree from the root or if its a right child in the left subtree, then it works fine. But if the node is in the left subtree from root and its any left child, then it does not get deleted. Can someone show me what mistake am I doing?? the markedNode here gets allocated to the parent node of the node to be deleted. the minValueNode here gets allocated to a node whose left value child is the smallest value and it will be used to replace the value to be deleted. package DataStructures; class Node { int value; Node rightNode; Node leftNode; } class BST { Node rootOfTree = null; public void insertintoBST(int value) { Node markedNode = rootOfTree; if (rootOfTree == null) { Node newNode = new Node(); newNode.value = value; rootOfTree = newNode; newNode.rightNode = null; newNode.leftNode = null; } else { while (true) { if (value >= markedNode.value) { if (markedNode.rightNode != null) { markedNode = markedNode.rightNode; } else { Node newNode = new Node(); newNode.value = value; markedNode.rightNode = newNode; newNode.rightNode = null; newNode.leftNode = null; break; } } if (value < markedNode.value) { if (markedNode.leftNode != null) { markedNode = markedNode.leftNode; } else { Node newNode = new Node(); newNode.value = value; markedNode.leftNode = newNode; newNode.rightNode = null; newNode.leftNode = null; break; } } } } } public void searchBST(int value) { Node markedNode = rootOfTree; if (rootOfTree == null) { System.out.println("Element Not Found"); } else { while (true) { if (value > markedNode.value) { if (markedNode.rightNode != null) { markedNode = markedNode.rightNode; } else { System.out.println("Element Not Found"); break; } } if (value < markedNode.value) { if (markedNode.leftNode != null) { markedNode = markedNode.leftNode; } else { System.out.println("Element Not Found"); break; } } if (value == markedNode.value) { System.out.println("Element Found"); break; } } } } public void deleteFromBST(int value) { Node markedNode = rootOfTree; Node minValueNode = null; if (rootOfTree == null) { System.out.println("Element Not Found"); return; } if (rootOfTree.value == value) { if (rootOfTree.leftNode == null && rootOfTree.rightNode == null) { rootOfTree = null; return; } else if (rootOfTree.leftNode == null ^ rootOfTree.rightNode == null) { if (rootOfTree.rightNode != null) { rootOfTree = rootOfTree.rightNode; return; } else { rootOfTree = rootOfTree.leftNode; return; } } else { minValueNode = rootOfTree.rightNode; if (minValueNode.leftNode == null) { rootOfTree.rightNode.leftNode = rootOfTree.leftNode; rootOfTree = rootOfTree.rightNode; } else { while (true) { if (minValueNode.leftNode.leftNode != null) { minValueNode = minValueNode.leftNode; } else { break; } } // Minvalue to the left of minvalue node rootOfTree.value = minValueNode.leftNode.value; // The value has been swapped if (minValueNode.leftNode.leftNode == null && minValueNode.leftNode.rightNode == null) { minValueNode.leftNode = null; } else { if (minValueNode.leftNode.leftNode != null) { minValueNode.leftNode = minValueNode.leftNode.leftNode; } else { minValueNode.leftNode = minValueNode.leftNode.rightNode; } // Minvalue deleted } } } } else { while (true) { if (value > markedNode.value) { if (markedNode.rightNode != null) { if (markedNode.rightNode.value == value) { break; } else { markedNode = markedNode.rightNode; } } else { System.out.println("Element Not Found"); return; } } if (value < markedNode.value) { if (markedNode.leftNode != null) { if (markedNode.leftNode.value == value) { break; } else { markedNode = markedNode.leftNode; } } else { System.out.println("Element Not Found"); return; } } } // Parent of the required element found // //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// if (markedNode.rightNode != null) { if (markedNode.rightNode.value == value) { if (markedNode.rightNode.rightNode == null && markedNode.rightNode.leftNode == null) { markedNode.rightNode = null; return; } else if (markedNode.rightNode.rightNode == null ^ markedNode.rightNode.leftNode == null) { if (markedNode.rightNode.rightNode != null) { markedNode.rightNode = markedNode.rightNode.rightNode; return; } else { markedNode.rightNode = markedNode.rightNode.leftNode; return; } } else { if (markedNode.rightNode.value == value) { minValueNode = markedNode.rightNode.rightNode; } else { minValueNode = markedNode.leftNode.rightNode; } if (minValueNode.leftNode == null) { // MinNode has no left value markedNode.rightNode = minValueNode; return; } else { while (true) { if (minValueNode.leftNode.leftNode != null) { minValueNode = minValueNode.leftNode; } else { break; } } // Minvalue to the left of minvalue node if (markedNode.leftNode != null) { if (markedNode.leftNode.value == value) { markedNode.leftNode.value = minValueNode.leftNode.value; } } if (markedNode.rightNode != null) { if (markedNode.rightNode.value == value) { markedNode.rightNode.value = minValueNode.leftNode.value; } } // MarkedNode exchanged if (minValueNode.leftNode.leftNode == null && minValueNode.leftNode.rightNode == null) { minValueNode.leftNode = null; } else { if (minValueNode.leftNode.leftNode != null) { minValueNode.leftNode = minValueNode.leftNode.leftNode; } else { minValueNode.leftNode = minValueNode.leftNode.rightNode; } // Minvalue deleted } } } // //////////////////////////////////////////////////////////////////////////////////////////////////////////////// if (markedNode.leftNode != null) { if (markedNode.leftNode.value == value) { if (markedNode.leftNode.rightNode == null && markedNode.leftNode.leftNode == null) { markedNode.leftNode = null; return; } else if (markedNode.leftNode.rightNode == null ^ markedNode.leftNode.leftNode == null) { if (markedNode.leftNode.rightNode != null) { markedNode.leftNode = markedNode.leftNode.rightNode; return; } else { markedNode.leftNode = markedNode.leftNode.leftNode; return; } } else { if (markedNode.rightNode.value == value) { minValueNode = markedNode.rightNode.rightNode; } else { minValueNode = markedNode.leftNode.rightNode; } if (minValueNode.leftNode == null) { // MinNode has no left value markedNode.leftNode = minValueNode; return; } else { while (true) { if (minValueNode.leftNode.leftNode != null) { minValueNode = minValueNode.leftNode; } else { break; } } // Minvalue to the left of minvalue node if (markedNode.leftNode != null) { if (markedNode.leftNode.value == value) { markedNode.leftNode.value = minValueNode.leftNode.value; } } if (markedNode.rightNode != null) { if (markedNode.rightNode.value == value) { markedNode.rightNode.value = minValueNode.leftNode.value; } } // MarkedNode exchanged if (minValueNode.leftNode.leftNode == null && minValueNode.leftNode.rightNode == null) { minValueNode.leftNode = null; } else { if (minValueNode.leftNode.leftNode != null) { minValueNode.leftNode = minValueNode.leftNode.leftNode; } else { minValueNode.leftNode = minValueNode.leftNode.rightNode; } // Minvalue deleted } } } } // //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// } } } } } } public class BSTImplementation { public static void main(String[] args) { BST newBst = new BST(); newBst.insertintoBST(19); newBst.insertintoBST(13); newBst.insertintoBST(10); newBst.insertintoBST(20); newBst.insertintoBST(5); newBst.insertintoBST(23); newBst.insertintoBST(28); newBst.insertintoBST(16); newBst.insertintoBST(27); newBst.insertintoBST(9); newBst.insertintoBST(4); newBst.insertintoBST(22); newBst.insertintoBST(17); newBst.insertintoBST(30); newBst.insertintoBST(40); newBst.deleteFromBST(5); newBst.deleteFromBST(4); newBst.deleteFromBST(9); newBst.deleteFromBST(10); newBst.deleteFromBST(13); newBst.deleteFromBST(16); newBst.deleteFromBST(17); newBst.searchBST(5); newBst.searchBST(4); newBst.searchBST(9); newBst.searchBST(10); newBst.searchBST(13); newBst.searchBST(16); newBst.searchBST(17); System.out.println(); newBst.deleteFromBST(20); newBst.deleteFromBST(23); newBst.deleteFromBST(27); newBst.deleteFromBST(28); newBst.deleteFromBST(30); newBst.deleteFromBST(40); newBst.searchBST(20); newBst.searchBST(23); newBst.searchBST(27); newBst.searchBST(28); newBst.searchBST(30); newBst.searchBST(40); } }

