Search Results

Search found 1657 results on 67 pages for 'writes on'.

Page 41/67 | < Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >

  • Limiting DOPs &ndash; Who rules over whom?

    - by jean-pierre.dijcks
    I've gotten a couple of questions from Dan Morgan and figured I start to answer them in this way. While Dan is running on a big system he is running with Database Resource Manager and he is trying to make sure the system doesn't go crazy (remember end user are never, ever crazy!) on very high DOPs. Q: How do I control statements with very high DOPs driven from user hints in queries? A: The best way to do this is to work with DBRM and impose limits on consumer groups. The Max DOP setting you can set in DBRM allows you to overwrite the hint. Now let's go into some more detail here. Assume my object (and for simplicity we assume there is a single object - and do remember that we always pick the highest DOP when in doubt and when conflicting DOPs are available in a query) has PARALLEL 64 as its setting. Assume that the query that selects something cool from that table lives in a consumer group with a max DOP of 32. Assume no goofy things (like running out of parallel_max_servers) are happening. A query selecting from this table will run at DOP 32 because DBRM caps the DOP. As of 11.2.0.1 we also use the DBRM cap to create the original plan (at compile time) and not just enforce the cap at runtime. Now, my user is smart and writes a query with a parallel hint requesting DOP 128. This query is still capped by DBRM and DBRM overrules the hint in the statement. The statement, despite the hint, runs at DOP 32. Note that in the hinted scenario we do compile the statement with DOP 128 (the optimizer obeys the hint). This is another reason to use table decoration rather than hints. Q: What happens if I set parallel_max_servers higher than processes (e.g. the max number of processes allowed to run on my machine)? A: Processes rules. It is important to understand that processes are fixed at startup time. If you increase parallel_max_servers above the number of processes in the processes parameter you should get a warning in the alert log stating it can not take effect. As a follow up, a hinted query requesting more parallel processes than either parallel_max_servers or processes will not be able to acquire the requested number. Parallel_max_processes will prevent this. And since parallel_max_servers should be lower than max processes you can never go over either...

    Read the article

  • Debugging OWB generated SAP ABAP code executed through RFC

    - by Anil Menon
    Within OWB if you need to execute ABAP code using RFC you will have to use the SAP Function Module RFC_ABAP_INSTALL_AND_RUN. This function module is specified during the creation of the SAP source location. Usually in a Production environment a copy of this function module is used due to security restrictions. When you execute the mapping by using this Function Module you can’t see the actual ABAP code that is passed on to the SAP system. In case you want to take a look at the code that will be executed on the SAP system you need to use a custom Function Module in SAP. The easiest way to do this is to make a copy of the Function Module RFC_ABAP_INSTALL_AND_RUN and call it say Z_TEST_FM. Then edit the code of the Function Module in SAP as below FUNCTION Z_TEST_FM . DATA: BEGIN OF listobj OCCURS 20. INCLUDE STRUCTURE abaplist. DATA: END OF listobj. DATA: begin_of_line(72). DATA: line_end_char(1). DATA: line_length type I. DATA: lin(72). loop at program. append program-line to WRITES. endloop. ENDFUNCTION. Within OWB edit the SAP Location and use Z_TEST_FM as the “Execution Function Module” instead of  RFC_ABAP_INSTALL_AND_RUN. Then register this location. The Mapping you want to debug will have to be deployed. After deployment you can right click the mapping and click on “Start”.   After clicking start the “Input Parameters” screen will be displayed. You can make changes here if you need to. Check that the parameter BACKGROUND is set to “TRUE”. After Clicking “OK” the log for the execution will be displayed. The execution of Mappings will always fail when you use the above function module. Clicking on the icon “I” (information) the ABAP code will be displayed.   The ABAP code displayed is the code that is passed through the Function Module. You can also find the code by going through the log files on the server which hosts the OWB repository. The logs will be located under <OWB_HOME>/owb/log. Patch #12951045 is recommended while using the SAP Connector with OWB 11.2.0.2. For recommended patches for other releases please check with Oracle Support at http://support.oracle.com

    Read the article

  • Asp.net session on browser close

    - by budugu
    Note: Cross posted from Vijay Kodali's Blog. Permalink How to capture logoff time when user closes browser? Or How to end user session when browser closed? These are some of the frequently asked questions in asp.net forums. In this post I'll show you how to do this when you're building an ASP.NET web application. Before we start, one fact: There is no full-proof technique to catch the browser close event for 100% of time. The trouble lies in the stateless nature of HTTP. The Web server is out of the picture as soon as it finishes sending the page content to the client. After that, all you can rely on is a client side script. Unfortunately, there is no reliable client side event for browser close. Solution: The first thing you need to do is create the web service. I've added web service and named it AsynchronousSave.asmx.    Make this web service accessible from Script, by setting class qualified with the ScriptServiceAttribute attribute...  Add a method (SaveLogOffTime) marked with [WebMethod] attribute. This method simply accepts UserId as a string variable and writes that value and logoff time to text file. But you can pass as many variables as required. You can then use this information for many purposes. To end user session, you can just call Session.Abandon() in the above web method. To enable web service to be called from page’s client side code, add script manager to page. Here i am adding to SessionTest.aspx page When the user closes the browser, onbeforeunload event fires on the client side. Our final step is adding a java script function to that event, which makes web service calls. The code is simple but effective My Code HTML:( SessionTest.aspx ) C#:( SessionTest.aspx.cs ) That’s’ it. Run the application and after browser close, open the text file to see the log off time. The above code works well in IE 7/8. If you have any questions, leave a comment.

