Search Results

Search found 10383 results on 416 pages for 'exact match'.

Page 410/416 | < Previous Page | 406 407 408 409 410 411 412 413 414 415 416  | Next Page >

  • CentOS Client - Unable to Establish iSCSI connection with multiple interfaces on the initiator

    - by slashdot
    So after upgrading to CentOS 6.2, I am seemingly no longer able to login into my iSCSI targets. I have multiple interfaces on different subnets on the system, and I first thought that it had to do with the fact that I may not be binding correct interfaces, which seems to be the case when looking at netstat, as this is clearly wrong: [root]? netstat -na|grep .90 tcp 0 1 10.10.100.60:42354 10.10.8.90:3260 SYN_SENT tcp 0 1 10.10.100.60:40777 10.10.9.90:3260 SYN_SENT I then went ahead and disabled all but one interface, and so as a result netstat appears to be correct, but the issue with login remains. I am positive that the target never sees a packet, because I see nothing by SYN_SENT. I know the problem is on my client, because the target is servicing multiple systems, none of which are CentOS 6.2. At this point I am pretty confident that some things changed between CentOS 6.0/6.1 and 6.2. So, if anyone have any thoughts, or ran into this, I would very much like to hear your thoughts. [root]? iscsiadm --mode node --targetname iqn.2011-12.dom.homer:01:lab-centos-servers-00001 --portal 10.10.8.90:3260,2 --interface=sw-iscsi-0 --login Logging in to [iface: sw-iscsi-0, target: iqn.2011-12.dom.homer:01:lab-centos-servers-00001, portal: 10.10.8.90,3260] (multiple) iscsiadm: Could not login to [iface: sw-iscsi-0, target: iqn.2011-12.dom.homer:01:lab-centos-servers-00001, portal: 10.10.8.90,3260]. iscsiadm: initiator reported error (8 - connection timed out) iscsiadm: Could not log into all portals [root]? netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 10.10.8.0 0.0.0.0 255.255.255.0 U 0 0 0 eth2.7 10.10.9.0 0.0.0.0 255.255.255.0 U 0 0 0 eth3.7 10.10.100.0 0.0.0.0 255.255.252.0 U 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth1 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth2 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth3 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth2.7 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth3.7 0.0.0.0 10.10.100.1 0.0.0.0 UG 0 0 0 eth0 Output of ip addr show for the two interfaces involved: [root]? for i in 2.7 3.7; do ip addr show eth$i; done 6: eth2.7@eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP link/ether 00:0c:29:94:5b:8d brd ff:ff:ff:ff:ff:ff inet 10.10.8.60/24 brd 10.10.8.255 scope global eth2.7 inet6 fe80::20c:29ff:fe94:5b8d/64 scope link valid_lft forever preferred_lft forever 7: eth3.7@eth3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP link/ether 00:0c:29:94:5b:97 brd ff:ff:ff:ff:ff:ff inet 10.10.9.60/24 brd 10.10.9.255 scope global eth3.7 inet6 fe80::20c:29ff:fe94:5b97/64 scope link valid_lft forever preferred_lft forever Update 01/06/2012: This issue is getting even more interesting by the day it seems. I went a few weeks back and grabbed a snapshot of this system from before upgrading to 6.2. I spun up a new system from the snapshot, and reconfigured interface info and host keys, as well as iSCSI initiator and iscsi interface info to match new MACs. Changed nothing else. Then, I attempted to connect to my targets, and no issues at all. I cannot say that this was unexpected. I then went ahead and compared sysctl settings from both systems and there were differences after the upgrade, but nothing seemingly relevant to iSCSI or IP that could contribute to this. I also noticed that by default now two sessions per connection were enabled after the upgrade, but I changed it back to 1 session in /etc/iscsi/iscsid.conf. On the problematic system we can see that source interface is seemingly wrong, but even when I disable the 10.10.100 interface, problems persist. So, while this may be relevant, I could not validate it for certain. Needless to say, further research is necessary. Something is clearly different between releases. Working system is on 6.1, and non-working is 6.2. ::Working System:: tcp 0 0 10.10.8.210:39566 10.10.8.90:3260 ESTABLISHED tcp 0 0 10.10.9.210:46518 10.10.9.90:3260 ESTABLISHED [root]? ip route show 10.10.8.0/24 dev eth2.6 proto kernel scope link src 10.10.8.210 10.10.9.0/24 dev eth3.7 proto kernel scope link src 10.10.9.210 10.10.100.0/22 dev eth0 proto kernel scope link src 10.10.100.210 169.254.0.0/16 dev eth0 scope link metric 1002 169.254.0.0/16 dev eth2.6 scope link metric 1006 169.254.0.0/16 dev eth3.7 scope link metric 1007 default via 10.10.100.1 dev eth0 ::Non-working System:: tcp 0 1 10.10.100.60:44737 10.10.9.90:3260 SYN_SENT tcp 0 1 10.10.100.60:55479 10.10.8.90:3260 SYN_SENT [root]? ip route show 10.10.8.0/24 dev eth2.6 proto kernel scope link src 10.10.8.60 10.10.9.0/24 dev eth3.7 proto kernel scope link src 10.10.9.60 10.10.100.0/22 dev eth0 proto kernel scope link src 10.10.100.60 169.254.0.0/16 dev eth0 scope link metric 1002 169.254.0.0/16 dev eth2.6 scope link metric 1006 169.254.0.0/16 dev eth3.7 scope link metric 1007 default via 10.10.100.1 dev eth0 And the result is still same: [root]? iscsiadm: Could not login to [iface: sw-iscsi-0, target: iqn.2011-12.dom.homer:01:lab-centos-servers-00001, portal: 10.10.8.90,3260]. iscsiadm: initiator reported error (8 - connection timed out) iscsiadm: Could not login to [iface: sw-iscsi-1, target: iqn.2011-12.dom.homer:02:lab-centos-servers-00001, portal: 10.10.9.90,3260]. iscsiadm: initiator reported error (8 - connection timed out) iscsiadm: Could not log into all portals Update 01/08/2012: I believe I have been able to figure out the answer to my issue. It is quite obscure and I doubt this will happen to anyone else any time soon. It turns out that setting iface.iscsi_ifacename and iface.hwaddress in the interfaces configuration file is not legal. When one manually adds an iscsi target, such as below, all settings from the interface config file are copied into the node config file, that gets created by the below command. Result is parameters iface.iscsi_ifacename and iface.hwaddress together in the same config file. These parameters are seemingly mutually exclusive, which does not exactly make sense, or there is perhaps an oversight in the codepath. Perhaps I will investigate further. # iscsiadm -m node --op new -T iqn.2011-12.dom.homer:01:lab-centos-servers-00001 -p 10.10.8.90,3260,2 -I sw-iscsi-0 # iscsiadm -m node --op new -T iqn.2011-12.dom.homer:02:lab-centos-servers-00001 -p 10.10.9.90,3260,2 -I sw-iscsi-1 Notice, below I commented out iface.hwaddress and iface.ipaddress, after which I re-added targets, with same command as above. All works just fine. [root]? cat * # BEGIN RECORD 2.0-872.33.el6 iface.iscsi_ifacename = sw-iscsi-0 iface.net_ifacename = eth2.6 #iface.hwaddress = XX:XX:XX:XX:XX:XX #iface.ipaddress = 10.10.8.60 iface.transport_name = tcp iface.vlan_id = 6 iface.vlan_priority = 0 iface.iface_num = 0 iface.mtu = 0 iface.port = 0 # END RECORD # BEGIN RECORD 2.0-872.33.el6 iface.iscsi_ifacename = sw-iscsi-1 iface.net_ifacename = eth3.7 #iface.hwaddress = XX:XX:XX:XX:XX:XX #iface.ipaddress = 10.10.9.60 iface.transport_name = tcp iface.vlan_id = 7 iface.vlan_priority = 0 iface.iface_num = 0 iface.mtu = 0 iface.port = 0 # END RECORD Again, chances of this happening to someone else are slim to none, so likely waste of time typing this up. But, if someone does encounter this issue, I hope this post will help.

    Read the article

  • Why did my flash drive become "read only" and (how) can I fix it?

    - by Bob
    I have a brand new flash drive (one week old) that has become marked as read only, by Windows, Kubuntu and a bootable partitioner. Why did this happen? Is it fixable? If it is, how can I fix this? The problem Firstly, this drive is new. It's certainly not been used enough to die from normal wear and tear, though I would not discount defective components. The drive itself has somehow become locked in a read only state. Windows' Disk management: Diskpart: Generic Flash Disk USB Device Disk ID: 33FA33FA Type : USB Status : Online Path : 0 Target : 0 LUN ID : 0 Location Path : UNAVAILABLE Current Read-only State : Yes Read-only : No Boot Disk : No Pagefile Disk : No Hibernation File Disk : No Crashdump Disk : No Clustered Disk : No What really confuses me is Current Read-only State : Yes and Read-only : No. Attempted solutions So far, I've tried: Formatting it in Windows (in Disk management, the format options are greyed out when right clicking). DiskPart Clean (CLEAN - Clear the configuration information, or all information, off the disk.): DISKPART> clean DiskPart has encountered an error: The media is write protected. See the System Event Log for more information. There was nothing in the event log. Windows command line format >format G: Insert new disk for drive G: and press ENTER when ready... The type of the file system is FAT32. Verifying 7740M Cannot format. This volume is write protected. Windows chkdsk: see below for details Kubuntu fsck (through VirtualBox USB passthrough): see below for details Acronis True Image to format, to convert to GPT, to destroy and rebuild MBR, basically anything: failed (could not write to MBR) Details (and a nice story) Background This was a brand new, generic, 8GB flash drive I wanted to create a multiboot flash drive with. It came formatted as FAT32, though oddly a little larger than most 8 GIGAbyte flash drives I've come across. Approximately 127MB was listed as "used" by Windows. I never discovered why. The end usable space was about what I normally expect from a 8GB drive (approx 7.4 GIBIbytes). I had thrown quite a few Linux distros on, along with a copy of Hiren's. They would all boot perfectly. They were put on with YUMI. When I tried to put the Knoppix DVD on, YUMI added an odd video option to its boot comman which caused Knoppix to boot with a black screen on X. ttys 1 through 6 still worked as text only interfaces. A few days later, I took some time to take that odd video option off, making the boot command match the one that comes with Knoppix. On the attempt to boot, Knoppix reported some form of LZMA corruption. Leading up to the current issue I was thinking the Knoppix files may have been corrupted somehow, so I tried reloading it. The drive was nearly full (45MB free), so I deleted a generic ISO that also was not booting. That went fine. I then went through YUMI to 'uninstall' Knoppix, i.e. delete files and remove from the menus. The files went first, then the menus were cleared successfully. However, the free space was stuck at about 700MB, same as it was before removing Knoppix. In the old Knoppix folder, there was a 0 byte file named KNOPPIX that could not be deleted. I tried reinserting the drive to delete this file - without safely removing, if that made a difference (hey, first time for everything). Running the standard Windows chkdsk scan without /r or /f reported errors found. Running with /r just got it stuck. I decided to give fsck a shot, so I loaded up my Kubuntu VM and attached the drive to it with VirtualBox's USB 2.0 passthrough. I umounted it (/dev/sda1) and ran a fsck. There are differences between boot sector and its backup. I chose No action. It told me FATs differ and asked me to select either the first or second FAT. Whichever I selected, I got a notice of Free cluster summary wrong. If I chose Correct, it gave a list of incorrect file names. To try to fix something, at least, I ran it with the -p option. Halfway through fixing the files, the VM froze - I ended its process about ten minutes later. Cause? My next attempt was to use YUMI, again, to rebuild the whole drive. I used YUMI's built in reformat (to FAT32) option and installed a Kubuntu ISO (700MB). The format was successful, however, the extract and copy of Kubuntu (which YUMI uses a 7zip binary for) froze at about 60% done. After waiting for about fifteen minutes (longer than the 3.5GB Knoppix ISO took last time), I pulled the drive out. The drive at this point was already formatted, SYSLINUX already installed, just waiting on the unpacking of an ISO and the modifying of the boot menus. Plugging it back in, it came up as normal - however, any write action would fail. Disk management reported it as read only. On reconnect, it would come up as normal but a write operation would cause it to go read only again. After a few attempts, it started coming up as read only on insertion. Attempts to fix This is when I ran through the attempts listed above, to try and reformat it in case of a faulty format. However the inability to do so even on a bootable disk indicated something more serious is wrong. chkdsk now reports nothing is wrong, and fsck still reports MBR inconsistencies, but now always chooses first FAT automatically after telling me FATs differ. It still does the same Free cluster summary wrong afterwards. I cannot run with -p anymore because it is now marked as read only. It also managed to corrupt my VM's disk somehow on the first attempt (yes, I'm sure I chose sda, which is mapped to a 7.4GB drive - I triple checked). Thank god for snapshots? I'm just about out of ideas. To my inexperienced mind it looks like something in the drive's firmware set it to read only "permanently" somehow - is there any way to reset this? I don't particularly care about keeping data, considering I've reformatted it twice. Also, fixes that keep me in Windows are better; it reduces the risk of me accidentally nuking my main hard drive. Update 1: I pulled apart the drive out of curiosity. As you can see, there are no obvious write protect switches. There is an IC on the other side, ALCOR branded labelled AU6989HL, if that matters. If there appears to be no way to fix this, I'll probably pull out the (glued down) card and put it in a card reader to check if it's the card or the controller that died. Update 2: I've pulled the card off, Windows detects the drive as a card reader now. The contacts on the card don't appear to be used, and there are several rows of holes on the card itself. Putting it into the card reader only detects about 30MB total, RAW. It's probably either the reader incorrectly reporting the card as faulty (as if a real SD card's write protect was switched on) or a bad contact somewhere. If nothing else, I have a spare 8GB Micro SD card now... as soon as I figure out how to format it as 8GB.

    Read the article

  • PPTP ping client to client error

    - by Linux Intel
    I installed pptp server on a centos 6 64bit server PPTP Server ip : 55.66.77.10 PPTP Local ip : 10.0.0.1 Client1 IP : 10.0.0.60 centos 5 64bit Client2 IP : 10.0.0.61 centos5 64bit PPTP Server can ping Client1 And client 1 can ping PPTP Server PPTP Server can ping Client2 And client 2 can ping PPTP Server The problem is client 1 can not ping Client 2 route -n on PPTP Server Destination Gateway Genmask Flags Metric Ref Use Iface 10.0.0.60 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0 10.0.0.61 0.0.0.0 255.255.255.255 UH 0 0 0 ppp1 55.66.77.10 0.0.0.0 255.255.255.248 U 0 0 0 eth0 10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth0 0.0.0.0 55.66.77.19 0.0.0.0 UG 0 0 0 eth0 route -n On Client 1 Destination Gateway Genmask Flags Metric Ref Use Iface 10.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0 55.66.77.10 70.14.13.19 255.255.255.255 UGH 0 0 0 eth0 10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth1 0.0.0.0 70.14.13.19 0.0.0.0 UG 0 0 0 eth0 route -n On Client 2 Destination Gateway Genmask Flags Metric Ref Use Iface 10.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 ppp0 55.66.77.10 84.56.120.60 255.255.255.255 UGH 0 0 0 eth1 10.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 eth0 0.0.0.0 84.56.120.60 0.0.0.0 UG 0 0 0 eth1 cat /etc/ppp/options.pptpd on PPTP server ############################################################################### # $Id: options.pptpd,v 1.11 2005/12/29 01:21:09 quozl Exp $ # # Sample Poptop PPP options file /etc/ppp/options.pptpd # Options used by PPP when a connection arrives from a client. # This file is pointed to by /etc/pptpd.conf option keyword. # Changes are effective on the next connection. See "man pppd". # # You are expected to change this file to suit your system. As # packaged, it requires PPP 2.4.2 and the kernel MPPE module. ############################################################################### # Authentication # Name of the local system for authentication purposes # (must match the second field in /etc/ppp/chap-secrets entries) name pptpd # Strip the domain prefix from the username before authentication. # (applies if you use pppd with chapms-strip-domain patch) #chapms-strip-domain # Encryption # (There have been multiple versions of PPP with encryption support, # choose with of the following sections you will use.) # BSD licensed ppp-2.4.2 upstream with MPPE only, kernel module ppp_mppe.o # {{{ refuse-pap refuse-chap refuse-mschap # Require the peer to authenticate itself using MS-CHAPv2 [Microsoft # Challenge Handshake Authentication Protocol, Version 2] authentication. require-mschap-v2 # Require MPPE 128-bit encryption # (note that MPPE requires the use of MSCHAP-V2 during authentication) require-mppe-128 # }}} # OpenSSL licensed ppp-2.4.1 fork with MPPE only, kernel module mppe.o # {{{ #-chap #-chapms # Require the peer to authenticate itself using MS-CHAPv2 [Microsoft # Challenge Handshake Authentication Protocol, Version 2] authentication. #+chapms-v2 # Require MPPE encryption # (note that MPPE requires the use of MSCHAP-V2 during authentication) #mppe-40 # enable either 40-bit or 128-bit, not both #mppe-128 #mppe-stateless # }}} # Network and Routing # If pppd is acting as a server for Microsoft Windows clients, this # option allows pppd to supply one or two DNS (Domain Name Server) # addresses to the clients. The first instance of this option # specifies the primary DNS address; the second instance (if given) # specifies the secondary DNS address. #ms-dns 10.0.0.1 #ms-dns 10.0.0.2 # If pppd is acting as a server for Microsoft Windows or "Samba" # clients, this option allows pppd to supply one or two WINS (Windows # Internet Name Services) server addresses to the clients. The first # instance of this option specifies the primary WINS address; the # second instance (if given) specifies the secondary WINS address. #ms-wins 10.0.0.3 #ms-wins 10.0.0.4 # Add an entry to this system's ARP [Address Resolution Protocol] # table with the IP address of the peer and the Ethernet address of this # system. This will have the effect of making the peer appear to other # systems to be on the local ethernet. # (you do not need this if your PPTP server is responsible for routing # packets to the clients -- James Cameron) proxyarp # Normally pptpd passes the IP address to pppd, but if pptpd has been # given the delegate option in pptpd.conf or the --delegate command line # option, then pppd will use chap-secrets or radius to allocate the # client IP address. The default local IP address used at the server # end is often the same as the address of the server. To override this, # specify the local IP address here. # (you must not use this unless you have used the delegate option) #10.8.0.100 # Logging # Enable connection debugging facilities. # (see your syslog configuration for where pppd sends to) debug # Print out all the option values which have been set. # (often requested by mailing list to verify options) #dump # Miscellaneous # Create a UUCP-style lock file for the pseudo-tty to ensure exclusive # access. lock # Disable BSD-Compress compression nobsdcomp # Disable Van Jacobson compression # (needed on some networks with Windows 9x/ME/XP clients, see posting to # poptop-server on 14th April 2005 by Pawel Pokrywka and followups, # http://marc.theaimsgroup.com/?t=111343175400006&r=1&w=2 ) novj novjccomp # turn off logging to stderr, since this may be redirected to pptpd, # which may trigger a loopback nologfd # put plugins here # (putting them higher up may cause them to sent messages to the pty) cat /etc/ppp/options.pptp on Client1 and Client2 ############################################################################### # $Id: options.pptp,v 1.3 2006/03/26 23:11:05 quozl Exp $ # # Sample PPTP PPP options file /etc/ppp/options.pptp # Options used by PPP when a connection is made by a PPTP client. # This file can be referred to by an /etc/ppp/peers file for the tunnel. # Changes are effective on the next connection. See "man pppd". # # You are expected to change this file to suit your system. As # packaged, it requires PPP 2.4.2 or later from http://ppp.samba.org/ # and the kernel MPPE module available from the CVS repository also on # http://ppp.samba.org/, which is packaged for DKMS as kernel_ppp_mppe. ############################################################################### # Lock the port lock # Authentication # We don't need the tunnel server to authenticate itself noauth # We won't do PAP, EAP, CHAP, or MSCHAP, but we will accept MSCHAP-V2 # (you may need to remove these refusals if the server is not using MPPE) refuse-pap refuse-eap refuse-chap refuse-mschap # Compression # Turn off compression protocols we know won't be used nobsdcomp nodeflate # Encryption # (There have been multiple versions of PPP with encryption support, # choose which of the following sections you will use. Note that MPPE # requires the use of MSCHAP-V2 during authentication) # # Note that using PPTP with MPPE and MSCHAP-V2 should be considered # insecure: # http://marc.info/?l=pptpclient-devel&m=134372640219039&w=2 # https://github.com/moxie0/chapcrack/blob/master/README.md # http://technet.microsoft.com/en-us/security/advisory/2743314 # http://ppp.samba.org/ the PPP project version of PPP by Paul Mackarras # ppp-2.4.2 or later with MPPE only, kernel module ppp_mppe.o # If the kernel is booted in FIPS mode (fips=1), the ppp_mppe.ko module # is not allowed and PPTP-MPPE is not available. # {{{ # Require MPPE 128-bit encryption #require-mppe-128 # }}} # http://mppe-mppc.alphacron.de/ fork from PPP project by Jan Dubiec # ppp-2.4.2 or later with MPPE and MPPC, kernel module ppp_mppe_mppc.o # {{{ # Require MPPE 128-bit encryption #mppe required,stateless # }}} IPtables are stopped on clients and server, Also net.ipv4.ip_forward = 1 is enabled on PPTP Server. How can i solve this problem .?

    Read the article

  • Fibre channel long distance woes

    - by Marki
    I need a fresh pair of eyes. We're using a 15km fibre optic line across which fibrechannel and 10GbE is multiplexed (passive optical CWDM). For FC we have long distance lasers suitable up to 40km (Skylane SFCxx0404F0D). The multiplexer is limited by the SFPs which can do max. 4Gb fibrechannel. The FC switch is a Brocade 5000 series. The respective wavelengths are 1550,1570,1590 and 1610nm for FC and 1530nm for 10GbE. The problem is the 4GbFC fabrics are almost never clean. Sometimes they are for a while even with a lot of traffic on them. Then they may suddenly start producing errors (RX CRC, RX encoding, RX disparity, ...) even with only marginal traffic on them. I am attaching some error and traffic graphs. Errors are currently in the order of 50-100 errors per 5 minutes when with 1Gb/s traffic. Optics Here is the power output of one port summarized (collected using sfpshow on different switches) SITE-A units=uW (microwatt) SITE-B ********************************************** FAB1 SW1 TX 1234.3 RX 49.1 SW3 1550nm (ko) RX 95.2 TX 1175.6 FAB2 SW2 TX 1422.0 RX 104.6 SW4 1610nm (ok) RX 54.3 TX 1468.4 What I find curious at this point is the asymmetry in the power levels. While SW2 transmits with 1422uW which SW4 receives with 104uW, SW2 only receives the SW4 signal with similar original power only with 54uW. Vice versa for SW1-3. Anyway the SFPs have RX sensitivity down to -18dBm (ca. 20uW) so in any case it should be fine... But nothing is. Some SFPs have been diagnosed as malfunctioning by the manufacturer (the 1550nm ones shown above with "ko"). The 1610nm ones apparently are ok, they have been tested using a traffic generator. The leased line has also been tested more than once. All is within tolerances. I'm awaiting the replacements but for some reason I don't believe it will make things better as the apparently good ones don't produce ZERO errors either. Earlier there was active equipment involved (some kind of 4GFC retimer) before putting the signal on the line. No idea why. That equipment was eliminated because of the problems so we now only have: the long distance laser in the switch, (new) 10m LC-SC monomode cable to the mux (for each fabric), the leased line, the same thing but reversed on the other side of the link. FC switches Here is a port config from the Brocade portcfgshow (it's like that on both sides, obviously) Area Number: 0 Speed Level: 4G Fill Word(On Active) 0(Idle-Idle) Fill Word(Current) 0(Idle-Idle) AL_PA Offset 13: OFF Trunk Port ON Long Distance LS VC Link Init OFF Desired Distance 32 Km Reserved Buffers 70 Locked L_Port OFF Locked G_Port OFF Disabled E_Port OFF Locked E_Port OFF ISL R_RDY Mode OFF RSCN Suppressed OFF Persistent Disable OFF LOS TOV enable OFF NPIV capability ON QOS E_Port OFF Port Auto Disable: OFF Rate Limit OFF EX Port OFF Mirror Port OFF Credit Recovery ON F_Port Buffers OFF Fault Delay: 0(R_A_TOV) NPIV PP Limit: 126 CSCTL mode: OFF Forcing the links to 2GbFC produces no errors, but we bought 4GbFC and we want 4GbFC. I don't know where to look anymore. Any ideas what to try next or how to proceed? If we can't make 4GbFC work reliably I wonder what the people working with 8 or 16 do... I don't assume that "a few errors here and there" are acceptable. Oh and BTW we are in contact with everyone of the manufacturers (FC switch, MUX, SFPs, ...) Except for the SFPs to be changed (some have been changed before) nobody has a clue. Brocade SAN Health says the fabric is ok. MUX, well, it's passive, it's only a prism, nature at it's best. Any shots in the dark? APPENDIX: Answers to your questions @Chopper3: This is the second generation of Brocades exhibiting the problem. Before we had 5000s, now we have 5100s. In the beginning when we still had the active MUX we rented a longdistance laser once to put it into the switch directly in order to make tests for a day, during that day of course it was clean. But as I said, sometimes it's clean just like that. And sometimes it's not. Alternative switches would mean to rebuild the entire SAN with those only to test. Alternative SFPs, well they're hard to come by just like that. @longneck: The line is rented. It's a dark fibre (9um monomode) so there's noone else on it. Sure there are splices. I can't go and look but I have to trust they have been done correctly. As I said the line has been checked and rechecked (using an optical time-domain reflectometer). Obviously you don't have all this equipment yourself because it's way too expensive. @mdpc: What would be the "wrong" type of cable according to you? Up to the switch everything is monomode, yes. The connectors are the correct ones too. Yeah I know there are the green ones where the fibre is cut off at a certain angle etc. But we have the correct ones for all that I know. Progress Report #1 We have had two fabrics (=2x2 switches) with Brocade 5100s with FabricOS 6.4.1 and two fabrics (another 2x4 switches) on FabricOS 7.0.2. On the longdistance ISLs (one in each fabric) it turned out that with FOS 6.4.1 setting it to long distance issues warnings about the VC Init setting and consequently the fill word. But those are only warnings. FOS 7.0.2 requires you to do modifications to VCI and the fillword for long distance links. Setting FOS 6.4.1 to the LS (long-distance static distance) setting with wrong VCI and fillword setting made the whole fabric inoperational (stuck in an SCN loop, use fabriclog -s to see, you don't see it anywhere else, no port error counters or anything increasing). Currently I'm giving the one fabric with the IMHO more correct settings a beating and it seems to do fine, whereas the other one without much traffic still has errors here and there. In short: We have eliminated the active part of the MUX (the FC retimer). We are putting the long distance SFPs into the end equipment themselves. Just to be sure we bought new monomode cables to connect the end equipment to the remaining passive part of the MUX. We are now trying out several long distance configs. It's almost black magic. Everything that happens is mostly empirical, noone seems to have a clue what are the exact reasons to do something. ("We have tried this, and it didn't work, then we tried that and it worked, so we stuck with that." But noone really seems to know why.) I'll keep you updated. Progress Report #2 We got the new lasers for one of the fabrics on warranty. It's ultra clean even on 4GbFC. They're transmitting with roughly 2mW (3dBm) whereas the others are only at 1.5mW (1.5dBm) although that should really be enough. The other fabric (where the lasers are apparently ok) still produces one or two CRCs infrequently. Using sfpshow the SFP producing the actual RX errors shows Status/Ctrl: 0x82 Alarm flags[0,1] = 0x5, 0x40 Warn Flags[0,1] = 0x5, 0x40 Now I'll have to find out what that means. Not sure if it was there before. Well I'll first clear my head with a week of vacation. 8-)

    Read the article

  • cannot access a site from Mac OSX Lion but can from other machines on network?