    Read the article

  • SQL SERVER – Storing 64-bit Unsigned Integer Value in Database

    - by Pinal Dave
    Here is a very interesting question I received in an email just another day. Some questions just are so good that it makes me wonder how come I have not faced it first hand. Anyway here is the question - “Pinal, I am migrating my database from MySQL to SQL Server and I have faced unique situation. I have been using Unsigned 64-bit integer in MySQL but when I try to migrate that column to SQL Server, I am facing an issue as there is no datatype which I find appropriate for my column. It is now too late to change the datatype and I need immediate solution. One chain of thought was to change the data type of the column from Unsigned 64-bit (BIGINT) to VARCHAR(n) but that will just change the data type for me such that I will face quite a lot of performance related issues in future. In SQL Server we also have the BIGINT data type but that is Signed 64-bit datatype. BIGINT datatype in SQL Server have range of -2^63 (-9,223,372,036,854,775,808) to 2^63-1 (9,223,372,036,854,775,807). However, my digit is much larger than this number. Is there anyway, I can store my big 64-bit Unsigned Integer without loosing much of the performance of by converting it to VARCHAR.” Very interesting question, for the sake of the argument, we can ask user that there should be no need of such a big number or if you are taking about identity column I really doubt that if your table will grow beyond this table. Here the real question which I found interesting was how to store 64-bit unsigned integer value in SQL Server without converting it to String data type. After thinking a bit, I found a fairly simple answer. I can use NUMERIC data type. I can use NUMERIC(20) datatype for 64-bit unsigned integer value, NUMERIC(10) datatype for 32-bit unsigned integer value and NUMERIC(5) datatype for 16-bit unsigned integer value. Numeric datatype supports 38 maximum of 38 precision. Now here is another thing to keep in mind. Using NUMERIC datatype will indeed accept the 64-bit unsigned integer but in future if you try to enter negative value, it will also allow the same. Hence, you will need to put any additional constraint over column to only accept positive integer there. Here is another big concern, SQL Server will store the number as numeric and will treat that as a positive integer for all the practical purpose. You will have to write in your application logic to interpret that as a 64-bit Unsigned Integer. On another side if you are using unsigned integers in your application, there are good chance that you already have logic taking care of the same. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Datatype

    Read the article

  • SQL: empty string vs NULL value

    - by Jacek Prucia
    I know this subject is a bit controversial and there are a lot of various articles/opinions floating around the internet. Unfortunatelly, most of them assume the person doesn't know what the difference between NULL and empty string is. So they tell stories about surprising results with joins/aggregates and generally do a bit more advanced SQL lessons. By doing this, they absolutely miss the whole point and are therefore useless for me. So hopefully this question and all answers will move subject a bit forward. Let's suppose I have a table with personal information (name, birth, etc) where one of the columns is an email address with varchar type. We assume that for some reason some people might not want to provide an email address. When inserting such data (without email) into the table, there are two available choices: set cell to NULL or set it to empty string (''). Let's assume that I'm aware of all the technical implications of choosing one solution over another and I can create correct SQL queries for either scenario. The problem is even when both values differ on the technical level, they are exactly the same on logical level. After looking at NULL and '' I came to a single conclusion: I don't know email address of the guy. Also no matter how hard i tried, I was not able to sent an e-mail using either NULL or empty string, so apparently most SMTP servers out there agree with my logic. So i tend to use NULL where i don't know the value and consider empty string a bad thing. After some intense discussions with colleagues i came with two questions: am I right in assuming that using empty string for an unknown value is causing a database to "lie" about the facts? To be more precise: using SQL's idea of what is value and what is not, I might come to conclusion: we have e-mail address, just by finding out it is not null. But then later on, when trying to send e-mail I'll come to contradictory conclusion: no, we don't have e-mail address, that @!#$ Database must have been lying! Is there any logical scenario in which an empty string '' could be such a good carrier of important information (besides value and no value), which would be troublesome/inefficient to store by any other way (like additional column). I've seen many posts claiming that sometimes it's good to use empty string along with real values and NULLs, but so far haven't seen a scenario that would be logical (in terms of SQL/DB design). P.S. Some people will be tempted to answer, that it is just a matter of personal taste. I don't agree. To me it is a design decision with important consequences. So i'd like to see answers where opion about this is backed by some logical and/or technical reasons.