    Read the article

  • Asp.net session on browser close

    - by budugu
    Note: Cross posted from Vijay Kodali's Blog. Permalink How to capture logoff time when user closes browser? Or How to end user session when browser closed? These are some of the frequently asked questions in asp.net forums. In this post I'll show you how to do this when you're building an ASP.NET web application. Before we start, one fact: There is no full-proof technique to catch the browser close event for 100% of time. The trouble lies in the stateless nature of HTTP. The Web server is out of the picture as soon as it finishes sending the page content to the client. After that, all you can rely on is a client side script. Unfortunately, there is no reliable client side event for browser close. Solution: The first thing you need to do is create the web service. I've added web service and named it AsynchronousSave.asmx.    Make this web service accessible from Script, by setting class qualified with the ScriptServiceAttribute attribute...  Add a method (SaveLogOffTime) marked with [WebMethod] attribute. This method simply accepts UserId as a string variable and writes that value and logoff time to text file. But you can pass as many variables as required. You can then use this information for many purposes. To end user session, you can just call Session.Abandon() in the above web method. To enable web service to be called from page’s client side code, add script manager to page. Here i am adding to SessionTest.aspx page When the user closes the browser, onbeforeunload event fires on the client side. Our final step is adding a java script function to that event, which makes web service calls. The code is simple but effective My Code HTML:( SessionTest.aspx ) C#:( SessionTest.aspx.cs ) That’s’ it. Run the application and after browser close, open the text file to see the log off time. The above code works well in IE 7/8. If you have any questions, leave a comment.

    Read the article

  • How to Code Faster (Without Sacrificing Quality)

    - by ashes999
    I've been a professional coder for a several years. The comments about my code have generally been the same: writes great code, well-tested, but could be faster. So how do I become a faster coder, without sacrificing quality? For the sake of this question, I'm going to limit the scope to C#, since that's primarily what I code (for fun) -- or Java, which is similar enough in many ways that matter. Things that I'm already doing: Write the minimal solution that will get the job done Write a slew of automated tests (prevents regressions) Write (and use) reusable libraries for all kinds of things Use well-known technologies where they work well (eg. Hibernate) Use design patterns where they fit into place (eg. Singleton) These are all great, but I don't feel like my speed is increasing over time. I do care, because if I can do something to increase my productivity (even by 10%), that's 10% faster than my competitors. (Not that I have any.) Besides which, I've consistently gotten this feeback from my managers -- whether it was small-scale Flash development or enterprise Java/C++ development. Edit: There seem to be a lot of questions about what I mean by fast, and how I know I'm slow. Let me clarify with some more details. I worked in small and medium-sized teams (5-50 people) in various companies over various projects and various technologies (Flash, ASP.NET, Java, C++). The observation of my managers (which they told me directly) is that I'm "slow." Part of this is because a significant number of my peers sacrificed quality for speed; they wrote code that was buggy, hard to read, hard to maintain, and difficult to write automated tests for. My code generally is well-documented, readable, and testable. At Oracle, I would consistently solve bugs slower than other team-members. I know this, because I would get comments to that effect; this means that other (yes, more senior and experienced) developers could do my work in less time than it took me, at nearly the same quality (readability, maintainability, and testability). Why? What am I missing? How can I get better at this? My end goal is simple: if I can make product X in 40 hours today, and I can improve myself somehow so that I can create the same product at 20, 30, or even 38 hours tomorrow, that's what I want to know -- how do I get there? What process can I use to continually improve? I had thought it was about reusing code, but that's not enough, it seems.

    Read the article

  • links for 2010-04-20

    - by Bob Rhubart
    smattoon@: Enterprise Architecture for Drupal | DrupalCon San Francisco 2010 Details on today's (4/20/10) Drupalcon presentation by Scott "@smattoon" Mattoon. (tags: oracle sun enterprisearchitecture drupal) Mona Rakibe: Deploying BAM Data Control Application to WLS server "Typically we would test our ADF pages that use BAM Data control using integrated WLS server (ADRS), " writes Mona Rakibe. "If we have to deploy this same application to a standalone WLS we have to make sure we have the BAM server connection created in WLS. Unless we do that we may face runtime errors." (tags: oracle otn weblogic soa adf) George Maggessy: Deploying an Consuming Task Flows as Shared Libraries on WLS "A Java EE library is an easy way to share one or more different types of Java EE modules among multiple Enterprise Applications," says George Maggessy. "A shared Java EE library can be a simple jar file, an EJB module or even a web application module." His post includes a sample. (tags: oracle otn architect java weblogic) Adam Hawley: Oracle VM and JRockit Virtual Edition: Oracle Introduces Java Virtualization Solution for Oracle(R) WebLogic Suite Adam Hawley offers information on "a WebLogic Suite option that permits the Oracle WebLogic Server 11g to run on a Java JVM (JRockit Virtual Edition) that itself runs directly on the Oracle VM Server for x86 / x64 without needing any operating system." (tags: oracle otn weblogic virtualization architect javajrockit) @fteter: Highlights From The Bright Lights - Sunday #c10 "Sunday, the first day of Collaborate 10, was probably the best conference kickoff I've ever experienced," says Oracle ACE Director Floyd Teter. "And that's mostly because 'Oracle Fusion Architecture: Soup To Nuts' absolutely rocked!" (tags: oracle otn oracleace collaborate2010 fusionmiddleware architecture) @ORACLENERD: COLLABORATE: Day 2 Wrap Up Oracle ACE Chet "oraclenerd" Justice's tale of cell phone chargers, beer, and shrimp eyes. (tags: oracle otn oracleace collaborate2010) Registration is Open: Oracle Technology Network Architect Day: Dallas The 2010 series of Oracle Technology Network Architect Days kicks off in Dallas on Wednesday, May 13. Registration is now open for the Dallas event, and will open soon for the events in Anaheim, CA and Redwood Shores, CA. (tags: oracle otn architect entarch community events)