    - by house9
    SOLVED: The issue is with the hamachi client, hamachi is hi-jacking all of the 5.0.0.0/8 address block http://en.wikipedia.org/wiki/Hamachi_(software)#Criticism http://b.logme.in/2012/11/07/changes-to-hamachi-on-november-19th/ The fix on Mac LogMeIn Hamachi Preferences Settings Advanced Peer Connections IP protocol mode IPv6 only (default is both) If you can only connect to some of your network over IPv4 this 'fix' will NOT work for you ----- A few weeks ago I started using a service - https://semaphoreapp.com I think they made DNS changes a week ago and ever since I cannot access the site from my Mac OSX Lion (10.7.4) machine (my main development machine) but I can access the site from other machines on my network ipad windows machine MacMini (10.6.8) After some google searching I tried both of these dscacheutil -flushcache sudo killall -HUP mDNSResponder but no go, I've contacted semaphoreapp as well, but nothing so far - also of interest, one of my colleagues has the exact same problem, cannot access via Mac OSX Lion but can via windows machine, we work remotely and are not on the same ISP some additional info Lion (10.7.4) cannot access site host semaphoreapp.com semaphoreapp.com has address 5.9.53.16 ping semaphoreapp.com PING semaphoreapp.com (5.9.53.16): 56 data bytes Request timeout for icmp_seq 0 Request timeout for icmp_seq 1 Request timeout for icmp_seq 2 Request timeout for icmp_seq 3 ping: sendto: No route to host Request timeout for icmp_seq 4 ping: sendto: Host is down Request timeout for icmp_seq 5 ping: sendto: Host is down Request timeout for icmp_seq 6 ping: sendto: Host is down Request timeout for icmp_seq 7 .... traceroute semaphoreapp.com traceroute to semaphoreapp.com (5.9.53.16), 64 hops max, 52 byte packets 1 * * * 2 * * * traceroute: sendto: No route to host 3 traceroute: wrote semaphoreapp.com 52 chars, ret=-1 *traceroute: sendto: Host is down traceroute: wrote semaphoreapp.com 52 chars, ret=-1 .... and MacMini (10.6.8) can access it host semaphoreapp.com semaphoreapp.com has address 5.9.53.16 ping semaphoreapp.com PING semaphoreapp.com (5.9.53.16): 56 data bytes 64 bytes from 5.9.53.16: icmp_seq=0 ttl=44 time=191.458 ms 64 bytes from 5.9.53.16: icmp_seq=1 ttl=44 time=202.923 ms 64 bytes from 5.9.53.16: icmp_seq=2 ttl=44 time=180.746 ms 64 bytes from 5.9.53.16: icmp_seq=3 ttl=44 time=200.616 ms 64 bytes from 5.9.53.16: icmp_seq=4 ttl=44 time=178.818 ms .... traceroute semaphoreapp.com traceroute to semaphoreapp.com (5.9.53.16), 64 hops max, 52 byte packets 1 192.168.0.1 (192.168.0.1) 1.677 ms 1.446 ms 1.445 ms 2 * LOCAL ISP 11.957 ms * 3 etc... 10.704 ms 14.183 ms 9.341 ms 4 etc... 32.641 ms 12.147 ms 10.850 ms 5 etc.... 44.205 ms 54.563 ms 36.243 ms 6 vlan139.car1.seattle1.level3.net (4.53.145.165) 50.136 ms 45.873 ms 30.396 ms 7 ae-32-52.ebr2.seattle1.level3.net (4.69.147.182) 31.926 ms 40.507 ms 49.993 ms 8 ae-2-2.ebr2.denver1.level3.net (4.69.132.54) 78.129 ms 59.674 ms 49.905 ms 9 ae-3-3.ebr1.chicago2.level3.net (4.69.132.62) 99.019 ms 82.008 ms 76.074 ms 10 ae-1-100.ebr2.chicago2.level3.net (4.69.132.114) 96.185 ms 75.658 ms 75.662 ms 11 ae-6-6.ebr2.washington12.level3.net (4.69.148.145) 104.322 ms 105.563 ms 118.480 ms 12 ae-5-5.ebr2.washington1.level3.net (4.69.143.221) 93.646 ms 99.423 ms 96.067 ms 13 ae-41-41.ebr2.paris1.level3.net (4.69.137.49) 177.744 ms ae-44-44.ebr2.paris1.level3.net (4.69.137.61) 199.363 ms 198.405 ms 14 ae-47-47.ebr1.frankfurt1.level3.net (4.69.143.141) 176.876 ms ae-45-45.ebr1.frankfurt1.level3.net (4.69.143.133) 170.994 ms ae-46-46.ebr1.frankfurt1.level3.net (4.69.143.137) 177.308 ms 15 ae-61-61.csw1.frankfurt1.level3.net (4.69.140.2) 176.769 ms ae-91-91.csw4.frankfurt1.level3.net (4.69.140.14) 178.676 ms 173.644 ms 16 ae-2-70.edge7.frankfurt1.level3.net (4.69.154.75) 180.407 ms ae-3-80.edge7.frankfurt1.level3.net (4.69.154.139) 174.861 ms 176.578 ms 17 as33891-net.edge7.frankfurt1.level3.net (195.16.162.94) 175.448 ms 185.658 ms 177.081 ms 18 hos-bb1.juniper4.rz16.hetzner.de (213.239.240.202) 188.700 ms 190.332 ms 188.196 ms 19 hos-tr4.ex3k14.rz16.hetzner.de (213.239.233.98) 199.632 ms hos-tr3.ex3k14.rz16.hetzner.de (213.239.233.66) 185.938 ms hos-tr2.ex3k14.rz16.hetzner.de (213.239.230.34) 182.378 ms 20 * * * 21 * * * 22 * * * any ideas? EDIT: adding tcpdump MacMini (which can connect) while running - ping semaphoreapp.com sudo tcpdump -v -i en0 dst semaphoreapp.com Password: tcpdump: listening on en0, link-type EN10MB (Ethernet), capture size 65535 bytes 17:33:03.337165 IP (tos 0x0, ttl 64, id 20153, offset 0, flags [none], proto ICMP (1), length 84, bad cksum 0 (->3129)!) 192.168.0.6 > static.16.53.9.5.clients.your-server.de: ICMP echo request, id 61918, seq 0, length 64 17:33:04.337279 IP (tos 0x0, ttl 64, id 26049, offset 0, flags [none], proto ICMP (1), length 84, bad cksum 0 (->1a21)!) 192.168.0.6 > static.16.53.9.5.clients.your-server.de: ICMP echo request, id 61918, seq 1, length 64 17:33:05.337425 IP (tos 0x0, ttl 64, id 47854, offset 0, flags [none], proto ICMP (1), length 84, bad cksum 0 (->c4f3)!) 192.168.0.6 > static.16.53.9.5.clients.your-server.de: ICMP echo request, id 61918, seq 2, length 64 17:33:06.337548 IP (tos 0x0, ttl 64, id 24772, offset 0, flags [none], proto ICMP (1), length 84, bad cksum 0 (->1f1e)!) 192.168.0.6 > static.16.53.9.5.clients.your-server.de: ICMP echo request, id 61918, seq 3, length 64 17:33:07.337670 IP (tos 0x0, ttl 64, id 8171, offset 0, flags [none], proto ICMP (1), length 84, bad cksum 0 (->5ff7)!) 192.168.0.6 > static.16.53.9.5.clients.your-server.de: ICMP echo request, id 61918, seq 4, length 64 17:33:08.337816 IP (tos 0x0, ttl 64, id 35810, offset 0, flags [none], proto ICMP (1), length 84, bad cksum 0 (->f3ff)!) 192.168.0.6 > static.16.53.9.5.clients.your-server.de: ICMP echo request, id 61918, seq 5, length 64 17:33:09.337948 IP (tos 0x0, ttl 64, id 31120, offset 0, flags [none], proto ICMP (1), length 84, bad cksum 0 (->652)!) 192.168.0.6 > static.16.53.9.5.clients.your-server.de: ICMP echo request, id 61918, seq 6, length 64 ^C 7 packets captured 1047 packets received by filter 0 packets dropped by kernel OSX Lion (cannot connect) while running - ping semaphoreapp.com # wireless ~ $ sudo tcpdump -v -i en1 dst semaphoreapp.com Password: tcpdump: listening on en1, link-type EN10MB (Ethernet), capture size 65535 bytes ^C 0 packets captured 262 packets received by filter 0 packets dropped by kernel and # wired ~ $ sudo tcpdump -v -i en0 dst semaphoreapp.com tcpdump: listening on en0, link-type EN10MB (Ethernet), capture size 65535 bytes ^C 0 packets captured 219 packets received by filter 0 packets dropped by kernel above output after Request timeout for icmp_seq 25 or 30 times from ping. I don't know much about tcpdump, but to me it doesn't seem like the ping requests are leaving my machine?

    Read the article

  • How to set up linux watchdog daemon with Intel 6300esb

    - by ACiD GRiM
    I've been searching for this on Google for sometime now and I have yet to find proper documentation on how to connect the kernel driver for my 6300esb watchdog timer to /dev/watchdog and ensure that watchdog daemon is keeping it alive. I am using RHEL compatible Scientific Linux 6.3 in a KVM virtual machine by the way Below is everything I've tried so far: dmesg|grep 6300 i6300ESB timer: Intel 6300ESB WatchDog Timer Driver v0.04 i6300ESB timer: initialized (0xffffc900008b8000). heartbeat=30 sec (nowayout=0) | ll /dev/watchdog crw-rw----. 1 root root 10, 130 Sep 22 22:25 /dev/watchdog | /etc/watchdog.conf #ping = 172.31.14.1 #ping = 172.26.1.255 #interface = eth0 file = /var/log/messages #change = 1407 # Uncomment to enable test. Setting one of these values to '0' disables it. # These values will hopefully never reboot your machine during normal use # (if your machine is really hung, the loadavg will go much higher than 25) max-load-1 = 24 max-load-5 = 18 max-load-15 = 12 # Note that this is the number of pages! # To get the real size, check how large the pagesize is on your machine. #min-memory = 1 #repair-binary = /usr/sbin/repair #test-binary = #test-timeout = watchdog-device = /dev/watchdog # Defaults compiled into the binary #temperature-device = #max-temperature = 120 # Defaults compiled into the binary #admin = root interval = 10 #logtick = 1 # This greatly decreases the chance that watchdog won't be scheduled before # your machine is really loaded realtime = yes priority = 1 # Check if syslogd is still running by enabling the following line #pidfile = /var/run/syslogd.pid Now maybe I'm not testing it correctly, but I would expecting that stopping the watchdog service would cause the /dev/watchdog to time out after 30 seconds and I should see the host reboot, however this does not happen. Also, here is my config for the KVM vm <!-- WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE OVERWRITTEN AND LOST. Changes to this xml configuration should be made using: virsh edit sl6template or other application using the libvirt API. --> <domain type='kvm'> <name>sl6template</name> <uuid>960d0ac2-2e6a-5efa-87a3-6bb779e15b6a</uuid> <memory unit='KiB'>262144</memory> <currentMemory unit='KiB'>262144</currentMemory> <vcpu placement='static'>1</vcpu> <os> <type arch='x86_64' machine='rhel6.3.0'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <cpu mode='custom' match='exact'> <model fallback='allow'>Westmere</model> <vendor>Intel</vendor> <feature policy='require' name='tm2'/> <feature policy='require' name='est'/> <feature policy='require' name='vmx'/> <feature policy='require' name='ds'/> <feature policy='require' name='smx'/> <feature policy='require' name='ss'/> <feature policy='require' name='vme'/> <feature policy='require' name='dtes64'/> <feature policy='require' name='rdtscp'/> <feature policy='require' name='ht'/> <feature policy='require' name='dca'/> <feature policy='require' name='pbe'/> <feature policy='require' name='tm'/> <feature policy='require' name='pdcm'/> <feature policy='require' name='pdpe1gb'/> <feature policy='require' name='ds_cpl'/> <feature policy='require' name='pclmuldq'/> <feature policy='require' name='xtpr'/> <feature policy='require' name='acpi'/> <feature policy='require' name='monitor'/> <feature policy='require' name='aes'/> </cpu> <clock offset='utc'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/libexec/qemu-kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw'/> <source file='/mnt/data/vms/sl6template.img'/> <target dev='vda' bus='virtio'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/> </disk> <controller type='usb' index='0'> <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x2'/> </controller> <interface type='bridge'> <mac address='52:54:00:44:57:f6'/> <source bridge='br0.2'/> <model type='virtio'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </interface> <interface type='bridge'> <mac address='52:54:00:88:0f:42'/> <source bridge='br1'/> <model type='virtio'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0'/> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target type='serial' port='0'/> </console> <watchdog model='i6300esb' action='reset'> <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/> </watchdog> <memballoon model='virtio'> <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/> </memballoon> </devices> </domain> Any help is appreciated as the most I've found are patches to kvm and general softdog documentation or IPMI watchdog answers.

    Read the article

  • Cisco ASA5505 8.2 Multiple Outside IP to Multiple Inside IP

    - by GriffJ
    Trying to setup ASA5505. Semi working but having issues with accessing services from the outside. ASA5505 Basic License, Version 8.2. (plus upgrade to unlimited inside hosts). Alert: I'm a Cisco Noob. 321.321.39.X is a place holder for privacy. I came up with this config and tested it tonight. ASA Version 8.2(1) ! hostname <removed> domain-name <removed> enable password <removed> encrypted passwd <removed> encrypted names ! interface Vlan1 nameif inside security-level 100 ip address 172.21.36.1 255.255.252.0 ! interface Vlan2 nameif outside security-level 0 ip address 321.321.39.10 255.255.255.248 ! interface Ethernet0/0 switchport access vlan 2 ! interface Ethernet0/1 ! interface Ethernet0/2 ! interface Ethernet0/3 ! interface Ethernet0/4 ! interface Ethernet0/5 ! interface Ethernet0/6 ! interface Ethernet0/7 ! ftp mode passive dns server-group DefaultDNS domain-name <removed> access-list outside_inbound extended permit tcp any host 321.321.39.10 eq pptp access-list outside_inbound extended permit tcp any host 321.321.39.11 eq https access-list outside_inbound extended permit tcp any host 321.321.39.11 eq 993 access-list outside_inbound extended permit tcp any host 321.321.39.11 eq smtp access-list outside_inbound extended permit tcp any host 321.321.39.11 eq 1001 access-list outside_inbound extended permit tcp any host 321.321.39.11 eq 465 access-list outside_inbound extended permit tcp any host 321.321.39.11 eq domain access-list outside_inbound extended permit udp any eq domain host 321.321.39.11 eq domain access-list outside_inbound extended permit tcp any host 321.321.39.12 eq www access-list outside_inbound extended permit tcp any host 321.321.39.12 eq https access-list outside_inbound extended permit tcp any host 321.321.39.13 eq www access-list outside_inbound extended permit tcp any host 321.321.39.13 eq https access-list outside_inbound extended permit icmp any any echo-reply access-list outside_inbound extended permit icmp any any source-quench access-list outside_inbound extended permit icmp any any unreachable access-list outside_inbound extended permit icmp any any time-exceeded access-list outside_inbound extended permit icmp any any traceroute access-list outside_inbound extended permit icmp any any echo pager lines 24 logging asdm informational mtu inside 1500 mtu outside 1500 icmp unreachable rate-limit 1 burst-size 1 no asdm history enable arp timeout 14400 global (outside) 2 321.321.39.11-321.321.39.14 netmask 255.255.255.248 global (outside) 1 interface nat (inside) 1 0.0.0.0 0.0.0.0 static (inside,outside) tcp interface pptp 172.21.37.20 pptp netmask 255.255.255.255 static (inside,outside) 321.321.39.11 172.21.37.14 netmask 255.255.255.255 static (inside,outside) 321.321.39.12 172.21.37.24 netmask 255.255.255.255 static (inside,outside) 321.321.39.13 172.21.37.17 netmask 255.255.255.255 access-group outside_inbound in interface outside route outside 0.0.0.0 0.0.0.0 321.321.39.9 1 route inside 192.168.15.0 255.255.255.0 172.21.36.52 1 timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute timeout tcp-proxy-reassembly 0:01:00 dynamic-access-policy-record DfltAccessPolicy http server enable http 172.21.36.0 255.255.252.0 inside no snmp-server location no snmp-server contact snmp-server enable traps snmp authentication linkup linkdown coldstart crypto ipsec security-association lifetime seconds 28800 crypto ipsec security-association lifetime kilobytes 4608000 telnet 172.21.36.0 255.255.252.0 inside telnet timeout 60 ssh timeout 5 console timeout 0 threat-detection basic-threat threat-detection statistics access-list no threat-detection statistics tcp-intercept webvpn ! class-map inspection_default match default-inspection-traffic ! ! policy-map type inspect dns preset_dns_map parameters message-length maximum 512 policy-map global_policy class inspection_default inspect dns preset_dns_map inspect ftp inspect h323 h225 inspect h323 ras inspect rsh inspect rtsp inspect sqlnet inspect skinny inspect sunrpc inspect xdmcp inspect sip inspect netbios inspect tftp inspect pptp inspect ipsec-pass-thru inspect http ! service-policy global_policy global prompt hostname context The servers that had static forwards did not have any outside network access. couldn't ping google.com for instance. mail server couldn't Domain POP the Barracuda spam filter from our ISP etc. So after doing some reading I removed the statics for 172.21.37.11, 12 and 13, and replaced those three with what's below.. static (inside,outside) tcp 321.321.39.11 https 172.21.37.14 https netmask 255.255.255.255 static (inside,outside) tcp 321.321.39.11 993 172.21.37.14 993 netmask 255.255.255.255 static (inside,outside) tcp 321.321.39.11 smtp 172.21.37.14 smtp netmask 255.255.255.255 static (inside,outside) tcp 321.321.39.11 1001 172.21.37.14 1001 netmask 255.255.255.255 static (inside,outside) tcp 321.321.39.11 465 172.21.37.14 465 netmask 255.255.255.255 static (inside,outside) tcp 321.321.39.11 domain 172.21.37.14 domain netmask 255.255.255.255 static (inside,outside) tcp 321.321.39.12 www 172.21.37.24 www netmask 255.255.255.255 static (inside,outside) tcp 321.321.39.12 https 172.21.37.24 https netmask 255.255.255.255 static (inside,outside) tcp 321.321.39.13 www 172.21.37.17 www netmask 255.255.255.255 static (inside,outside) tcp 321.321.39.13 https 172.21.37.17 https netmask 255.255.255.255 Now the servers (for instance 172.21.37.14) could ping the outside world again. Mail started flowing (Domain POP was successful) etc. etc. But I forgot to check if webmail worked from the outside admittedly. But the webservers at 172.21.37.17 and 172.21.37.24 still didn't respond from the outside world. Although I was able to PPTP VPN in on 321.321.39.10 (interface) which is the outside interface IP address. and it is static mapped to 172.21.37.20. So I'm thinking there must be something wrong with NAT somewhere? no response from 321.321.39.11 to 321.321.39.14.. Could anyone look over the config and please let me know what I've done wrong? Is there something I've missed? well obviously but.. please help! Thank you.

    Read the article

  • Why is Varnish not caching?

    - by Justin
    I am troubleshooting the setup of Varnish 3.x on my Ubuntu server. I'm running Drupal 7 on two sites set up on the box, via named-based vhosts. Before trying to get Varnish to play nice with Drupal I'm trying to just get Varnish to a PNG from cache. Here are the headers I get from a curl -I request of the PNG file: HTTP/1.1 200 OK Server: Apache/2.2.22 (Ubuntu) Last-Modified: Sun, 07 Oct 2012 21:18:59 GMT ETag: "a57c2-3850-4cb7ea73db6c0" Accept-Ranges: bytes Content-Length: 14416 Cache-Control: max-age=1209600 Expires: Thu, 25 Oct 2012 22:55:14 GMT Content-Type: image/png Accept-Ranges: bytes Date: Thu, 11 Oct 2012 22:55:14 GMT X-Varnish: 1766703058 Age: 0 Via: 1.1 varnish Connection: keep-alive X-Varnish-Cache: MISS Here is the Varnish VCL file I'm using (It's a default VCL configuration designed for Drupal): # Default backend definition. Set this to point to your content # server. # backend default { .host = "127.0.0.1"; .port = "8080"; } # Respond to incoming requests. sub vcl_recv { # Use anonymous, cached pages if all backends are down. if (!req.backend.healthy) { unset req.http.Cookie; } # Allow the backend to serve up stale content if it is responding slowly. set req.grace = 6h; # Pipe these paths directly to Apache for streaming. #if (req.url ~ "^/admin/content/backup_migrate/export") { # return (pipe); #} # Do not cache these paths. if (req.url ~ "^/status\.php$" || req.url ~ "^/update\.php$" || req.url ~ "^/admin$" || req.url ~ "^/admin/.*$" || req.url ~ "^/flag/.*$" || req.url ~ "^.*/ajax/.*$" || req.url ~ "^.*/ahah/.*$") { return (pass); } # Do not allow outside access to cron.php or install.php. #if (req.url ~ "^/(cron|install)\.php$" && !client.ip ~ internal) { # Have Varnish throw the error directly. # error 404 "Page not found."; # Use a custom error page that you've defined in Drupal at the path "404". # set req.url = "/404"; #} # Always cache the following file types for all users. This list of extensions # appears twice, once here and again in vcl_fetch so make sure you edit both # and keep them equal. if (req.url ~ "(?i)\.(pdf|asc|dat|txt|doc|xls|ppt|tgz|csv|png|gif|jpeg|jpg|ico|swf|css|js)(\?.*)?$") { unset req.http.Cookie; } # Remove all cookies that Drupal doesn't need to know about. We explicitly # list the ones that Drupal does need, the SESS and NO_CACHE. If, after # running this code we find that either of these two cookies remains, we # will pass as the page cannot be cached. if (req.http.Cookie) { # 1. Append a semi-colon to the front of the cookie string. # 2. Remove all spaces that appear after semi-colons. # 3. Match the cookies we want to keep, adding the space we removed # previously back. (\1) is first matching group in the regsuball. # 4. Remove all other cookies, identifying them by the fact that they have # no space after the preceding semi-colon. # 5. Remove all spaces and semi-colons from the beginning and end of the # cookie string. set req.http.Cookie = ";" + req.http.Cookie; set req.http.Cookie = regsuball(req.http.Cookie, "; +", ";"); set req.http.Cookie = regsuball(req.http.Cookie, ";(SESS[a-z0-9]+|SSESS[a-z0-9]+|NO_CACHE)=", "; \1="); set req.http.Cookie = regsuball(req.http.Cookie, ";[^ ][^;]*", ""); set req.http.Cookie = regsuball(req.http.Cookie, "^[; ]+|[; ]+$", ""); if (req.http.Cookie == "") { # If there are no remaining cookies, remove the cookie header. If there # aren't any cookie headers, Varnish's default behavior will be to cache # the page. unset req.http.Cookie; } else { # If there is any cookies left (a session or NO_CACHE cookie), do not # cache the page. Pass it on to Apache directly. return (pass); } } } # Set a header to track a cache HIT/MISS. sub vcl_deliver { if (obj.hits > 0) { set resp.http.X-Varnish-Cache = "HIT"; } else { set resp.http.X-Varnish-Cache = "MISS"; } } # Code determining what to do when serving items from the Apache servers. # beresp == Back-end response from the web server. sub vcl_fetch { # We need this to cache 404s, 301s, 500s. Otherwise, depending on backend but # definitely in Drupal's case these responses are not cacheable by default. if (beresp.status == 404 || beresp.status == 301 || beresp.status == 500) { set beresp.ttl = 10m; } # Don't allow static files to set cookies. # (?i) denotes case insensitive in PCRE (perl compatible regular expressions). # This list of extensions appears twice, once here and again in vcl_recv so # make sure you edit both and keep them equal. if (req.url ~ "(?i)\.(pdf|asc|dat|txt|doc|xls|ppt|tgz|csv|png|gif|jpeg|jpg|ico|swf|css|js)(\?.*)?$") { unset beresp.http.set-cookie; } # Allow items to be stale if needed. set beresp.grace = 6h; } # In the event of an error, show friendlier messages. sub vcl_error { # Redirect to some other URL in the case of a homepage failure. #if (req.url ~ "^/?$") { # set obj.status = 302; # set obj.http.Location = "http://backup.example.com/"; #} # Otherwise redirect to the homepage, which will likely be in the cache. set obj.http.Content-Type = "text/html; charset=utf-8"; synthetic {" <html> <head> <title>Page Unavailable</title> <style> body { background: #303030; text-align: center; color: white; } #page { border: 1px solid #CCC; width: 500px; margin: 100px auto 0; padding: 30px; background: #323232; } a, a:link, a:visited { color: #CCC; } .error { color: #222; } </style> </head> <body onload="setTimeout(function() { window.location = '/' }, 5000)"> <div id="page"> <h1 class="title">Page Unavailable</h1> <p>The page you requested is temporarily unavailable.</p> <p>We're redirecting you to the <a href="/">homepage</a> in 5 seconds.</p> <div class="error">(Error "} + obj.status + " " + obj.response + {")</div> </div> </body> </html> "}; return (deliver); } I'm getting a MISS and age 0 every time. If I'm understanding correctly, this means the file isn't being returned from Varnish's cache. Is there a problem with my Varnish config?

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • VS 2010 SP1 and SQL CE

    - by ScottGu
    Last month we released the Beta of VS 2010 Service Pack 1 (SP1).  You can learn more about the VS 2010 SP1 Beta from Jason Zander’s two blog posts about it, and from Scott Hanselman’s blog post that covers some of the new capabilities enabled with it.   You can download and install the VS 2010 SP1 Beta here. Last week I blogged about the new Visual Studio support for IIS Express that we are adding with VS 2010 SP1. In today’s post I’m going to talk about the new VS 2010 SP1 tooling support for SQL CE, and walkthrough some of the cool scenarios it enables.  SQL CE – What is it and why should you care? SQL CE is a free, embedded, database engine that enables easy database storage. No Database Installation Required SQL CE does not require you to run a setup or install a database server in order to use it.  You can simply copy the SQL CE binaries into the \bin directory of your ASP.NET application, and then your web application can use it as a database engine.  No setup or extra security permissions are required for it to run. You do not need to have an administrator account on the machine. Just copy your web application onto any server and it will work. This is true even of medium-trust applications running in a web hosting environment. SQL CE runs in-memory within your ASP.NET application and will start-up when you first access a SQL CE database, and will automatically shutdown when your application is unloaded.  SQL CE databases are stored as files that live within the \App_Data folder of your ASP.NET Applications. Works with Existing Data APIs SQL CE 4 works with existing .NET-based data APIs, and supports a SQL Server compatible query syntax.  This means you can use existing data APIs like ADO.NET, as well as use higher-level ORMs like Entity Framework and NHibernate with SQL CE.  This enables you to use the same data programming skills and data APIs you know today. Supports Development, Testing and Production Scenarios SQL CE can be used for development scenarios, testing scenarios, and light production usage scenarios.  With the SQL CE 4 release we’ve done the engineering work to ensure that SQL CE won’t crash or deadlock when used in a multi-threaded server scenario (like ASP.NET).  This is a big change from previous releases of SQL CE – which were designed for client-only scenarios and which explicitly blocked running in web-server environments.  Starting with SQL CE 4 you can use it in a web-server as well. There are no license restrictions with SQL CE.  It is also totally free. Easy Migration to SQL Server SQL CE is an embedded database – which makes it ideal for development, testing, and light-usage scenarios.  For high-volume sites and applications you’ll probably want to migrate your database to use SQL Server Express (which is free), SQL Server or SQL Azure.  These servers enable much better scalability, more development features (including features like Stored Procedures – which aren’t supported with SQL CE), as well as more advanced data management capabilities. We’ll ship migration tools that enable you to optionally take SQL CE databases and easily upgrade them to use SQL Server Express, SQL Server, or SQL Azure.  You will not need to change your code when upgrading a SQL CE database to SQL Server or SQL Azure.  Our goal is to enable you to be able to simply change the database connection string in your web.config file and have your application just work. New Tooling Support for SQL CE in VS 2010 SP1 VS 2010 SP1 includes much improved tooling support for SQL CE, and adds support for using SQL CE within ASP.NET projects for the first time.  With VS 2010 SP1 you can now: Create new SQL CE Databases Edit and Modify SQL CE Database Schema and Indexes Populate SQL CE Databases within Data Use the Entity Framework (EF) designer to create model layers against SQL CE databases Use EF Code First to define model layers in code, then create a SQL CE database from them, and optionally edit the DB with VS Deploy SQL CE databases to remote servers using Web Deploy and optionally convert them to full SQL Server databases You can take advantage of all of the above features from within both ASP.NET Web Forms and ASP.NET MVC based projects. Download You can enable SQL CE tooling support within VS 2010 by first installing VS 2010 SP1 (beta). Once SP1 is installed, you’ll also then need to install the SQL CE Tools for Visual Studio download.  This is a separate download that enables the SQL CE tooling support for VS 2010 SP1. Walkthrough of Two Scenarios In this blog post I’m going to walkthrough how you can take advantage of SQL CE and VS 2010 SP1 using both an ASP.NET Web Forms and an ASP.NET MVC based application. Specifically, we’ll walkthrough: How to create a SQL CE database using VS 2010 SP1, then use the EF4 visual designers in Visual Studio to construct a model layer from it, and then display and edit the data using an ASP.NET GridView control. How to use an EF Code First approach to define a model layer using POCO classes and then have EF Code-First “auto-create” a SQL CE database for us based on our model classes.  We’ll then look at how we can use the new VS 2010 SP1 support for SQL CE to inspect the database that was created, populate it with data, and later make schema changes to it.  We’ll do all this within the context of an ASP.NET MVC based application. You can follow the two walkthroughs below on your own machine by installing VS 2010 SP1 (beta) and then installing the SQL CE Tools for Visual Studio download (which is a separate download that enables SQL CE tooling support for VS 2010 SP1). Walkthrough 1: Create a SQL CE Database, Create EF Model Classes, Edit the Data with a GridView This first walkthrough will demonstrate how to create and define a SQL CE database within an ASP.NET Web Form application.  We’ll then build an EF model layer for it and use that model layer to enable data editing scenarios with an <asp:GridView> control. Step 1: Create a new ASP.NET Web Forms Project We’ll begin by using the File->New Project menu command within Visual Studio to create a new ASP.NET Web Forms project.  We’ll use the “ASP.NET Web Application” project template option so that it has a default UI skin implemented: Step 2: Create a SQL CE Database Right click on the “App_Data” folder within the created project and choose the “Add->New Item” menu command: This will bring up the “Add Item” dialog box.  Select the “SQL Server Compact 4.0 Local Database” item (new in VS 2010 SP1) and name the database file to create “Store.sdf”: Note that SQL CE database files have a .sdf filename extension. Place them within the /App_Data folder of your ASP.NET application to enable easy deployment. When we clicked the “Add” button above a Store.sdf file was added to our project: Step 3: Adding a “Products” Table Double-clicking the “Store.sdf” database file will open it up within the Server Explorer tab.  Since it is a new database there are no tables within it: Right click on the “Tables” icon and choose the “Create Table” menu command to create a new database table.  We’ll name the new table “Products” and add 4 columns to it.  We’ll mark the first column as a primary key (and make it an identify column so that its value will automatically increment with each new row): When we click “ok” our new Products table will be created in the SQL CE database. Step 4: Populate with Data Once our Products table is created it will show up within the Server Explorer.  We can right-click it and choose the “Show Table Data” menu command to edit its data: Let’s add a few sample rows of data to it: Step 5: Create an EF Model Layer We have a SQL CE database with some data in it – let’s now create an EF Model Layer that will provide a way for us to easily query and update data within it. Let’s right-click on our project and choose the “Add->New Item” menu command.  This will bring up the “Add New Item” dialog – select the “ADO.NET Entity Data Model” item within it and name it “Store.edmx” This will add a new Store.edmx item to our solution explorer and launch a wizard that allows us to quickly create an EF model: Select the “Generate From Database” option above and click next.  Choose to use the Store.sdf SQL CE database we just created and then click next again.  The wizard will then ask you what database objects you want to import into your model.  Let’s choose to import the “Products” table we created earlier: When we click the “Finish” button Visual Studio will open up the EF designer.  It will have a Product entity already on it that maps to the “Products” table within our SQL CE database: The VS 2010 SP1 EF designer works exactly the same with SQL CE as it does already with SQL Server and SQL Express.  The Product entity above will be persisted as a class (called “Product”) that we can programmatically work against within our ASP.NET application. Step 6: Compile the Project Before using your model layer you’ll need to build your project.  Do a Ctrl+Shift+B to compile the project, or use the Build->Build Solution menu command. Step 7: Create a Page that Uses our EF Model Layer Let’s now create a simple ASP.NET Web Form that contains a GridView control that we can use to display and edit the our Products data (via the EF Model Layer we just created). Right-click on the project and choose the Add->New Item command.  Select the “Web Form from Master Page” item template, and name the page you create “Products.aspx”.  Base the master page on the “Site.Master” template that is in the root of the project. Add an <h2>Products</h2> heading the new Page, and add an <asp:gridview> control within it: Then click the “Design” tab to switch into design-view. Select the GridView control, and then click the top-right corner to display the GridView’s “Smart Tasks” UI: Choose the “New data source…” drop down option above.  This will bring up the below dialog which allows you to pick your Data Source type: Select the “Entity” data source option – which will allow us to easily connect our GridView to the EF model layer we created earlier.  This will bring up another dialog that allows us to pick our model layer: Select the “StoreEntities” option in the dropdown – which is the EF model layer we created earlier.  Then click next – which will allow us to pick which entity within it we want to bind to: Select the “Products” entity in the above dialog – which indicates that we want to bind against the “Product” entity class we defined earlier.  Then click the “Enable automatic updates” checkbox to ensure that we can both query and update Products.  When you click “Finish” VS will wire-up an <asp:EntityDataSource> to your <asp:GridView> control: The last two steps we’ll do will be to click the “Enable Editing” checkbox on the Grid (which will cause the Grid to display an “Edit” link on each row) and (optionally) use the Auto Format dialog to pick a UI template for the Grid. Step 8: Run the Application Let’s now run our application and browse to the /Products.aspx page that contains our GridView.  When we do so we’ll see a Grid UI of the Products within our SQL CE database. Clicking the “Edit” link for any of the rows will allow us to edit their values: When we click “Update” the GridView will post back the values, persist them through our EF Model Layer, and ultimately save them within our SQL CE database. Learn More about using EF with ASP.NET Web Forms Read this tutorial series on the http://asp.net site to learn more about how to use EF with ASP.NET Web Forms.  The tutorial series uses SQL Express as the database – but the nice thing is that all of the same steps/concepts can also now also be done with SQL CE.   Walkthrough 2: Using EF Code-First with SQL CE and ASP.NET MVC 3 We used a database-first approach with the sample above – where we first created the database, and then used the EF designer to create model classes from the database.  In addition to supporting a designer-based development workflow, EF also enables a more code-centric option which we call “code first development”.  Code-First Development enables a pretty sweet development workflow.  It enables you to: Define your model objects by simply writing “plain old classes” with no base classes or visual designer required Use a “convention over configuration” approach that enables database persistence without explicitly configuring anything Optionally override the convention-based persistence and use a fluent code API to fully customize the persistence mapping Optionally auto-create a database based on the model classes you define – allowing you to start from code first I’ve done several blog posts about EF Code First in the past – I really think it is great.  The good news is that it also works very well with SQL CE. The combination of SQL CE, EF Code First, and the new VS tooling support for SQL CE, enables a pretty nice workflow.  Below is a simple example of how you can use them to build a simple ASP.NET MVC 3 application. Step 1: Create a new ASP.NET MVC 3 Project We’ll begin by using the File->New Project menu command within Visual Studio to create a new ASP.NET MVC 3 project.  We’ll use the “Internet Project” template so that it has a default UI skin implemented: Step 2: Use NuGet to Install EFCodeFirst Next we’ll use the NuGet package manager (automatically installed by ASP.NET MVC 3) to add the EFCodeFirst library to our project.  We’ll use the Package Manager command shell to do this.  Bring up the package manager console within Visual Studio by selecting the View->Other Windows->Package Manager Console menu command.  Then type: install-package EFCodeFirst within the package manager console to download the EFCodeFirst library and have it be added to our project: When we enter the above command, the EFCodeFirst library will be downloaded and added to our application: Step 3: Build Some Model Classes Using a “code first” based development workflow, we will create our model classes first (even before we have a database).  We create these model classes by writing code. For this sample, we will right click on the “Models” folder of our project and add the below three classes to our project: The “Dinner” and “RSVP” model classes above are “plain old CLR objects” (aka POCO).  They do not need to derive from any base classes or implement any interfaces, and the properties they expose are standard .NET data-types.  No data persistence attributes or data code has been added to them.   The “NerdDinners” class derives from the DbContext class (which is supplied by EFCodeFirst) and handles the retrieval/persistence of our Dinner and RSVP instances from a database. Step 4: Listing Dinners We’ve written all of the code necessary to implement our model layer for this simple project.  Let’s now expose and implement the URL: /Dinners/Upcoming within our project.  We’ll use it to list upcoming dinners that happen in the future. We’ll do this by right-clicking on our “Controllers” folder and select the “Add->Controller” menu command.  We’ll name the Controller we want to create “DinnersController”.  We’ll then implement an “Upcoming” action method within it that lists upcoming dinners using our model layer above.  We will use a LINQ query to retrieve the data and pass it to a View to render with the code below: We’ll then right-click within our Upcoming method and choose the “Add-View” menu command to create an “Upcoming” view template that displays our dinners.  We’ll use the “empty” template option within the “Add View” dialog and write the below view template using Razor: Step 4: Configure our Project to use a SQL CE Database We have finished writing all of our code – our last step will be to configure a database connection-string to use. We will point our NerdDinners model class to a SQL CE database by adding the below <connectionString> to the web.config file at the top of our project: EF Code First uses a default convention where context classes will look for a connection-string that matches the DbContext class name.  Because we created a “NerdDinners” class earlier, we’ve also named our connectionstring “NerdDinners”.  Above we are configuring our connection-string to use SQL CE as the database, and telling it that our SQL CE database file will live within the \App_Data directory of our ASP.NET project. Step 5: Running our Application Now that we’ve built our application, let’s run it! We’ll browse to the /Dinners/Upcoming URL – doing so will display an empty list of upcoming dinners: You might ask – but where did it query to get the dinners from? We didn’t explicitly create a database?!? One of the cool features that EF Code-First supports is the ability to automatically create a database (based on the schema of our model classes) when the database we point it at doesn’t exist.  Above we configured  EF Code-First to point at a SQL CE database in the \App_Data\ directory of our project.  When we ran our application, EF Code-First saw that the SQL CE database didn’t exist and automatically created it for us. Step 6: Using VS 2010 SP1 to Explore our newly created SQL CE Database Click the “Show all Files” icon within the Solution Explorer and you’ll see the “NerdDinners.sdf” SQL CE database file that was automatically created for us by EF code-first within the \App_Data\ folder: We can optionally right-click on the file and “Include in Project" to add it to our solution: We can also double-click the file (regardless of whether it is added to the project) and VS 2010 SP1 will open it as a database we can edit within the “Server Explorer” tab of the IDE. Below is the view we get when we double-click our NerdDinners.sdf SQL CE file.  We can drill in to see the schema of the Dinners and RSVPs tables in the tree explorer.  Notice how two tables - Dinners and RSVPs – were automatically created for us within our SQL CE database.  This was done by EF Code First when we accessed the NerdDinners class by running our application above: We can right-click on a Table and use the “Show Table Data” command to enter some upcoming dinners in our database: We’ll use the built-in editor that VS 2010 SP1 supports to populate our table data below: And now when we hit “refresh” on the /Dinners/Upcoming URL within our browser we’ll see some upcoming dinners show up: Step 7: Changing our Model and Database Schema Let’s now modify the schema of our model layer and database, and walkthrough one way that the new VS 2010 SP1 Tooling support for SQL CE can make this easier.  With EF Code-First you typically start making database changes by modifying the model classes.  For example, let’s add an additional string property called “UrlLink” to our “Dinner” class.  We’ll use this to point to a link for more information about the event: Now when we re-run our project, and visit the /Dinners/Upcoming URL we’ll see an error thrown: We are seeing this error because EF Code-First automatically created our database, and by default when it does this it adds a table that helps tracks whether the schema of our database is in sync with our model classes.  EF Code-First helpfully throws an error when they become out of sync – making it easier to track down issues at development time that you might otherwise only find (via obscure errors) at runtime.  Note that if you do not want this feature you can turn it off by changing the default conventions of your DbContext class (in this case our NerdDinners class) to not track the schema version. Our model classes and database schema are out of sync in the above example – so how do we fix this?  There are two approaches you can use today: Delete the database and have EF Code First automatically re-create the database based on the new model class schema (losing the data within the existing DB) Modify the schema of the existing database to make it in sync with the model classes (keeping/migrating the data within the existing DB) There are a couple of ways you can do the second approach above.  Below I’m going to show how you can take advantage of the new VS 2010 SP1 Tooling support for SQL CE to use a database schema tool to modify our database structure.  We are also going to be supporting a “migrations” feature with EF in the future that will allow you to automate/script database schema migrations programmatically. Step 8: Modify our SQL CE Database Schema using VS 2010 SP1 The new SQL CE Tooling support within VS 2010 SP1 makes it easy to modify the schema of our existing SQL CE database.  To do this we’ll right-click on our “Dinners” table and choose the “Edit Table Schema” command: This will bring up the below “Edit Table” dialog.  We can rename, change or delete any of the existing columns in our table, or click at the bottom of the column listing and type to add a new column.  Below I’ve added a new “UrlLink” column of type “nvarchar” (since our property is a string): When we click ok our database will be updated to have the new column and our schema will now match our model classes. Because we are manually modifying our database schema, there is one additional step we need to take to let EF Code-First know that the database schema is in sync with our model classes.  As i mentioned earlier, when a database is automatically created by EF Code-First it adds a “EdmMetadata” table to the database to track schema versions (and hash our model classes against them to detect mismatches between our model classes and the database schema): Since we are manually updating and maintaining our database schema, we don’t need this table – and can just delete it: This will leave us with just the two tables that correspond to our model classes: And now when we re-run our /Dinners/Upcoming URL it will display the dinners correctly: One last touch we could do would be to update our view to check for the new UrlLink property and render a <a> link to it if an event has one: And now when we refresh our /Dinners/Upcoming we will see hyperlinks for the events that have a UrlLink stored in the database: Summary SQL CE provides a free, embedded, database engine that you can use to easily enable database storage.  With SQL CE 4 you can now take advantage of it within ASP.NET projects and applications (both Web Forms and MVC). VS 2010 SP1 provides tooling support that enables you to easily create, edit and modify SQL CE databases – as well as use the standard EF designer against them.  This allows you to re-use your existing skills and data knowledge while taking advantage of an embedded database option.  This is useful both for small applications (where you don’t need the scalability of a full SQL Server), as well as for development and testing scenarios – where you want to be able to rapidly develop/test your application without having a full database instance.  SQL CE makes it easy to later migrate your data to a full SQL Server or SQL Azure instance if you want to – without having to change any code in your application.  All we would need to change in the above two scenarios is the <connectionString> value within the web.config file in order to have our code run against a full SQL Server.  This provides the flexibility to scale up your application starting from a small embedded database solution as needed. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Rendering ASP.NET Script References into the Html Header