    Read the article

  • Enum types, FlagAttribute & Zero value

    - by nmgomes
    We all know about Enums types and use them every single day. What is not that often used is to decorate the Enum type with the FlagsAttribute. When an Enum type has the FlagsAttribute we can assign multiple values to it and thus combine multiple information into a single enum. The enum values should be a power of two so that a bit set is achieved. Here is a typical Enum type: public enum OperationMode { /// <summary> /// No operation mode /// </summary> None = 0, /// <summary> /// Standard operation mode /// </summary> Standard = 1, /// <summary> /// Accept bubble requests mode /// </summary> Parent = 2 } In such scenario no values combination are possible. In the following scenario a default operation mode exists and combination is used: [Flags] public enum OperationMode { /// <summary> /// Asynchronous operation mode /// </summary> Async = 0, /// <summary> /// Synchronous operation mode /// </summary> Sync = 1, /// <summary> /// Accept bubble requests mode /// </summary> Parent = 2 } Now, it’s possible to do statements like: [DefaultValue(OperationMode.Async)] [TypeConverter(typeof(EnumConverter))] public OperationMode Mode { get; set; } /// <summary> /// Gets a value indicating whether this instance supports request from childrens. /// </summary> public bool IsParent { get { return (this.Mode & OperationMode.Parent) == OperationMode.Parent; } } or switch (this.Mode) { case OperationMode.Sync | OperationMode.Parent: Console.WriteLine("Sync,Parent"); break;[…]  But there is something that you should never forget: Zero is the absorber element for the bitwise AND operation. So, checking for OperationMode.Async (the Zero value) mode just like the OperationMode.Parent mode makes no sense since it will always be true: (this.Mode & 0x0) == 0x0 Instead, inverse logic should be used: OperationMode.Async = !OperationMode.Sync public bool IsAsync { get { return (this.Mode & ContentManagerOperationMode.Sync) != ContentManagerOperationMode.Sync; } } or public bool IsAsync { get { return (int)this.Mode == 0; } } Final Note: Benefits Allow multiple values combination The above samples snippets were taken from an ASP.NET control and enabled the following markup usage: <my:Control runat="server" Mode="Sync,Parent"> Drawback Zero value is the absorber element for the bitwise AND operation Be very carefully when evaluating the Zero value, either evaluate the enum value as an integer or use inverse logic.

    Read the article

  • Creating an object that is ready to be used & unset properties - with IoC

    - by GetFuzzy
    I have a question regarding the specifics of object creation and the usage of properties. A best practice is to put all the properties into a state such that the object is useful when its created. Object constructors help ensure that required dependencies are created. I've found myself following a pattern lately, and then questioning its appropriateness. The pattern looks like this... public class ThingProcesser { public List<Thing> CalculatedThings { get; set; } public ThingProcesser() { CalculatedThings = new List<Thing>(); } public double FindCertainThing() { CheckForException(); foreach (var thing in CalculatedThings) { //do some stuff with things... } } public double FindOtherThing() { CheckForException(); foreach (var thing in CalculatedThings) { //do some stuff with things... } } private void CheckForException() { if (CalculatedThings.Count < 2) throw new InvalidOperationException("Calculated things must have more than 2 items"); } } The list of items is not being changed, just looked through by the methods. There are several methods on the class, and to avoid having to pass the list of things to each function as a method parameter, I set it once on the class. While this works, does it violate the principle of least astonishment? Since starting to use IoC I find myself not sticking things into the constructor, to avoid having to use a factory pattern. For example, I can argue with myself and say well the ThingProcessor really needs a List to work, so the object should be constructed like this. public class ThingProcesser { public List<Thing> CalculatedThings { get; set; } public ThingProcesser(List<Thing> calculatedThings) { CalculatedThings = calculatedThings; } } However, if I did this, it would complicate things for IoC, and this scenario hardly seems appropriate for something like the factory pattern. So in summary, are there some good guidelines for when something should be part of the object state, vs. passed as a method parameter? When using IoC, is the factory pattern the best way to deal with objects that need created with state? If something has to be passed to multiple methods in a class, does that render it a good candidate to be part of the objects state?