    Read the article

  • Install of AppFabric RC stops AppFabric Monitoring (some traps for young players)

    - by Rob Addis
    I uninstalled AppFabric Beta 2 and installed AppFabric RC. The AppFabricEventCollection Service is started (runs under Local Service which is a dbo_owner on the Monitoring Database to prove this wasn’t the issue). The SQLServerAgent Service is started. Nothing is being written to the Monitoring DB Staging Table and thus nothing is being written to the Event tables or seen in the AppFabric Dashboard. Nothing has been written to the following event logs     - Microsoft-Windows-Application Server-System Services\Admin     - Microsoft-Windows-Application Server-System Services\Operational The Microsoft-Windows-Application Server-System Services\Debug event log is not shown in the event viewer. The WCF configuration appears fine the connection string to the Monitoring DB is correct. Monitoring is set to “Trouble Shooting” and no errors are shown on the “Configure WCF and WF for Application” dialog. So the problem seems to lie with either AppFabric which writes to the event log or the AppFabricEventCollection Service. I thought I was flummoxed... However one of my colleagues said have you checked the etwProviderId? I was using a config which was created under AppFabric  Beta 2 which had a different etwProviderId. So I deleted the following section and all other references to AppFabric monitoring from the web.config and then recreated them using IIS the “Configure WCF and WF for Application” dialog and set the level to TroubleShooting.         <diagnostics etwProviderId="6b44a7ff-9db4-4723-b8cf-1b584bf1591b">             <endToEndTracing propagateActivity="true" messageFlowTracing="true" />         </diagnostics>   I then called a service to create some log entries. Still nothing was written to the Monitoring DB Staging Table... I checked the Microsoft-Windows-Application Server-System Services\Admin event log. It had the following entry... Configuration error. Please see the details to correct the problem. \rDetailed information:\r Filename: \\?\C:\Users\xxx\Documents\dotnetdev\Frameworks\SOA\xxx.SOA.Framework\xxx.SOA.Framework.MockServices\SimpleServiceParent\web.config Error: Cannot read configuration file due to insufficient permissions    System.UnauthorizedAccessException: Filename: \\?\C:\Users\xxx\Documents\dotnetdev\Frameworks\SOA\xxx.SOA.Framework\IAG.SOA.Framework.MockServices\SimpleServiceParent\web.config Error: Cannot read configuration file due to insufficient permissions   And guess who the user was... Local Service yes yes I should have used a better User in the AppFabric RC setup to run the AppFabricEventCollection Service under! So I changed the user to a more appropriate one and removed Local Service as a DBO and hay presto!

    Read the article

  • BAM design pointers

    - by Kavitha Srinivasan
    In working recently with a large Oracle customer on SOA and BAM, I discovered that some BAM best practices are not quite well known as I had always assumed ! There is a doc bug out to formally incorporate those learnings but here are a few notes..  EMS-DO parity When using EMS (Enterprise Message Source) as a BAM feed, the best practice is to use one EMS to write to one Data Object. There is a possibility of collisions and duplicates when multiple EMS write to the same row of a DO at the same time. This customer had 17 EMS writing to one DO at the same time. Every sensor in their BPEL process writes to one topic but the Topic was read by 1 EMS corresponding to one sensor. They then used XSL within BAM to transform the payload into the BAM DO format. And hence for a given BPEL instance, 17 sensors fired, populated 1 JMS topic, was consumed by 17 EMS which in turn wrote to 1 DataObject.(You can image what would happen for later versions of the application that needs to send more information to BAM !).  We modified their design to use one Master XSL based on sensorname for all sensors relating to a DO- say Data Object 'Orders' and were able to thus reduce the 17 EMS to 1 with a master XSL. For those of you wondering about how squeaky clean this design is, you are right ! This is indeed not squeaky clean and that brings us to yet another 'inferred' best practice. (I try very hard not to state the obvious in my blogs with the hope that everytime I blog, it is very useful but this one is an exception.) Transformations and Calculations It is optimal to do transformations within an engine like BPEL. Not only does this provide modelling ease with a nice GUI XSL mapper in JDeveloper, the XSL engine in BPEL is quite efficient at runtime as well. And so, doing XSL transformations in BAM is not quite prudent.  The same is true for any non-trivial calculations as well. It is best to do all transformations,calcuations and sanitize the data in a BPEL or like layer and then send this to BAM (via JMS, WS etc.) This then delegates simply the function of report rendering and mechanics of real-time reporting to the Oracle BAM reporting tool which it is most suited to do. All nulls are not created equal Here is yet another possibly known fact but reiterated here. For an EMS with an Upsert operation: a) If Empty tags or tags with no value are sent like <Tag1/> or <Tag1></Tag1>, the DO will be overwritten with --null-- b) If Empty tags are suppressed ie not generated at all, the corresponding DO field will NOT be overwritten. The field will have whatever value existed previously.  For an EMS with an Insert operation, both tags with an empty value and no tags result in –null-- being written to the DO. Hope this helps .. Happy 4th!

    Read the article

  • VS.NET 2010 SP1, Win 7, Parallels, and a MBP&ndash;Hell, my friends&hellip;HELL!