    - by Rick Strahl
    One thing that I’ve come to appreciate in control development in ASP.NET that use JavaScript is the ability to have more control over script and script include placement than ASP.NET provides natively. Specifically in ASP.NET you can use either the ClientScriptManager or ScriptManager to embed scripts and script references into pages via code. This works reasonably well, but the script references that get generated are generated into the HTML body and there’s very little operational control for placement of scripts. If you have multiple controls or several of the same control that need to place the same scripts onto the page it’s not difficult to end up with scripts that render in the wrong order and stop working correctly. This is especially critical if you load script libraries with dependencies either via resources or even if you are rendering referenced to CDN resources. Natively ASP.NET provides a host of methods that help embedding scripts into the page via either Page.ClientScript or the ASP.NET ScriptManager control (both with slightly different syntax): RegisterClientScriptBlock Renders a script block at the top of the HTML body and should be used for embedding callable functions/classes. RegisterStartupScript Renders a script block just prior to the </form> tag and should be used to for embedding code that should execute when the page is first loaded. Not recommended – use jQuery.ready() or equivalent load time routines. RegisterClientScriptInclude Embeds a reference to a script from a url into the page. RegisterClientScriptResource Embeds a reference to a Script from a resource file generating a long resource file string All 4 of these methods render their <script> tags into the HTML body. The script blocks give you a little bit of control by having a ‘top’ and ‘bottom’ of the document location which gives you some flexibility over script placement and precedence. Script includes and resource url unfortunately do not even get that much control – references are simply rendered into the page in the order of declaration. The ASP.NET ScriptManager control facilitates this task a little bit with the abililty to specify scripts in code and the ability to programmatically check what scripts have already been registered, but it doesn’t provide any more control over the script rendering process itself. Further the ScriptManager is a bear to deal with generically because generic code has to always check and see if it is actually present. Some time ago I posted a ClientScriptProxy class that helps with managing the latter process of sending script references either to ClientScript or ScriptManager if it’s available. Since I last posted about this there have been a number of improvements in this API, one of which is the ability to control placement of scripts and script includes in the page which I think is rather important and a missing feature in the ASP.NET native functionality. Handling ScriptRenderModes One of the big enhancements that I’ve come to rely on is the ability of the various script rendering functions described above to support rendering in multiple locations: /// <summary> /// Determines how scripts are included into the page /// </summary> public enum ScriptRenderModes { /// <summary> /// Inherits the setting from the control or from the ClientScript.DefaultScriptRenderMode /// </summary> Inherit, /// Renders the script include at the location of the control /// </summary> Inline, /// <summary> /// Renders the script include into the bottom of the header of the page /// </summary> Header, /// <summary> /// Renders the script include into the top of the header of the page /// </summary> HeaderTop, /// <summary> /// Uses ClientScript or ScriptManager to embed the script include to /// provide standard ASP.NET style rendering in the HTML body. /// </summary> Script, /// <summary> /// Renders script at the bottom of the page before the last Page.Controls /// literal control. Note this may result in unexpected behavior /// if /body and /html are not the last thing in the markup page. /// </summary> BottomOfPage } This enum is then applied to the various Register functions to allow more control over where scripts actually show up. Why is this useful? For me I often render scripts out of control resources and these scripts often include things like a JavaScript Library (jquery) and a few plug-ins. The order in which these can be loaded is critical so that jQuery.js always loads before any plug-in for example. Typically I end up with a general script layout like this: Core Libraries- HeaderTop Plug-ins: Header ScriptBlocks: Header or Script depending on other dependencies There’s also an option to render scripts and CSS at the very bottom of the page before the last Page control on the page which can be useful for speeding up page load when lots of scripts are loaded. The API syntax of the ClientScriptProxy methods is closely compatible with ScriptManager’s using static methods and control references to gain access to the page and embedding scripts. For example, to render some script into the current page in the header: // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Same again - shouldn't be rendered because it's the same id ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Create a second script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function2", "function helloWorld2() { alert('hello2'); }", true, ScriptRenderModes.Header); // This just calls ClientScript and renders into bottom of document ClientScriptProxy.Current.RegisterStartupScript(this,typeof(ControlResources), "call_hello", "helloWorld();helloWorld2();", true); which generates: <html xmlns="http://www.w3.org/1999/xhtml" > <head><title> </title> <script type="text/javascript"> function helloWorld() { alert('hello'); } </script> <script type="text/javascript"> function helloWorld2() { alert('hello2'); } </script> </head> <body> … <script type="text/javascript"> //<![CDATA[ helloWorld();helloWorld2();//]]> </script> </form> </body> </html> Note that the scripts are generated into the header rather than the body except for the last script block which is the call to RegisterStartupScript. In general I wouldn’t recommend using RegisterStartupScript – ever. It’s a much better practice to use a script base load event to handle ‘startup’ code that should fire when the page first loads. So instead of the code above I’d actually recommend doing: ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "call_hello", "$().ready( function() { alert('hello2'); });", true, ScriptRenderModes.Header); assuming you’re using jQuery on the page. For script includes from a Url the following demonstrates how to embed scripts into the header. This example injects a jQuery and jQuery.UI script reference from the Google CDN then checks each with a script block to ensure that it has loaded and if not loads it from a server local location: // load jquery from CDN ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js", ScriptRenderModes.HeaderTop); // check if jquery loaded - if it didn't we're not online string scriptCheck = @"if (typeof jQuery != 'object') document.write(unescape(""%3Cscript src='{0}' type='text/javascript'%3E%3C/script%3E""));"; string jQueryUrl = ClientScriptProxy.Current.GetWebResourceUrl(this, typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jquery_register", string.Format(scriptCheck,jQueryUrl),true, ScriptRenderModes.HeaderTop); // Load jquery-ui from cdn ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js", ScriptRenderModes.Header); // check if we need to load from local string jQueryUiUrl = ResolveUrl("~/scripts/jquery-ui-custom.min.js"); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jqueryui_register", string.Format(scriptCheck, jQueryUiUrl), true, ScriptRenderModes.Header); // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "$().ready( function() { alert('hello'); });", true, ScriptRenderModes.Header); which in turn generates this HTML: <html xmlns="http://www.w3.org/1999/xhtml" > <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/WebResource.axd?d=DIykvYhJ_oXCr-TA_dr35i4AayJoV1mgnQAQGPaZsoPM2LCdvoD3cIsRRitHKlKJfV5K_jQvylK7tsqO3lQIFw2&t=633979863959332352' type='text/javascript'%3E%3C/script%3E")); </script> <title> </title> <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/scripts/jquery-ui-custom.min.js' type='text/javascript'%3E%3C/script%3E")); </script> <script type="text/javascript"> $().ready(function() { alert('hello'); }); </script> </head> <body> …</body> </html> As you can see there’s a bit more control in this process as you can inject both script includes and script blocks into the document at the top or bottom of the header, plus if necessary at the usual body locations. This is quite useful especially if you create custom server controls that interoperate with script and have certain dependencies. The above is a good example of a useful switchable routine where you can switch where scripts load from by default – the above pulls from Google CDN but a configuration switch may automatically switch to pull from the local development copies if your doing development for example. How does it work? As mentioned the ClientScriptProxy object mimicks many of the ScriptManager script related methods and so provides close API compatibility with it although it contains many additional overloads that enhance functionality. It does however work against ScriptManager if it’s available on the page, or Page.ClientScript if it’s not so it provides a single unified frontend to script access. There are however many overloads of the original SM methods like the above to provide additional functionality. The implementation of script header rendering is pretty straight forward – as long as a server header (ie. it has to have runat=”server” set) is available. Otherwise these routines fall back to using the default document level insertions of ScriptManager/ClientScript. Given that there is a server header it’s relatively easy to generate the script tags and code and append them to the header either at the top or bottom. I suspect Microsoft didn’t provide header rendering functionality precisely because a runat=”server” header is not required by ASP.NET so behavior would be slightly unpredictable. That’s not really a problem for a custom implementation however. Here’s the RegisterClientScriptBlock implementation that takes a ScriptRenderModes parameter to allow header rendering: /// <summary> /// Renders client script block with the option of rendering the script block in /// the Html header /// /// For this to work Header must be defined as runat="server" /// </summary> /// <param name="control">any control that instance typically page</param> /// <param name="type">Type that identifies this rendering</param> /// <param name="key">unique script block id</param> /// <param name="script">The script code to render</param> /// <param name="addScriptTags">Ignored for header rendering used for all other insertions</param> /// <param name="renderMode">Where the block is rendered</param> public void RegisterClientScriptBlock(Control control, Type type, string key, string script, bool addScriptTags, ScriptRenderModes renderMode) { if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; if (control.Page.Header == null || renderMode != ScriptRenderModes.HeaderTop && renderMode != ScriptRenderModes.Header && renderMode != ScriptRenderModes.BottomOfPage) { RegisterClientScriptBlock(control, type, key, script, addScriptTags); return; } // No dupes - ref script include only once const string identifier = "scriptblock_"; if (HttpContext.Current.Items.Contains(identifier + key)) return; HttpContext.Current.Items.Add(identifier + key, string.Empty); StringBuilder sb = new StringBuilder(); // Embed in header sb.AppendLine("\r\n<script type=\"text/javascript\">"); sb.AppendLine(script); sb.AppendLine("</script>"); int? index = HttpContext.Current.Items["__ScriptResourceIndex"] as int?; if (index == null) index = 0; if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if(renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1,new LiteralControl(sb.ToString())); HttpContext.Current.Items["__ScriptResourceIndex"] = index; } Note that the routine has to keep track of items inserted by id so that if the same item is added again with the same key it won’t generate two script entries. Additionally the code has to keep track of how many insertions have been made at the top of the document so that entries are added in the proper order. The RegisterScriptInclude method is similar but there’s some additional logic in here to deal with script file references and ClientScriptProxy’s (optional) custom resource handler that provides script compression /// <summary> /// Registers a client script reference into the page with the option to specify /// the script location in the page /// </summary> /// <param name="control">Any control instance - typically page</param> /// <param name="type">Type that acts as qualifier (uniqueness)</param> /// <param name="url">the Url to the script resource</param> /// <param name="ScriptRenderModes">Determines where the script is rendered</param> public void RegisterClientScriptInclude(Control control, Type type, string url, ScriptRenderModes renderMode) { const string STR_ScriptResourceIndex = "__ScriptResourceIndex"; if (string.IsNullOrEmpty(url)) return; if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; // Extract just the script filename string fileId = null; // Check resource IDs and try to match to mapped file resources // Used to allow scripts not to be loaded more than once whether // embedded manually (script tag) or via resources with ClientScriptProxy if (url.Contains(".axd?r=")) { string res = HttpUtility.UrlDecode( StringUtils.ExtractString(url, "?r=", "&", false, true) ); foreach (ScriptResourceAlias item in ScriptResourceAliases) { if (item.Resource == res) { fileId = item.Alias + ".js"; break; } } if (fileId == null) fileId = url.ToLower(); } else fileId = Path.GetFileName(url).ToLower(); // No dupes - ref script include only once const string identifier = "script_"; if (HttpContext.Current.Items.Contains( identifier + fileId ) ) return; HttpContext.Current.Items.Add(identifier + fileId, string.Empty); // just use script manager or ClientScriptManager if (control.Page.Header == null || renderMode == ScriptRenderModes.Script || renderMode == ScriptRenderModes.Inline) { RegisterClientScriptInclude(control, type,url, url); return; } // Retrieve script index in header int? index = HttpContext.Current.Items[STR_ScriptResourceIndex] as int?; if (index == null) index = 0; StringBuilder sb = new StringBuilder(256); url = WebUtils.ResolveUrl(url); // Embed in header sb.AppendLine("\r\n<script src=\"" + url + "\" type=\"text/javascript\"></script>"); if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if (renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1, new LiteralControl(sb.ToString())); HttpContext.Current.Items[STR_ScriptResourceIndex] = index; } There’s a little more code here that deals with cleaning up the passed in Url and also some custom handling of script resources that run through the ScriptCompressionModule – any script resources loaded in this fashion are automatically cached based on the resource id. Raw urls extract just the filename from the URL and cache based on that. All of this to avoid doubling up of scripts if called multiple times by multiple instances of the same control for example or several controls that all load the same resources/includes. Finally RegisterClientScriptResource utilizes the previous method to wrap the WebResourceUrl as well as some custom functionality for the resource compression module: /// <summary> /// Returns a WebResource or ScriptResource URL for script resources that are to be /// embedded as script includes. /// </summary> /// <param name="control">Any control</param> /// <param name="type">A type in assembly where resources are located</param> /// <param name="resourceName">Name of the resource to load</param> /// <param name="renderMode">Determines where in the document the link is rendered</param> public void RegisterClientScriptResource(Control control, Type type, string resourceName, ScriptRenderModes renderMode) { string resourceUrl = GetClientScriptResourceUrl(control, type, resourceName); RegisterClientScriptInclude(control, type, resourceUrl, renderMode); } /// <summary> /// Works like GetWebResourceUrl but can be used with javascript resources /// to allow using of resource compression (if the module is loaded). /// </summary> /// <param name="control"></param> /// <param name="type"></param> /// <param name="resourceName"></param> /// <returns></returns> public string GetClientScriptResourceUrl(Control control, Type type, string resourceName) { #if IncludeScriptCompressionModuleSupport // If wwScriptCompression Module through Web.config is loaded use it to compress // script resources by using wcSC.axd Url the module intercepts if (ScriptCompressionModule.ScriptCompressionModuleActive) { string url = "~/wwSC.axd?r=" + HttpUtility.UrlEncode(resourceName); if (type.Assembly != GetType().Assembly) url += "&t=" + HttpUtility.UrlEncode(type.FullName); return WebUtils.ResolveUrl(url); } #endif return control.Page.ClientScript.GetWebResourceUrl(type, resourceName); } This code merely retrieves the resource URL and then simply calls back to RegisterClientScriptInclude with the URL to be embedded which means there’s nothing specific to deal with other than the custom compression module logic which is nice and easy. What else is there in ClientScriptProxy? ClientscriptProxy also provides a few other useful services beyond what I’ve already covered here: Transparent ScriptManager and ClientScript calls ClientScriptProxy includes a host of routines that help figure out whether a script manager is available or not and all functions in this class call the appropriate object – ScriptManager or ClientScript – that is available in the current page to ensure that scripts get embedded into pages properly. This is especially useful for control development where controls have no control over the scripting environment in place on the page. RegisterCssLink and RegisterCssResource Much like the script embedding functions these two methods allow embedding of CSS links. CSS links are appended to the header or to a form declared with runat=”server”. LoadControlScript Is a high level resource loading routine that can be used to easily switch between different script linking modes. It supports loading from a WebResource, a url or not loading anything at all. This is very useful if you build controls that deal with specification of resource urls/ids in a standard way. Check out the full Code You can check out the full code to the ClientScriptProxyClass here: ClientScriptProxy.cs ClientScriptProxy Documentation (class reference) Note that the ClientScriptProxy has a few dependencies in the West Wind Web Toolkit of which it is part of. ControlResources holds a few standard constants and script resource links and the ScriptCompressionModule which is referenced in a few of the script inclusion methods. There’s also another useful ScriptContainer companion control  to the ClientScriptProxy that allows scripts to be placed onto the page’s markup including the ability to specify the script location and script minification options. You can find all the dependencies in the West Wind Web Toolkit repository: West Wind Web Toolkit Repository West Wind Web Toolkit Home Page© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  JavaScript  

    Read the article

  • Rendering ASP.NET MVC Views to String

    - by Rick Strahl
    It's not uncommon in my applications that I require longish text output that does not have to be rendered into the HTTP output stream. The most common scenario I have for 'template driven' non-Web text is for emails of all sorts. Logon confirmations and verifications, email confirmations for things like orders, status updates or scheduler notifications - all of which require merged text output both within and sometimes outside of Web applications. On other occasions I also need to capture the output from certain views for logging purposes. Rather than creating text output in code, it's much nicer to use the rendering mechanism that ASP.NET MVC already provides by way of it's ViewEngines - using Razor or WebForms views - to render output to a string. This is nice because it uses the same familiar rendering mechanism that I already use for my HTTP output and it also solves the problem of where to store the templates for rendering this content in nothing more than perhaps a separate view folder. The good news is that ASP.NET MVC's rendering engine is much more modular than the full ASP.NET runtime engine which was a real pain in the butt to coerce into rendering output to string. With MVC the rendering engine has been separated out from core ASP.NET runtime, so it's actually a lot easier to get View output into a string. Getting View Output from within an MVC Application If you need to generate string output from an MVC and pass some model data to it, the process to capture this output is fairly straight forward and involves only a handful of lines of code. The catch is that this particular approach requires that you have an active ControllerContext that can be passed to the view. This means that the following approach is limited to access from within Controller methods. Here's a class that wraps the process and provides both instance and static methods to handle the rendering:/// <summary> /// Class that renders MVC views to a string using the /// standard MVC View Engine to render the view. /// /// Note: This class can only be used within MVC /// applications that have an active ControllerContext. /// </summary> public class ViewRenderer { /// <summary> /// Required Controller Context /// </summary> protected ControllerContext Context { get; set; } public ViewRenderer(ControllerContext controllerContext) { Context = controllerContext; } /// <summary> /// Renders a full MVC view to a string. Will render with the full MVC /// View engine including running _ViewStart and merging into _Layout /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to render the view with</param> /// <returns>String of the rendered view or null on error</returns> public string RenderView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, false); } /// <summary> /// Renders a partial MVC view to string. Use this method to render /// a partial view that doesn't merge with _Layout and doesn't fire /// _ViewStart. /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to pass to the viewRenderer</param> /// <returns>String of the rendered view or null on error</returns> public string RenderPartialView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, true); } public static string RenderView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderView(viewPath, model); } public static string RenderPartialView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderPartialView(viewPath, model); } protected string RenderViewToStringInternal(string viewPath, object model, bool partial = false) { // first find the ViewEngine for this view ViewEngineResult viewEngineResult = null; if (partial) viewEngineResult = ViewEngines.Engines.FindPartialView(Context, viewPath); else viewEngineResult = ViewEngines.Engines.FindView(Context, viewPath, null); if (viewEngineResult == null) throw new FileNotFoundException(Properties.Resources.ViewCouldNotBeFound); // get the view and attach the model to view data var view = viewEngineResult.View; Context.Controller.ViewData.Model = model; string result = null; using (var sw = new StringWriter()) { var ctx = new ViewContext(Context, view, Context.Controller.ViewData, Context.Controller.TempData, sw); view.Render(ctx, sw); result = sw.ToString(); } return result; } } The key is the RenderViewToStringInternal method. The method first tries to find the view to render based on its path which can either be in the current controller's view path or the shared view path using its simple name (PasswordRecovery) or alternately by its full virtual path (~/Views/Templates/PasswordRecovery.cshtml). This code should work both for Razor and WebForms views although I've only tried it with Razor Views. Note that WebForms Views might actually be better for plain text as Razor adds all sorts of white space into its output when there are code blocks in the template. The Web Forms engine provides more accurate rendering for raw text scenarios. Once a view engine is found the view to render can be retrieved. Views in MVC render based on data that comes off the controller like the ViewData which contains the model along with the actual ViewData and ViewBag. From the View and some of the Context data a ViewContext is created which is then used to render the view with. The View picks up the Model and other data from the ViewContext internally and processes the View the same it would be processed if it were to send its output into the HTTP output stream. The difference is that we can override the ViewContext's output stream which we provide and capture into a StringWriter(). After rendering completes the result holds the output string. If an error occurs the error behavior is similar what you see with regular MVC errors - you get a full yellow screen of death including the view error information with the line of error highlighted. It's your responsibility to handle the error - or let it bubble up to your regular Controller Error filter if you have one. To use the simple class you only need a single line of code if you call the static methods. Here's an example of some Controller code that is used to send a user notification to a customer via email in one of my applications:[HttpPost] public ActionResult ContactSeller(ContactSellerViewModel model) { InitializeViewModel(model); var entryBus = new busEntry(); var entry = entryBus.LoadByDisplayId(model.EntryId); if ( string.IsNullOrEmpty(model.Email) ) entryBus.ValidationErrors.Add("Email address can't be empty.","Email"); if ( string.IsNullOrEmpty(model.Message)) entryBus.ValidationErrors.Add("Message can't be empty.","Message"); model.EntryId = entry.DisplayId; model.EntryTitle = entry.Title; if (entryBus.ValidationErrors.Count > 0) { ErrorDisplay.AddMessages(entryBus.ValidationErrors); ErrorDisplay.ShowError("Please correct the following:"); } else { string message = ViewRenderer.RenderView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); string title = entry.Title + " (" + entry.DisplayId + ") - " + App.Configuration.ApplicationName; AppUtils.SendEmail(title, message, model.Email, entry.User.Email, false, false)) } return View(model); } Simple! The view in this case is just a plain MVC view and in this case it's a very simple plain text email message (edited for brevity here) that is created and sent off:@model ContactSellerViewModel @{ Layout = null; }re: @Model.EntryTitle @Model.ListingUrl @Model.Message ** SECURITY ADVISORY - AVOID SCAMS ** Avoid: wiring money, cross-border deals, work-at-home ** Beware: cashier checks, money orders, escrow, shipping ** More Info: @(App.Configuration.ApplicationBaseUrl)scams.html Obviously this is a very simple view (I edited out more from this page to keep it brief) -  but other template views are much more complex HTML documents or long messages that are occasionally updated and they are a perfect fit for Razor rendering. It even works with nested partial views and _layout pages. Partial Rendering Notice that I'm rendering a full View here. In the view I explicitly set the Layout=null to avoid pulling in _layout.cshtml for this view. This can also be controlled externally by calling the RenderPartial method instead: string message = ViewRenderer.RenderPartialView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); with this line of code no layout page (or _viewstart) will be loaded, so the output generated is just what's in the view. I find myself using Partials most of the time when rendering templates, since the target of templates usually tend to be emails or other HTML fragment like output, so the RenderPartialView() method is definitely useful to me. Rendering without a ControllerContext The preceding class is great when you're need template rendering from within MVC controller actions or anywhere where you have access to the request Controller. But if you don't have a controller context handy - maybe inside a utility function that is static, a non-Web application, or an operation that runs asynchronously in ASP.NET - which makes using the above code impossible. I haven't found a way to manually create a Controller context to provide the ViewContext() what it needs from outside of the MVC infrastructure. However, there are ways to accomplish this,  but they are a bit more complex. It's possible to host the RazorEngine on your own, which side steps all of the MVC framework and HTTP and just deals with the raw rendering engine. I wrote about this process in Hosting the Razor Engine in Non-Web Applications a long while back. It's quite a process to create a custom Razor engine and runtime, but it allows for all sorts of flexibility. There's also a RazorEngine CodePlex project that does something similar. I've been meaning to check out the latter but haven't gotten around to it since I have my own code to do this. The trick to hosting the RazorEngine to have it behave properly inside of an ASP.NET application and properly cache content so templates aren't constantly rebuild and reparsed. Anyway, in the same app as above I have one scenario where no ControllerContext is available: I have a background scheduler running inside of the app that fires on timed intervals. This process could be external but because it's lightweight we decided to fire it right inside of the ASP.NET app on a separate thread. In my app the code that renders these templates does something like this:var model = new SearchNotificationViewModel() { Entries = entries, Notification = notification, User = user }; // TODO: Need logging for errors sending string razorError = null; var result = AppUtils.RenderRazorTemplate("~/views/template/SearchNotificationTemplate.cshtml", model, razorError); which references a couple of helper functions that set up my RazorFolderHostContainer class:public static string RenderRazorTemplate(string virtualPath, object model,string errorMessage = null) { var razor = AppUtils.CreateRazorHost(); var path = virtualPath.Replace("~/", "").Replace("~", "").Replace("/", "\\"); var merged = razor.RenderTemplateToString(path, model); if (merged == null) errorMessage = razor.ErrorMessage; return merged; } /// <summary> /// Creates a RazorStringHostContainer and starts it /// Call .Stop() when you're done with it. /// /// This is a static instance /// </summary> /// <param name="virtualPath"></param> /// <param name="binBasePath"></param> /// <param name="forceLoad"></param> /// <returns></returns> public static RazorFolderHostContainer CreateRazorHost(string binBasePath = null, bool forceLoad = false) { if (binBasePath == null) { if (HttpContext.Current != null) binBasePath = HttpContext.Current.Server.MapPath("~/"); else binBasePath = AppDomain.CurrentDomain.BaseDirectory; } if (_RazorHost == null || forceLoad) { if (!binBasePath.EndsWith("\\")) binBasePath += "\\"; //var razor = new RazorStringHostContainer(); var razor = new RazorFolderHostContainer(); razor.TemplatePath = binBasePath; binBasePath += "bin\\"; razor.BaseBinaryFolder = binBasePath; razor.UseAppDomain = false; razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsBusiness.dll"); razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsWeb.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Utilities.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.Mvc.dll"); razor.ReferencedAssemblies.Add("System.Web.dll"); razor.ReferencedNamespaces.Add("System.Web"); razor.ReferencedNamespaces.Add("ClassifiedsBusiness"); razor.ReferencedNamespaces.Add("ClassifiedsWeb"); razor.ReferencedNamespaces.Add("Westwind.Web"); razor.ReferencedNamespaces.Add("Westwind.Utilities"); _RazorHost = razor; _RazorHost.Start(); //_RazorHost.Engine.Configuration.CompileToMemory = false; } return _RazorHost; } The RazorFolderHostContainer essentially is a full runtime that mimics a folder structure like a typical Web app does including caching semantics and compiling code only if code changes on disk. It maps a folder hierarchy to views using the ~/ path syntax. The host is then configured to add assemblies and namespaces. Unfortunately the engine is not exactly like MVC's Razor - the expression expansion and code execution are the same, but some of the support methods like sections, helpers etc. are not all there so templates have to be a bit simpler. There are other folder hosts provided as well to directly execute templates from strings (using RazorStringHostContainer). The following is an example of an HTML email template @inherits RazorHosting.RazorTemplateFolderHost <ClassifiedsWeb.SearchNotificationViewModel> <html> <head> <title>Search Notifications</title> <style> body { margin: 5px;font-family: Verdana, Arial; font-size: 10pt;} h3 { color: SteelBlue; } .entry-item { border-bottom: 1px solid grey; padding: 8px; margin-bottom: 5px; } </style> </head> <body> Hello @Model.User.Name,<br /> <p>Below are your Search Results for the search phrase:</p> <h3>@Model.Notification.SearchPhrase</h3> <small>since @TimeUtils.ShortDateString(Model.Notification.LastSearch)</small> <hr /> You can see that the syntax is a little different. Instead of the familiar @model header the raw Razor  @inherits tag is used to specify the template base class (which you can extend). I took a quick look through the feature set of RazorEngine on CodePlex (now Github I guess) and the template implementation they use is closer to MVC's razor but there are other differences. In the end don't expect exact behavior like MVC templates if you use an external Razor rendering engine. This is not what I would consider an ideal solution, but it works well enough for this project. My biggest concern is the overhead of hosting a second razor engine in a Web app and the fact that here the differences in template rendering between 'real' MVC Razor views and another RazorEngine really are noticeable. You win some, you lose some It's extremely nice to see that if you have a ControllerContext handy (which probably addresses 99% of Web app scenarios) rendering a view to string using the native MVC Razor engine is pretty simple. Kudos on making that happen - as it solves a problem I see in just about every Web application I work on. But it is a bummer that a ControllerContext is required to make this simple code work. It'd be really sweet if there was a way to render views without being so closely coupled to the ASP.NET or MVC infrastructure that requires a ControllerContext. Alternately it'd be nice to have a way for an MVC based application to create a minimal ControllerContext from scratch - maybe somebody's been down that path. I tried for a few hours to come up with a way to make that work but gave up in the soup of nested contexts (MVC/Controller/View/Http). I suspect going down this path would be similar to hosting the ASP.NET runtime requiring a WorkerRequest. Brrr…. The sad part is that it seems to me that a View should really not require much 'context' of any kind to render output to string. Yes there are a few things that clearly are required like paths to the virtual and possibly the disk paths to the root of the app, but beyond that view rendering should not require much. But, no such luck. For now custom RazorHosting seems to be the only way to make Razor rendering go outside of the MVC context… Resources Full ViewRenderer.cs source code from Westwind.Web.Mvc library Hosting the Razor Engine for Non-Web Applications RazorEngine on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Using jQuery to POST Form Data to an ASP.NET ASMX AJAX Web Service