    Read the article

  • Elfsign Object Signing on Solaris

    - by danx
    Elfsign Object Signing on Solaris Don't let this happen to you—use elfsign! Solaris elfsign(1) is a command that signs and verifies ELF format executables. That includes not just executable programs (such as ls or cp), but other ELF format files including libraries (such as libnvpair.so) and kernel modules (such as autofs). Elfsign has been available since Solaris 10 and ELF format files distributed with Solaris, since Solaris 10, are signed by either Sun Microsystems or its successor, Oracle Corporation. When an ELF file is signed, elfsign adds a new section the ELF file, .SUNW_signature, that contains a RSA public key signature and other information about the signer. That is, the algorithm used, algorithm OID, signer CN/OU, and time stamp. The signature section can later be verified by elfsign or other software by matching the signature in the file agains the ELF file contents (excluding the signature). ELF executable files may also be signed by a 3rd-party or by the customer. This is useful for verifying the origin and authenticity of executable files installed on a system. The 3rd-party or customer public key certificate should be installed in /etc/certs/ to allow verification by elfsign. For currently-released versions of Solaris, only cryptographic framework plugin libraries are verified by Solaris. However, all ELF files may be verified by the elfsign command at any time. Elfsign Algorithms Elfsign signatures are created by taking a digest of the ELF section contents, then signing the digest with RSA. To verify, one takes a digest of ELF file and compares with the expected digest that's computed from the signature and RSA public key. Originally elfsign took a MD5 digest of a SHA-1 digest of the ELF file sections, then signed the resulting digest with RSA. In Solaris 11.1 then Solaris 11.1 SRU 7 (5/2013), the elfsign crypto algorithms available have been expanded to keep up with evolving cryptography. The following table shows the available elfsign algorithms: Elfsign Algorithm Solaris Release Comments elfsign sign -F rsa_md5_sha1   S10, S11.0, S11.1 Default for S10. Not recommended* elfsign sign -F rsa_sha1 S11.1 Default for S11.1. Not recommended elfsign sign -F rsa_sha256 S11.1 patch SRU7+   Recommended ___ *Most or all CAs do not accept MD5 CSRs and do not issue MD5 certs due to MD5 hash collision problems. RSA Key Length. I recommend using RSA-2048 key length with elfsign is RSA-2048 as the best balance between a long expected "life time", interoperability, and performance. RSA-2048 keys have an expected lifetime through 2030 (and probably beyond). For details, see Recommendation for Key Management: Part 1: General, NIST Publication SP 800-57 part 1 (rev. 3, 7/2012, PDF), tables 2 and 4 (pp. 64, 67). Step 1: create or obtain a key and cert The first step in using elfsign is to obtain a key and cert from a public Certificate Authority (CA), or create your own self-signed key and cert. I'll briefly explain both methods. Obtaining a Certificate from a CA To obtain a cert from a CA, such as Verisign, Thawte, or Go Daddy (to name a few random examples), you create a private key and a Certificate Signing Request (CSR) file and send it to the CA, following the instructions of the CA on their website. They send back a signed public key certificate. The public key cert, along with the private key you created is used by elfsign to sign an ELF file. The public key cert is distributed with the software and is used by elfsign to verify elfsign signatures in ELF files. You need to request a RSA "Class 3 public key certificate", which is used for servers and software signing. Elfsign uses RSA and we recommend RSA-2048 keys. The private key and CSR can be generated with openssl(1) or pktool(1) on Solaris. Here's a simple example that uses pktool to generate a private RSA_2048 key and a CSR for sending to a CA: $ pktool gencsr keystore=file format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" \ outkey=MYPRIVATEKEY.key $ openssl rsa -noout -text -in MYPRIVATEKEY.key Private-Key: (2048 bit) modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 publicExponent: 65537 (0x10001) privateExponent: 26:14:fc:49:26:bc:a3:14:ee:31:5e:6b:ac:69:83: . . . [omitted for brevity] . . . 81 prime1: 00:f6:b7:52:73:bc:26:57:26:c8:11:eb:6c:dc:cb: . . . [omitted for brevity] . . . bc:91:d0:40:d6:9d:ac:b5:69 prime2: 00:da:df:3f:56:b2:18:46:e1:89:5b:6c:f1:1a:41: . . . [omitted for brevity] . . . f3:b7:48:de:c3:d9:ce:af:af exponent1: 00:b9:a2:00:11:02:ed:9a:3f:9c:e4:16:ce:c7:67: . . . [omitted for brevity] . . . 55:50:25:70:d3:ca:b9:ab:99 exponent2: 00:c8:fc:f5:57:11:98:85:8e:9a:ea:1f:f2:8f:df: . . . [omitted for brevity] . . . 23:57:0e:4d:b2:a0:12:d2:f5 coefficient: 2f:60:21:cd:dc:52:76:67:1a:d8:75:3e:7f:b0:64: . . . [omitted for brevity] . . . 06:94:56:d8:9d:5c:8e:9b $ openssl req -noout -text -in MYCSR.p10 Certificate Request: Data: Version: 2 (0x2) Subject: OU=Canine SW object signing, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 Exponent: 65537 (0x10001) Attributes: Signature Algorithm: sha1WithRSAEncryption b3:e8:30:5b:88:37:68:1c:26:6b:45:af:5e:de:ea:60:87:ea: . . . [omitted for brevity] . . . 06:f9:ed:b4 Secure storage of RSA private key. The private key needs to be protected if the key signing is used for production (as opposed to just testing). That is, protect the key to protect against unauthorized signatures by others. One method is to use a PIN-protected PKCS#11 keystore. The private key you generate should be stored in a secure manner, such as in a PKCS#11 keystore using pktool(1). Otherwise others can sign your signature. Other secure key storage mechanisms include a SCA-6000 crypto card, a USB thumb drive stored in a locked area, a dedicated server with restricted access, Oracle Key Manager (OKM), or some combination of these. I also recommend secure backup of the private key. Here's an example of generating a private key protected in the PKCS#11 keystore, and a CSR. $ pktool setpin # use if PIN not set yet Enter token passphrase: changeme Create new passphrase: Re-enter new passphrase: Passphrase changed. $ pktool gencsr keystore=pkcs11 label=MYPRIVATEKEY \ format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" $ pktool list keystore=pkcs11 Enter PIN for Sun Software PKCS#11 softtoken: Found 1 asymmetric public keys. Key #1 - RSA public key: MYPRIVATEKEY Here's another example that uses openssl instead of pktool to generate a private key and CSR: $ openssl genrsa -out cert.key 2048 $ openssl req -new -key cert.key -out MYCSR.p10 Self-Signed Cert You can use openssl or pktool to create a private key and a self-signed public key certificate. A self-signed cert is useful for development, testing, and internal use. The private key created should be stored in a secure manner, as mentioned above. The following example creates a private key, MYSELFSIGNED.key, and a public key cert, MYSELFSIGNED.pem, using pktool and displays the contents with the openssl command. $ pktool gencert keystore=file format=pem serial=0xD06F00D lifetime=20-year \ keytype=rsa hash=sha256 outcert=MYSELFSIGNED.pem outkey=MYSELFSIGNED.key \ subject="O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com" $ pktool list keystore=file objtype=cert infile=MYSELFSIGNED.pem Found 1 certificates. 1. (X.509 certificate) Filename: MYSELFSIGNED.pem ID: c8:24:59:08:2b:ae:6e:5c:bc:26:bd:ef:0a:9c:54:de:dd:0f:60:46 Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Not Before: Oct 17 23:18:00 2013 GMT Not After: Oct 12 23:18:00 2033 GMT Serial: 0xD06F00D0 Signature Algorithm: sha256WithRSAEncryption $ openssl x509 -noout -text -in MYSELFSIGNED.pem Certificate: Data: Version: 3 (0x2) Serial Number: 3496935632 (0xd06f00d0) Signature Algorithm: sha256WithRSAEncryption Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Validity Not Before: Oct 17 23:18:00 2013 GMT Not After : Oct 12 23:18:00 2033 GMT Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 Exponent: 65537 (0x10001) Signature Algorithm: sha256WithRSAEncryption 9e:39:fe:c8:44:5c:87:2c:8f:f4:24:f6:0c:9a:2f:64:84:d1: . . . [omitted for brevity] . . . 5f:78:8e:e8 $ openssl rsa -noout -text -in MYSELFSIGNED.key Private-Key: (2048 bit) modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 publicExponent: 65537 (0x10001) privateExponent: 0a:06:0f:23:e7:1b:88:62:2c:85:d3:2d:c1:e6:6e: . . . [omitted for brevity] . . . 9c:e1:e0:0a:52:77:29:4a:75:aa:02:d8:af:53:24: c1 prime1: 00:ea:12:02:bb:5a:0f:5a:d8:a9:95:b2:ba:30:15: . . . [omitted for brevity] . . . 5b:ca:9c:7c:19:48:77:1e:5d prime2: 00:cd:82:da:84:71:1d:18:52:cb:c6:4d:74:14:be: . . . [omitted for brevity] . . . 5f:db:d5:5e:47:89:a7:ef:e3 exponent1: 32:37:62:f6:a6:bf:9c:91:d6:f0:12:c3:f7:04:e9: . . . [omitted for brevity] . . . 97:3e:33:31:89:66:64:d1 exponent2: 00:88:a2:e8:90:47:f8:75:34:8f:41:50:3b:ce:93: . . . [omitted for brevity] . . . ff:74:d4:be:f3:47:45:bd:cb coefficient: 4d:7c:09:4c:34:73:c4:26:f0:58:f5:e1:45:3c:af: . . . [omitted for brevity] . . . af:01:5f:af:ad:6a:09:bf Step 2: Sign the ELF File object By now you should have your private key, and obtained, by hook or crook, a cert (either from a CA or use one you created (a self-signed cert). The next step is to sign one or more objects with your private key and cert. Here's a simple example that creates an object file, signs, verifies, and lists the contents of the ELF signature. $ echo '#include <stdio.h>\nint main(){printf("Hello\\n");}'>hello.c $ make hello cc -o hello hello.c $ elfsign verify -v -c MYSELFSIGNED.pem -e hello elfsign: no signature found in hello. $ elfsign sign -F rsa_sha256 -v -k MYSELFSIGNED.key -c MYSELFSIGNED.pem -e hello elfsign: hello signed successfully. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. $ elfsign list -f format -e hello rsa_sha256 $ elfsign list -f signer -e hello O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com $ elfsign list -f time -e hello October 17, 2013 04:22:49 PM PDT $ elfsign verify -v -c MYSELFSIGNED.key -e hello elfsign: verification of hello failed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. Signing using the pkcs11 keystore To sign the ELF file using a private key in the secure pkcs11 keystore, replace "-K MYSELFSIGNED.key" in the "elfsign sign" command line with "-T MYPRIVATEKEY", where MYPRIVATKEY is the pkcs11 token label. Step 3: Install the cert and test on another system Just signing the object isn't enough. You need to copy or install the cert and the signed ELF file(s) on another system to test that the signature is OK. Your public key cert should be installed in /etc/certs. Use elfsign verify to verify the signature. Elfsign verify checks each cert in /etc/certs until it finds one that matches the elfsign signature in the file. If one isn't found, the verification fails. Here's an example: $ su Password: # rm /etc/certs/MYSELFSIGNED.key # cp MYSELFSIGNED.pem /etc/certs # exit $ elfsign verify -v hello elfsign: verification of hello passed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:24:20 PM PDT. After testing, package your cert along with your ELF object to allow elfsign verification after your cert and object are installed or copied. Under the Hood: elfsign verification Here's the steps taken to verify a ELF file signed with elfsign. The steps to sign the file are similar except the private key exponent is used instead of the public key exponent and the .SUNW_signature section is written to the ELF file instead of being read from the file. Generate a digest (SHA-256) of the ELF file sections. This digest uses all ELF sections loaded in memory, but excludes the ELF header, the .SUNW_signature section, and the symbol table Extract the RSA signature (RSA-2048) from the .SUNW_signature section Extract the RSA public key modulus and public key exponent (65537) from the public key cert Calculate the expected digest as follows:     signaturepublicKeyExponent % publicKeyModulus Strip the PKCS#1 padding (most significant bytes) from the above. The padding is 0x00, 0x01, 0xff, 0xff, . . ., 0xff, 0x00. If the actual digest == expected digest, the ELF file is verified (OK). Further Information elfsign(1), pktool(1), and openssl(1) man pages. "Signed Solaris 10 Binaries?" blog by Darren Moffat (2005) shows how to use elfsign. "Simple CLI based CA on Solaris" blog by Darren Moffat (2008) shows how to set up a simple CA for use with self-signed certificates. "How to Create a Certificate by Using the pktool gencert Command" System Administration Guide: Security Services (available at docs.oracle.com)