    - by D'Arcy Lussier
    LightSwitch Beta 2 is out. That’s how all this started. All I wanted was to install it on my MBP’s Win7 Parallels VM. But as I’m finding with running a Win7 VM on a MBP, nothing is as easy as it should be. First my MBP froze during the SP1 installation. Not my VM crashing, the entire machine freezing…no mouse, nothing. Had to do a hard reset. BLECH. Then we’re back and I try to re-install SP1 (since the first try obviously failed). I get met with a dialog asking me where silverlight_sdk.msi was. It was *nowhere*! So I hit the net and download it from Microsoft’s site. Unfortunately, it only downloads an exe and not the individual files which would include the msi. Here’s what I did: - Download the tools for Silverlight 4 (http://www.microsoft.com/downloads/en/details.aspx?FamilyID=b3deb194-ca86-4fb6-a716-b67c2604a139&displaylang=en) - Run it, but don’t hit the install or next button when the dialog comes up - Look in your file structure for a folder with a weird name…bunch of numbers and letters. This is a temp folder that the exe creates and dumps all the necessary setup files into, and clears away after its done. - Inside this folder you’ll find the silverlight_sdk.msi (hooray!). Just copy it to a different location on the C drive. You can then cancel installation. Ok, so that takes care of that…but then running the SP1 installer I get hit with *another* dialog asking for the WCF RIA Services SP1 msi. Now it looks like this MSI is part of the Silverlight Tools package because you’ll see the MSI, but the VS.NET 2010 SP1 installer will thumb its nose at this unworthy msi…for whatever reason. So instead, go here: http://www.silverlight.net/getstarted/riaservices/ …and click on the “Install WCF Ria Services Sp1…” option. This downloads the msi, which you should save to your C drive and direct the VS.NET 2010 SP1 installer to. Then, if you’ve done all that, been good all year, and not made any little children cry, you *might* just be able to install VS.NET 2010 SP1 on your Parallels VM. If you were playing that “Take a shot every time he writes VS.NET 2010 Sp1” drinking game, then you’re drunk…which is a better place to be than where I am right now: watching the installation progress bar slowly creep to completion, hoping there’s no more surprises in store. D

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • Silverlight Cream for May 25, 2010 - 2 -- #870

    - by Dave Campbell
    In this Issue: Kirupa, Matthias Shapiro(-2-, -3-), Giorgetti Alessandro, Kunal Chowdhury, Mike Snow, and Jason Zander. Shoutout: This looks like a really nice WP7 app done by a team of folks for Imagine Cup 2010: Ahead ... I hope to see some blog posts and code on this! From SilverlightCream.com, and remember you can send me a link to your post or submit at SilverlightCream.com: Control Storyboards Easily using Behaviors Kirupa is following through on a promise to discuss the Behaviors that come on-board Blend. He's starting with two to help deal with Storyboards: ControlStoryboardAction and the StoryboardCompletedTrigger. PHP, MySQL and Silverlight: The Complete Tutorial (Part 1) Matthias Shapiro has a 3-parter up on PHP, MySQL, and Silverlight -- wondered how I missed this first one until I realized they all posted in 2 days... this first post sets up the MySQL database to be used. PHP, MySQL, and Silverlight: The Complete Tutorial (Part 2) In part 2, Matthias Shapiro writes a PHP web service that grabs the data from the database and sends it in JSON format to the Silverlight app (see part 3). PHP, MySQL, and Silverlight: The Complete Tutorial (Part 3) Matthias Shapiro's part 3 is the Silverlight part that reads the JSON produced by the PHP webservice from Part 2, to provide display and edits of the data... and this whole series includes source. Silverlight: adding an IsEditing property to the DataForm Giorgetti Alessandro laments the lack of an IsEditing property in the DataForm, then goes on to demonstrate his path to a suitable workaround. Step-by-Step Command Binding in Silverlight 4 Kunal Chowdhury has a nicely-detailed post on Command Binding in Silverlight 4 and builds up a demo MVVM app in the process... source project included. Silverlight Tip of the Day #24 – Resolving Unknown Objects in VS I'm not sure I would call Mike Snow's latest Silverlight Tip 'Silverlight' ... but if you don't know it, you need to. Sample: Windows Phone 7 Example Application with Landscape Layout Whoa... check out the WP7 app Jason Zander did with landscape mode defined... you're going to want to refer back to this one... Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Inverted schedctl usage in the JVM

    - by Dave
    The schedctl facility in Solaris allows a thread to request that the kernel defer involuntary preemption for a brief period. The mechanism is strictly advisory - the kernel can opt to ignore the request. Schedctl is typically used to bracket lock critical sections. That, in turn, can avoid convoying -- threads piling up on a critical section behind a preempted lock-holder -- and other lock-related performance pathologies. If you're interested see the man pages for schedctl_start() and schedctl_stop() and the schedctl.h include file. The implementation is very efficient. schedctl_start(), which asks that preemption be deferred, simply stores into a thread-specific structure -- the schedctl block -- that the kernel maps into user-space. Similarly, schedctl_stop() clears the flag set by schedctl_stop() and then checks a "preemption pending" flag in the block. Normally, this will be false, but if set schedctl_stop() will yield to politely grant the CPU to other threads. Note that you can't abuse this facility for long-term preemption avoidance as the deferral is brief. If your thread exceeds the grace period the kernel will preempt it and transiently degrade its effective scheduling priority. Further reading : US05937187 and various papers by Andy Tucker. We'll now switch topics to the implementation of the "synchronized" locking construct in the HotSpot JVM. If a lock is contended then on multiprocessor systems we'll spin briefly to try to avoid context switching. Context switching is wasted work and inflicts various cache and TLB penalties on the threads involved. If context switching were "free" then we'd never spin to avoid switching, but that's not the case. We use an adaptive spin-then-park strategy. One potentially undesirable outcome is that we can be preempted while spinning. When our spinning thread is finally rescheduled the lock may or may not be available. If not, we'll spin and then potentially park (block) again, thus suffering a 2nd context switch. Recall that the reason we spin is to avoid context switching. To avoid this scenario I've found it useful to enable schedctl to request deferral while spinning. But while spinning I've arranged for the code to periodically check or poll the "preemption pending" flag. If that's found set we simply abandon our spinning attempt and park immediately. This avoids the double context-switch scenario above. One annoyance is that the schedctl blocks for the threads in a given process are tightly packed on special pages mapped from kernel space into user-land. As such, writes to the schedctl blocks can cause false sharing on other adjacent blocks. Hopefully the kernel folks will make changes to avoid this by padding and aligning the blocks to ensure that one cache line underlies at most one schedctl block at any one time.