    - by Rick Strahl
    The other day I got a question about how to call an ASP.NET ASMX Web Service or PageMethods with the POST data from a Web Form (or any HTML form for that matter). The idea is that you should be able to call an endpoint URL, send it regular urlencoded POST data and then use Request.Form[] to retrieve the posted data as needed. My first reaction was that you can’t do it, because ASP.NET ASMX AJAX services (as well as Page Methods and WCF REST AJAX Services) require that the content POSTed to the server is posted as JSON and sent with an application/json or application/x-javascript content type. IOW, you can’t directly call an ASP.NET AJAX service with regular urlencoded data. Note that there are other ways to accomplish this. You can use ASP.NET MVC and a custom route, an HTTP Handler or separate ASPX page, or even a WCF REST service that’s configured to use non-JSON inputs. However if you want to use an ASP.NET AJAX service (or Page Methods) with a little bit of setup work it’s actually quite easy to capture all the form variables on the client and ship them up to the server. The basic steps needed to make this happen are: Capture form variables into an array on the client with jQuery’s .serializeArray() function Use $.ajax() or my ServiceProxy class to make an AJAX call to the server to send this array On the server create a custom type that matches the .serializeArray() name/value structure Create extension methods on NameValue[] to easily extract form variables Create a [WebMethod] that accepts this name/value type as an array (NameValue[]) This seems like a lot of work but realize that steps 3 and 4 are a one time setup step that can be reused in your entire site or multiple applications. Let’s look at a short example that looks like this as a base form of fields to ship to the server: The HTML for this form looks something like this: <div id="divMessage" class="errordisplay" style="display: none"> </div> <div> <div class="label">Name:</div> <div><asp:TextBox runat="server" ID="txtName" /></div> </div> <div> <div class="label">Company:</div> <div><asp:TextBox runat="server" ID="txtCompany"/></div> </div> <div> <div class="label" ></div> <div> <asp:DropDownList runat="server" ID="lstAttending"> <asp:ListItem Text="Attending" Value="Attending"/> <asp:ListItem Text="Not Attending" Value="NotAttending" /> <asp:ListItem Text="Maybe Attending" Value="MaybeAttending" /> <asp:ListItem Text="Not Sure Yet" Value="NotSureYet" /> </asp:DropDownList> </div> </div> <div> <div class="label">Special Needs:<br /> <small>(check all that apply)</small></div> <div> <asp:ListBox runat="server" ID="lstSpecialNeeds" SelectionMode="Multiple"> <asp:ListItem Text="Vegitarian" Value="Vegitarian" /> <asp:ListItem Text="Vegan" Value="Vegan" /> <asp:ListItem Text="Kosher" Value="Kosher" /> <asp:ListItem Text="Special Access" Value="SpecialAccess" /> <asp:ListItem Text="No Binder" Value="NoBinder" /> </asp:ListBox> </div> </div> <div> <div class="label"></div> <div> <asp:CheckBox ID="chkAdditionalGuests" Text="Additional Guests" runat="server" /> </div> </div> <hr /> <input type="button" id="btnSubmit" value="Send Registration" /> The form includes a few different kinds of form fields including a multi-selection listbox to demonstrate retrieving multiple values. Setting up the Server Side [WebMethod] The [WebMethod] on the server we’re going to call is going to be very simple and just capture the content of these values and echo then back as a formatted HTML string. Obviously this is overly simplistic but it serves to demonstrate the simple point of capturing the POST data on the server in an AJAX callback. public class PageMethodsService : System.Web.Services.WebService { [WebMethod] public string SendRegistration(NameValue[] formVars) { StringBuilder sb = new StringBuilder(); sb.AppendFormat("Thank you {0}, <br/><br/>", HttpUtility.HtmlEncode(formVars.Form("txtName"))); sb.AppendLine("You've entered the following: <hr/>"); foreach (NameValue nv in formVars) { // strip out ASP.NET form vars like _ViewState/_EventValidation if (!nv.name.StartsWith("__")) { if (nv.name.StartsWith("txt") || nv.name.StartsWith("lst") || nv.name.StartsWith("chk")) sb.Append(nv.name.Substring(3)); else sb.Append(nv.name); sb.AppendLine(": " + HttpUtility.HtmlEncode(nv.value) + "<br/>"); } } sb.AppendLine("<hr/>"); string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs == null) sb.AppendLine("No Special Needs"); else { sb.AppendLine("Special Needs: <br/>"); foreach (string need in needs) { sb.AppendLine("&nbsp;&nbsp;" + need + "<br/>"); } } return sb.ToString(); } } The key feature of this method is that it receives a custom type called NameValue[] which is an array of NameValue objects that map the structure that the jQuery .serializeArray() function generates. There are two custom types involved in this: The actual NameValue type and a NameValueExtensions class that defines a couple of extension methods for the NameValue[] array type to allow for single (.Form()) and multiple (.FormMultiple()) value retrieval by name. The NameValue class is as simple as this and simply maps the structure of the array elements of .serializeArray(): public class NameValue { public string name { get; set; } public string value { get; set; } } The extension method class defines the .Form() and .FormMultiple() methods to allow easy retrieval of form variables from the returned array: /// <summary> /// Simple NameValue class that maps name and value /// properties that can be used with jQuery's /// $.serializeArray() function and JSON requests /// </summary> public static class NameValueExtensionMethods { /// <summary> /// Retrieves a single form variable from the list of /// form variables stored /// </summary> /// <param name="formVars"></param> /// <param name="name">formvar to retrieve</param> /// <returns>value or string.Empty if not found</returns> public static string Form(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).FirstOrDefault(); if (matches != null) return matches.value; return string.Empty; } /// <summary> /// Retrieves multiple selection form variables from the list of /// form variables stored. /// </summary> /// <param name="formVars"></param> /// <param name="name">The name of the form var to retrieve</param> /// <returns>values as string[] or null if no match is found</returns> public static string[] FormMultiple(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).Select(nv => nv.value).ToArray(); if (matches.Length == 0) return null; return matches; } } Using these extension methods it’s easy to retrieve individual values from the array: string name = formVars.Form("txtName"); or multiple values: string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs != null) { // do something with matches } Using these functions in the SendRegistration method it’s easy to retrieve a few form variables directly (txtName and the multiple selections of lstSpecialNeeds) or to iterate over the whole list of values. Of course this is an overly simple example – in typical app you’d probably want to validate the input data and save it to the database and then return some sort of confirmation or possibly an updated data list back to the client. Since this is a full AJAX service callback realize that you don’t have to return simple string values – you can return any of the supported result types (which are most serializable types) including complex hierarchical objects and arrays that make sense to your client code. POSTing Form Variables from the Client to the AJAX Service To call the AJAX service method on the client is straight forward and requires only use of little native jQuery plus JSON serialization functionality. To start add jQuery and the json2.js library to your page: <script src="Scripts/jquery.min.js" type="text/javascript"></script> <script src="Scripts/json2.js" type="text/javascript"></script> json2.js can be found here (be sure to remove the first line from the file): http://www.json.org/json2.js It’s required to handle JSON serialization for those browsers that don’t support it natively. With those script references in the document let’s hookup the button click handler and call the service: $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); $.ajax({ url: "PageMethodsService.asmx/SendRegistration", type: "POST", contentType: "application/json", data: JSON.stringify({ formVars: arForm }), dataType: "json", success: function (result) { var jEl = $("#divMessage"); jEl.html(result.d).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, error: function (xhr, status) { alert("An error occurred: " + status); } }); } The key feature in this code is the $("#form1").serializeArray();  call which serializes all the form fields of form1 into an array. Each form var is represented as an object with a name/value property. This array is then serialized into JSON with: JSON.stringify({ formVars: arForm }) The format for the parameter list in AJAX service calls is an object with one property for each parameter of the method. In this case its a single parameter called formVars and we’re assigning the array of form variables to it. The URL to call on the server is the name of the Service (or ASPX Page for Page Methods) plus the name of the method to call. On return the success callback receives the result from the AJAX callback which in this case is the formatted string which is simply assigned to an element in the form and displayed. Remember the result type is whatever the method returns – it doesn’t have to be a string. Note that ASP.NET AJAX and WCF REST return JSON data as a wrapped object so the result has a ‘d’ property that holds the actual response: jEl.html(result.d).fadeIn(1000); Slightly simpler: Using ServiceProxy.js If you want things slightly cleaner you can use the ServiceProxy.js class I’ve mentioned here before. The ServiceProxy class handles a few things for calling ASP.NET and WCF services more cleanly: Automatic JSON encoding Automatic fix up of ‘d’ wrapper property Automatic Date conversion on the client Simplified error handling Reusable and abstracted To add the service proxy add: <script src="Scripts/ServiceProxy.js" type="text/javascript"></script> and then change the code to this slightly simpler version: <script type="text/javascript"> proxy = new ServiceProxy("PageMethodsService.asmx/"); $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); proxy.invoke("SendRegistration", { formVars: arForm }, function (result) { var jEl = $("#divMessage"); jEl.html(result).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, function (error) { alert(error.message); } ); } The code is not very different but it makes the call as simple as specifying the method to call, the parameters to pass and the actions to take on success and error. No more remembering which content type and data types to use and manually serializing to JSON. This code also removes the “d” property processing in the response and provides more consistent error handling in that the call always returns an error object regardless of a server error or a communication error unlike the native $.ajax() call. Either approach works and both are pretty easy. The ServiceProxy really pays off if you use lots of service calls and especially if you need to deal with date values returned from the server  on the client. Summary Making Web Service calls and getting POST data to the server is not always the best option – ASP.NET and WCF AJAX services are meant to work with data in objects. However, in some situations it’s simply easier to POST all the captured form data to the server instead of mapping all properties from the input fields to some sort of message object first. For this approach the above POST mechanism is useful as it puts the parsing of the data on the server and leaves the client code lean and mean. It’s even easy to build a custom model binder on the server that can map the array values to properties on an object generically with some relatively simple Reflection code and without having to manually map form vars to properties and do string conversions. Keep in mind though that other approaches also abound. ASP.NET MVC makes it pretty easy to create custom routes to data and the built in model binder makes it very easy to deal with inbound form POST data in its original urlencoded format. The West Wind West Wind Web Toolkit also includes functionality for AJAX callbacks using plain POST values. All that’s needed is a Method parameter to query/form value to specify the method to be called on the server. After that the content type is completely optional and up to the consumer. It’d be nice if the ASP.NET AJAX Service and WCF AJAX Services weren’t so tightly bound to the content type so that you could more easily create open access service endpoints that can take advantage of urlencoded data that is everywhere in existing pages. It would make it much easier to create basic REST endpoints without complicated service configuration. Ah one can dream! In the meantime I hope this article has given you some ideas on how you can transfer POST data from the client to the server using JSON – it might be useful in other scenarios beyond ASP.NET AJAX services as well. Additional Resources ServiceProxy.js A small JavaScript library that wraps $.ajax() to call ASP.NET AJAX and WCF AJAX Services. Includes date parsing extensions to the JSON object, a global dataFilter for processing dates on all jQuery JSON requests, provides cleanup for the .NET wrapped message format and handles errors in a consistent fashion. Making jQuery Calls to WCF/ASMX with a ServiceProxy Client More information on calling ASMX and WCF AJAX services with jQuery and some more background on ServiceProxy.js. Note the implementation has slightly changed since the article was written. ww.jquery.js The West Wind West Wind Web Toolkit also includes ServiceProxy.js in the West Wind jQuery extension library. This version is slightly different and includes embedded json encoding/decoding based on json2.js.© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  AJAX  

    Read the article

  • IIS SSL Certificate Renewal Pain

    - by Rick Strahl
    I’m in the middle of my annual certificate renewal for the West Wind site and I can honestly say that I hate IIS’s certificate system.  When it works it’s fine, but when it doesn’t man can it be a pain. Because I deal with public certificates on my site merely once a year, and you have to perform the certificate dance just the right way, I seem to run into some sort of trouble every year, thinking that Microsoft surely must have addressed the issues I ran into previously – HA! Not so. Don’t ever use the Renew Certificate Feature in IIS! The first rule that I should have never forgotten is that certificate renewals in IIS (7 is what I’m using but I think it’s no different in 7.5 and 8), simply don’t work if you’re submitting to get a public certificate from a certificate authority. I use DNSimple for my DNS domain management and SSL certificates because they provide ridiculously easy domain management and good prices for SSL certs – especially wildcard certificates, which is what I use on west-wind.com. Certificates in IIS can be found pegged to the machine root. If you go into the IIS Manager, go to the machine root the tree and then click on certificates and you then get various certificate options: Both of these options create a new Certificate request (CSR), which is just a text file. But if you’re silly enough like me to click on the Renew button on your old certificate, you’ll find that you end up generating a very long Certificate Request that looks nothing like the original certificate request and the format that’s used for this is not accepted by most certificate authorities. While I’m not sure exactly what the problem is, it simply looks like IIS is respecting none of your original certificate bit size choices and is generating a huge certificate request that is 3 times the size of a ‘normal’ certificate request. The end result is (and I’ve done this at least twice now) is that the certificate processor is likely to fail processing those renewals. Always create a new Certificate While it’s a little more work and you have to remember how to fill out the certificate request properly, this is the safe way to make sure your certificate generates properly. First comes the Distinguished Name Properties dialog: Ah yes you have to love the nomenclature of this stuff. Distinguished name, Common name – WTF is a common name? It doesn’t look common to me! Make sure this form gets filled out correctly. Common NameThis is the domain name of the Web site. In my case I’m creating a wildcard certificate so I’m using the * prefix. If you’re purchasing a certificate for a specific domain use www.west-wind.com or store.west-wind.com for example. Make sure this matches the EXACT domain you’re trying to use secure access on because that’s all the certificate is going to work on unless you get a wildcard certificate. Organization Is the name of your company or organization. Depending on the kind of certificate you purchase this name will show up on your certificate. Most low end SSL certificates (ie. those that cost under $100 for single domains) don’t list the organization, the higher signature certificates that also require extensive validation by the cert authority do. Regardless you should make sure this matches the right company/organization. Organizational Unit This can be anything. Not really sure what this is for, but traditionally I’ve always set this to Web because – well this is a Web thing after all right? I’ve never seen this used anywhere that I can tell other than to internally reference the cert. State and CountryPretty obvious. Should reflect the location of the business/organization/person or site.   Next you have to configure the bit size used for the certificate: The default on this dialog is 1024, but I’ve found that most providers these days request a minimum bit length of 2048, as did my DNSimple provider. Again check with the provider when you submit to make sure. Bit length mismatches can cause problems if you use a size that isn’t supported by the provider. I had that happen last year when I submitted my CSR and it got rejected quite a bit later, when the certs usually are issued within an hour or less. When you’re done here, the certificate is saved to disk as a .txt file and it should look something like this (this is a 2048 bit length CSR):-----BEGIN NEW CERTIFICATE REQUEST----- MIIEVGCCAz0CAQAwdjELMAkGA1UEBhMCVVMxDzANBgNVBAgMBkhhd2FpaTENMAsG A1UEBwwEUGFpYTEfMB0GA1UECgwWV2VzdCBXaW5kIFRlY2hub2xvZ2llczEMMAoG B1UECwwDV2ViMRgwFgYDVQQDDA8qLndlc3Qtd2luZC5jb20wggEiMA0GCSqGSIb3 DQEBAQUAA4IBDwAwggEKAoIBAQDIPWOFMkMVRp2Ftj9w/cCVV4OYYhoZYtl+8lTk oqDwKca0xWHLgioX/9v0rZLS6a82MHqKEBxVXu+cuCmSE4AQtB/1YH9lS4tpc/be OZDvnTotP6l4MCEzzAfROcw4CiIg6X0RMSnl8IATAvv2V5LQM9TDdt9oDdMpX2IY +vVC9RZ7PMHBmR9kwI2i/lrKitzhQKaHgpmKcRlM6iqpALUiX28w5HJaDKK1MDHN 607tyFJLHijuJKx7PdTqZYf50KkC3NupfZ2avVycf18Q13jHWj59tvwEOczoVzRL l4LQivAqbhyiqMpWnrZunIOUZta5aGm+jo7O1knGWJjxuraTAgMBAAGgggGYMBoG CisGAQQBgjcNAgMxDBYKNi4yLjkyMDAuMjA0BgkrBgEEAYI3FRQxJzAlAgEFDAZS QVNYUFMMC1JBU1hQU1xSaWNrDAtJbmV0TWdyLmV4ZTByBgorBgEEAYI3DQICMWQw YgIBAR5aAE0AaQBjAHIAbwBzAG8AZgB0ACAAUgBTAEEAIABTAEMAaABhAG4AbgBl AGwAIABDAHIAeQBwAHQAbwBnAHIAYQBwAGgAaQBjACAAUAByAG8AdgBpAGQAZQBy AwEAMIHPBgkqhkiG9w0BCQ4xgcEwgb4wDgYDVR0PAQH/BAQDAgTwMBMGA1UdJQQM MAoGCCsGAQUFBwMBMHgGCSqGSIb3DQEJDwRrMGkwDgYIKoZIhvcNAwICAgCAMA4G CCqGSIb3DQMEAgIAgDALBglghkgBZQMEASowCwYJYIZIAWUDBAEtMAsGCWCGSAFl AwQBAjALBglghkgBZQMEAQUwBwYFKw4DAgcwCgYIKoZIhvcNAwcwHQYDVR0OBBYE FD/yOsTbXE+GVFCFMmldzQvyloz9MA0GCSqGSIb3DQEBBQUAA4IBAQCK6LlsCuIM 1AU0niB6QZ9v0FTsGFxP1dYvVUnJyY6VEKNiGFiQjZac7UCs0p58yScdXWEFOE8V OsjAYD3xYNc05+ckyD67UHRGEUAVB9RBvbKW23KeR/8kBmEzc8PemD52YOgExxAJ 57xWmAwEHAvbgYzQvhO8AOzH3TGvvHbg5UKM1pYgNmuwZq5DkL/IDoeIJwfk/wrI wghNTuxxIFgbH4YrgLgv4PRvrS/LaTCRBdboaCgzATMczaOb1nd/DVNR+3fCtMhM W0psTAjzRbmXF3nJyAQa7jF/52gkY0RfFX2lG5tJnG+XDsVNvKNvh9Qa5Tlmkm06 ILKCm9ciWCKk -----END NEW CERTIFICATE REQUEST----- You can take that certificate request and submit that to your certificate provider. Since this is base64 encoded you can typically just paste it into a text box on the submission page, or some providers will ask you to upload the CSR as a file. What does a Renewal look like? Note the length of the CSR will vary somewhat with key strength, but compare this to a renewal request that IIS generated from my existing site:-----BEGIN NEW CERTIFICATE REQUEST----- MIIPpwYFKoZIhvcNAQcCoIIPmDCCD5QCAQExCzAJBgUrDgMCGgUAMIIIqAYJKoZI hvcNAQcBoIIImQSCCJUwggiRMIIH+gIBADBdMSEwHwYDVQQLDBhEb21haW4gQ29u dHJvbCBWYWxpFGF0ZWQxHjAcBgNVBAsMFUVzc2VudGlhbFNTTCBXaWxkY2FyZDEY MBYGA1UEAwwPKi53ZXN0LXdpbmQuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCB iQKBgQCK4OuIOR18Wb8tNMGRZiD1c9X57b332Lj7DhbckFqLs0ys8kVDHrTXSj+T Ye9nmAvfPpZmBtE5p9qRNN79rUYugAdl+qEtE4IJe1bRfxXzcKa1SXa8+TEs3zQa zYSmcR2dDuC8om1eAdeCtt0NnkvANgm1VLwGOor/UHMASaEhCQIDAQABoIIG8jAa BgorBgEEAYI3DQIDMQwWCjYuMi45MjAwLjIwNAYJKwYBBAGCNxUUMScwJQIBBQwG UkFTWFBTDAtSQVNYUFNcUmljawwLSW5ldE1nci5leGUwZgYKKwYBBAGCNw0CAjFY MFYCAQIeTgBNAGkAYwByAG8AcwBvAGYAdAAgAFMAdAByAG8AbgBnACAAQwByAHkA cAB0AG8AZwByAGEAcABoAGkAYwAgAFAAcgBvAHYAaQBkAGUAcgMBADCCAQAGCSqG SIb3DQEJDjGB8jCB7zAOBgNVHQ8BAf8EBAMCBaAwDAYDVR0TAQH/BAIwADA0BgNV HSUELTArBggrBgEFBQcDAQYIKwYBBQUHAwIGCisGAQQBgjcKAwMGCWCGSAGG+EIE ATBPBgNVHSAESDBGMDoGCysGAQQBsjEBAgIHMCswKQYIKwYBBQUHAgEWHWh0dHBz Oi8vc2VjdXJlLmNvbW9kby5jb20vQ1BTMAgGBmeBDAECATApBgNVHREEIjAggg8q Lndlc3Qtd2luZC5jb22CDXdlc3Qtd2luZC5jb20wHQYDVR0OBBYEFEVLAyO8gDiv lsfovKrx9mHPyrsiMIIFMAYJKwYBBAGCNw0BMYIFITCCBR0wggQFoAMCAQICEQDu 1E1T5Jvtkm5LOfSHabWlMA0GCSqGSIb3DQEBBQUAMHIxCzAJBgNVBAYTAkdCMRsw GQYDVQQIExJHcmVhdGVyIE1hbmNoZXN0ZXIxEDAOBgNVBAcTB1NhbGZvcmQxGjAY BgNVBAoTEUNPTU9ETyBDQSBMaW1pdGVkMRgwFgYDVQQDEw9Fc3NlbnRpYWxTU0wg Q0EwHhcNMTQwNTA3MDAwMDAwWhcNMTUwNjA2MjM1OTU5WjBdMSEwHwYDVQQLExhE b21haW4gQ29udHJvbCBWYWxpZGF0ZWQxHjAcBgNVBAsTFUVzc2VudGlhbFNTTCBX aWxkY2FyZDEYMBYGA1UEAxQPKi53ZXN0LXdpbmQuY29tMIIBIjANBgkqhkiG9w0B AQEFAAOCAQ8AMIIBCgKCAQEAiyKfL66XB51DlUfm6xXqJBcvMU2qorRHxC+WjEpB amvg8XoqNfCKzDAvLMbY4BLhbYCTagqtslnP3Gj4AKhXqRKU0n6iSbmS1gcWzCJM CHufZ5RDtuTuxhTdJxzP9YqZUfKV5abWQp/TK6V1ryaBJvdqM73q4tRjrQODtkiR PfZjxpybnBHFJS8jYAf8jcOjSDZcgN1d9Evc5MrEJCp/90cAkozyF/NMcFtD6Yj8 UM97z3MzDT2JPDoH3kAr3cCgpUNyQ2+wDNCnL9eWYFkOQi8FZMsZol7KlZ5NgNfO a7iZMVGbqDg6rkS//2uGe6tSQJTTs+mAZB+na+M8XT2UqwIDAQABo4IBwTCCAb0w HwYDVR0jBBgwFoAU2svqrVsIXcz//CZUzknlVcY49PgwHQYDVR0OBBYEFH0AmLiL RSEL9+sQD/n5O4N7/nnqMA4GA1UdDwEB/wQEAwIFoDAMBgNVHRMBAf8EAjAAMDQG A1UdJQQtMCsGCCsGAQUFBwMBBggrBgEFBQcDAgYKKwYBBAGCNwoDAwYJYIZIAYb4 QgQBME8GA1UdIARIMEYwOgYLKwYBBAGyMQECAgcwKzApBggrBgEFBQcCARYdaHR0 cHM6Ly9zZWN1cmUuY29tb2RvLmNvbS9DUFMwCAYGZ4EMAQIBMDsGA1UdHwQ0MDIw MKAuoCyGKmh0dHA6Ly9jcmwuY29tb2RvY2EuY29tL0Vzc2VudGlhbFNTTENBLmNy bDBuBggrBgEFBQcBAQRiMGAwOAYIKwYBBQUHMAKGLGh0dHA6Ly9jcnQuY29tb2Rv Y2EuY29tL0Vzc2VudGlhbFNTTENBXzIuY3J0MCQGCCsGAQUFBzABhhhodHRwOi8v b2NzcC5jb21vZG9jYS5jb20wKQYDVR0RBCIwIIIPKi53ZXN0LXdpbmQuY29tgg13 ZXN0LXdpbmQuY29tMA0GCSqGSIb3DQEBBQUAA4IBAQBqBfd6QHrxXsfgfKARG6np 8yszIPhHGPPmaE7xq7RpcZjY9H+8l6fe4jQbGFjbA5uHBklYI4m2snhPaW2p8iF8 YOkm2V2hEsSTnkf5/flw9mZtlCFEDFXSsBxBdNz8RYTthPMu1h09C0XuDB30sztg nR692FrxJN5/bXsk+MC9nEweTFW/t2HW+XZ8bhM7vsAS+pZionR4MyuQ0mYIt/lD csZVZ91KxTsIm8rNMkkYGFoSIXjQ0+0tCbxMF0i2qnpmNRpA6PU8l7lxxvPkplsk 9KB8QIPFrR5p/i/SUAd9vECWh5+/ktlcrfFP2PK7XcEwWizsvMrNqLyvQVNXSUPT MA0GCSqGSIb3DQEBBQUAA4GBABt/NitwMzc5t22p5+zy4HXbVYzLEjesLH8/v0ot uLQ3kkG8tIWNh5RplxIxtilXt09H4Oxpo3fKUN0yw+E6WsBfg0sAF8pHNBdOJi48 azrQbt4HvKktQkGpgYFjLsormjF44SRtToLHlYycDHBNvjaBClUwMCq8HnwY6vDq xikRoIIFITCCBR0wggQFoAMCAQICEQDu1E1T5Jvtkm5LOfSHabWlMA0GCSqGSIb3 DQEBBQUAMHIxCzAJBgNVBAYTAkdCMRswGQYDVQQIExJHcmVhdGVyIE1hbmNoZXN0 ZXIxEDAOBgNVBAcTB1NhbGZvcmQxGjAYBgNVBAoTEUNPTU9ETyBDQSBMaW1pdGVk MRgwFgYDVQQDEw9Fc3NlbnRpYWxTU0wgQ0EwHhcNMTQwNTA3MDAwMDAwWhcNMTUw NjA2MjM1OTU5WjBdMSEwHwYDVQQLExhEb21haW4gQ29udHJvbCBWYWxpZGF0ZWQx HjAcBgNVBAsTFUVzc2VudGlhbFNTTCBXaWxkY2FyZDEYMBYGA1UEAxQPKi53ZXN0 LXdpbmQuY29tMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAiyKfL66X B51DlUfm6xXqJBcvMU2qorRHxC+WjEpBamvg8XoqNfCKzDAvLMbY4BLhbYCTagqt slnP3Gj4AKhXqRKU0n6iSbmS1gcWzCJMCHufZ5RDtuTuxhTdJxzP9YqZUfKV5abW Qp/TK6V1ryaBJvdqM73q4tRjrQODtkiRPfZjxpybnBHFJS8jYAf8jcOjSDZcgN1d 9Evc5MrEJCp/90cAkozyF/NMcFtD6Yj8UM97z3MzDT2JPDoH3kAr3cCgpUNyQ2+w DNCnL9eWYFkOQi8FZMsZol7KlZ5NgNfOa7iZMVGbqDg6rkS//2uGe6tSQJTTs+mA ZB+na+M8XT2UqwIDAQABo4IBwTCCAb0wHwYDVR0jBBgwFoAU2svqrVsIXcz//CZU zknlVcY49PgwHQYDVR0OBBYEFH0AmLiLRSEL9+sQD/n5O4N7/nnqMA4GA1UdDwEB /wQEAwIFoDAMBgNVHRMBAf8EAjAAMDQGA1UdJQQtMCsGCCsGAQUFBwMBBggrBgEF BQcDAgYKKwYBBAGCNwoDAwYJYIZIAYb4QgQBME8GA1UdIARIMEYwOgYLKwYBBAGy MQECAgcwKzApBggrBgEFBQcCARYdaHR0cHM6Ly9zZWN1cmUuY29tb2RvLmNvbS9D UFMwCAYGZ4EMAQIBMDsGA1UdHwQ0MDIwMKAuoCyGKmh0dHA6Ly9jcmwuY29tb2Rv Y2EuY29tL0Vzc2VudGlhbFNTTENBLmNybDBuBggrBgEFBQcBAQRiMGAwOAYIKwYB BQUHMAKGLGh0dHA6Ly9jcnQuY29tb2RvY2EuY29tL0Vzc2VudGlhbFNTTENBXzIu Y3J0MCQGCCsGAQUFBzABhhhodHRwOi8vb2NzcC5jb21vZG9jYS5jb20wKQYDVR0R BCIwIIIPKi53ZXN0LXdpbmQuY29tgg13ZXN0LXdpbmQuY29tMA0GCSqGSIb3DQEB BQUAA4IBAQBqBfd6QHrxXsfgfKARG6np8yszIPhHGPPmaE7xq7RpcZjY9H+8l6fe 4jQbGFjbA5uHBklYI4m2snhPaW2p8iF8YOkm2V2hEsSTnkf5/flw9mZtlCFEDFXS sBxBdNz8RYTthPMu1h09C0XuDB30sztgnR692FrxJN5/bXsk+MC9nEweTFW/t2HW +XZ8bhM7vsAS+pZionR4MyuQ0mYIt/lDcsZVZ91KxTsIm8rNMkkYGFoSIXjQ0+0t CbxMF0i2qnpmNRpA6PU8l7lxxvPkplsk9KB8QIPFrR5p/i/SUAd9vECWh5+/ktlc rfFP2PK7XcEwWizsvMrNqLyvQVNXSUPTMYIBrzCCAasCAQEwgYcwcjELMAkGA1UE BhMCR0IxGzAZBgNVBAgTEkdyZWF0ZXIgTWFuY2hlc3RlcjEQMA4GA1UEBxMHU2Fs Zm9yZDEaMBgGA1UEChMRQ09NT0RPIENBIExpbWl0ZWQxGDAWBgNVBAMTD0Vzc2Vu dGlhbFNTTCBDQQIRAO7UTVPkm+2Sbks59IdptaUwCQYFKw4DAhoFADANBgkqhkiG 9w0BAQEFAASCAQB8PNQ6bYnQpWfkHyxnDuvNKw3wrqF2p7JMZm+SuN2qp3R2LpCR mW2LrGtQIm9Iob/QOYH+8houYNVdvsATGPXX2T8gzn+anof4tOG0vCTK1Bp9bwf9 MkRP+1c8RW/vkYmUW4X5/C+y3CZpMH5dDTaXBIpXFzjX/fxNpH/rvLzGiaYYL3Cn OLO+aOADr9qq5yoqwpiYCSfYNNYKTUNNGfYIidQwYtbHXEYhSukB2oR89xD2sZZ4 bOqFjUPgTa5SsERLDDeg3omMKiIXVYGxlqBEq51Kge6IQt4qQV9P9VgInW7cWmKe dTqNHI9ri3ttewdEnT++TKGKKfTjX9SR8Waj -----END NEW CERTIFICATE REQUEST----- Clearly there’s something very different between this an my original request! And it didn’t work. IIS creates a custom CSR that is encoded in a format that no certificate authority I’ve ever used uses. If you want the gory details of what’s in there look at this ServerFault question (thanks to Mika in the comments). In the end it doesn’t matter  though – no certificate authority knows what to do with this CSR. So create a new CSR and skip the renewal. Always! Use the same Server Keep in mind that on IIS at least you should always create your certificate on a single server and then when you receive the final certificate from your provider import it on that server. IIS tracks the CSR it created and requires it in order to import the final certificate properly. So if for some reason you try to install the certificate on another server, it won’t work. I’ve also run into trouble trying to install the same certificate twice – this time around I didn’t give my certificate the proper friendly name and IIS failed to allow me to assign the certificate to any of my Web sites. So I removed the certificate and tried to import again, only to find it failed the second time around. There are other ways to fix this, but in my case I had to have the certificate re-issued to work – not what you want to do. Regardless of what you do though, when you import make sure you do it right the first time by crossing all your t’s and dotting your i's– it’ll save you a lot of grief! You don’t actually have to use the server that the certificate gets installed on to generate the CSR and first install it, but it is generally a good idea to do so just so you can get the certificate installed into the right place right away. If you have access to the server where you need to install the certificate you might as well use it. But you can use another machine to generated the and install the certificate, then export the certificate and move it to another machine as needed. So you can use your Dev machine to create a certificate then export it and install it on a live server. More on installation and back up/export later. Installing the Certificate Once you’ve submitted a CSR request your provider will process the request and eventually issue you a new final certificate that contains another text file with the final key to import into your certificate store. IIS does this by combining the content in your certificate request with the original CSR. If all goes well your new certificate shows up in the certificate list and you’re ready to assign the certificate to your sites. Make sure you use a friendly name that matches domain name of your site. So use *.mysite.com or www.mysite.com or store.mysite.com to ensure IIS recognizes the certificate. I made the mistake of not naming my friendly name this way and found that IIS was unable to link my sites to my wildcard certificate. It needed to have the *. as part of the certificate otherwise the Hostname input field was blanked out. Changing the Friendly Name If you by accidentally used an invalid friendly name you can change it later in the Windows certificate store. Bring up a Run Box Type MMC File | Add/Remove Snap In Add Certificates | Computer Account | Local Computer Drill into Certificates | Personal | Certificates Find your Certificate | Right Click | Properties Edit the Friendly Name | Click OK Backing up your Certificate The first thing you should do once your certificate is successfully installed is to back it up! In case your server crashes or you otherwise lose your configuration this will ensure you have an easy way to recover and reinstall your certificate either on the same server or a different one. If you’re running a server farm or using a wildcard certificate you also need to get the certificate onto other machines and a PFX file import is the easiest way to do this. To back up your certificate select your certificate and choose Export from the context or sidebar menu: The Export Certificate option allows you to export a password protected binary file that you can import in a single step. You can copy the resulting binary PFX file to back up or copy to other machines to install on. Importing the certificate on another machine is as easy as pointing at the PFX file and specifying the password. IIS handles the rest. Assigning a new certificate to your Site Once you have the new certificate installed, all that’s left to do is assign it to your site. In IIS select your Web site and bring up the Site Bindings from the right sidebar. Add a new binding for https, bind it to port 443, specify your hostname and pick the certificate from the pick list. If you’re using a root site make sure to set up your certificate for www.yoursite.com and also for yoursite.com so that both work properly with SSL. Note that you need to explicitly configure each hostname for a certificate if you plan to use SSL. Luckily if you update your SSL certificate in the following year, IIS prompts you and asks whether you like to update all other sites that are using the existing cert to the newer cert. And you’re done. So what’s the Pain? So, all of this is old hat and it doesn’t look all that bad right? So what’s the pain here? Well if you follow the instructions and do everything right, then the process is about as straight forward as you would expect it to be. You create a cert request, you import it and assign it to your sites. That’s the basic steps and to be perfectly fair it works well – if nothing goes wrong. However, renewing tends to be the problem. The first unintuitive issue is that you simply shouldn’t renew but create a new CSR and generate your new certificate from that. Over the years I’ve fallen prey to the belief that Microsoft eventually will fix this so that the renewal creates the same type of CSR as the old cert, but apparently that will just never happen. Booo! The other problem I ran into is that I accidentally misnamed my imported certificate which in turn set off a chain of events that caused my originally issued certificate to become uninstallable. When I received my completed certificate I installed it and it installed just fine, but the friendly name was wrong. As a result IIS refused to assign the certificate to any of my host headered sites. That’s strike number one. Why the heck should the friendly name have any effect on the ability to attach the certificate??? Next I uninstalled the certificate because I figured that would be the easiest way to make sure I get it right. But I found that I could not reinstall my certificate. I kept getting these stop errors: "ASN1 bad tag value met" that would prevent the installation from completion. After searching around for this error and reading countless long messages on forums, I found that this error supposedly does not actually mean the install failed, but the list wouldn’t refresh. Commodo has this to say: Note: There is a known issue in IIS 7 giving the following error: "Cannot find the certificate request associated with this certificate file. A certificate request must be completed on the computer where it was created." You may also receive a message stating "ASN1 bad tag value met". If this is the same server that you generated the CSR on then, in most cases, the certificate is actually installed. Simply cancel the dialog and press "F5" to refresh the list of server certificates. If the new certificate is now in the list, you can continue with the next step. If it is not in the list, you will need to reissue your certificate using a new CSR (see our CSR creation instructions for IIS 7). After creating a new CSR, login to your Comodo account and click the 'replace' button for your certificate. Not sure if this issue is fixed in IIS 8 but that’s an insane bug to have crop up. As it turns out, in my case the refresh didn’t work and the certificate didn’t show up in the IIS list after the reinstall. In fact when looking at the certificate store I could see my certificate was installed in the right place, but the private key is missing which is most likely why IIS is not picking it up. It looks like IIS could not match the final cert to the original CSR generated. But again some sort of message to that affect might be helpful instead of ASN1 bad tag value met. Recovering the Private Key So it turns out my original problem was that I received the published key, but when I imported the private key was missing. There’s a relatively easy way to recover from this. If your certificate doesn’t show up in IIS check in the certificate store for the local machine (see steps above on how to bring this up). If you look at the certificate in Certificates/Personal/Certificates make sure you see the key as shown in the image below: if the key is missing it means that the certificate is missing the private key most likely. To fix a certificate you can do the following: Double click the certificate Go to the Details Tab Copy down the Serial number You can copy the serial number from the area blurred out above. The serial number will be in a format like ?00 a7 9b a1 a4 9d 91 63 57 d6 9f 26 b8 ee 79 b5 cb and you’ll need to strip out the spaces in order to use it in the next step. Next open up an Administrative command prompt and issue the following command: certutil -repairstore my 00a79ba1a49d916357d69f26b8ee79b5cb You should get a confirmation message that the repair worked. If you now go back to the certificate store you should now see the key icon show up on the certificate. Your certificate is fixed. Now go back into IIS Manager and refresh the list of certificates and if all goes well you should see all the certificates that showed in the cert store now: Remember – back up the key first then map to your site… Summary I deal with a lot of customers who run their own IIS servers, and I can’t tell you how often I hear about botched SSL installations. When I posted some of my issues on Twitter yesterday I got a hell storm of “me too” responses. I’m clearly not the only one, who’s run into this especially with renewals. I feel pretty comfortable with IIS configuration and I do a lot of it for support purposes, but the SSL configuration is one that never seems to go seamlessly. This blog post is meant as reminder to myself to read next time I do a renewal. So I can dot my i's and dash my t’s before I get caught in the mess I’m dealing with today. Hopefully some of you find this useful as well.© Rick Strahl, West Wind Technologies, 2005-2014Posted in IIS7  Security   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating STA COM compatible ASP.NET Applications