    Read the article

  • A Technical Perspective On Rapid Planning

    - by Robert Story
    Upcoming WebcastTitle: A Technical Perspective On Rapid PlanningDate: April 14, 2010 Time: 11:00 am EDT, 9:00 am MDT, 8:00 am PDT, 16:00 GMT Product Family: Value Chain PlanningSummary Oracle's Strategic Network Optimization (SNO) product is a powerful supply chain design and tactical planning tool.  This one-hour session is recommended for functional users who want to gain a better understanding of how Oracle's SNO solution can help you solve complex supply chain issues, including supply chain design, risk management, logistics planning, sustainability planning, and a whole lot in between! Find out how SNO can be used to solve many different types of real-world business issues. Topics will include: Risk/Disaster Management Carbon Emissions Management Global Sourcing Labor/Workforce Planning Product Mix Optimization A short, live demonstration (only if applicable) and question and answer period will be included. Click here to register for this session....... ....... ....... ....... ....... ....... .......The above webcast is a service of the E-Business Suite Communities in My Oracle Support.For more information on other webcasts, please reference the Oracle Advisor Webcast Schedule.Click here to visit the E-Business Communities in My Oracle Support Note that all links require access to My Oracle Support.

    Read the article

  • A Technical Perspective On Rapid Planning

    - by Robert Story
    Upcoming WebcastTitle: Strategic Network Optimization - One Solution for Many Problems!Date: April 14, 2010 Time: 11:00 am EDT, 9:00 am MDT, 8:00 am PDT, 16:00 GMT Product Family: Value Chain PlanningSummary This one-hour session is recommended for System Administrators, Database Administrators, and Technical Users seeking a general overview of Rapid Planning, installation issues, and debug information. This webcast is intended to provide users with insight into known issues, and an overview of the debugging possibilities for Rapid Planning. Topics will include: Benefits of using simulation planning Installing Oracle Rapid planning, points to be aware of Relevant tables Rapid planning log files Information needed by supportA short, live demonstration (only if applicable) and question and answer period will be included. Click here to register for this session....... ....... ....... ....... ....... ....... .......The above webcast is a service of the E-Business Suite Communities in My Oracle Support.For more information on other webcasts, please reference the Oracle Advisor Webcast Schedule.Click here to visit the E-Business Communities in My Oracle Support Note that all links require access to My Oracle Support.

    Read the article

  • MRP/SCP (Not ASCP) Common Issues

    - by Annemarie Provisero
    ADVISOR WEBCAST: MRP/SCP (Not ASCP) Common Issues PRODUCT FAMILY: Manufacturing - Value Chain Planning   March 9, 2010 at 8 am PT, 9 am MT, 11 am ET   This session is intended for System Administrators, Database Administrator's (DBA), Functional Users, and Technical Users. We will discuss issues that are fairly common and will provide the general solutions to same. We will not only review power point information but review some of the application setups/checks as well. TOPICS WILL INCLUDE: Gig data memory limitation Setup Requirements for MRP Manager, Planning Manager, and Standard Manager Why components are not planned Sales Order Flow to MRP Calendars Patching Miscellaneous Forecast Consumption - only if we have time A short, live demonstration (only if applicable) and question and answer period will be included. Oracle Advisor Webcasts are dedicated to building your awareness around our products and services. This session does not replace offerings from Oracle Global Support Services. Click here to register for this session ------------------------------------------------------------------------------------------------------------- The above webcast is a service of the E-Business Suite Communities in My Oracle Support. For more information on other webcasts, please reference the Oracle Advisor Webcast Schedule.Click here to visit the E-Business Communities in My Oracle Support Note that all links require access to My Oracle Support.

    Read the article

  • Class design issue

    - by user2865206
    I'm new to OOP and a lot of times I become stumped in situations similar to this example: Task: Generate an XML document that contains information about a person. Assume the information is readily available in a database. Here is an example of the structure: <Person> <Name>John Doe</Name> <Age>21</Age> <Address> <Street>100 Main St.</Street> <City>Sylvania</City> <State>OH</State> </Address> <Relatives> <Parents> <Mother> <Name>Jane Doe</Name> </Mother> <Father> <Name>John Doe Sr.</Name> </Father> </Parents> <Siblings> <Brother> <Name>Jeff Doe</Name> </Brother> <Brother> <Name>Steven Doe</Name> </Brother> </Siblings> </Relatives> </Person> Ok lets create a class for each tag (ie: Person, Name, Age, Address) Lets assume each class is only responsible for itself and the elements directly contained Each class will know (have defined by default) the classes that are directly contained within them Each class will have a process() function that will add itself and its childeren to the XML document we are creating When a child is drawn, as in the previous line, we will have them call process() as well Now we are in a recursive loop where each object draws their childeren until all are drawn But what if only some of the tags need to be drawn, and the rest are optional? Some are optional based on if the data exists (if we have it, we must draw it), and some are optional based on the preferences of the user generating the document How do we make sure each object has the data it needs to draw itself and it's childeren? We can pass down a massive array through every object, but that seems shitty doesnt it? We could have each object query the database for it, but thats a lot of queries, and how does it know what it's query is? What if we want to get rid of a tag later? There is no way to reference them. I've been thinking about this for 20 hours now. I feel like I am misunderstanding a design principle or am just approaching this all wrong. How would you go about programming something like this? I suppose this problem could apply to any senario where there are classes that create other classes, but the classes created need information to run. How do I get the information to them in a way that doesn't seem fucky? Thanks for all of your time, this has been kicking my ass.