    Read the article

  • Can a Printer Print White?

    - by Jason Fitzpatrick
    The vast majority of the time we all print on white media: white paper, white cardstock, and other neutral white surfaces. But what about printing white? Can modern printers print white and if not, why not? Read on as we explore color theory, printer design choices, and why white is the foundation of the printing process. Today’s Question & Answer session comes to us courtesy of SuperUser—a subdivision of Stack Exchange, a community-driven grouping of Q&A web sites. Image by Coiote O.; available as wallpaper here. The Question SuperUser reader Curious_Kid is well, curious, about printers. He writes: I was reading about different color models, when this question hit my mind. Can the CMYK color model generate white color? Printers use CMYK color mode. What will happen if I try to print a white colored image (rabbit) on a black paper with my printer? Will I get any image on the paper? Does the CMYK color model have room for white? The Answer SuperUser contributor Darth Android offers some insight into the CMYK process: You will not get anything on the paper with a basic CMYK inkjet or laser printer. The CMYK color mixing is subtractive, meaning that it requires the base that is being colored to have all colors (i.e., White) So that it can create color variation through subtraction: White - Cyan - Yellow = Green White - Yellow - Magenta = Red White - Cyan - Magenta = Blue White is represented as 0 cyan, 0 yellow, 0 magenta, and 0 black – effectively, 0 ink for a printer that simply has those four cartridges. This works great when you have white media, as “printing no ink” simply leaves the white exposed, but as you can imagine, this doesn’t work for non-white media. If you don’t have a base color to subtract from (i.e., Black), then it doesn’t matter what you subtract from it, you still have the color Black. [But], as others are pointing out, there are special printers which can operate in the CMYW color space, or otherwise have a white ink or toner. These can be used to print light colors on top of dark or otherwise non-white media. You might also find my answer to a different question about color spaces helpful or informative. Given that the majority of printer media in the world is white and printing pure white on non-white colors is a specialty process, it’s no surprise that home and (most) commercial printers alike have no provision for it. Have something to add to the explanation? Sound off in the the comments. Want to read more answers from other tech-savvy Stack Exchange users? Check out the full discussion thread here.     

    Read the article

  • Database design and performance impact

    - by Craige
    I have a database design issue that I'm not quite sure how to approach, nor if the benefits out weigh the costs. I'm hoping some P.SE members can give some feedback on my suggested design, as well as any similar experiences they may have came across. As it goes, I am building an application that has large reporting demands. Speed is an important issue, as there will be peak usages throughout the year. This application/database has a multiple-level, many-to-many relationship. eg object a object b object c object d object b has relationship to object a object c has relationship to object b, a object d has relationship to object c, b, a Theoretically, this could go on for unlimited levels, though logic dictates it could only go so far. My idea here, to speed up reporting, would be to create a syndicate table that acts as a global many-to-many join table. In this table (with the given example), one might see: +----------+-----------+---------+ | child_id | parent_id | type_id | +----------+-----------+---------+ | b | a | 1 | | c | b | 2 | | c | a | 3 | | d | c | 4 | | d | b | 5 | | d | a | 6 | +----------+-----------+---------+ Where a, b, c and d would translate to their respective ID's in their respective tables. So, for ease of reporting all of a which exist on object d, one could query SELECT * FROM `syndicates` ... JOINS TO child and parent tables ... WHERE parent_id=a and type_id=6; rather than having a query with a join to each level up the chain. The Problem This table grows exponentially, and in a given year, could easily grow past 20,000 records for one client. Given multiple clients over multiple years, this table will VERY quickly explode to millions of records and beyond. Now, the database will, in time, be partitioned across multiple servers, but I would like (as most would) to keep the number of servers as low as possible while still offering flexibility. Also writes and updates would be exponentially longer (though possibly not noticeable to the end user) as there would be multiple inserts/updates/scans on this table to keep it in sync. Am I going in the right direction here, or am I way off track. What would you do in a similar situation? This solution seems overly complex, but allows the greatest flexibility and fastest read-operations. Sidenote 1 - This structure allows me to add new levels to the tree easily. Sidenote 2 - The database querying for this database is done through an ORM framework.