    - by Rick Strahl
    When building ASP.NET applications that interface with old school COM objects like those created with VB6 or Visual FoxPro (MTDLL), it's extremely important that the threads that are serving requests use Single Threaded Apartment Threading. STA is a COM built-in technology that allows essentially single threaded components to operate reliably in a multi-threaded environment. STA's guarantee that COM objects instantiated on a specific thread stay on that specific thread and any access to a COM object from another thread automatically marshals that thread to the STA thread. The end effect is that you can have multiple threads, but a COM object instance lives on a fixed never changing thread. ASP.NET by default uses MTA (multi-threaded apartment) threads which are truly free spinning threads that pay no heed to COM object marshaling. This is vastly more efficient than STA threading which has a bit of overhead in determining whether it's OK to run code on a given thread or whether some sort of thread/COM marshaling needs to occur. MTA COM components can be very efficient, but STA COM components in a multi-threaded environment always tend to have a fair amount of overhead. It's amazing how much COM Interop I still see today so while it seems really old school to be talking about this topic, it's actually quite apropos for me as I have many customers using legacy COM systems that need to interface with other .NET applications. In this post I'm consolidating some of the hacks I've used to integrate with various ASP.NET technologies when using STA COM Components. STA in ASP.NET Support for STA threading in the ASP.NET framework is fairly limited. Specifically only the original ASP.NET WebForms technology supports STA threading directly via its STA Page Handler implementation or what you might know as ASPCOMPAT mode. For WebForms running STA components is as easy as specifying the ASPCOMPAT attribute in the @Page tag:<%@ Page Language="C#" AspCompat="true" %> which runs the page in STA mode. Removing it runs in MTA mode. Simple. Unfortunately all other ASP.NET technologies built on top of the core ASP.NET engine do not support STA natively. So if you want to use STA COM components in MVC or with class ASMX Web Services, there's no automatic way like the ASPCOMPAT keyword available. So what happens when you run an STA COM component in an MTA application? In low volume environments - nothing much will happen. The COM objects will appear to work just fine as there are no simultaneous thread interactions and the COM component will happily run on a single thread or multiple single threads one at a time. So for testing running components in MTA environments may appear to work just fine. However as load increases and threads get re-used by ASP.NET COM objects will end up getting created on multiple different threads. This can result in crashes or hangs, or data corruption in the STA components which store their state in thread local storage on the STA thread. If threads overlap this global store can easily get corrupted which in turn causes problems. STA ensures that any COM object instance loaded always stays on the same thread it was instantiated on. What about COM+? COM+ is supposed to address the problem of STA in MTA applications by providing an abstraction with it's own thread pool manager for COM objects. It steps in to the COM instantiation pipeline and hands out COM instances from its own internally maintained STA Thread pool. This guarantees that the COM instantiation threads are STA threads if using STA components. COM+ works, but in my experience the technology is very, very slow for STA components. It adds a ton of overhead and reduces COM performance noticably in load tests in IIS. COM+ can make sense in some situations but for Web apps with STA components it falls short. In addition there's also the need to ensure that COM+ is set up and configured on the target machine and the fact that components have to be registered in COM+. COM+ also keeps components up at all times, so if a component needs to be replaced the COM+ package needs to be unloaded (same is true for IIS hosted components but it's more common to manage that). COM+ is an option for well established components, but native STA support tends to provide better performance and more consistent usability, IMHO. STA for non supporting ASP.NET Technologies As mentioned above only WebForms supports STA natively. However, by utilizing the WebForms ASP.NET Page handler internally it's actually possible to trick various other ASP.NET technologies and let them work with STA components. This is ugly but I've used each of these in various applications and I've had minimal problems making them work with FoxPro STA COM components which is about as dififcult as it gets for COM Interop in .NET. In this post I summarize several STA workarounds that enable you to use STA threading with these ASP.NET Technologies: ASMX Web Services ASP.NET MVC WCF Web Services ASP.NET Web API ASMX Web Services I start with classic ASP.NET ASMX Web Services because it's the easiest mechanism that allows for STA modification. It also clearly demonstrates how the WebForms STA Page Handler is the key technology to enable the various other solutions to create STA components. Essentially the way this works is to override the WebForms Page class and hijack it's init functionality for processing requests. Here's what this looks like for Web Services:namespace FoxProAspNet { public class WebServiceStaHandler : System.Web.UI.Page, IHttpAsyncHandler { protected override void OnInit(EventArgs e) { IHttpHandler handler = new WebServiceHandlerFactory().GetHandler( this.Context, this.Context.Request.HttpMethod, this.Context.Request.FilePath, this.Context.Request.PhysicalPath); handler.ProcessRequest(this.Context); this.Context.ApplicationInstance.CompleteRequest(); } public IAsyncResult BeginProcessRequest( HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } } public class AspCompatWebServiceStaHandlerWithSessionState : WebServiceStaHandler, IRequiresSessionState { } } This class overrides the ASP.NET WebForms Page class which has a little known AspCompatBeginProcessRequest() and AspCompatEndProcessRequest() method that is responsible for providing the WebForms ASPCOMPAT functionality. These methods handle routing requests to STA threads. Note there are two classes - one that includes session state and one that does not. If you plan on using ASP.NET Session state use the latter class, otherwise stick to the former. This maps to the EnableSessionState page setting in WebForms. This class simply hooks into this functionality by overriding the BeginProcessRequest and EndProcessRequest methods and always forcing it into the AspCompat methods. The way this works is that BeginProcessRequest() fires first to set up the threads and starts intializing the handler. As part of that process the OnInit() method is fired which is now already running on an STA thread. The code then creates an instance of the actual WebService handler factory and calls its ProcessRequest method to start executing which generates the Web Service result. Immediately after ProcessRequest the request is stopped with Application.CompletRequest() which ensures that the rest of the Page handler logic doesn't fire. This means that even though the fairly heavy Page class is overridden here, it doesn't end up executing any of its internal processing which makes this code fairly efficient. In a nutshell, we're highjacking the Page HttpHandler and forcing it to process the WebService process handler in the context of the AspCompat handler behavior. Hooking up the Handler Because the above is an HttpHandler implementation you need to hook up the custom handler and replace the standard ASMX handler. To do this you need to modify the web.config file (here for IIS 7 and IIS Express): <configuration> <system.webServer> <handlers> <remove name="WebServiceHandlerFactory-Integrated-4.0" /> <add name="Asmx STA Web Service Handler" path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" precondition="integrated"/> </handlers> </system.webServer> </configuration> (Note: The name for the WebServiceHandlerFactory-Integrated-4.0 might be slightly different depending on your server version. Check the IIS Handler configuration in the IIS Management Console for the exact name or simply remove the handler from the list there which will propagate to your web.config). For IIS 5 & 6 (Windows XP/2003) or the Visual Studio Web Server use:<configuration> <system.web> <httpHandlers> <remove path="*.asmx" verb="*" /> <add path="*.asmx" verb="*" type="FoxProAspNet.WebServiceStaHandler" /> </httpHandlers> </system.web></configuration> To test, create a new ASMX Web Service and create a method like this: [WebService(Namespace = "http://foxaspnet.org/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class FoxWebService : System.Web.Services.WebService { [WebMethod] public string HelloWorld() { return "Hello World. Threading mode is: " + System.Threading.Thread.CurrentThread.GetApartmentState(); } } Run this before you put in the web.config configuration changes and you should get: Hello World. Threading mode is: MTA Then put the handler mapping into Web.config and you should see: Hello World. Threading mode is: STA And you're on your way to using STA COM components. It's a hack but it works well! I've used this with several high volume Web Service installations with various customers and it's been fast and reliable. ASP.NET MVC ASP.NET MVC has quickly become the most popular ASP.NET technology, replacing WebForms for creating HTML output. MVC is more complex to get started with, but once you understand the basic structure of how requests flow through the MVC pipeline it's easy to use and amazingly flexible in manipulating HTML requests. In addition, MVC has great support for non-HTML output sources like JSON and XML, making it an excellent choice for AJAX requests without any additional tools. Unlike WebForms ASP.NET MVC doesn't support STA threads natively and so some trickery is needed to make it work with STA threads as well. MVC gets its handler implementation through custom route handlers using ASP.NET's built in routing semantics. To work in an STA handler requires working in the Page Handler as part of the Route Handler implementation. As with the Web Service handler the first step is to create a custom HttpHandler that can instantiate an MVC request pipeline properly:public class MvcStaThreadHttpAsyncHandler : Page, IHttpAsyncHandler, IRequiresSessionState { private RequestContext _requestContext; public MvcStaThreadHttpAsyncHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); _requestContext = requestContext; } public IAsyncResult BeginProcessRequest(HttpContext context, AsyncCallback cb, object extraData) { return this.AspCompatBeginProcessRequest(context, cb, extraData); } protected override void OnInit(EventArgs e) { var controllerName = _requestContext.RouteData.GetRequiredString("controller"); var controllerFactory = ControllerBuilder.Current.GetControllerFactory(); var controller = controllerFactory.CreateController(_requestContext, controllerName); if (controller == null) throw new InvalidOperationException("Could not find controller: " + controllerName); try { controller.Execute(_requestContext); } finally { controllerFactory.ReleaseController(controller); } this.Context.ApplicationInstance.CompleteRequest(); } public void EndProcessRequest(IAsyncResult result) { this.AspCompatEndProcessRequest(result); } public override void ProcessRequest(HttpContext httpContext) { throw new NotSupportedException("STAThreadRouteHandler does not support ProcessRequest called (only BeginProcessRequest)"); } } This handler code figures out which controller to load and then executes the controller. MVC internally provides the information needed to route to the appropriate method and pass the right parameters. Like the Web Service handler the logic occurs in the OnInit() and performs all the processing in that part of the request. Next, we need a RouteHandler that can actually pick up this handler. Unlike the Web Service handler where we simply registered the handler, MVC requires a RouteHandler to pick up the handler. RouteHandlers look at the URL's path and based on that decide on what handler to invoke. The route handler is pretty simple - all it does is load our custom handler: public class MvcStaThreadRouteHandler : IRouteHandler { public IHttpHandler GetHttpHandler(RequestContext requestContext) { if (requestContext == null) throw new ArgumentNullException("requestContext"); return new MvcStaThreadHttpAsyncHandler(requestContext); } } At this point you can instantiate this route handler and force STA requests to MVC by specifying a route. The following sets up the ASP.NET Default Route:Route mvcRoute = new Route("{controller}/{action}/{id}", new RouteValueDictionary( new { controller = "Home", action = "Index", id = UrlParameter.Optional }), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute);   To make this code a little easier to work with and mimic the behavior of the routes.MapRoute() functionality extension method that MVC provides, here is an extension method for MapMvcStaRoute(): public static class RouteCollectionExtensions { public static void MapMvcStaRoute(this RouteCollection routeTable, string name, string url, object defaults = null) { Route mvcRoute = new Route(url, new RouteValueDictionary(defaults), new MvcStaThreadRouteHandler()); RouteTable.Routes.Add(mvcRoute); } } With this the syntax to add  route becomes a little easier and matches the MapRoute() method:RouteTable.Routes.MapMvcStaRoute( name: "Default", url: "{controller}/{action}/{id}", defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } ); The nice thing about this route handler, STA Handler and extension method is that it's fully self contained. You can put all three into a single class file and stick it into your Web app, and then simply call MapMvcStaRoute() and it just works. Easy! To see whether this works create an MVC controller like this: public class ThreadTestController : Controller { public string ThreadingMode() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Try this test both with only the MapRoute() hookup in the RouteConfiguration in which case you should get MTA as the value. Then change the MapRoute() call to MapMvcStaRoute() leaving all the parameters the same and re-run the request. You now should see STA as the result. You're on your way using STA COM components reliably in ASP.NET MVC. WCF Web Services running through IIS WCF Web Services provide a more robust and wider range of services for Web Services. You can use WCF over HTTP, TCP, and Pipes, and WCF services support WS* secure services. There are many features in WCF that go way beyond what ASMX can do. But it's also a bit more complex than ASMX. As a basic rule if you need to serve straight SOAP Services over HTTP I 'd recommend sticking with the simpler ASMX services especially if COM is involved. If you need WS* support or want to serve data over non-HTTP protocols then WCF makes more sense. WCF is not my forte but I found a solution from Scott Seely on his blog that describes the progress and that seems to work well. I'm copying his code below so this STA information is all in one place and quickly explain. Scott's code basically works by creating a custom OperationBehavior which can be specified via an [STAOperation] attribute on every method. Using his attribute you end up with a class (or Interface if you separate the contract and class) that looks like this: [ServiceContract] public class WcfService { [OperationContract] public string HelloWorldMta() { return Thread.CurrentThread.GetApartmentState().ToString(); } // Make sure you use this custom STAOperationBehavior // attribute to force STA operation of service methods [STAOperationBehavior] [OperationContract] public string HelloWorldSta() { return Thread.CurrentThread.GetApartmentState().ToString(); } } Pretty straight forward. The latter method returns STA while the former returns MTA. To make STA work every method needs to be marked up. The implementation consists of the attribute and OperationInvoker implementation. Here are the two classes required to make this work from Scott's post:public class STAOperationBehaviorAttribute : Attribute, IOperationBehavior { public void AddBindingParameters(OperationDescription operationDescription, System.ServiceModel.Channels.BindingParameterCollection bindingParameters) { } public void ApplyClientBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.ClientOperation clientOperation) { // If this is applied on the client, well, it just doesn’t make sense. // Don’t throw in case this attribute was applied on the contract // instead of the implementation. } public void ApplyDispatchBehavior(OperationDescription operationDescription, System.ServiceModel.Dispatcher.DispatchOperation dispatchOperation) { // Change the IOperationInvoker for this operation. dispatchOperation.Invoker = new STAOperationInvoker(dispatchOperation.Invoker); } public void Validate(OperationDescription operationDescription) { if (operationDescription.SyncMethod == null) { throw new InvalidOperationException("The STAOperationBehaviorAttribute " + "only works for synchronous method invocations."); } } } public class STAOperationInvoker : IOperationInvoker { IOperationInvoker _innerInvoker; public STAOperationInvoker(IOperationInvoker invoker) { _innerInvoker = invoker; } public object[] AllocateInputs() { return _innerInvoker.AllocateInputs(); } public object Invoke(object instance, object[] inputs, out object[] outputs) { // Create a new, STA thread object[] staOutputs = null; object retval = null; Thread thread = new Thread( delegate() { retval = _innerInvoker.Invoke(instance, inputs, out staOutputs); }); thread.SetApartmentState(ApartmentState.STA); thread.Start(); thread.Join(); outputs = staOutputs; return retval; } public IAsyncResult InvokeBegin(object instance, object[] inputs, AsyncCallback callback, object state) { // We don’t handle async… throw new NotImplementedException(); } public object InvokeEnd(object instance, out object[] outputs, IAsyncResult result) { // We don’t handle async… throw new NotImplementedException(); } public bool IsSynchronous { get { return true; } } } The key in this setup is the Invoker and the Invoke method which creates a new thread and then fires the request on this new thread. Because this approach creates a new thread for every request it's not super efficient. There's a bunch of overhead involved in creating the thread and throwing it away after each thread, but it'll work for low volume requests and insure each thread runs in STA mode. If better performance is required it would be useful to create a custom thread manager that can pool a number of STA threads and hand off threads as needed rather than creating new threads on every request. If your Web Service needs are simple and you need only to serve standard SOAP 1.x requests, I would recommend sticking with ASMX services. It's easier to set up and work with and for STA component use it'll be significantly better performing since ASP.NET manages the STA thread pool for you rather than firing new threads for each request. One nice thing about Scotts code is though that it works in any WCF environment including self hosting. It has no dependency on ASP.NET or WebForms for that matter. STA - If you must STA components are a  pain in the ass and thankfully there isn't too much stuff out there anymore that requires it. But when you need it and you need to access STA functionality from .NET at least there are a few options available to make it happen. Each of these solutions is a bit hacky, but they work - I've used all of them in production with good results with FoxPro components. I hope compiling all of these in one place here makes it STA consumption a little bit easier. I feel your pain :-) Resources Download STA Handler Code Examples Scott Seely's original STA WCF OperationBehavior Article© Rick Strahl, West Wind Technologies, 2005-2012Posted in FoxPro   ASP.NET  .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Unable to boot Windows 7 after installing Ubuntu