    Read the article

  • Need to add an array into another array at a specified key value

    - by sologhost
    Ok, I have an array like so, but it's not guaranteed to be laid out in this order all of the time... $array = array( 'sadness' => array( 'info' => 'some info', 'info2' => 'more info', 'value' => 'value', ), 'happiness' => array( 'info' => 'some info', 'info2' => 'more info', 'value' => 'the value', ), 'peace' => array( 'info' => 'some info', 'info2' => 'more info', 'value' => 'the value', ) ); Ok, and I'd like to throw in this array right after the happiness key is defined. I can't use the key of "peace" since it must go directly after happiness, and peace might not come after happiness as this array changes. So here's what I need to add after happiness... $another_array['love'] = array( 'info' => 'some info', 'info2' => 'more info', 'value' => 'the value of love' ); So the final output after it gets inputted directly after happiness should look like this: $array = array( 'sadness' => array( 'info' => 'some info', 'info2' => 'more info', 'value' => 'value', ), 'happiness' => array( 'info' => 'some info', 'info2' => 'more info', 'value' => 'the value', ), 'love' => array( 'info' => 'some info', 'info2' => 'more info', 'value' => 'the value of love', ), 'peace' => array( 'info' => 'some info', 'info2' => 'more info', 'value' => 'the value', ) ); Can someone please give me a hand with this. Using array_shift, array_pop, or array_merge doesn't help me at all, since these go at the beginning and at the end of the array. I need to place it directly after a KEY position within $array. Thanks :)

    Read the article

  • Lifetime issue of IDisposable unmanaged resources in a complex object graph?

    - by stakx
    This question is about dealing with unmanaged resources (COM interop) and making sure there won't be any resource leaks. I'd appreciate feedback on whether I seem to do things the right way. Background: Let's say I've got two classes: A class LimitedComResource which is a wrapper around a COM object (received via some API). There can only be a limited number of those COM objects, therefore my class implements the IDisposable interface which will be responsible for releasing a COM object when it's no longer needed. Objects of another type ManagedObject are temporarily created to perform some work on a LimitedComResource. They are not IDisposable. To summarize the above in a diagram, my classes might look like this: +---------------+ +--------------------+ | ManagedObject | <>------> | LimitedComResource | +---------------+ +--------------------+ | o IDisposable (I'll provide example code for these two classes in just a moment.) Question: Since my temporary ManagedObject objects are not disposable, I obviously have no control over how long they'll be around. However, in the meantime I might have Disposed the LimitedComObject that a ManagedObject is referring to. How can I make sure that a ManagedObject won't access a LimitedComResource that's no longer there? +---------------+ +--------------------+ | managedObject | <>------> | (dead object) | +---------------+ +--------------------+ I've currently implemented this with a mix of weak references and a flag in LimitedResource which signals whether an object has already been disposed. Is there any better way? Example code (what I've currently got): LimitedComResource: class LimitedComResource : IDisposable { private readonly IUnknown comObject; // <-- set in constructor ... void Dispose(bool notFromFinalizer) { if (!this.isDisposed) { Marshal.FinalReleaseComObject(comObject); } this.isDisposed = true; } internal bool isDisposed = false; } ManagedObject: class ManagedObject { private readonly WeakReference limitedComResource; // <-- set in constructor ... public void DoSomeWork() { if (!limitedComResource.IsAlive()) { throw new ObjectDisposedException(); // ^^^^^^^^^^^^^^^^^^^^^^^ // is there a more suitable exception class? } var ur = (LimitedComResource)limitedComResource.Target; if (ur.isDisposed) { throw new ObjectDisposedException(); } ... // <-- do something sensible here! } }

    Read the article

  • Detect when a new property is added to a Javascript object?

    - by UICodes
    A simple example using a built-in javascript object: navigator.my_new_property = "some value"; //can we detect that this new property was added? I don't want to constantly poll the object to check for new properties. Is there some type of higher level setter for objects instead of explicitly stating the property to monitor? Again, I don't want to detect if the property value changed, but rather when a new property is added. Ideas? thanks

    Read the article

  • Looping through a SimpleXML object, or turning the whole thing into an array.

    - by Coffee Cup
    I'm trying to work out how to iterate though a returned SimpleXML object. I'm using a toolkit called Tarzan AWS, which connects to Amazon Web Services (SimpleDB, S3, EC2, etc). I'm specifically using SimpleDB. I can put data into the Amazon SimpleDB service, and I can get it back. I just don't know how to handle the SimpleXML object that is returned. The Tarzan AWS documentation says this: Look at the response to navigate through the headers and body of the response. Note that this is an object, not an array, and that the body is a SimpleXML object. Here's a sample of the returned SimpleXML object: [body] = SimpleXMLElement Object ( [QueryWithAttributesResult] = SimpleXMLElement Object ( [Item] = Array ( [0] = SimpleXMLElement Object ( [Name] = message12413344443260 [Attribute] = Array ( [0] = SimpleXMLElement Object ( [Name] = active [Value] = 1 ) [1] = SimpleXMLElement Object ( [Name] = user [Value] = john ) [2] = SimpleXMLElement Object ( [Name] = message [Value] = This is a message. ) [3] = SimpleXMLElement Object ( [Name] = time [Value] = 1241334444 ) [4] = SimpleXMLElement Object ( [Name] = id [Value] = 12413344443260 ) [5] = SimpleXMLElement Object ( [Name] = ip [Value] = 10.10.10.1 ) ) ) [1] = SimpleXMLElement Object ( [Name] = message12413346907303 [Attribute] = Array ( [0] = SimpleXMLElement Object ( [Name] = active [Value] = 1 ) [1] = SimpleXMLElement Object ( [Name] = user [Value] = fred ) [2] = SimpleXMLElement Object ( [Name] = message [Value] = This is another message ) [3] = SimpleXMLElement Object ( [Name] = time [Value] = 1241334690 ) [4] = SimpleXMLElement Object ( [Name] = id [Value] = 12413346907303 ) [5] = SimpleXMLElement Object ( [Name] = ip [Value] = 10.10.10.2 ) ) ) ) So what code do I need to get through each of the object items? I'd like to loop through each of them and handle it like a returned mySQL query. For example, I can query SimpleDB and then loop though the SimpleXML so I can display the results on the page. Alternatively, how do you turn the whole shebang into an array? I'm new to SimpleXML, so I apologise if my questions aren't specific enough.

    Read the article

  • C# using the "this" keyword in this situation?