    Read the article

  • Good approach for hundreds of comsumers and big files

    - by ????? ???????
    I have several files (nearly 1GB each) with data. Data is a string line. I need to process each of these files with several hundreds of consumers. Each of these consumers does some processing that differs from others. Consumers do not write anywhere concurrently. They only need input string. After processing they update their local buffers. Consumers can easily be executed in parallel. Important: With one specific file each consumer has to process all lines (without skipping) in correct order (as they appear in file). The order of processing different files doesn't matter. Processing of a single line by one consumer is comparably fast. I expect less than 50 microseconds on Corei5. So now I'm looking for the good approach to this problem. This is going to be be a part of a .NET project, so please let's stick with .NET only (C# is preferable). I know about TPL and DataFlow. I guess that the most relevant would be BroadcastBlock. But i think that the problem here is that with each line I'll have to wait for all consumers to finish in order to post the new one. I guess that it would be not very efficient. I think that ideally situation would be something like this: One thread reads from file and writes to the buffer. Each consumer, when it is ready, reads the line from the buffer concurrently and processes it. The entry from the buffer shouldn't be deleted as one consumer reads it. It can be deleted only when all consumers have processed it. TPL schedules consumer threads itself. If one consumer outperforms the others, it shouldn't wait and can read more recent entries from the buffer. Am i right with this kind of approach? Whether yes or not, how can i implement the good solution? A bit was already discussed on StackOverflow: link

    Read the article

  • Au revoir, Python?

    - by GuySmiley
    I'm an ex-C++ programmer who's recently discovered (and fallen head-over-heels with) Python. I've taken some time to become reasonably fluent in Python, but I've encountered some troubling realities that may lead me to drop it as my language of choice, at least for the time being. I'm writing this in the hopes that someone out there can talk me out of it by convincing me that my concerns are easily circumvented within the bounds of the python universe. I picked up python while looking for a single flexible language that will allow me to build end-to-end working systems quickly on a variety of platforms. These include: - web services - mobile apps - cross-platform client apps for PC Development speed is more of a priority at the time-being than execution speed. However, in order to improve performance over time without requiring major re-writes or architectural changes I think it's imperative to be able to interface easily with Java. That way, I can use Java to optimize specific components as the application scales, without throwing away any code. As far as I can tell, my requirement for an enterprise-capable, platform-independent, fast language with a large developer base means it would have to be Java. .NET or C++ would not cut it due to their respective limitations. Also Java is clearly de rigeur for most mobile platforms. Unfortunately, tragically, there doesn't seem to be a good way to meet all these demands. Jython seems to be what I'm looking for in principle, except that it appears to be practically dead, with no one developing, supporting, or using it to any great degree. And also Jython seems too married to the Java libraries, as you can't use many of the CPython standard libraries with it, which has a major impact on the code you end up writing. The only other option that I can see is to use JPype wrapped in marshalling classes, which may work although it seems like a pain and I wonder if it would be worth it in the long run. On the other hand, everything I'm looking for seems to be readily available by using JRuby, which seems to be much better supported. As things stand, I think this is my best option. I'm sad about this because I absolutely love everything about Python, including the syntax. The perl-like constructs in Ruby just feel like such a step backwards to me in terms of readability, but at the end of the day most of the benefits of python are available in Ruby as well. So I ask you - am I missing something here? Much of what I've said is based on what I've read, so is this summary of the current landscape accurate, or is there some magical solution to the Python-Java divide that will snuff these concerns and allow me to comfortably stay in my happy Python place?

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Advice on designing a robust program to handle a large library of meta-information & programs

    - by Sam Bryant
    So this might be overly vague, but here it is anyway I'm not really looking for a specific answer, but rather general design principles or direction towards resources that deal with problems like this. It's one of my first large-scale applications, and I would like to do it right. Brief Explanation My basic problem is that I have to write an application that handles a large library of meta-data, can easily modify the meta-data on-the-fly, is robust with respect to crashing, and is very efficient. (Sorta like the design parameters of iTunes, although sometimes iTunes performs more poorly than I would like). If you don't want to read the details, you can skip the rest Long Explanation Specifically I am writing a program that creates a library of image files and meta-data about these files. There is a list of tags that may or may not apply to each image. The program needs to be able to add new images, new tags, assign tags to images, and detect duplicate images, all while operating. The program contains an image Viewer which has tagging operations. The idea is that if a given image A is viewed while the library has tags T1, T2, and T3, then that image will have boolean flags for each of those tags (depending on whether the user tagged that image while it was open in the Viewer). However, prior to being viewed in the Viewer, image A would have no value for tags T1, T2, and T3. Instead it would have a "dirty" flag indicating that it is unknown whether or not A has these tags or not. The program can introduce new tags at any time (which would automatically set all images to "dirty" with respect to this new tag) This program must be fast. It must be easily able to pull up a list of images with or without a certain tag as well as images which are "dirty" with respect to a tag. It has to be crash-safe, in that if it suddenly crashes, all of the tagging information done in that session is not lost (though perhaps it's okay to loose some of it) Finally, it has to work with a lot of images (10,000) I am a fairly experienced programmer, but I have never tried to write a program with such demanding needs and I have never worked with databases. With respect to the meta-data storage, there seem to be a few design choices: Choice 1: Invidual meta-data vs centralized meta-data Individual Meta-Data: have a separate meta-data file for each image. This way, as soon as you change the meta-data for an image, it can be written to the hard disk, without having to rewrite the information for all of the other images. Centralized Meta-Data: Have a single file to hold the meta-data for every file. This would probably require meta-data writes in intervals as opposed to after every change. The benefit here is that you could keep a centralized list of all images with a given tag, ect, making the task of pulling up all images with a given tag very efficient

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Bad Data is Really the Monster

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Bad Data is really the monster – is an article written by Bikram Sinha who I borrowed the title and the inspiration for this blog. Sinha writes: “Bad or missing data makes application systems fail when they process order-level data. One of the key items in the supply-chain industry is the product (aka SKU). Therefore, it becomes the most important data element to tie up multiple merchandising processes including purchase order allocation, stock movement, shipping notifications, and inventory details… Bad data can cause huge operational failures and cost millions of dollars in terms of time, resources, and money to clean up and validate data across multiple participating systems. Yes bad data really is the monster, so what do we do about it? Close our eyes and hope it stays in the closet? We’ve tacked this problem for some years now at Oracle, and with our latest introduction of Oracle Enterprise Data Quality along with our integrated Oracle Master Data Management products provides a complete, best-in-class answer to the bad data monster. What’s unique about it? Oracle Enterprise Data Quality also combines powerful data profiling, cleansing, matching, and monitoring capabilities while offering unparalleled ease of use. What makes it unique is that it has dedicated capabilities to address the distinct challenges of both customer and product data quality – [different monsters have different needs of course!]. And the ability to profile data is just as important to identify and measure poor quality data and identify new rules and requirements. Included are semantic and pattern-based recognition to accurately parse and standardize data that is poorly structured. Finally all of the data quality components are integrated with Oracle Master Data Management, including Oracle Customer Hub and Oracle Product Hub, as well as Oracle Data Integrator Enterprise Edition and Oracle CRM. Want to learn more? On Tuesday Nov 15th, I invite you to listen to our webcast on Reduce ERP consolidation risks with Oracle Master Data Management I’ll be joined by our partner iGate Patni and be talking about one specific way to deal with the bad data monster specifically around ERP consolidation. Look forward to seeing you there!

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ArchBeat Link-o-Rama for December 6, 2012

    - by Bob Rhubart
    Above and Beyond with the A-Team Maybe it's the coffee… If you follow this blog you've probably noticed that I regularly feature posts from members of the Oracle Fusion Middleware Architecture team, otherwise known as the A-Team. One of those bloggers, someone identified only as "fip" who writes on the A-Team SOA blog, went above and beyond on Dec 4, publishing a total of four substantial technical posts in a single day, each one worth a look: Retrieve Performance Data from SOA Infrastructure Database Configure Oracle SOA JMSAdatper to Work with WLS JMS Topics How to Achieve OC4J RMI Load Balancing Using BPEL Performance Statistics to Diagnose Performance Bottlenecks Web Service Example - Part 3: Asynchronous | The Oracle ADF Mobile Blog Part 3 in this series from the Oracle ADF Mobile blog looks at "firing the web service asynchronously and then filling in the UI when it completes." Denis says, "This can be useful when you have data on the device in a local store and want to show that to the user while the application uses lazy loading from a web service to load more data." ADF Mobile - Implementing Reusable Mobile Architecture | Andrejus Baranovskis "Reusability was always a strong part of ADF," says Oracle ACE Director Andrejus Baranovskis. "The same high reusability level is supported now in ADF Mobile." The objective of this post is "to prove technically that [the] reusable architecture concept works for ADF Mobile." Basic is Best | Eric Stephens "The world we live in and enterprises we strive to transform with enterprise architecture are complicated organisms, much like the human body," says Oracle Enterprise Architect Eric Stephens. "But sometimes a simple solution is the best approach...Whatever level of abstraction you are working at, less is more." Selling Federal Enterprise Architecture | Ted McLaughlan "EA must be 'sold' directly to the communities that matter from a coordinated, proactive messaging perspective that takes BOTH the Program-level value drivers AND the broader Agency mission and IT maturity context into consideration, " explains Ted McLaughlan. And that's true for any organization. Avoiding the "I'm Spartacus" Scenario in SOA | Ben Wilcock "This ‘SOA Spartacus’ scenario usually occurs quite soon after SOA is articulated as the primary strategic direction of the programme," says Ben Wilcock, "but before the organisation’s SOA capability is mature enough to understand what is meant by SOA, and how it should be designed and delivered." In such cases, perhaps the "A" in SOA is missing, no? Thought for the Day "It makes me feel guilty that anybody should have such a good time doing what they are supposed to do." — Charles Eames (1907–1978) Source: SoftwareQuotes.com

    Read the article

  • SQL SERVER – BI Quiz Hint – Performance Tuning Cubes – Hints

    - by pinaldave
    I earlier wrote about SQL BI Quiz over here and here. The details of the quiz is here: Working with huge data is very common when it is about Data Warehousing. It is necessary to create Cubes on the data to make it meaningful and consumable. There are cases when retrieving the data from cube takes lots of the time. Let us assume that your cube is returning you data very quickly. Suddenly on one day it is returning the data very slowly. What are the three things will you to diagnose this. After diagnose what you will do to resolve performance issue. Participate in my question over here I required BI Expert Jason Thomas to help with few hints to blog readers. He is one of the leading SSAS expert and writes a complicated subject in simple words. If queries were executing properly before but now take a long time to return the data, it means that there has been a change in the environment in which it is running. Some possible changes are listed below:-  1) Data factors:- Compare the data size then and now. Increase in data can result in different execution times. Poorly written queries as well as poor design will not start showing issues till the data grows. How to find it out? (Ans : SQL Server profiler and Perfmon Counters can be used for identifying the issues and performance  tuning the MDX queries)  2) Internal Factors:- Is some slow MDX query / multiple mdx queries running at the same time, which was not running when you had tested it before? Is there any locking happening due to proactive caching or processing operations? Are the measure group caches being cleared by processing operations? (Ans : Again, profiler and perfmon counters will help in finding it out. Load testing can be done using AS Performance Workbench (http://asperfwb.codeplex.com/) by running multiple queries at once)  3) External factors:- Is some other application competing for the same resources?  HINT : Read “Identifying and Resolving MDX Query Performance Bottlenecks in SQL Server 2005 Analysis Services” (http://sqlcat.com/whitepapers/archive/2007/12/16/identifying-and-resolving-mdx-query-performance-bottlenecks-in-sql-server-2005-analysis-services.aspx) Well, these are great tips. Now win big prizes by participate in my question over here. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Play Your Position Until the Play Breaks Down&hellip;then Do Whatever it Takes.

    - by AjarnMark
    If I didn’t know better, I would think that K. Brian Kelley (blog | twitter) has been listening in on conversations with my boss. In his recent blog post Successful Teams: Knowing When to Step Out of Your Role, Brian describes quite clearly a philosophy that my boss has been trying to get across to everyone in the department.  We have been using sports analogies, like how important it is to play your position, until the play breaks down (such as a fumble) and then do whatever it takes it to cover each other / recover the ball / win.  While we like having very skilled people who could do a lot of different tasks, it is important that you first do your assigned tasks, and only once those are complete, or failure of the larger mission is probable, do you consider walking away from them to help someone else with their responsibilities. The thing that you cannot afford, especially on a lean team, is the really nice guy who is always trying to help out other people, but in doing so, is never quite getting his own responsibilities taken care of.  Yes, if the Running Back drops the football, you want any member of the team in the vicinity to jump on it, whether that is the leading blocker or the Quarterback.  But until the fumble happens, you want the leading blocker to focus on doing his job, and block for the Running Back.  If the blocker is doing any other job than his primary responsibility, you’re probably going to lose. This sounds logical enough, but it is really easy to go astray with the best of intentions.  This is especially true on a small, tight-knit team, where it is really easy to get sucked into someone else’s task or problem, doubly so if you think you can do it better or faster than them.  Now you are really setting yourself up for failure.  The right thing is to let the other person do the job, even if it seems less efficient in the short-run, so that you can focus on the tasks which require your expertise.  Don’t break formation…don’t abandon your assignment, until it is clear that mission failure is imminent, and even then, as Brian writes, it should be with the agreement of the mission leader. Thanks, Brian, for putting it so well.  This has been distributed throughout our department.

    Read the article

  • VirtualBox 4.2.14 is now available

    - by user12611829
    The VirtualBox development team has just released version 4.2.14, and it is now available for download. This is a maintenance release for version 4.2 and contains quite a few fixes. Here is the list from the official Changelog. VMM: another TLB invalidation fix for non-present pages VMM: fixed a performance regression (4.2.8 regression; bug #11674) GUI: fixed a crash on shutdown GUI: prevent stuck keys under certain conditions on Windows hosts (bugs #2613, #6171) VRDP: fixed a rare crash on the guest screen resize VRDP: allow to change VRDP parameters (including enabling/disabling the server) if the VM is paused USB: fixed passing through devices on Mac OS X host to a VM with 2 or more virtual CPUs (bug #7462) USB: fixed hang during isochronous transfer with certain devices (4.1 regression; Windows hosts only; bug #11839) USB: properly handle orphaned URBs (bug #11207) BIOS: fixed function for returning the PCI interrupt routing table (fixes NetWare 6.x guests) BIOS: don't use the ENTER / LEAVE instructions in the BIOS as these don't work in the real mode as set up by certain guests (e.g. Plan 9 and QNX 4) DMI: allow to configure DmiChassisType (bug #11832) Storage: fixed lost writes if iSCSI is used with snapshots and asynchronous I/O (bug #11479) Storage: fixed accessing certain VHDX images created by Windows 8 (bug #11502) Storage: fixed hang when creating a snapshot using Parallels disk images (bug #9617) 3D: seamless + 3D fixes (bug #11723) 3D: version 4.2.12 was not able to read saved states of older versions under certain conditions (bug #11718) Main/Properties: don't create a guest property for non-running VMs if the property does not exist and is about to be removed (bug #11765) Main/Properties: don't forget to make new guest properties persistent after the VM was terminated (bug #11719) Main/Display: don't lose seamless regions during screen resize Main/OVF: don't crash during import if the client forgot to call Appliance::interpret() (bug #10845) Main/OVF: don't create invalid appliances by stripping the file name if the VM name is very long (bug #11814) Main/OVF: don't fail if the appliance contains multiple file references (bug #10689) Main/Metrics: fixed Solaris file descriptor leak Settings: limit depth of snapshot tree to 250 levels, as more will lead to decreased performance and may trigger crashes VBoxManage: fixed setting the parent UUID on diff images using sethdparentuuid Linux hosts: work around for not crashing as a result of automatic NUMA balancing which was introduced in Linux 3.8 (bug #11610) Windows installer: force the installation of the public certificate in background (i.e. completely prevent user interaction) if the --silent command line option is specified Windows Additions: fixed problems with partial install in the unattended case Windows Additions: fixed display glitch with the Start button in seamless mode for some themes Windows Additions: Seamless mode and auto-resize fixes Windows Additions: fixed trying to to retrieve new auto-logon credentials if current ones were not processed yet Windows Additions installer: added the /with_wddm switch to select the experimental WDDM driver by default Linux Additions: fixed setting own timed out and aborted texts in information label of the lightdm greeter Linux Additions: fixed compilation against Linux 3.2.0 Ubuntu kernels (4.2.12 regression as a side effect of the Debian kernel build fix; bug #11709) X11 Additions: reduced the CPU load of VBoxClient in drag'and'drop mode OS/2 Additions: made the mouse wheel work (bug #6793) Guest Additions: fixed problems copying and pasting between two guests on an X11 host (bug #11792) The full changelog can be found here. You can download binaries for Solaris, Linux, Windows and MacOS hosts at http://www.virtualbox.org/wiki/Downloads Technocrati Tags: Oracle Virtualization VirtualBox

    Read the article

< Previous Page | 37 38 39 40 41 42 43 44 45 46 47 48  | Next Page >