    - by Devendra
    I have Windows 7 on my machine and then installed Ubuntu 12.04 using a live CD. I can see both Windows 7 and Ubuntu in the grub menu, but when I select Windows 7 it shows a black screen for about 2 seconds and the returns to the Grub menu. But if I select Ubuntu it's working fine. This is the contents of the boot-repair log: Boot Info Script 0.61.full + Boot-Repair extra info [Boot-Info November 20th 2012] ============================= Boot Info Summary: =============================== => Grub2 (v2.00) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos6)/boot/grub. sda1: __________________________________________________________________________ File system: ntfs Boot sector type: Grub2 (v1.99-2.00) Boot sector info: Grub2 (v2.00) is installed in the boot sector of sda1 and looks at sector 388911128 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos6)/boot/grub. No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: /bootmgr /Boot/BCD /Windows/System32/winload.exe sda2: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda3: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda4: __________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sda5: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: According to the info in the boot sector, sda5 starts at sector 2048. Operating System: Boot files: sda6: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 12.10 Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/i386-pc/core.img sda7: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 * 206,848 146,802,687 146,595,840 7 NTFS / exFAT / HPFS /dev/sda2 147,007,488 293,623,807 146,616,320 7 NTFS / exFAT / HPFS /dev/sda3 293,623,808 332,820,613 39,196,806 7 NTFS / exFAT / HPFS /dev/sda4 332,822,526 1,465,145,343 1,132,322,818 f W95 Extended (LBA) /dev/sda5 461,342,720 1,465,145,343 1,003,802,624 7 NTFS / exFAT / HPFS /dev/sda6 332,822,528 453,171,199 120,348,672 83 Linux /dev/sda7 453,173,248 461,338,623 8,165,376 82 Linux swap / Solaris "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/sda1 F6AE2C13AE2BCB47 ntfs /dev/sda2 DC2273012272DFC6 ntfs /dev/sda3 1E76E43376E40D79 ntfs New Volume /dev/sda5 5ED60ACDD60AA57D ntfs /dev/sda6 9e70fd16-b48b-4f88-adcf-e443aef83124 ext4 /dev/sda7 52f3dd94-6be7-4a7b-a3ae-f43eb8810483 swap ================================ Mount points: ================================= Device Mount_Point Type Options /dev/sda6 / ext4 (rw,errors=remount-ro) =========================== sda6/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ x"${feature_menuentry_id}" = xy ]; then menuentry_id_option="--id" else menuentry_id_option="" fi export menuentry_id_option if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { if [ x$feature_all_video_module = xy ]; then insmod all_video else insmod efi_gop insmod efi_uga insmod ieee1275_fb insmod vbe insmod vga insmod video_bochs insmod video_cirrus fi } if [ x$feature_default_font_path = xy ] ; then font=unicode else insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi font="/usr/share/grub/unicode.pf2" fi if loadfont $font ; then set gfxmode=auto load_video insmod gfxterm set locale_dir=$prefix/locale set lang=en_IN insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=10 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash $vt_handoff initrd /boot/initrd.img-3.5.0-17-generic } submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-advanced-9e70fd16-b48b-4f88-adcf-e443aef83124' { menuentry 'Ubuntu, with Linux 3.5.0-17-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-advanced-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } menuentry 'Ubuntu, with Linux 3.5.0-17-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-recovery-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry 'Windows 7 (loader) (on /dev/sda1)' --class windows --class os $menuentry_id_option 'osprober-chain-F6AE2C13AE2BCB47' { insmod part_msdos insmod ntfs set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 F6AE2C13AE2BCB47 else search --no-floppy --fs-uuid --set=root F6AE2C13AE2BCB47 fi chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/30_uefi-firmware ### ### END /etc/grub.d/30_uefi-firmware ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f ${config_directory}/custom.cfg ]; then source ${config_directory}/custom.cfg elif [ -z "${config_directory}" -a -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda6/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> # / was on /dev/sda6 during installation UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 / ext4 errors=remount-ro 0 1 # swap was on /dev/sda7 during installation UUID=52f3dd94-6be7-4a7b-a3ae-f43eb8810483 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda6: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 162.831275940 = 174.838751232 boot/grub/grub.cfg 1 163.036647797 = 175.059267584 boot/initrd.img-3.5.0-17-generic 1 206.871749878 = 222.126850048 boot/vmlinuz-3.5.0-17-generic 1 163.036647797 = 175.059267584 initrd.img 1 163.036647797 = 175.059267584 initrd.img.old 1 206.871749878 = 222.126850048 vmlinuz 1 =============================== StdErr Messages: =============================== cat: write error: Broken pipe cat: write error: Broken pipe ADDITIONAL INFORMATION : =================== log of boot-repair 2012-12-11__00h59 =================== boot-repair version : 3.195~ppa28~quantal boot-sav version : 3.195~ppa28~quantal glade2script version : 3.2.2~ppa45~quantal boot-sav-extra version : 3.195~ppa28~quantal boot-repair is executed in installed-session (Ubuntu 12.10, quantal, Ubuntu, x86_64) CPU op-mode(s): 32-bit, 64-bit BOOT_IMAGE=/boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash vt.handoff=7 =================== os-prober: /dev/sda6:The OS now in use - Ubuntu 12.10 CurrentSession:linux /dev/sda1:Windows 7 (loader):Windows:chain =================== blkid: /dev/sda1: UUID="F6AE2C13AE2BCB47" TYPE="ntfs" /dev/sda2: UUID="DC2273012272DFC6" TYPE="ntfs" /dev/sda3: LABEL="New Volume" UUID="1E76E43376E40D79" TYPE="ntfs" /dev/sda5: UUID="5ED60ACDD60AA57D" TYPE="ntfs" /dev/sda6: UUID="9e70fd16-b48b-4f88-adcf-e443aef83124" TYPE="ext4" /dev/sda7: UUID="52f3dd94-6be7-4a7b-a3ae-f43eb8810483" TYPE="swap" 1 disks with OS, 2 OS : 1 Linux, 0 MacOS, 1 Windows, 0 unknown type OS. Warning: extended partition does not start at a cylinder boundary. DOS and Linux will interpret the contents differently. =================== /etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 #GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" =================== /etc/grub.d/ : drwxr-xr-x 2 root root 4096 Oct 17 20:29 grub.d total 72 -rwxr-xr-x 1 root root 7541 Oct 14 23:06 00_header -rwxr-xr-x 1 root root 5488 Oct 4 15:00 05_debian_theme -rwxr-xr-x 1 root root 10891 Oct 14 23:06 10_linux -rwxr-xr-x 1 root root 10258 Oct 14 23:06 20_linux_xen -rwxr-xr-x 1 root root 1688 Oct 11 19:40 20_memtest86+ -rwxr-xr-x 1 root root 10976 Oct 14 23:06 30_os-prober -rwxr-xr-x 1 root root 1426 Oct 14 23:06 30_uefi-firmware -rwxr-xr-x 1 root root 214 Oct 14 23:06 40_custom -rwxr-xr-x 1 root root 216 Oct 14 23:06 41_custom -rw-r--r-- 1 root root 483 Oct 14 23:06 README =================== UEFI/Legacy mode: This installed-session is not in EFI-mode. EFI in dmesg. Please report this message to [email protected] [ 0.000000] ACPI: UEFI 00000000bafe7000 0003E (v01 DELL QA09 00000002 PTL 00000002) [ 0.000000] ACPI: UEFI 00000000bafe6000 00042 (v01 PTL COMBUF 00000001 PTL 00000001) [ 0.000000] ACPI: UEFI 00000000bafe3000 00256 (v01 DELL QA09 00000002 PTL 00000002) SecureBoot disabled. =================== PARTITIONS & DISKS: sda6 : sda, not-sepboot, grubenv-ok grub2, grub-pc , update-grub, 64, with-boot, is-os, not--efi--part, fstab-without-boot, fstab-without-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, apt-get, grub-install, with--usr, fstab-without-usr, not-sep-usr, standard, farbios, . sda1 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, is-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, haswinload, no-recov-nor-hid, bootmgr, is-winboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, not-far, /mnt/boot-sav/sda1. sda2 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda2. sda3 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda3. sda5 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda5. sda : not-GPT, BIOSboot-not-needed, has-no-EFIpart, not-usb, has-os, 2048 sectors * 512 bytes =================== parted -l: Model: ATA WDC WD7500BPKT-7 (scsi) Disk /dev/sda: 750GB Sector size (logical/physical): 512B/4096B Partition Table: msdos Number Start End Size Type File system Flags 1 106MB 75.2GB 75.1GB primary ntfs boot 2 75.3GB 150GB 75.1GB primary ntfs 3 150GB 170GB 20.1GB primary ntfs 4 170GB 750GB 580GB extended lba 6 170GB 232GB 61.6GB logical ext4 7 232GB 236GB 4181MB logical linux-swap(v1) 5 236GB 750GB 514GB logical ntfs =================== parted -lm: BYT; /dev/sda:750GB:scsi:512:4096:msdos:ATA WDC WD7500BPKT-7; 1:106MB:75.2GB:75.1GB:ntfs::boot; 2:75.3GB:150GB:75.1GB:ntfs::; 3:150GB:170GB:20.1GB:ntfs::; 4:170GB:750GB:580GB:::lba; 6:170GB:232GB:61.6GB:ext4::; 7:232GB:236GB:4181MB:linux-swap(v1)::; 5:236GB:750GB:514GB:ntfs::; =================== mount: /dev/sda6 on / type ext4 (rw,errors=remount-ro) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) none on /run/user type tmpfs (rw,noexec,nosuid,nodev,size=104857600,mode=0755) gvfsd-fuse on /run/user/dev/gvfs type fuse.gvfsd-fuse (rw,nosuid,nodev,user=dev) /dev/sda1 on /mnt/boot-sav/sda1 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda2 on /mnt/boot-sav/sda2 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda3 on /mnt/boot-sav/sda3 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda5 on /mnt/boot-sav/sda5 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) =================== ls: /sys/block/sda (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda3 sda4 sda5 sda6 sda7 size slaves stat subsystem trace uevent /sys/block/sr0 (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro size slaves stat subsystem trace uevent /dev (filtered): alarm ashmem autofs binder block bsg btrfs-control bus cdrom cdrw char console core cpu cpu_dma_latency disk dri dvd dvdrw ecryptfs fb0 fb1 fd full fuse hpet input kmsg kvm log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda3 sda4 sda5 sda6 sda7 sg0 sg1 shm snapshot snd sr0 stderr stdin stdout uinput urandom v4l vga_arbiter vhost-net video0 zero ls /dev/mapper: control =================== df -Th: Filesystem Type Size Used Avail Use% Mounted on /dev/sda6 ext4 57G 2.7G 51G 6% / udev devtmpfs 1.9G 12K 1.9G 1% /dev tmpfs tmpfs 770M 892K 769M 1% /run none tmpfs 5.0M 0 5.0M 0% /run/lock none tmpfs 1.9G 260K 1.9G 1% /run/shm none tmpfs 100M 44K 100M 1% /run/user /dev/sda1 fuseblk 70G 36G 35G 51% /mnt/boot-sav/sda1 /dev/sda2 fuseblk 70G 66G 4.8G 94% /mnt/boot-sav/sda2 /dev/sda3 fuseblk 19G 87M 19G 1% /mnt/boot-sav/sda3 /dev/sda5 fuseblk 479G 436G 44G 92% /mnt/boot-sav/sda5 =================== fdisk -l: Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x1dc69d0b Device Boot Start End Blocks Id System /dev/sda1 * 206848 146802687 73297920 7 HPFS/NTFS/exFAT /dev/sda2 147007488 293623807 73308160 7 HPFS/NTFS/exFAT /dev/sda3 293623808 332820613 19598403 7 HPFS/NTFS/exFAT /dev/sda4 332822526 1465145343 566161409 f W95 Ext'd (LBA) Partition 4 does not start on physical sector boundary. /dev/sda5 461342720 1465145343 501901312 7 HPFS/NTFS/exFAT /dev/sda6 332822528 453171199 60174336 83 Linux /dev/sda7 453173248 461338623 4082688 82 Linux swap / Solaris Partition table entries are not in disk order =================== Recommended repair Recommended-Repair This setting will reinstall the grub2 of sda6 into the MBR of sda. Additional repair will be performed: unhide-bootmenu-10s grub-install (GRUB) 2.00-7ubuntu11,grub-install (GRUB) 2. Reinstall the GRUB of sda6 into the MBR of sda Installation finished. No error reported. grub-install /dev/sda: exit code of grub-install /dev/sda:0 update-grub Generating grub.cfg ... Found linux image: /boot/vmlinuz-3.5.0-17-generic Found initrd image: /boot/initrd.img-3.5.0-17-generic Found memtest86+ image: /boot/memtest86+.bin Found Windows 7 (loader) on /dev/sda1 Unhide GRUB boot menu in sda6/boot/grub/grub.cfg Boot successfully repaired. You can now reboot your computer. The boot files of [The OS now in use - Ubuntu 12.10] are far from the start of the disk. Your BIOS may not detect them. You may want to retry after creating a /boot partition (EXT4, >200MB, start of the disk). This can be performed via tools such as gParted. Then select this partition via the [Separate /boot partition:] option of [Boot Repair]. (https://help.ubuntu.com/community/BootPartition)

    Read the article

  • Rounded Corners and Shadows &ndash; Dialogs with CSS

    - by Rick Strahl
    Well, it looks like we’ve finally arrived at a place where at least all of the latest versions of main stream browsers support rounded corners and box shadows. The two CSS properties that make this possible are box-shadow and box-radius. Both of these CSS Properties now supported in all the major browsers as shown in this chart from QuirksMode: In it’s simplest form you can use box-shadow and border radius like this: .boxshadow { -moz-box-shadow: 3px 3px 5px #535353; -webkit-box-shadow: 3px 3px 5px #535353; box-shadow: 3px 3px 5px #535353; } .roundbox { -moz-border-radius: 6px 6px 6px 6px; -webkit-border-radius: 6px; border-radius: 6px 6px 6px 6px; } box-shadow: horizontal-shadow-pixels vertical-shadow-pixels blur-distance shadow-color box-shadow attributes specify the the horizontal and vertical offset of the shadow, the blur distance (to give the shadow a smooth soft look) and a shadow color. The spec also supports multiple shadows separated by commas using the attributes above but we’re not using that functionality here. box-radius: top-left-radius top-right-radius bottom-right-radius bottom-left-radius border-radius takes a pixel size for the radius for each corner going clockwise. CSS 3 also specifies each of the individual corner elements such as border-top-left-radius, but support for these is much less prevalent so I would recommend not using them for now until support improves. Instead use the single box-radius to specify all corners. Browser specific Support in older Browsers Notice that there are two variations: The actual CSS 3 properties (box-shadow and box-radius) and the browser specific ones (-moz, –webkit prefixes for FireFox and Chrome/Safari respectively) which work in slightly older versions of modern browsers before official CSS 3 support was added. The goal is to spread support as widely as possible and the prefix versions extend the range slightly more to those browsers that provided early support for these features. Notice that box-shadow and border-radius are used after the browser specific versions to ensure that the latter versions get precedence if the browser supports both (last assignment wins). Use the .boxshadow and .roundbox Styles in HTML To use these two styles create a simple rounded box with a shadow you can use HTML like this: <!-- Simple Box with rounded corners and shadow --> <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="boxcontenttext"> Simple Rounded Corner Box. </div> </div> which looks like this in the browser: This works across browsers and it’s pretty sweet and simple. Watch out for nested Elements! There are a couple of things to be aware of however when using rounded corners. Specifically, you need to be careful when you nest other non-transparent content into the rounded box. For example check out what happens when I change the inside <div> to have a colored background: <!-- Simple Box with rounded corners and shadow --> <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="boxcontenttext" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> which renders like this:   If you look closely you’ll find that the inside <div>’s corners are not rounded and so ‘poke out’ slightly over the rounded corners. It looks like the rounded corners are ‘broken’ up instead of a solid rounded line around the corner, which his pretty ugly. The bigger the radius the more drastic this effect becomes . To fix this issue the inner <div> also has have rounded corners at the same or slightly smaller radius than the outer <div>. The simple fix for this is to simply also apply the roundbox style to the inner <div> in addition to the boxcontenttext style already applied: <div class="boxcontenttext roundbox" style="background: khaki;"> The fixed display now looks proper: Separate Top and Bottom Elements This gets even a little more tricky if you have an element at the top or bottom only of the rounded box. What if you need to add something like a header or footer <div> that have non-transparent backgrounds which is a pretty common scenario? In those cases you want only the top or bottom corners rounded and not both. To make this work a couple of additional styles to round only the top and bottom corners can be created: .roundbox-top { -moz-border-radius: 4px 4px 0 0; -webkit-border-radius: 4px 4px 0 0; border-radius: 4px 4px 0 0; } .roundbox-bottom { -moz-border-radius: 0 0 4px 4px; -webkit-border-radius: 0 0 4px 4px; border-radius: 0 0 4px 4px; } Notice that radius used for the ‘inside’ rounding is smaller (4px) than the outside radius (6px). This is so the inner radius fills into the outer border – if you use the same size you may have some white space showing between inner and out rounded corners. Experiment with values to see what works – in my experimenting the behavior across browsers here is consistent (thankfully). These styles can be applied in addition to other styles to make only the top or bottom portions of an element rounded. For example imagine I have styles like this: .gridheader, .gridheaderbig, .gridheaderleft, .gridheaderright { padding: 4px 4px 4px 4px; background: #003399 url(images/vertgradient.png) repeat-x; text-align: center; font-weight: bold; text-decoration: none; color: khaki; } .gridheaderleft { text-align: left; } .gridheaderright { text-align: right; } .gridheaderbig { font-size: 135%; } If I just apply say gridheader by itself in HTML like this: <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="gridheaderleft">Box with a Header</div> <div class="boxcontenttext" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> This results in a pretty funky display – again due to the fact that the inner elements render square rather than rounded corners: If you look close again you can see that both the header and the main content have square edges which jumps out at the eye. To fix this you can now apply the roundbox-top and roundbox-bottom to the header and content respectively: <div class="roundbox boxshadow" style="width: 550px; border: solid 2px steelblue"> <div class="gridheaderleft roundbox-top">Box with a Header</div> <div class="boxcontenttext roundbox-bottom" style="background: khaki;"> Simple Rounded Corner Box. </div> </div> Which now gives the proper display with rounded corners both on the top and bottom: All of this is sweet to be supported – at least by the newest browser – without having to resort to images and nasty JavaScripts solutions. While this is still not a mainstream feature yet for the majority of actually installed browsers, the majority of browser users are very likely to have this support as most browsers other than IE are actively pushing users to upgrade to newer versions. Since this is a ‘visual display only feature it degrades reasonably well in non-supporting browsers: You get an uninteresting square and non-shadowed browser box, but the display is still overall functional. The main sticking point – as always is Internet Explorer versions 8.0 and down as well as older versions of other browsers. With those browsers you get a functional view that is a little less interesting to look at obviously: but at least it’s still functional. Maybe that’s just one more incentive for people using older browsers to upgrade to a  more modern browser :-) Creating Dialog Related Styles In a lot of my AJAX based applications I use pop up windows which effectively work like dialogs. Using the simple CSS behaviors above, it’s really easy to create some fairly nice looking overlaid windows with nothing but CSS. Here’s what a typical ‘dialog’ I use looks like: The beauty of this is that it’s plain CSS – no plug-ins or images (other than the gradients which are optional) required. Add jQuery-ui draggable (or ww.jquery.js as shown below) and you have a nice simple inline implementation of a dialog represented by a simple <div> tag. Here’s the HTML for this dialog: <div id="divDialog" class="dialog boxshadow" style="width: 450px;"> <div class="dialog-header"> <div class="closebox"></div> User Sign-in </div> <div class="dialog-content"> <label>Username:</label> <input type="text" name="txtUsername" value=" " /> <label>Password</label> <input type="text" name="txtPassword" value=" " /> <hr /> <input type="button" id="btnLogin" value="Login" /> </div> <div class="dialog-statusbar">Ready</div> </div> Most of this behavior is driven by the ‘dialog’ styles which are fairly basic and easy to understand. They do use a few support images for the gradients which are provided in the sample I’ve provided. Here’s what the CSS looks like: .dialog { background: White; overflow: hidden; border: solid 1px steelblue; -moz-border-radius: 6px 6px 4px 4px; -webkit-border-radius: 6px 6px 4px 4px; border-radius: 6px 6px 3px 3px; } .dialog-header { background-image: url(images/dialogheader.png); background-repeat: repeat-x; text-align: left; color: cornsilk; padding: 5px; padding-left: 10px; font-size: 1.02em; font-weight: bold; position: relative; -moz-border-radius: 4px 4px 0px 0px; -webkit-border-radius: 4px 4px 0px 0px; border-radius: 4px 4px 0px 0px; } .dialog-top { -moz-border-radius: 4px 4px 0px 0px; -webkit-border-radius: 4px 4px 0px 0px; border-radius: 4px 4px 0px 0px; } .dialog-bottom { -moz-border-radius: 0 0 3px 3px; -webkit-border-radius: 0 0 3px 3px; border-radius: 0 0 3px 3px; } .dialog-content { padding: 15px; } .dialog-statusbar, .dialog-toolbar { background: #eeeeee; background-image: url(images/dialogstrip.png); background-repeat: repeat-x; padding: 5px; padding-left: 10px; border-top: solid 1px silver; border-bottom: solid 1px silver; font-size: 0.8em; } .dialog-statusbar { -moz-border-radius: 0 0 3px 3px; -webkit-border-radius: 0 0 3px 3px; border-radius: 0 0 3px 3px; padding-right: 10px; } .closebox { position: absolute; right: 2px; top: 2px; background-image: url(images/close.gif); background-repeat: no-repeat; width: 14px; height: 14px; cursor: pointer; opacity: 0.60; filter: alpha(opacity="80"); } .closebox:hover { opacity: 1; filter: alpha(opacity="100"); } The main style is the dialog class which is the outer box. It has the rounded border that serves as the outline. Note that I didn’t add the box-shadow to this style because in some situations I just want the rounded box in an inline display that doesn’t have a shadow so it’s still applied separately. dialog-header, then has the rounded top corners and displays a typical dialog heading format. dialog-bottom and dialog-top then provide the same functionality as roundbox-top and roundbox-bottom described earlier but are provided mainly in the stylesheet for consistency to match the dialog’s round edges and making it easier to  remember and find in Intellisense as it shows up in the same dialog- group. dialog-statusbar and dialog-toolbar are two elements I use a lot for floating windows – the toolbar serves for buttons and options and filters typically, while the status bar provides information specific to the floating window. Since the the status bar is always on the bottom of the dialog it automatically handles the rounding of the bottom corners. Finally there’s  closebox style which is to be applied to an empty <div> tag in the header typically. What this does is render a close image that is by default low-lighted with a low opacity value, and then highlights when hovered over. All you’d have to do handle the close operation is handle the onclick of the <div>. Note that the <div> right aligns so typically you should specify it before any other content in the header. Speaking of closable – some time ago I created a closable jQuery plug-in that basically automates this process and can be applied against ANY element in a page, automatically removing or closing the element with some simple script code. Using this you can leave out the <div> tag for closable and just do the following: To make the above dialog closable (and draggable) which makes it effectively and overlay window, you’d add jQuery.js and ww.jquery.js to the page: <script type="text/javascript" src="../../scripts/jquery.min.js"></script> <script type="text/javascript" src="../../scripts/ww.jquery.min.js"></script> and then simply call: <script type="text/javascript"> $(document).ready(function () { $("#divDialog") .draggable({ handle: ".dialog-header" }) .closable({ handle: ".dialog-header", closeHandler: function () { alert("Window about to be closed."); return true; // true closes - false leaves open } }); }); </script> * ww.jquery.js emulates base features in jQuery-ui’s draggable. If jQuery-ui is loaded its draggable version will be used instead and voila you have now have a draggable and closable window – here in mid-drag:   The dragging and closable behaviors are of course optional, but it’s the final touch that provides dialog like window behavior. Relief for older Internet Explorer Versions with CSS Pie If you want to get these features to work with older versions of Internet Explorer all the way back to version 6 you can check out CSS Pie. CSS Pie provides an Internet Explorer behavior file that attaches to specific CSS rules and simulates these behavior using script code in IE (mostly by implementing filters). You can simply add the behavior to each CSS style that uses box-shadow and border-radius like this: .boxshadow {     -moz-box-shadow: 3px 3px 5px #535353;     -webkit-box-shadow: 3px 3px 5px #535353;           box-shadow: 3px 3px 5px #535353;     behavior: url(scripts/PIE.htc);           } .roundbox {      -moz-border-radius: 6px 6px 6px 6px;     -webkit-border-radius: 6px;      border-radius: 6px 6px 6px 6px;     behavior: url(scripts/PIE.htc); } CSS Pie requires the PIE.htc on your server and referenced from each CSS style that needs it. Note that the url() for IE behaviors is NOT CSS file relative as other CSS resources, but rather PAGE relative , so if you have more than one folder you probably need to reference the HTC file with a fixed path like this: behavior: url(/MyApp/scripts/PIE.htc); in the style. Small price to pay, but a royal pain if you have a common CSS file you use in many applications. Once the PIE.htc file has been copied and you have applied the behavior to each style that uses these new features Internet Explorer will render rounded corners and box shadows! Yay! Hurray for box-shadow and border-radius All of this functionality is very welcome natively in the browser. If you think this is all frivolous visual candy, you might be right :-), but if you take a look on the Web and search for rounded corner solutions that predate these CSS attributes you’ll find a boatload of stuff from image files, to custom drawn content to Javascript solutions that play tricks with a few images. It’s sooooo much easier to have this functionality built in and I for one am glad to see that’s it’s finally becoming standard in the box. Still remember that when you use these new CSS features, they are not universal, and are not going to be really soon. Legacy browsers, especially old versions of Internet Explorer that can’t be updated will continue to be around and won’t work with this shiny new stuff. I say screw ‘em: Let them get a decent recent browser or see a degraded and ugly UI. We have the luxury with this functionality in that it doesn’t typically affect usability – it just doesn’t look as nice. Resources Download the Sample The sample includes the styles and images and sample page as well as ww.jquery.js for the draggable/closable example. Online Sample Check out the sample described in this post online. Closable and Draggable Documentation Documentation for the closeable and draggable plug-ins in ww.jquery.js. You can also check out the full documentation for all the plug-ins contained in ww.jquery.js here. © Rick Strahl, West Wind Technologies, 2005-2011Posted in HTML  CSS  

    Read the article

  • Scrum in 5 Minutes

    - by Stephen.Walther
    The goal of this blog entry is to explain the basic concepts of Scrum in less than five minutes. You learn how Scrum can help a team of developers to successfully complete a complex software project. Product Backlog and the Product Owner Imagine that you are part of a team which needs to create a new website – for example, an e-commerce website. You have an overwhelming amount of work to do. You need to build (or possibly buy) a shopping cart, install an SSL certificate, create a product catalog, create a Facebook page, and at least a hundred other things that you have not thought of yet. According to Scrum, the first thing you should do is create a list. Place the highest priority items at the top of the list and the lower priority items lower in the list. For example, creating the shopping cart and buying the domain name might be high priority items and creating a Facebook page might be a lower priority item. In Scrum, this list is called the Product Backlog. How do you prioritize the items in the Product Backlog? Different stakeholders in the project might have different priorities. Gary, your division VP, thinks that it is crucial that the e-commerce site has a mobile app. Sally, your direct manager, thinks taking advantage of new HTML5 features is much more important. Multiple people are pulling you in different directions. According to Scrum, it is important that you always designate one person, and only one person, as the Product Owner. The Product Owner is the person who decides what items should be added to the Product Backlog and the priority of the items in the Product Backlog. The Product Owner could be the customer who is paying the bills, the project manager who is responsible for delivering the project, or a customer representative. The critical point is that the Product Owner must always be a single person and that single person has absolute authority over the Product Backlog. Sprints and the Sprint Backlog So now the developer team has a prioritized list of items and they can start work. The team starts implementing the first item in the Backlog — the shopping cart — and the team is making good progress. Unfortunately, however, half-way through the work of implementing the shopping cart, the Product Owner changes his mind. The Product Owner decides that it is much more important to create the product catalog before the shopping cart. With some frustration, the team switches their developmental efforts to focus on implementing the product catalog. However, part way through completing this work, once again the Product Owner changes his mind about the highest priority item. Getting work done when priorities are constantly shifting is frustrating for the developer team and it results in lower productivity. At the same time, however, the Product Owner needs to have absolute authority over the priority of the items which need to get done. Scrum solves this conflict with the concept of Sprints. In Scrum, a developer team works in Sprints. At the beginning of a Sprint the developers and the Product Owner agree on the items from the backlog which they will complete during the Sprint. This subset of items from the Product Backlog becomes the Sprint Backlog. During the Sprint, the Product Owner is not allowed to change the items in the Sprint Backlog. In other words, the Product Owner cannot shift priorities on the developer team during the Sprint. Different teams use Sprints of different lengths such as one month Sprints, two-week Sprints, and one week Sprints. For high-stress, time critical projects, teams typically choose shorter sprints such as one week sprints. For more mature projects, longer one month sprints might be more appropriate. A team can pick whatever Sprint length makes sense for them just as long as the team is consistent. You should pick a Sprint length and stick with it. Daily Scrum During a Sprint, the developer team needs to have meetings to coordinate their work on completing the items in the Sprint Backlog. For example, the team needs to discuss who is working on what and whether any blocking issues have been discovered. Developers hate meetings (well, sane developers hate meetings). Meetings take developers away from their work of actually implementing stuff as opposed to talking about implementing stuff. However, a developer team which never has meetings and never coordinates their work also has problems. For example, Fred might get stuck on a programming problem for days and never reach out for help even though Tom (who sits in the cubicle next to him) has already solved the very same problem. Or, both Ted and Fred might have started working on the same item from the Sprint Backlog at the same time. In Scrum, these conflicting needs – limiting meetings but enabling team coordination – are resolved with the idea of the Daily Scrum. The Daily Scrum is a meeting for coordinating the work of the developer team which happens once a day. To keep the meeting short, each developer answers only the following three questions: 1. What have you done since yesterday? 2. What do you plan to do today? 3. Any impediments in your way? During the Daily Scrum, developers are not allowed to talk about issues with their cat, do demos of their latest work, or tell heroic stories of programming problems overcome. The meeting must be kept short — typically about 15 minutes. Issues which come up during the Daily Scrum should be discussed in separate meetings which do not involve the whole developer team. Stories and Tasks Items in the Product or Sprint Backlog – such as building a shopping cart or creating a Facebook page – are often referred to as User Stories or Stories. The Stories are created by the Product Owner and should represent some business need. Unlike the Product Owner, the developer team needs to think about how a Story should be implemented. At the beginning of a Sprint, the developer team takes the Stories from the Sprint Backlog and breaks the stories into tasks. For example, the developer team might take the Create a Shopping Cart story and break it into the following tasks: · Enable users to add and remote items from shopping cart · Persist the shopping cart to database between visits · Redirect user to checkout page when Checkout button is clicked During the Daily Scrum, members of the developer team volunteer to complete the tasks required to implement the next Story in the Sprint Backlog. When a developer talks about what he did yesterday or plans to do tomorrow then the developer should be referring to a task. Stories are owned by the Product Owner and a story is all about business value. In contrast, the tasks are owned by the developer team and a task is all about implementation details. A story might take several days or weeks to complete. A task is something which a developer can complete in less than a day. Some teams get lazy about breaking stories into tasks. Neglecting to break stories into tasks can lead to “Never Ending Stories” If you don’t break a story into tasks, then you can’t know how much of a story has actually been completed because you don’t have a clear idea about the implementation steps required to complete the story. Scrumboard During the Daily Scrum, the developer team uses a Scrumboard to coordinate their work. A Scrumboard contains a list of the stories for the current Sprint, the tasks associated with each Story, and the state of each task. The developer team uses the Scrumboard so everyone on the team can see, at a glance, what everyone is working on. As a developer works on a task, the task moves from state to state and the state of the task is updated on the Scrumboard. Common task states are ToDo, In Progress, and Done. Some teams include additional task states such as Needs Review or Needs Testing. Some teams use a physical Scrumboard. In that case, you use index cards to represent the stories and the tasks and you tack the index cards onto a physical board. Using a physical Scrumboard has several disadvantages. A physical Scrumboard does not work well with a distributed team – for example, it is hard to share the same physical Scrumboard between Boston and Seattle. Also, generating reports from a physical Scrumboard is more difficult than generating reports from an online Scrumboard. Estimating Stories and Tasks Stakeholders in a project, the people investing in a project, need to have an idea of how a project is progressing and when the project will be completed. For example, if you are investing in creating an e-commerce site, you need to know when the site can be launched. It is not enough to just say that “the project will be done when it is done” because the stakeholders almost certainly have a limited budget to devote to the project. The people investing in the project cannot determine the business value of the project unless they can have an estimate of how long it will take to complete the project. Developers hate to give estimates. The reason that developers hate to give estimates is that the estimates are almost always completely made up. For example, you really don’t know how long it takes to build a shopping cart until you finish building a shopping cart, and at that point, the estimate is no longer useful. The problem is that writing code is much more like Finding a Cure for Cancer than Building a Brick Wall. Building a brick wall is very straightforward. After you learn how to add one brick to a wall, you understand everything that is involved in adding a brick to a wall. There is no additional research required and no surprises. If, on the other hand, I assembled a team of scientists and asked them to find a cure for cancer, and estimate exactly how long it will take, they would have no idea. The problem is that there are too many unknowns. I don’t know how to cure cancer, I need to do a lot of research here, so I cannot even begin to estimate how long it will take. So developers hate to provide estimates, but the Product Owner and other product stakeholders, have a legitimate need for estimates. Scrum resolves this conflict by using the idea of Story Points. Different teams use different units to represent Story Points. For example, some teams use shirt sizes such as Small, Medium, Large, and X-Large. Some teams prefer to use Coffee Cup sizes such as Tall, Short, and Grande. Finally, some teams like to use numbers from the Fibonacci series. These alternative units are converted into a Story Point value. Regardless of the type of unit which you use to represent Story Points, the goal is the same. Instead of attempting to estimate a Story in hours (which is doomed to failure), you use a much less fine-grained measure of work. A developer team is much more likely to be able to estimate that a Story is Small or X-Large than the exact number of hours required to complete the story. So you can think of Story Points as a compromise between the needs of the Product Owner and the developer team. When a Sprint starts, the developer team devotes more time to thinking about the Stories in a Sprint and the developer team breaks the Stories into Tasks. In Scrum, you estimate the work required to complete a Story by using Story Points and you estimate the work required to complete a task by using hours. The difference between Stories and Tasks is that you don’t create a task until you are just about ready to start working on a task. A task is something that you should be able to create within a day, so you have a much better chance of providing an accurate estimate of the work required to complete a task than a story. Burndown Charts In Scrum, you use Burndown charts to represent the remaining work on a project. You use Release Burndown charts to represent the overall remaining work for a project and you use Sprint Burndown charts to represent the overall remaining work for a particular Sprint. You create a Release Burndown chart by calculating the remaining number of uncompleted Story Points for the entire Product Backlog every day. The vertical axis represents Story Points and the horizontal axis represents time. A Sprint Burndown chart is similar to a Release Burndown chart, but it focuses on the remaining work for a particular Sprint. There are two different types of Sprint Burndown charts. You can either represent the remaining work in a Sprint with Story Points or with task hours (the following image, taken from Wikipedia, uses hours). When each Product Backlog Story is completed, the Release Burndown chart slopes down. When each Story or task is completed, the Sprint Burndown chart slopes down. Burndown charts typically do not always slope down over time. As new work is added to the Product Backlog, the Release Burndown chart slopes up. If new tasks are discovered during a Sprint, the Sprint Burndown chart will also slope up. The purpose of a Burndown chart is to give you a way to track team progress over time. If, halfway through a Sprint, the Sprint Burndown chart is still climbing a hill then you know that you are in trouble. Team Velocity Stakeholders in a project always want more work done faster. For example, the Product Owner for the e-commerce site wants the website to launch before tomorrow. Developers tend to be overly optimistic. Rarely do developers acknowledge the physical limitations of reality. So Project stakeholders and the developer team often collude to delude themselves about how much work can be done and how quickly. Too many software projects begin in a state of optimism and end in frustration as deadlines zoom by. In Scrum, this problem is overcome by calculating a number called the Team Velocity. The Team Velocity is a measure of the average number of Story Points which a team has completed in previous Sprints. Knowing the Team Velocity is important during the Sprint Planning meeting when the Product Owner and the developer team work together to determine the number of stories which can be completed in the next Sprint. If you know the Team Velocity then you can avoid committing to do more work than the team has been able to accomplish in the past, and your team is much more likely to complete all of the work required for the next Sprint. Scrum Master There are three roles in Scrum: the Product Owner, the developer team, and the Scrum Master. I’v e already discussed the Product Owner. The Product Owner is the one and only person who maintains the Product Backlog and prioritizes the stories. I’ve also described the role of the developer team. The members of the developer team do the work of implementing the stories by breaking the stories into tasks. The final role, which I have not discussed, is the role of the Scrum Master. The Scrum Master is responsible for ensuring that the team is following the Scrum process. For example, the Scrum Master is responsible for making sure that there is a Daily Scrum meeting and that everyone answers the standard three questions. The Scrum Master is also responsible for removing (non-technical) impediments which the team might encounter. For example, if the team cannot start work until everyone installs the latest version of Microsoft Visual Studio then the Scrum Master has the responsibility of working with management to get the latest version of Visual Studio as quickly as possible. The Scrum Master can be a member of the developer team. Furthermore, different people can take on the role of the Scrum Master over time. The Scrum Master, however, cannot be the same person as the Product Owner. Using SonicAgile SonicAgile (SonicAgile.com) is an online tool which you can use to manage your projects using Scrum. You can use the SonicAgile Product Backlog to create a prioritized list of stories. You can estimate the size of the Stories using different Story Point units such as Shirt Sizes and Coffee Cup sizes. You can use SonicAgile during the Sprint Planning meeting to select the Stories that you want to complete during a particular Sprint. You can configure Sprints to be any length of time. SonicAgile calculates Team Velocity automatically and displays a warning when you add too many stories to a Sprint. In other words, it warns you when it thinks you are overcommitting in a Sprint. SonicAgile also includes a Scrumboard which displays the list of Stories selected for a Sprint and the tasks associated with each story. You can drag tasks from one task state to another. Finally, SonicAgile enables you to generate Release Burndown and Sprint Burndown charts. You can use these charts to view the progress of your team. To learn more about SonicAgile, visit SonicAgile.com. Summary In this post, I described many of the basic concepts of Scrum. You learned how a Product Owner uses a Product Backlog to create a prioritized list of tasks. I explained why work is completed in Sprints so the developer team can be more productive. I also explained how a developer team uses the daily scrum to coordinate their work. You learned how the developer team uses a Scrumboard to see, at a glance, who is working on what and the state of each task. I also discussed Burndown charts. You learned how you can use both Release and Sprint Burndown charts to track team progress in completing a project. Finally, I described the crucial role of the Scrum Master – the person who is responsible for ensuring that the rules of Scrum are being followed. My goal was not to describe all of the concepts of Scrum. This post was intended to be an introductory overview. For a comprehensive explanation of Scrum, I recommend reading Ken Schwaber’s book Agile Project Management with Scrum: http://www.amazon.com/Agile-Project-Management-Microsoft-Professional/dp/073561993X/ref=la_B001H6ODMC_1_1?ie=UTF8&qid=1345224000&sr=1-1

    Read the article

  • Diving into OpenStack Network Architecture - Part 1

    - by Ronen Kofman
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} rkofman Normal rkofman 83 3045 2014-05-23T21:11:00Z 2014-05-27T06:58:00Z 3 1883 10739 Oracle Corporation 89 25 12597 12.00 140 Clean Clean false false false false EN-US X-NONE HE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} Before we begin OpenStack networking has very powerful capabilities but at the same time it is quite complicated. In this blog series we will review an existing OpenStack setup using the Oracle OpenStack Tech Preview and explain the different network components through use cases and examples. The goal is to show how the different pieces come together and provide a bigger picture view of the network architecture in OpenStack. This can be very helpful to users making their first steps in OpenStack or anyone wishes to understand how networking works in this environment.  We will go through the basics first and build the examples as we go. According to the recent Icehouse user survey and the one before it, Neutron with Open vSwitch plug-in is the most widely used network setup both in production and in POCs (in terms of number of customers) and so in this blog series we will analyze this specific OpenStack networking setup. As we know there are many options to setup OpenStack networking and while Neturon + Open vSwitch is the most popular setup there is no claim that it is either best or the most efficient option. Neutron + Open vSwitch is an example, one which provides a good starting point for anyone interested in understanding OpenStack networking. Even if you are using different kind of network setup such as different Neutron plug-in or even not using Neutron at all this will still be a good starting point to understand the network architecture in OpenStack. The setup we are using for the examples is the one used in the Oracle OpenStack Tech Preview. Installing it is simple and it would be helpful to have it as reference. In this setup we use eth2 on all servers for VM network, all VM traffic will be flowing through this interface.The Oracle OpenStack Tech Preview is using VLANs for L2 isolation to provide tenant and network isolation. The following diagram shows how we have configured our deployment: This first post is a bit long and will focus on some basic concepts in OpenStack networking. The components we will be discussing are Open vSwitch, network namespaces, Linux bridge and veth pairs. Note that this is not meant to be a comprehensive review of these components, it is meant to describe the component as much as needed to understand OpenStack network architecture. All the components described here can be further explored using other resources. Open vSwitch (OVS) In the Oracle OpenStack Tech Preview OVS is used to connect virtual machines to the physical port (in our case eth2) as shown in the deployment diagram. OVS contains bridges and ports, the OVS bridges are different from the Linux bridge (controlled by the brctl command) which are also used in this setup. To get started let’s view the OVS structure, use the following command: # ovs-vsctl show 7ec51567-ab42-49e8-906d-b854309c9edf     Bridge br-int         Port br-int             Interface br-int type: internal         Port "int-br-eth2"             Interface "int-br-eth2"     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2" ovs_version: "1.11.0" We see a standard post deployment OVS on a compute node with two bridges and several ports hanging off of each of them. The example above is a compute node without any VMs, we can see that the physical port eth2 is connected to a bridge called “br-eth2”. We also see two ports "int-br-eth2" and "phy-br-eth2" which are actually a veth pair and form virtual wire between the two bridges, veth pairs are discussed later in this post. When a virtual machine is created a port is created on one the br-int bridge and this port is eventually connected to the virtual machine (we will discuss the exact connectivity later in the series). Here is how OVS looks after a VM was launched: # ovs-vsctl show efd98c87-dc62-422d-8f73-a68c2a14e73d     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port br-int             Interface br-int type: internal         Port "qvocb64ea96-9f" tag: 1             Interface "qvocb64ea96-9f"     Bridge "br-eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2" ovs_version: "1.11.0" Bridge "br-int" now has a new port "qvocb64ea96-9f" which connects to the VM and tagged with VLAN 1. Every VM which will be launched will add a port on the “br-int” bridge for every network interface the VM has. Another useful command on OVS is dump-flows for example: # ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4): cookie=0x0, duration=735.544s, table=0, n_packets=70, n_bytes=9976, idle_age=17, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL cookie=0x0, duration=76679.786s, table=0, n_packets=0, n_bytes=0, idle_age=65534, hard_age=65534, priority=2,in_port=1 actions=drop cookie=0x0, duration=76681.36s, table=0, n_packets=68, n_bytes=7950, idle_age=17, hard_age=65534, priority=1 actions=NORMAL As we see the port which is connected to the VM has the VLAN tag 1. However the port on the VM network (eth2) will be using tag 1000. OVS is modifying the vlan as the packet flow from the VM to the physical interface. In OpenStack the Open vSwitch agent takes care of programming the flows in Open vSwitch so the users do not have to deal with this at all. If you wish to learn more about how to program the Open vSwitch you can read more about it at http://openvswitch.org looking at the documentation describing the ovs-ofctl command. Network Namespaces (netns) Network namespaces is a very cool Linux feature can be used for many purposes and is heavily used in OpenStack networking. Network namespaces are isolated containers which can hold a network configuration and is not seen from outside of the namespace. A network namespace can be used to encapsulate specific network functionality or provide a network service in isolation as well as simply help to organize a complicated network setup. Using the Oracle OpenStack Tech Preview we are using the latest Unbreakable Enterprise Kernel R3 (UEK3), this kernel provides a complete support for netns. Let's see how namespaces work through couple of examples to control network namespaces we use the ip netns command: Defining a new namespace: # ip netns add my-ns # ip netns list my-ns As mentioned the namespace is an isolated container, we can perform all the normal actions in the namespace context using the exec command for example running the ifconfig command: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:16436 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) We can run every command in the namespace context, this is especially useful for debug using tcpdump command, we can ping or ssh or define iptables all within the namespace. Connecting the namespace to the outside world: There are various ways to connect into a namespaces and between namespaces we will focus on how this is done in OpenStack. OpenStack uses a combination of Open vSwitch and network namespaces. OVS defines the interfaces and then we can add those interfaces to namespace. So first let's add a bridge to OVS: # ovs-vsctl add-br my-bridge Now let's add a port on the OVS and make it internal: # ovs-vsctl add-port my-bridge my-port # ovs-vsctl set Interface my-port type=internal And let's connect it into the namespace: # ip link set my-port netns my-ns Looking inside the namespace: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:65536 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) my-port   Link encap:Ethernet HWaddr 22:04:45:E2:85:21           BROADCAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) Now we can add more ports to the OVS bridge and connect it to other namespaces or other device like physical interfaces. Neutron is using network namespaces to implement network services such as DCHP, routing, gateway, firewall, load balance and more. In the next post we will go into this in further details. Linux Bridge and veth pairs Linux bridge is used to connect the port from OVS to the VM. Every port goes from the OVS bridge to a Linux bridge and from there to the VM. The reason for using regular Linux bridges is for security groups’ enforcement. Security groups are implemented using iptables and iptables can only be applied to Linux bridges and not to OVS bridges. Veth pairs are used extensively throughout the network setup in OpenStack and are also a good tool to debug a network problem. Veth pairs are simply a virtual wire and so veths always come in pairs. Typically one side of the veth pair will connect to a bridge and the other side to another bridge or simply left as a usable interface. In this example we will create some veth pairs, connect them to bridges and test connectivity. This example is using regular Linux server and not an OpenStack node: Creating a veth pair, note that we define names for both ends: # ip link add veth0 type veth peer name veth1 # ifconfig -a . . veth0     Link encap:Ethernet HWaddr 5E:2C:E6:03:D0:17           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) veth1     Link encap:Ethernet HWaddr E6:B6:E2:6D:42:B8           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) . . To make the example more meaningful this we will create the following setup: veth0 => veth1 => br-eth3 => eth3 ======> eth2 on another Linux server br-eth3 – a regular Linux bridge which will be connected to veth1 and eth3 eth3 – a physical interface with no IP on it, connected to a private network eth2 – a physical interface on the remote Linux box connected to the private network and configured with the IP of 50.50.50.1 Once we create the setup we will ping 50.50.50.1 (the remote IP) through veth0 to test that the connection is up: # brctl addbr br-eth3 # brctl addif br-eth3 eth3 # brctl addif br-eth3 veth1 # brctl show bridge name     bridge id               STP enabled     interfaces br-eth3         8000.00505682e7f6       no              eth3                                                         veth1 # ifconfig veth0 50.50.50.50 # ping -I veth0 50.50.50.51 PING 50.50.50.51 (50.50.50.51) from 50.50.50.50 veth0: 56(84) bytes of data. 64 bytes from 50.50.50.51: icmp_seq=1 ttl=64 time=0.454 ms 64 bytes from 50.50.50.51: icmp_seq=2 ttl=64 time=0.298 ms When the naming is not as obvious as the previous example and we don't know who are the paired veth interfaces we can use the ethtool command to figure this out. The ethtool command returns an index we can look up using ip link command, for example: # ethtool -S veth1 NIC statistics: peer_ifindex: 12 # ip link . . 12: veth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 Summary That’s all for now, we quickly reviewed OVS, network namespaces, Linux bridges and veth pairs. These components are heavily used in the OpenStack network architecture we are exploring and understanding them well will be very useful when reviewing the different use cases. In the next post we will look at how the OpenStack network is laid out connecting the virtual machines to each other and to the external world. @RonenKofman

    Read the article

  • Basic Spatial Data with SQL Server and Entity Framework 5.0

    - by Rick Strahl
    In my most recent project we needed to do a bit of geo-spatial referencing. While spatial features have been in SQL Server for a while using those features inside of .NET applications hasn't been as straight forward as could be, because .NET natively doesn't support spatial types. There are workarounds for this with a few custom project like SharpMap or a hack using the Sql Server specific Geo types found in the Microsoft.SqlTypes assembly that ships with SQL server. While these approaches work for manipulating spatial data from .NET code, they didn't work with database access if you're using Entity Framework. Other ORM vendors have been rolling their own versions of spatial integration. In Entity Framework 5.0 running on .NET 4.5 the Microsoft ORM finally adds support for spatial types as well. In this post I'll describe basic geography features that deal with single location and distance calculations which is probably the most common usage scenario. SQL Server Transact-SQL Syntax for Spatial Data Before we look at how things work with Entity framework, lets take a look at how SQL Server allows you to use spatial data to get an understanding of the underlying semantics. The following SQL examples should work with SQL 2008 and forward. Let's start by creating a test table that includes a Geography field and also a pair of Long/Lat fields that demonstrate how you can work with the geography functions even if you don't have geography/geometry fields in the database. Here's the CREATE command:CREATE TABLE [dbo].[Geo]( [id] [int] IDENTITY(1,1) NOT NULL, [Location] [geography] NULL, [Long] [float] NOT NULL, [Lat] [float] NOT NULL ) Now using plain SQL you can insert data into the table using geography::STGeoFromText SQL CLR function:insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.527200 45.712113)', 4326), -121.527200, 45.712113 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.517265 45.714240)', 4326), -121.517265, 45.714240 ) insert into Geo( Location , long, lat ) values ( geography::STGeomFromText ('POINT(-121.511536 45.714825)', 4326), -121.511536, 45.714825) The STGeomFromText function accepts a string that points to a geometric item (a point here but can also be a line or path or polygon and many others). You also need to provide an SRID (Spatial Reference System Identifier) which is an integer value that determines the rules for how geography/geometry values are calculated and returned. For mapping/distance functionality you typically want to use 4326 as this is the format used by most mapping software and geo-location libraries like Google and Bing. The spatial data in the Location field is stored in binary format which looks something like this: Once the location data is in the database you can query the data and do simple distance computations very easily. For example to calculate the distance of each of the values in the database to another spatial point is very easy to calculate. Distance calculations compare two points in space using a direct line calculation. For our example I'll compare a new point to all the points in the database. Using the Location field the SQL looks like this:-- create a source point DECLARE @s geography SET @s = geography:: STGeomFromText('POINT(-121.527200 45.712113)' , 4326); --- return the ids select ID, Location as Geo , Location .ToString() as Point , @s.STDistance( Location) as distance from Geo order by distance The code defines a new point which is the base point to compare each of the values to. You can also compare values from the database directly, but typically you'll want to match a location to another location and determine the difference for which you can use the geography::STDistance function. This query produces the following output: The STDistance function returns the straight line distance between the passed in point and the point in the database field. The result for SRID 4326 is always in meters. Notice that the first value passed was the same point so the difference is 0. The other two points are two points here in town in Hood River a little ways away - 808 and 1256 meters respectively. Notice also that you can order the result by the resulting distance, which effectively gives you results that are ordered radially out from closer to further away. This is great for searches of points of interest near a central location (YOU typically!). These geolocation functions are also available to you if you don't use the Geography/Geometry types, but plain float values. It's a little more work, as each point has to be created in the query using the string syntax, but the following code doesn't use a geography field but produces the same result as the previous query.--- using float fields select ID, geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326), geography::STGeomFromText ('POINT(' + STR (long, 15,7 ) + ' ' + Str(lat ,15, 7) + ')' , 4326). ToString(), @s.STDistance( geography::STGeomFromText ('POINT(' + STR(long ,15, 7) + ' ' + Str(lat ,15, 7) + ')' , 4326)) as distance from geo order by distance Spatial Data in the Entity Framework Prior to Entity Framework 5.0 on .NET 4.5 consuming of the data above required using stored procedures or raw SQL commands to access the spatial data. In Entity Framework 5 however, Microsoft introduced the new DbGeometry and DbGeography types. These immutable location types provide a bunch of functionality for manipulating spatial points using geometry functions which in turn can be used to do common spatial queries like I described in the SQL syntax above. The DbGeography/DbGeometry types are immutable, meaning that you can't write to them once they've been created. They are a bit odd in that you need to use factory methods in order to instantiate them - they have no constructor() and you can't assign to properties like Latitude and Longitude. Creating a Model with Spatial Data Let's start by creating a simple Entity Framework model that includes a Location property of type DbGeography: public class GeoLocationContext : DbContext { public DbSet<GeoLocation> Locations { get; set; } } public class GeoLocation { public int Id { get; set; } public DbGeography Location { get; set; } public string Address { get; set; } } That's all there's to it. When you run this now against SQL Server, you get a Geography field for the Location property, which looks the same as the Location field in the SQL examples earlier. Adding Spatial Data to the Database Next let's add some data to the table that includes some latitude and longitude data. An easy way to find lat/long locations is to use Google Maps to pinpoint your location, then right click and click on What's Here. Click on the green marker to get the GPS coordinates. To add the actual geolocation data create an instance of the GeoLocation type and use the DbGeography.PointFromText() factory method to create a new point to assign to the Location property:[TestMethod] public void AddLocationsToDataBase() { var context = new GeoLocationContext(); // remove all context.Locations.ToList().ForEach( loc => context.Locations.Remove(loc)); context.SaveChanges(); var location = new GeoLocation() { // Create a point using native DbGeography Factory method Location = DbGeography.PointFromText( string.Format("POINT({0} {1})", -121.527200,45.712113) ,4326), Address = "301 15th Street, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.714240, -121.517265), Address = "The Hatchery, Bingen" }; context.Locations.Add(location); location = new GeoLocation() { // Create a point using a helper function (lat/long) Location = CreatePoint(45.708457, -121.514432), Address = "Kaze Sushi, Hood River" }; context.Locations.Add(location); location = new GeoLocation() { Location = CreatePoint(45.722780, -120.209227), Address = "Arlington, OR" }; context.Locations.Add(location); context.SaveChanges(); } As promised, a DbGeography object has to be created with one of the static factory methods provided on the type as the Location.Longitude and Location.Latitude properties are read only. Here I'm using PointFromText() which uses a "Well Known Text" format to specify spatial data. In the first example I'm specifying to create a Point from a longitude and latitude value, using an SRID of 4326 (just like earlier in the SQL examples). You'll probably want to create a helper method to make the creation of Points easier to avoid that string format and instead just pass in a couple of double values. Here's my helper called CreatePoint that's used for all but the first point creation in the sample above:public static DbGeography CreatePoint(double latitude, double longitude) { var text = string.Format(CultureInfo.InvariantCulture.NumberFormat, "POINT({0} {1})", longitude, latitude); // 4326 is most common coordinate system used by GPS/Maps return DbGeography.PointFromText(text, 4326); } Using the helper the syntax becomes a bit cleaner, requiring only a latitude and longitude respectively. Note that my method intentionally swaps the parameters around because Latitude and Longitude is the common format I've seen with mapping libraries (especially Google Mapping/Geolocation APIs with their LatLng type). When the context is changed the data is written into the database using the SQL Geography type which looks the same as in the earlier SQL examples shown. Querying Once you have some location data in the database it's now super easy to query the data and find out the distance between locations. A common query is to ask for a number of locations that are near a fixed point - typically your current location and order it by distance. Using LINQ to Entities a query like this is easy to construct:[TestMethod] public void QueryLocationsTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 kilometers ordered by distance var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) < 5000) .OrderBy( loc=> loc.Location.Distance(sourcePoint) ) .Select( loc=> new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n0} meters)", location.Address, location.Distance); } } This example produces: 301 15th Street, Hood River (0 meters)The Hatchery, Bingen (809 meters)Kaze Sushi, Hood River (1,074 meters)   The first point in the database is the same as my source point I'm comparing against so the distance is 0. The other two are within the 5 mile radius, while the Arlington location which is 65 miles or so out is not returned. The result is ordered by distance from closest to furthest away. In the code, I first create a source point that is the basis for comparison. The LINQ query then selects all locations that are within 5km of the source point using the Location.Distance() function, which takes a source point as a parameter. You can either use a pre-defined value as I'm doing here, or compare against another database DbGeography property (say when you have to points in the same database for things like routes). What's nice about this query syntax is that it's very clean and easy to read and understand. You can calculate the distance and also easily order by the distance to provide a result that shows locations from closest to furthest away which is a common scenario for any application that places a user in the context of several locations. It's now super easy to accomplish this. Meters vs. Miles As with the SQL Server functions, the Distance() method returns data in meters, so if you need to work with miles or feet you need to do some conversion. Here are a couple of helpers that might be useful (can be found in GeoUtils.cs of the sample project):/// <summary> /// Convert meters to miles /// </summary> /// <param name="meters"></param> /// <returns></returns> public static double MetersToMiles(double? meters) { if (meters == null) return 0F; return meters.Value * 0.000621371192; } /// <summary> /// Convert miles to meters /// </summary> /// <param name="miles"></param> /// <returns></returns> public static double MilesToMeters(double? miles) { if (miles == null) return 0; return miles.Value * 1609.344; } Using these two helpers you can query on miles like this:[TestMethod] public void QueryLocationsMilesTest() { var sourcePoint = CreatePoint(45.712113, -121.527200); var context = new GeoLocationContext(); // find any locations within 5 miles ordered by distance var fiveMiles = GeoUtils.MilesToMeters(5); var matches = context.Locations .Where(loc => loc.Location.Distance(sourcePoint) <= fiveMiles) .OrderBy(loc => loc.Location.Distance(sourcePoint)) .Select(loc => new { Address = loc.Address, Distance = loc.Location.Distance(sourcePoint) }); Assert.IsTrue(matches.Count() > 0); foreach (var location in matches) { Console.WriteLine("{0} ({1:n1} miles)", location.Address, GeoUtils.MetersToMiles(location.Distance)); } } which produces: 301 15th Street, Hood River (0.0 miles)The Hatchery, Bingen (0.5 miles)Kaze Sushi, Hood River (0.7 miles) Nice 'n simple. .NET 4.5 Only Note that DbGeography and DbGeometry are exclusive to Entity Framework 5.0 (not 4.4 which ships in the same NuGet package or installer) and requires .NET 4.5. That's because the new DbGeometry and DbGeography (and related) types are defined in the 4.5 version of System.Data.Entity which is a CLR assembly and is only updated by major versions of .NET. Why this decision was made to add these types to System.Data.Entity rather than to the frequently updated EntityFramework assembly that would have possibly made this work in .NET 4.0 is beyond me, especially given that there are no native .NET framework spatial types to begin with. I find it also odd that there is no native CLR spatial type. The DbGeography and DbGeometry types are specific to Entity Framework and live on those assemblies. They will also work for general purpose, non-database spatial data manipulation, but then you are forced into having a dependency on System.Data.Entity, which seems a bit silly. There's also a System.Spatial assembly that's apparently part of WCF Data Services which in turn don't work with Entity framework. Another example of multiple teams at Microsoft not communicating and implementing the same functionality (differently) in several different places. Perplexed as a I may be, for EF specific code the Entity framework specific types are easy to use and work well. Working with pre-.NET 4.5 Entity Framework and Spatial Data If you can't go to .NET 4.5 just yet you can also still use spatial features in Entity Framework, but it's a lot more work as you can't use the DbContext directly to manipulate the location data. You can still run raw SQL statements to write data into the database and retrieve results using the same TSQL syntax I showed earlier using Context.Database.ExecuteSqlCommand(). Here's code that you can use to add location data into the database:[TestMethod] public void RawSqlEfAddTest() { string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT({0} {1})', 4326),@p0 )"; var sql = string.Format(sqlFormat,-121.527200, 45.712113); Console.WriteLine(sql); var context = new GeoLocationContext(); Assert.IsTrue(context.Database.ExecuteSqlCommand(sql,"301 N. 15th Street") > 0); } Here I'm using the STGeomFromText() function to add the location data. Note that I'm using string.Format here, which usually would be a bad practice but is required here. I was unable to use ExecuteSqlCommand() and its named parameter syntax as the longitude and latitude parameters are embedded into a string. Rest assured it's required as the following does not work:string sqlFormat = @"insert into GeoLocations( Location, Address) values ( geography::STGeomFromText('POINT(@p0 @p1)', 4326),@p2 )";context.Database.ExecuteSqlCommand(sql, -121.527200, 45.712113, "301 N. 15th Street") Explicitly assigning the point value with string.format works however. There are a number of ways to query location data. You can't get the location data directly, but you can retrieve the point string (which can then be parsed to get Latitude and Longitude) and you can return calculated values like distance. Here's an example of how to retrieve some geo data into a resultset using EF's and SqlQuery method:[TestMethod] public void RawSqlEfQueryTest() { var sqlFormat = @" DECLARE @s geography SET @s = geography:: STGeomFromText('POINT({0} {1})' , 4326); SELECT Address, Location.ToString() as GeoString, @s.STDistance( Location) as Distance FROM GeoLocations ORDER BY Distance"; var sql = string.Format(sqlFormat, -121.527200, 45.712113); var context = new GeoLocationContext(); var locations = context.Database.SqlQuery<ResultData>(sql); Assert.IsTrue(locations.Count() > 0); foreach (var location in locations) { Console.WriteLine(location.Address + " " + location.GeoString + " " + location.Distance); } } public class ResultData { public string GeoString { get; set; } public double Distance { get; set; } public string Address { get; set; } } Hopefully you don't have to resort to this approach as it's fairly limited. Using the new DbGeography/DbGeometry types makes this sort of thing so much easier. When I had to use code like this before I typically ended up retrieving data pks only and then running another query with just the PKs to retrieve the actual underlying DbContext entities. This was very inefficient and tedious but it did work. Summary For the current project I'm working on we actually made the switch to .NET 4.5 purely for the spatial features in EF 5.0. This app heavily relies on spatial queries and it was worth taking a chance with pre-release code to get this ease of integration as opposed to manually falling back to stored procedures or raw SQL string queries to return spatial specific queries. Using native Entity Framework code makes life a lot easier than the alternatives. It might be a late addition to Entity Framework, but it sure makes location calculations and storage easy. Where do you want to go today? ;-) Resources Download Sample Project© Rick Strahl, West Wind Technologies, 2005-2012Posted in ADO.NET  Sql Server  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • NoSQL with RavenDB and ASP.NET MVC - Part 2

    - by shiju
    In my previous post, we have discussed on how to work with RavenDB document database in an ASP.NET MVC application. We have setup RavenDB for our ASP.NET MVC application and did basic CRUD operations against a simple domain entity. In this post, let’s discuss on domain entity with deep object graph and how to query against RavenDB documents using Indexes.Let's create two domain entities for our demo ASP.NET MVC appplication  public class Category {       public string Id { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public List<Expense> Expenses { get; set; }       public Category()     {         Expenses = new List<Expense>();     } }    public class Expense {       public string Id { get; set; }     public Category Category { get; set; }     public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }   }  We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category.Let's create  ASP.NET MVC view model  for Expense transaction public class ExpenseViewModel {     public string Id { get; set; }       public string CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]            public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]            public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } Let's create a contract type for Expense Repository  public interface IExpenseRepository {     Expense Load(string id);     IEnumerable<Expense> GetExpenseTransactions(DateTime startDate,DateTime endDate);     void Save(Expense expense,string categoryId);     void Delete(string id);  } Let's create a concrete type for Expense Repository for handling CRUD operations. public class ExpenseRepository : IExpenseRepository {   private IDocumentSession session; public ExpenseRepository() {         session = MvcApplication.CurrentSession; } public Expense Load(string id) {     return session.Load<Expense>(id); } public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; } public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } public void Delete(string id) {     var expense = Load(id);     session.Delete<Expense>(expense);     session.SaveChanges(); }   }  Insert/Update Expense Transaction The Save method is used for both insert a new expense record and modifying an existing expense transaction. For a new expense transaction, we store the expense object with associated category into document session object and load the existing expense object and assign values to it for editing a existing record.  public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } Querying Expense transactions   public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; }  The GetExpenseTransactions method returns expense transactions using a LINQ query expression with a Date comparison filter. The Lucene Query is using a index named "ExpenseTransactions" for getting the result set. In RavenDB, Indexes are LINQ queries stored in the RavenDB server and would be  executed on the background and will perform query against the JSON documents. Indexes will be working with a lucene query expression or a set operation. Indexes are composed using a Map and Reduce function. Check out Ayende's blog post on Map/Reduce We can create index using RavenDB web admin tool as well as programmitically using its Client API. The below shows the screen shot of creating index using web admin tool. We can also create Indexes using Raven Cleint API as shown in the following code documentStore.DatabaseCommands.PutIndex("ExpenseTransactions",     new IndexDefinition<Expense,Expense>() {     Map = Expenses => from exp in Expenses                     select new { exp.Date } });  In the Map function, we used a Linq expression as shown in the following from exp in docs.Expensesselect new { exp.Date };We have not used a Reduce function for the above index. A Reduce function is useful while performing aggregate functions based on the results from the Map function. Indexes can be use with set operations of RavenDB.SET OperationsUnlike other document databases, RavenDB supports set based operations that lets you to perform updates, deletes and inserts to the bulk_docs endpoint of RavenDB. For doing this, you just pass a query to a Index as shown in the following commandDELETE http://localhost:8080/bulk_docs/ExpenseTransactions?query=Date:20100531The above command using the Index named "ExpenseTransactions" for querying the documents with Date filter and  will delete all the documents that match the query criteria. The above command is equivalent of the following queryDELETE FROM ExpensesWHERE Date='2010-05-31' Controller & ActionsWe have created Expense Repository class for performing CRUD operations for the Expense transactions. Let's create a controller class for handling expense transactions.   public class ExpenseController : Controller { private ICategoryRepository categoyRepository; private IExpenseRepository expenseRepository; public ExpenseController(ICategoryRepository categoyRepository, IExpenseRepository expenseRepository) {     this.categoyRepository = categoyRepository;     this.expenseRepository = expenseRepository; } //Get Expense transactions based on dates public ActionResult Index(DateTime? StartDate, DateTime? EndDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!StartDate.HasValue)     {         StartDate = new DateTime(dtNow.Year, dtNow.Month, 1);         EndDate = StartDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of startdate's month, if endate is not passed     if (StartDate.HasValue && !EndDate.HasValue)     {         EndDate = (new DateTime(StartDate.Value.Year, StartDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }       var expenses = expenseRepository.GetExpenseTransactions(StartDate.Value, EndDate.Value);     if (Request.IsAjaxRequest())     {           return PartialView("ExpenseList", expenses);     }     ViewData.Add("StartDate", StartDate.Value.ToShortDateString());     ViewData.Add("EndDate", EndDate.Value.ToShortDateString());             return View(expenses);            }   // GET: /Expense/Edit public ActionResult Edit(string id) {       var expenseModel = new ExpenseViewModel();     var expense = expenseRepository.Load(id);     ModelCopier.CopyModel(expense, expenseModel);     var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems(expense.Category.Id.ToString());                    return View("Save", expenseModel);          }   // // GET: /Expense/Create   public ActionResult Create() {     var expenseModel = new ExpenseViewModel();               var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems("-1");     expenseModel.Date = DateTime.Today;     return View("Save", expenseModel); }   // // POST: /Expense/Save // Insert/Update Expense Tansaction [HttpPost] public ActionResult Save(ExpenseViewModel expenseViewModel) {     try     {         if (!ModelState.IsValid)         {               var categories = categoyRepository.GetCategories();                 expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);                               return View("Save", expenseViewModel);         }           var expense=new Expense();         ModelCopier.CopyModel(expenseViewModel, expense);          expenseRepository.Save(expense, expenseViewModel.CategoryId);                       return RedirectToAction("Index");     }     catch     {         return View();     } } //Delete a Expense Transaction public ActionResult Delete(string id) {     expenseRepository.Delete(id);     return RedirectToAction("Index");     }     }     Download the Source - You can download the source code from http://ravenmvc.codeplex.com

    Read the article

  • Extending NerdDinner: Adding Geolocated Flair

    - by Jon Galloway
    NerdDinner is a website with the audacious goal of “Organizing the world’s nerds and helping them eat in packs.” Because nerds aren’t likely to socialize with others unless a website tells them to do it. Scott Hanselman showed off a lot of the cool features we’ve added to NerdDinner lately during his popular talk at MIX10, Beyond File | New Company: From Cheesy Sample to Social Platform. Did you miss it? Go ahead and watch it, I’ll wait. One of the features we wanted to add was flair. You know about flair, right? It’s a way to let folks who like your site show it off in their own site. For example, here’s my StackOverflow flair: Great! So how could we add some of this flair stuff to NerdDinner? What do we want to show? If we’re going to encourage our users to give up a bit of their beautiful website to show off a bit of ours, we need to think about what they’ll want to show. For instance, my StackOverflow flair is all about me, not StackOverflow. So how will this apply to NerdDinner? Since NerdDinner is all about organizing local dinners, in order for the flair to be useful it needs to make sense for the person viewing the web page. If someone visits from Egypt visits my blog, they should see information about NerdDinners in Egypt. That’s geolocation – localizing site content based on where the browser’s sitting, and it makes sense for flair as well as entire websites. So we’ll set up a simple little callout that prompts them to host a dinner in their area: Hopefully our flair works and there is a dinner near your viewers, so they’ll see another view which lists upcoming dinners near them: The Geolocation Part Generally website geolocation is done by mapping the requestor’s IP address to a geographic area. It’s not an exact science, but I’ve always found it to be pretty accurate. There are (at least) three ways to handle it: You pay somebody like MaxMind for a database (with regular updates) that sits on your server, and you use their API to do lookups. I used this on a pretty big project a few years ago and it worked well. You use HTML 5 Geolocation API or Google Gears or some other browser based solution. I think those are cool (I use Google Gears a lot), but they’re both in flux right now and I don’t think either has a wide enough of an install base yet to rely on them. You might want to, but I’ve heard you do all kinds of crazy stuff, and sometimes it gets you in trouble. I don’t mean talk out of line, but we all laugh behind your back a bit. But, hey, it’s up to you. It’s your flair or whatever. There are some free webservices out there that will take an IP address and give you location information. Easy, and works for everyone. That’s what we’re doing. I looked at a few different services and settled on IPInfoDB. It’s free, has a great API, and even returns JSON, which is handy for Javascript use. The IP query is pretty simple. We hit a URL like this: http://ipinfodb.com/ip_query.php?ip=74.125.45.100&timezone=false … and we get an XML response back like this… <?xml version="1.0" encoding="UTF-8"?> <Response> <Ip>74.125.45.100</Ip> <Status>OK</Status> <CountryCode>US</CountryCode> <CountryName>United States</CountryName> <RegionCode>06</RegionCode> <RegionName>California</RegionName> <City>Mountain View</City> <ZipPostalCode>94043</ZipPostalCode> <Latitude>37.4192</Latitude> <Longitude>-122.057</Longitude> </Response> So we’ll build some data transfer classes to hold the location information, like this: public class LocationInfo { public string Country { get; set; } public string RegionName { get; set; } public string City { get; set; } public string ZipPostalCode { get; set; } public LatLong Position { get; set; } } public class LatLong { public float Lat { get; set; } public float Long { get; set; } } And now hitting the service is pretty simple: public static LocationInfo HostIpToPlaceName(string ip) { string url = "http://ipinfodb.com/ip_query.php?ip={0}&timezone=false"; url = String.Format(url, ip); var result = XDocument.Load(url); var location = (from x in result.Descendants("Response") select new LocationInfo { City = (string)x.Element("City"), RegionName = (string)x.Element("RegionName"), Country = (string)x.Element("CountryName"), ZipPostalCode = (string)x.Element("CountryName"), Position = new LatLong { Lat = (float)x.Element("Latitude"), Long = (float)x.Element("Longitude") } }).First(); return location; } Getting The User’s IP Okay, but first we need the end user’s IP, and you’d think it would be as simple as reading the value from HttpContext: HttpContext.Current.Request.UserHostAddress But you’d be wrong. Sorry. UserHostAddress just wraps HttpContext.Current.Request.ServerVariables["REMOTE_ADDR"], but that doesn’t get you the IP for users behind a proxy. That’s in another header, “HTTP_X_FORWARDED_FOR". So you can either hit a wrapper and then check a header, or just check two headers. I went for uniformity: string SourceIP = string.IsNullOrEmpty(Request.ServerVariables["HTTP_X_FORWARDED_FOR"]) ? Request.ServerVariables["REMOTE_ADDR"] : Request.ServerVariables["HTTP_X_FORWARDED_FOR"]; We’re almost set to wrap this up, but first let’s talk about our views. Yes, views, because we’ll have two. Selecting the View We wanted to make it easy for people to include the flair in their sites, so we looked around at how other people were doing this. The StackOverflow folks have a pretty good flair system, which allows you to include the flair in your site as either an IFRAME reference or a Javascript include. We’ll do both. We have a ServicesController to handle use of the site information outside of NerdDinner.com, so this fits in pretty well there. We’ll be displaying the same information for both HTML and Javascript flair, so we can use one Flair controller action which will return a different view depending on the requested format. Here’s our general flow for our controller action: Get the user’s IP Translate it to a location Grab the top three upcoming dinners that are near that location Select the view based on the format (defaulted to “html”) Return a FlairViewModel which contains the list of dinners and the location information public ActionResult Flair(string format = "html") { string SourceIP = string.IsNullOrEmpty( Request.ServerVariables["HTTP_X_FORWARDED_FOR"]) ? Request.ServerVariables["REMOTE_ADDR"] : Request.ServerVariables["HTTP_X_FORWARDED_FOR"]; var location = GeolocationService.HostIpToPlaceName(SourceIP); var dinners = dinnerRepository. FindByLocation(location.Position.Lat, location.Position.Long). OrderByDescending(p => p.EventDate).Take(3); // Select the view we'll return. // Using a switch because we'll add in JSON and other formats later. string view; switch (format.ToLower()) { case "javascript": view = "JavascriptFlair"; break; default: view = "Flair"; break; } return View( view, new FlairViewModel { Dinners = dinners.ToList(), LocationName = string.IsNullOrEmpty(location.City) ? "you" : String.Format("{0}, {1}", location.City, location.RegionName) } ); } Note: I’m not in love with the logic here, but it seems like overkill to extract the switch statement away when we’ll probably just have two or three views. What do you think? The HTML View The HTML version of the view is pretty simple – the only thing of any real interest here is the use of an extension method to truncate strings that are would cause the titles to wrap. public static string Truncate(this string s, int maxLength) { if (string.IsNullOrEmpty(s) || maxLength <= 0) return string.Empty; else if (s.Length > maxLength) return s.Substring(0, maxLength) + "..."; else return s; }   So here’s how the HTML view ends up looking: <%@ Page Title="" Language="C#" Inherits="System.Web.Mvc.ViewPage<FlairViewModel>" %> <%@ Import Namespace="NerdDinner.Helpers" %> <%@ Import Namespace="NerdDinner.Models" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Nerd Dinner</title> <link href="/Content/Flair.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="nd-wrapper"> <h2 id="nd-header">NerdDinner.com</h2> <div id="nd-outer"> <% if (Model.Dinners.Count == 0) { %> <div id="nd-bummer"> Looks like there's no Nerd Dinners near <%:Model.LocationName %> in the near future. Why not <a target="_blank" href="http://www.nerddinner.com/Dinners/Create">host one</a>?</div> <% } else { %> <h3> Dinners Near You</h3> <ul> <% foreach (var item in Model.Dinners) { %> <li> <%: Html.ActionLink(String.Format("{0} with {1} on {2}", item.Title.Truncate(20), item.HostedBy, item.EventDate.ToShortDateString()), "Details", "Dinners", new { id = item.DinnerID }, new { target = "_blank" })%></li> <% } %> </ul> <% } %> <div id="nd-footer"> More dinners and fun at <a target="_blank" href="http://nrddnr.com">http://nrddnr.com</a></div> </div> </div> </body> </html> You’d include this in a page using an IFRAME, like this: <IFRAME height=230 marginHeight=0 src="http://nerddinner.com/services/flair" frameBorder=0 width=160 marginWidth=0 scrolling=no></IFRAME> The Javascript view The Javascript flair is written so you can include it in a webpage with a simple script include, like this: <script type="text/javascript" src="http://nerddinner.com/services/flair?format=javascript"></script> The goal of this view is very similar to the HTML embed view, with a few exceptions: We’re creating a script element and adding it to the head of the document, which will then document.write out the content. Note that you have to consider if your users will actually have a <head> element in their documents, but for website flair use cases I think that’s a safe bet. Since the content is being added to the existing page rather than shown in an IFRAME, all links need to be absolute. That means we can’t use Html.ActionLink, since it generates relative routes. We need to escape everything since it’s being written out as strings. We need to set the content type to application/x-javascript. The easiest way to do that is to use the <%@ Page ContentType%> directive. <%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage<NerdDinner.Models.FlairViewModel>" ContentType="application/x-javascript" %> <%@ Import Namespace="NerdDinner.Helpers" %> <%@ Import Namespace="NerdDinner.Models" %> document.write('<script>var link = document.createElement(\"link\");link.href = \"http://nerddinner.com/content/Flair.css\";link.rel = \"stylesheet\";link.type = \"text/css\";var head = document.getElementsByTagName(\"head\")[0];head.appendChild(link);</script>'); document.write('<div id=\"nd-wrapper\"><h2 id=\"nd-header\">NerdDinner.com</h2><div id=\"nd-outer\">'); <% if (Model.Dinners.Count == 0) { %> document.write('<div id=\"nd-bummer\">Looks like there\'s no Nerd Dinners near <%:Model.LocationName %> in the near future. Why not <a target=\"_blank\" href=\"http://www.nerddinner.com/Dinners/Create\">host one</a>?</div>'); <% } else { %> document.write('<h3> Dinners Near You</h3><ul>'); <% foreach (var item in Model.Dinners) { %> document.write('<li><a target=\"_blank\" href=\"http://nrddnr.com/<%: item.DinnerID %>\"><%: item.Title.Truncate(20) %> with <%: item.HostedBy %> on <%: item.EventDate.ToShortDateString() %></a></li>'); <% } %> document.write('</ul>'); <% } %> document.write('<div id=\"nd-footer\"> More dinners and fun at <a target=\"_blank\" href=\"http://nrddnr.com\">http://nrddnr.com</a></div></div></div>'); Getting IP’s for Testing There are a variety of online services that will translate a location to an IP, which were handy for testing these out. I found http://www.itouchmap.com/latlong.html to be most useful, but I’m open to suggestions if you know of something better. Next steps I think the next step here is to minimize load – you know, in case people start actually using this flair. There are two places to think about – the NerdDinner.com servers, and the services we’re using for Geolocation. I usually think about caching as a first attack on server load, but that’s less helpful here since every user will have a different IP. Instead, I’d look at taking advantage of Asynchronous Controller Actions, a cool new feature in ASP.NET MVC 2. Async Actions let you call a potentially long-running webservice without tying up a thread on the server while waiting for the response. There’s some good info on that in the MSDN documentation, and Dino Esposito wrote a great article on Asynchronous ASP.NET Pages in the April 2010 issue of MSDN Magazine. But let’s think of the children, shall we? What about ipinfodb.com? Well, they don’t have specific daily limits, but they do throttle you if you put a lot of traffic on them. From their FAQ: We do not have a specific daily limit but queries that are at a rate faster than 2 per second will be put in "queue". If you stay below 2 queries/second everything will be normal. If you go over the limit, you will still get an answer for all queries but they will be slowed down to about 1 per second. This should not affect most users but for high volume websites, you can either use our IP database on your server or we can whitelist your IP for 5$/month (simply use the donate form and leave a comment with your server IP). Good programming practices such as not querying our API for all page views (you can store the data in a cookie or a database) will also help not reaching the limit. So the first step there is to save the geolocalization information in a time-limited cookie, which will allow us to look up the local dinners immediately without having to hit the geolocation service.

    Read the article

  • Tips on Migrating from AquaLogic .NET Accelerator to WebCenter WSRP Producer for .NET

    - by user647124
    This year I embarked on a journey to migrate a group of ASP.NET web applications developed to integrate with WebLogic Portal 9.2 via the AquaLogic® Interaction .NET Application Accelerator 1.0 to instead use the Oracle WebCenter WSRP Producer for .NET and integrated with WebLogic Portal 10.3.4. It has been a very winding path and this blog entry is intended to share both the lessons learned and relevant approaches that led to those learnings. Like most journeys of discovery, it was not a direct path, and there are notes to let you know when it is practical to skip a section if you are in a hurry to get from here to there. For the Curious From the perspective of necessity, this section would be better at the end. If it were there, though, it would probably be read by far fewer people, including those that are actually interested in these types of sections. Those in a hurry may skip past and be none the worst for it in dealing with the hands-on bits of performing a migration from .NET Accelerator to WSRP Producer. For others who want to talk about why they did what they did after they did it, or just want to know for themselves, enjoy. A Brief (and edited) History of the WSRP for .NET Technologies (as Relevant to the this Post) Note: This section is for those who are curious about why the migration path is not as simple as many other Oracle technologies. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The currently deployed architecture that was to be migrated and upgraded achieved initial integration between .NET and J2EE over the WSRP protocol through the use of The AquaLogic Interaction .NET Application Accelerator. The .NET Accelerator allowed the applications that were written in ASP.NET and deployed on a Microsoft Internet Information Server (IIS) to interact with a WebLogic Portal application deployed on a WebLogic (J2EE application) Server (both version 9.2, the state of the art at the time of its creation). At the time this architectural decision for the application was made, both the AquaLogic and WebLogic brands were owned by BEA Systems. The AquaLogic brand included products acquired by BEA through the acquisition of Plumtree, whose flagship product was a portal platform available in both J2EE and .NET versions. As part of this dual technology support an adaptor was created to facilitate the use of WSRP as a communication protocol where customers wished to integrate components from both versions of the Plumtree portal. The adapter evolved over several product generations to include a broad array of both standard and proprietary WSRP integration capabilities. Later, BEA Systems was acquired by Oracle. Over the course of several years Oracle has acquired a large number of portal applications and has taken the strategic direction to migrate users of these myriad (and formerly competitive) products to the Oracle WebCenter technology stack. As part of Oracle’s strategic technology roadmap, older portal products are being schedule for end of life, including the portal products that were part of the BEA acquisition. The .NET Accelerator has been modified over a very long period of time with features driven by users of that product and developed under three different vendors (each a direct competitor in the same solution space prior to merger). The Oracle WebCenter WSRP Producer for .NET was introduced much more recently with the key objective to specifically address the needs of the WebCenter customers developing solutions accessible through both J2EE and .NET platforms utilizing the WSRP specifications. The Oracle Product Development Team also provides these insights on the drivers for developing the WSRP Producer: ***************************************** Support for ASP.NET AJAX. Controls using the ASP.NET AJAX script manager do not function properly in the Application Accelerator for .NET. Support 2 way SSL in WLP. This was not possible with the proxy/bridge set up in the existing Application Accelerator for .NET. Allow developers to code portlets (Web Parts) using the .NET framework rather than a proprietary framework. Developers had to use the Application Accelerator for .NET plug-ins to Visual Studio to manage preferences and profile data. This is now replaced with the .NET Framework Personalization (for preferences) and Profile providers. The WSRP Producer for .NET was created as a new way of developing .NET portlets. It was never designed to be an upgrade path for the Application Accelerator for .NET. .NET developers would create new .NET portlets with the WSRP Producer for .NET and leave any existing .NET portlets running in the Application Accelerator for .NET. ***************************************** The advantage to creating a new solution for WSRP is a product that is far easier for Oracle to maintain and support which in turn improves quality, reliability and maintainability for their customers. No changes to J2EE applications consuming the WSRP portlets previously rendered by the.NET Accelerator is required to migrate from the Aqualogic WSRP solution. For some customers using the .NET Accelerator the challenge is adapting their current .NET applications to work with the WSRP Producer (or any other WSRP adapter as they are proprietary by nature). Part of this adaptation is the need to deploy the .NET applications as a child to the WSRP producer web application as root. Differences between .NET Accelerator and WSRP Producer Note: This section is for those who are curious about why the migration is not as pluggable as something such as changing security providers in WebLogic Server. You can skip this section in its entirety and still be just as competent in performing a migration as if you had read it. The basic terminology used to describe the participating applications in a WSRP environment are the same when applied to either the .NET Accelerator or the WSRP Producer: Producer and Consumer. In both cases the .NET application serves as what is referred to as a WSRP environment as the Producer. The difference lies in how the two adapters create the WSRP translation of the .NET application. The .NET Accelerator, as the name implies, is meant to serve as a quick way of adding WSRP capability to a .NET application. As such, at a high level, the .NET Accelerator behaves as a proxy for requests between the .NET application and the WSRP Consumer. A WSRP request is sent from the consumer to the .NET Accelerator, the.NET Accelerator transforms this request into an ASP.NET request, receives the response, then transforms the response into a WSRP response. The .NET Accelerator is deployed as a stand-alone application on IIS. The WSRP Producer is deployed as a parent application on IIS and all ASP.NET modules that will be made available over WSRP are deployed as children of the WSRP Producer application. In this manner, the WSRP Producer acts more as a Request Filter than a proxy in the WSRP transactions between Producer and Consumer. Highly Recommended Enabling Logging Note: You can skip this section now, but you will most likely want to come back to it later, so why not just read it now? Logging is very helpful in tracking down the causes of any anomalies during testing of migrated portlets. To enable the WSRP Producer logging, update the Application_Start method in the Global.asax.cs for your .NET application by adding log4net.Config.XmlConfigurator.Configure(); IIS logs will usually (in a standard configuration) be in a sub folder under C:\WINDOWS\system32\LogFiles\W3SVC. WSRP Producer logs will be found at C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\Logs\WSRPProducer.log InputTrace.webinfo and OutputTrace.webinfo are located under C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault and can be useful in debugging issues related to markup transformations. Things You Must Do Merge Web.Config Note: If you have been skipping all the sections that you can, now is the time to stop and pay attention J Because the existing .NET application will become a sub-application to the WSRP Producer, you will want to merge required settings from the existing Web.Config to the one in the WSRP Producer. Use the WSRP Producer Master Page The Master Page installed for the WSRP Producer provides common, hiddenform fields and JavaScripts to facilitate portlet instance management and display configuration when the child page is being rendered over WSRP. You add the Master Page by including it in the <@ Page declaration with MasterPageFile="~/portlets/Resources/MasterPages/WSRP.Master" . You then replace: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" > <HTML> <HEAD> With <asp:Content ID="ContentHead1" ContentPlaceHolderID="wsrphead" Runat="Server"> And </HEAD> <body> <form id="theForm" method="post" runat="server"> With </asp:Content> <asp:Content ID="ContentBody1" ContentPlaceHolderID="Main" Runat="Server"> And finally </form> </body> </HTML> With </asp:Content> In the event you already use Master Pages, adapt your existing Master Pages to be sub masters. See Nested ASP.NET Master Pages for a detailed reference of how to do this. It Happened to Me, It Might Happen to You…Or Not Watch for Use of Session or Request in OnInit In the event the .NET application being modified has pages developed to assume the user has been authenticated in an earlier page request there may be direct or indirect references in the OnInit method to request or session objects that may not have been created yet. This will vary from application to application, so the recommended approach is to test first. If there is an issue with a page running as a WSRP portlet then check for potential references in the OnInit method (including references by methods called within OnInit) to session or request objects. If there are, the simplest solution is to create a new method and then call that method once the necessary object(s) is fully available. I find doing this at the start of the Page_Load method to be the simplest solution. Case Sensitivity .NET languages are not case sensitive, but Java is. This means it is possible to have many variations of SRC= and src= or .JPG and .jpg. The preferred solution is to make these mark up instances all lower case in your .NET application. This will allow the default Rewriter rules in wsrp-producer.xml to work as is. If this is not practical, then make duplicates of any rules where an issue is occurring due to upper or mixed case usage in the .NET application markup and match the case in use with the duplicate rule. For example: <RewriterRule> <LookFor>(href=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> May need to be duplicated as: <RewriterRule> <LookFor>(HREF=\"([^\"]+)</LookFor> <ChangeToAbsolute>true</ChangeToAbsolute> <ApplyTo>.axd,.css</ApplyTo> <MakeResource>true</MakeResource> </RewriterRule> While it is possible to write a regular expression that will handle mixed case usage, it would be long and strenous to test and maintain, so the recommendation is to use duplicate rules. Is it Still Relative? Some .NET applications base relative paths with a fixed root location. With the introduction of the WSRP Producer, the root has moved up one level. References to ~/ will need to be updated to ~/portlets and many ../ paths will need another ../ in front. I Can See You But I Can’t Find You This issue was first discovered while debugging modules with code that referenced the form on a page from the code-behind by name and/or id. The initial error presented itself as run-time error that was difficult to interpret over WSRP but seemed clear when run as straight ASP.NET as it indicated that the object with the form name did not exist. Since the form name was no longer valid after implementing the WSRP Master Page, the likely fix seemed to simply update the references in the code. However, as the WSRP Master Page is external to the code, a compile time error resulted: Error      155         The name 'form1' does not exist in the current context                C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault\portlets\legacywebsite\module\Screens \Reporting.aspx.cs                51           52           legacywebsite.module Much hair-pulling research later it was discovered that it was the use of the FindControl method causing the issue. FindControl doesn’t work quite as expected once a Master Page has been introduced as the controls become embedded in controls, require a recursion to find them that is not part of the FindControl method. In code where the page form is referenced by name, there are two steps to the solution. First, the form needs to be referenced in code generically with Page.Form. For example, this: ToggleControl ctrl = new ToggleControl(frmManualEntry, FunctionLibrary.ParseArrayLst(userObj.Roles)); Becomes this: ToggleControl ctrl = new ToggleControl(Page.Form, FunctionLibrary.ParseArrayLst(userObj.Roles)); Generally the form id is referenced in most ASP.NET applications as a path to a control on the form. To reach the control once a MasterPage has been added requires an additional method to recurse through the controls collections within the form and find the control ID. The following method (found at Rick Strahl's Web Log) corrects this very nicely: public static Control FindControlRecursive(Control Root, string Id) { if (Root.ID == Id) return Root; foreach (Control Ctl in Root.Controls) { Control FoundCtl = FindControlRecursive(Ctl, Id); if (FoundCtl != null) return FoundCtl; } return null; } Where the form name is not referenced, simply using the FindControlRecursive method in place of FindControl will be all that is necessary. Following the second part of the example referenced earlier, the method called with Page.Form changes its value extraction code block from this: Label lblErrMsg = (Label)frmRef.FindControl("lblBRMsg" To this: Label lblErrMsg = (Label) FunctionLibrary.FindControlRecursive(frmRef, "lblBRMsg" The Master That Won’t Step Aside In most migrations it is preferable to make as few changes as possible. In one case I ran across an existing Master Page that would not function as a sub-Master Page. While it would probably have been educational to trace down why, the expedient process of updating it to take the place of the WSRP Master Page is the route I took. The changes are highlighted below: … <asp:ContentPlaceHolder ID="wsrphead" runat="server"></asp:ContentPlaceHolder> </head> <body leftMargin="0" topMargin="0"> <form id="TheForm" runat="server"> <input type="hidden" name="key" id="key" value="" /> <input type="hidden" name="formactionurl" id="formactionurl" value="" /> <input type="hidden" name="handle" id="handle" value="" /> <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePartialRendering="true" > </asp:ScriptManager> This approach did not work for all existing Master Pages, but fortunately all of the other existing Master Pages I have run across worked fine as a sub-Master to the WSRP Master Page. Moving On In Enterprise Portals, even after you get everything working, the work is not finished. Next you need to get it where everyone will work with it. Migration Planning Providing that the server where IIS is running is adequately sized, it is possible to run both the .NET Accelerator and the WSRP Producer on the same server during the upgrade process. The upgrade can be performed incrementally, i.e., one portlet at a time, if server administration processes support it. Those processes would include the ability to manage a second producer in the consuming portal and to change over individual portlet instances from one provider to the other. If processes or requirements demand that all portlets be cut over at the same time, it needs to be determined if this cut over should include a new producer, updating all of the portlets in the consumer, or if the WSRP Producer portlet configuration must maintain the naming conventions used by the .NET Accelerator and simply change the WSRP end point configured in the consumer. In some enterprises it may even be necessary to maintain the same WSDL end point, at which point the IIS configuration will be where the updates occur. The downside to such a requirement is that it makes rolling back very difficult, should the need arise. Location, Location, Location Not everyone wants the web application to have the descriptively obvious wsrpdefault location, or needs to create a second WSRP site on the same server. The instructions below are from the product team and, while targeted towards making a second site, will work for creating a site with a different name and then remove the old site. You can also change just the name in IIS. Manually Creating a WSRP Producer Site Instructions (NOTE: all executables used are the same ones used by the installer and “wsrpdev” will be the name of the new instance): 1. Copy C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdefault to C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev. 2. Bring up a command window as an administrator 3. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\IISAppAccelSiteCreator.exe install WSRPProducers wsrpdev "C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev" 8678 2.0.50727 4. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev "NETWORK SERVICE" 3 1 5. Run C:\Oracle\Middleware\WSRPProducerForDotNet\uninstall_resources\PermManage.exe add FileSystem C:\Oracle\Middleware\WSRPProducerForDotNet\wsrpdev EVERYONE 1 1 6. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\1.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev 7. Open up C:\Oracle\Middleware\WSRPProducerForDotNet\wsdl\2.0\WSRPService.wsdl and replace wsrpdefault with wsrpdev Tests: 1. Bring up a browser on the host itself and go to http://localhost:8678/wsrpdev/wsdl/1.0/WSRPService.wsdl and make sure that the URLs in the XML returned include the wsrpdev changes you made in step 6. 2. Bring up a browser on the host itself and see if the default sample comes up: http://localhost:8678/wsrpdev/portlets/ASPNET_AJAX_sample/default.aspx 3. Register the producer in WLP and test the portlet. Changing the Port used by WSRP Producer The pre-configured port for the WSRP Producer is 8678. You can change this port by updating both the IIS configuration and C:\Oracle\Middleware\WSRPProducerForDotNet\[WSRP_APP_NAME]\wsdl\1.0\WSRPService.wsdl. Do You Need to Migrate? Oracle Premier Support ended in November of 2010 for AquaLogic Interaction .NET Application Accelerator 1.x and Extended Support ends in November 2012 (see http://www.oracle.com/us/support/lifetime-support/lifetime-support-software-342730.html for other related dates). This means that integration with products released after November of 2010 is not supported. If having such support is the policy within your enterprise, you do indeed need to migrate. If changes in your enterprise cause your current solution with the .NET Accelerator to no longer function properly, you may need to migrate. Migration is a choice, and if the goals of your enterprise are to take full advantage of newer technologies then migration is certainly one activity you should be planning for.

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

< Previous Page | 406 407 408 409 410 411 412 413 414 415 416  | Next Page >