    - by Alex
    Hi, I've completed a OOP course assignment where I design and code a Complex Number class. For extra credit, I can do the following: Add two complex numbers. The function will take one complex number object as a parameter and return a complex number object. When adding two complex numbers, the real part of the calling object is added to the real part of the complex number object passed as a parameter, and the imaginary part of the calling object is added to the imaginary part of the complex number object passed as a parameter. Subtract two complex numbers. The function will take one complex number object as a parameter and return a complex number object. When subtracting two complex numbers, the real part of the complex number object passed as a parameter is subtracted from the real part of the calling object, and the imaginary part of the complex number object passed as a parameter is subtracted from the imaginary part of the calling object. I have coded this up, and I used the this keyword to denote the current instance of the class, the code for my add method is below, and my subtract method looks similar: public ComplexNumber Add(ComplexNumber c) { double realPartAdder = c.GetRealPart(); double complexPartAdder = c.GetComplexPart(); double realPartCaller = this.GetRealPart(); double complexPartCaller = this.GetComplexPart(); double finalRealPart = realPartCaller + realPartAdder; double finalComplexPart = complexPartCaller + complexPartAdder; ComplexNumber summedComplex = new ComplexNumber(finalRealPart, finalComplexPart); return summedComplex; } My question is: Did I do this correctly and with good style? (using the this keyword)?

    Read the article

  • Flex DataGridColumn with array of objects as data provider

    - by rforte
    I have a datagrid that uses an array of objects as the data provider. The objects are essentially key/value pairs: { foo:"something"} { bar:"hello"} { caca:"lorem"} The datagrid has 2 columns. The first column is the key and the second column is the value. Right now my grid looks like: My dataFormatter function makes sure that depending on the column (i.e. the dataField value) the correct key or value gets printed out. This works fine for displaying. However, as soon as I try and edit the value field it essentially adds a new value into the object with a key of '1'. For example, if I edit the {caca:"lorem"} object it will then contain the value {caca:"lorem",1:"new value"}. Is there any possible way I can set the DataGridColumn so that when I edit a value it will update the value associated with the key rather than inserting a new value? I've tried using a custom item editor but it still does the insert. It seems like I need to be able to update the 'dataField' with the actual key value but I'm not sure how to do that.

    Read the article

  • jQuery accessing objects

    - by user1275268
    I'm trying to access the values of an object from a function I created with a callback, but have run into some trouble. I'm still fairly new at jQuery/javascript. I call the function as follows: siteDeps(id,function(data){ $.each(data,function(key,val) { console.log(key); console.log(val); }); }); The function runs 5 ajax queries from XML data and returns data as an multidimensional object; here is a excerpt showing the meat of it: function siteDeps(id,callback) { var result = { sitecontactid : {}, siteaddressid : {}, sitephoneid : {}, contactaddressid : {}, contactphoneid : {} }; ...//.... var url5 = decodeURIComponent("sql2xml.php?query=xxxxxxxxxxx"); $.get(url5, function(data){ $(data).find('ID').each(function(i){ result.delsitephoneid[i] = $(this).text(); }); }); callback(result); } The console.log output shows this: sitecontactid Object 0: "2" 1: "3" __proto__: Object siteaddressid Object 0: "1" __proto__: Object sitephoneid Object 0: "1" 1: "5" 2: "54" __proto__: Object contactaddressid Object 0: "80" __proto__: Object contactphoneid Object 0: "6" __proto__: Object How can I extract the callback data in a format I can use, for instance sitephoneid: "1","5","54" Or is there a better/simpler way to do this? Thanks in advance.

    Read the article

  • Can static methods be called using object/instance in .NET

    Ans is Yes and No   Yes in C++, Java and VB.NET No in C#   This is only compiler restriction in c#. You might see in some websites that we can break this restriction using reflection and delegates, but we can’t, according to my little research J I shall try to explain you…   Following is code sample to break this rule using reflection, it seems that it is possible to call a static method using an object, p1 using System; namespace T {     class Program     {         static void Main()         {             var p1 = new Person() { Name = "Smith" };             typeof(Person).GetMethod("TestStatMethod").Invoke(p1, new object[] { });                     }         class Person         {             public string Name { get; set; }             public static void TestStatMethod()             {                 Console.WriteLine("Hello");             }         }     } } but I do not think so this method is being called using p1 rather Type Name “Person”. I shall try to prove this… look at another example…  Test2 has been inherited from Test1. Let’s see various scenarios… Scenario1 using System; namespace T {     class Program     {         static void Main()         {             Test1 t = new Test1();            typeof(Test2).GetMethod("Method1").Invoke(t,                                  new object[] { });         }     }     class Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method1");         }     }       class Test2 : Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method2");         }     } } Output:   At test1::Method2 Scenario2         static void Main()         {             Test2 t = new Test2();            typeof(Test2).GetMethod("Method1").Invoke(t,                                          new object[] { });         }   Output:   At test1::Method2   Scenario3         static void Main()         {             Test1 t = new Test2();            typeof(Test2).GetMethod("Method1").Invoke(t,                             new object[] { });         }   Output: At test1::Method2 In all above scenarios output is same, that means, Reflection also not considering the object what you pass to Invoke method in case of static methods. It is always considering the type which you specify in typeof(). So, what is the use passing instance to “Invoke”. Let see below sample using System; namespace T {     class Program     {         static void Main()         {            typeof(Test2).GetMethod("Method1").                Invoke(null, new object[] { });         }     }       class Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method1");         }     }     class Test2 : Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method2");         }     } }   Output is   At test1::Method2   I was able to call Invoke “Method1” of Test2 without any object.  Yes, there no wonder here as Method1 is static. So we may conclude that static methods cannot be called using instances (only in c#) Why Microsoft has restricted it in C#? Ans: Really there Is no use calling static methods using objects because static methods are stateless. but still Java and C++ latest compilers allow calling static methods using instances. Java sample class Test {      public static void main(String str[])      {            Person p = new Person();            System.out.println(p.GetCount());      } }   class Person {   public static int GetCount()   {      return 100;   } }   Output          100 span.fullpost {display:none;}

    Read the article

< Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >