Search Results

Search found 23581 results on 944 pages for 'oracle customer success'.

Page 417/944 | < Previous Page | 413 414 415 416 417 418 419 420 421 422 423 424  | Next Page >

  • SQL query to translate a list of numbers matched against several ranges, to a list of values

    - by Claes Mogren
    I need to convert a list of numbers that fall within certain ranges into a list of values, ordered by a priority column. The table has the following values: | YEAR | R_MIN | R_MAX | VAL | PRIO | ------------------------------------ 2010 18000 90100 52 6 2010 240000 240099 82 3 2010 250000 259999 50 5 2010 260000 260010 92 1 2010 330000 330010 73 4 2010 330011 370020 50 5 2010 380000 380050 84 2 The ranges will be different for different years. The ranges within one year will never overlap. The input will be a year and a list of numbers that might fall within one these ranges. The list of input number will be small, 1 to 10 numbers. Example of input numbers: (20000, 240004, 375000, 255000) With that input I would like to get a list ordered by the priority column, or a single value: 82 50 52 The only value I'm interested in here is 82, so UNIQUE and MAX_RESULTS=1 would do. It can easily be done with one query per number, and then sorting it in the Java code, but I would prefer to do it in a single SQL query. What SQL query, to be run in an Oracle database, would give me the desired result?

    Read the article

  • why does cx_oracle execute() not like my string now?

    - by Frank Stallone
    I've downloaded cx_oracle some time ago and wrote a script to convert data to XML. I've had to reisntall my OS and grabbed the latest version of cx_Oracle (5.0.3) and all of the sudden my code is broken. The first thing was that cx_Oracle.connect wanted unicode rather string for the username and password, that was very easy to fix. But now it keeps failing on the cursor.execute and tells me my string is not a string even when type() tells me it is a string. Here is a test script I initally used ages ago and worked fine on my old version but does not work on cx_Oracle now. import cx_Oracle ip = 'url.to.oracle' port = 1521 SID = 'mysid' dsn_tns = cx_Oracle.makedsn(ip, port, SID) connection = cx_Oracle.connect(u'name', u'pass', dsn_tns) cursor = connection.cursor() cursor.arraysize = 50 sql = "select isbn, title_code from core_isbn where rownum<=20" print type(sql) cursor.execute(sql) for isbn, title_code in cursor.fetchall(): print "Values from DB:", isbn, title_code cursor.close() connection.close() When I run that I get: Traceback (most recent call last): File "C:\NetBeansProjects\Python\src\db_temp.py", line 48, in cursor.execute(sql) TypeError: expecting None or a string Does anyone know what I may be doing wrong?

    Read the article

  • DB Design to store custom fields for a table

    - by Fazal
    Hi All, this question came up based on the responses I got for the question http://stackoverflow.com/questions/2785033/getting-wierd-issue-with-to-number-function-in-oracle As everyone suggested that storing Numeric values in VARCHAR2 columns is not a good practice (which I totally agree with), I am wondering about a basic Design choice our team has made and whether there are better way to design. Problem Statement : We Have many tables where we want to give certain number of custom fields. The number of required custom fields is known, but what kind of attribute is mapped to the column is available to the user E.g. I am putting down a hypothetical scenario below Say you have a laptop which stores 50 attribute values for every laptop record. Each laptop attributes are created by the some admin who creates the laptop. A user created a laptop product lets say lap1 with attributes String, String, numeric, numeric, String Second user created laptop lap2 with attributes String,numeric,String,String,numeric Currently there data in our design gets persisted as following Laptop Table Id Name field1 field2 field3 field4 field5 1 lap1 lappy lappy 12 13 lappy 2 lap2 lappy2 13 lappy2 lapp2 12 This example kind of simulates our requirement and our design Now here if somebody is lookinup records for lap2 table doing a comparison on field2, We need to apply TO_NUMBER. select * from laptop where name='lap2' and TO_NUMBER(field2) < 15 TO_NUMBER fails in some cases when query plan decides to first apply to_number instead of the other filter. QUESTION Is this a valid design? What are the other alternative ways to solve this problem One of our team mates suggested creating tables on the fly for such cases. Is that a good idea How do popular ORM tools give custom fields or flex fields handling? I hope I was able to make sense in the question. Sorry for such a long text.. This causes us to use TO_NUMBER when queryio

    Read the article

  • How should I name my SQL query files? Should I use some methodology?

    - by Mehper C. Palavuzlar
    We have an Oracle 10g database (a huge one) in our company, and I provide employees with data upon their requests. My problem is, I save almost every SQL query I wrote, and now my list has grown too much. I want to organize and rename these .sql files so that I can find the one I want easily. At the moment, I'm using some folders named as Sales Dept, Field Team, Planning Dept, Special etc. and under those folders there are .sql files like Delivery_sales_1, Delivery_sales_2, ... Sent_sold_lostsales_endpoints, ... Sales_provinces_period, Returnrates_regions_bymonths, ... Jack_1, Steve_1, Steve_2, ... I try to name the files regarding their content but this makes file names longer and does not completely meet my needs. Sometimes someone comes and demands a special report, and I give the file his name, but this is also not so good. I know duplicates or very similar files are growing in time but I don't have control over them. Can you show me the right direction to rename all these files and folders and organize my queries for easy and better control? TIA.

    Read the article

  • Strange behavior with large Object Types

    - by Peter Lang
    I recognized that calling a method on an Oracle Object Type takes longer when the instance gets bigger. The code below just adds rows to a collection stored in the Object Type and calls the empty dummy-procedure in the loop. Calls are taking longer when more rows are in the collection. When I just remove the call to dummy, performance is much better (the collection still contains the same number of records): Calling dummy: Not calling dummy: 11 0 81 0 158 0 Code to reproduce: Create Type t_tab Is Table Of VARCHAR2(10000); Create Type test_type As Object( tab t_tab, Member Procedure dummy ); Create Type Body test_type As Member Procedure dummy As Begin Null; --# Do nothing End dummy; End; Declare v_test_type test_type := New test_type( New t_tab() ); Procedure run_test As start_time NUMBER := dbms_utility.get_time; Begin For i In 1 .. 200 Loop v_test_Type.tab.Extend; v_test_Type.tab(v_test_Type.tab.Last) := Lpad(' ', 10000); v_test_Type.dummy(); --# Removed this line in second test End Loop; dbms_output.put_line( dbms_utility.get_time - start_time ); End run_test; Begin run_test; run_test; run_test; End; I tried with both 10g and 11g. Can anyone explain/reproduce this behavior?

    Read the article

  • How to duplicate all data in a table except for a single column that should be changed.

    - by twiga
    I have a question regarding a unified insert query against tables with different data structures (Oracle). Let me elaborate with an example: tb_customers ( id NUMBER(3), name VARCHAR2(40), archive_id NUMBER(3) ) tb_suppliers ( id NUMBER(3), name VARCHAR2(40), contact VARCHAR2(40), xxx, xxx, archive_id NUMBER(3) ) The only column that is present in all tables is [archive_id]. The plan is to create a new archive of the dataset by copying (duplicating) all records to a different database partition and incrementing the archive_id for those records accordingly. [archive_id] is always part of the primary key. My problem is with select statements to do the actual duplication of the data. Because the columns are variable, I am struggling to come up with a unified select statement that will copy the data and update the archive_id. One solution (that works), is to iterate over all the tables in a stored procedure and do a: CREATE TABLE temp as (SELECT * from ORIGINAL_TABLE); UPDATE temp SET archive_id=something; INSERT INTO temp (select * from temp); DROP TABLE temp; I do not like this solution very much as the DDL commands muck up all restore points. Does anyone else have any solution?

    Read the article

  • PL-SQL - Two statements with begin and end, run fine seperately but not together?

    - by Twiss
    Hi all, Just wondering if anyone can help with this, I have two PLSQL statements for altering tables (adding extra fields) and they are as follows: -- Make GC_NAB field for Next Action By Dropdown begin if 'VARCHAR2' = 'NUMBER' and length('VARCHAR2')>0 and length('')>0 then execute immediate 'alter table "SERVICEMAIL6"."ETD_GUESTCARE" add(GC_NAB VARCHAR2(10, ))'; elsif ('VARCHAR2' = 'NUMBER' and length('VARCHAR2')>0 and length('')=0) or 'VARCHAR2' = 'VARCHAR2' then execute immediate 'alter table "SERVICEMAIL6"."ETD_GUESTCARE" add(GC_NAB VARCHAR2(10))'; else execute immediate 'alter table "SERVICEMAIL6"."ETD_GUESTCARE" add(GC_NAB VARCHAR2)'; end if; commit; end; -- Make GC_NABID field for Next Action By Dropdown begin if 'NUMBER' = 'NUMBER' and length('NUMBER')>0 and length('')>0 then execute immediate 'alter table "SERVICEMAIL6"."ETD_GUESTCARE" add(GC_NABID NUMBER(, ))'; elsif ('NUMBER' = 'NUMBER' and length('NUMBER')>0 and length('')=0) or 'NUMBER' = 'VARCHAR2' then execute immediate 'alter table "SERVICEMAIL6"."ETD_GUESTCARE" add(GC_NABID NUMBER())'; else execute immediate 'alter table "SERVICEMAIL6"."ETD_GUESTCARE" add(GC_NABID NUMBER)'; end if; commit; end; When I run these two queries seperately, no problems. However, when run together as shown above, Oracle gives me an error when it starts the second statement: Error report: ORA-06550: line 15, column 1: PLS-00103: Encountered the symbol "BEGIN" 06550. 00000 - "line %s, column %s:\n%s" *Cause: Usually a PL/SQL compilation error. *Action: I'm assuming that this means the first statement is not terminated properly... is there anything I should put inbetween the statements to make it work properly? Thanks in advance everyone!

    Read the article

  • How Best to Replace Ugly Queries and Dynamic PL/SQL with C#?

    - by Mike
    Hi, I write a lot of one-off Oracle SQL queries (in Toad), and sometimes they can get complex, involving lots of unions, joins, and subqueries, and sometimes requiring dynamic SQL. That is, sometimes SQL queries require set based processing along with significant procedural processing. This is what PL/SQL is custom made for, but as a language it does not begin to compare to C#. Now and then I convert a PL/SQL procedure to C#, and am always amazed at how much cleaner and easier to both read and write the C# version is. The C# program might for example construct a SQL query string piece by piece and/or run several queries and process them as needed. The C# version is usually much faster as well, which must mean that I'm not very good at PL/SQL either. I do not currently have access to LINQ. My question is, how best to package all these little C# programs, which are really just mini reports, that is, replacements for ugly SQL queries? Right now I'm actually using NUnit to hold them, and calling each report a [Test], even though they aren't really tests. NUnit just happens to provide a convenient packaging framework.

    Read the article

  • workaround for ORA-03113: end-of-file on communication channel

    - by Jefferstone
    The call to TEST_FUNCTION below fails with "ORA-03113: end-of-file on communication channel". A workaround is presented in TEST_FUNCTION2. I boiled down the code as my actual function is far more complex. Tested on Oracle 11G. Anyone have any idea why the first function fails? CREATE OR REPLACE TYPE "EMPLOYEE" AS OBJECT ( employee_id NUMBER(38), hire_date DATE ); CREATE OR REPLACE TYPE "EMPLOYEE_TABLE" AS TABLE OF EMPLOYEE; CREATE OR REPLACE FUNCTION TEST_FUNCTION RETURN EMPLOYEE_TABLE IS table1 EMPLOYEE_TABLE; table2 EMPLOYEE_TABLE; return_table EMPLOYEE_TABLE; BEGIN SELECT CAST(MULTISET ( SELECT user_id, created FROM all_users WHERE LOWER(username) < 'm' ) AS EMPLOYEE_TABLE) INTO table1 FROM dual; SELECT CAST(MULTISET ( SELECT user_id, created FROM all_users WHERE LOWER(username) >= 'm' ) AS EMPLOYEE_TABLE) INTO table2 FROM dual; SELECT CAST(MULTISET ( SELECT employee_id, hire_date FROM TABLE(table1) UNION SELECT employee_id, hire_date FROM TABLE(table2) ) AS EMPLOYEE_TABLE) INTO return_table FROM dual; RETURN return_table; END TEST_FUNCTION; CREATE OR REPLACE FUNCTION TEST_FUNCTION2 RETURN EMPLOYEE_TABLE IS table1 EMPLOYEE_TABLE; table2 EMPLOYEE_TABLE; return_table EMPLOYEE_TABLE; BEGIN SELECT CAST(MULTISET ( SELECT user_id, created FROM all_users WHERE LOWER(username) < 'm' ) AS EMPLOYEE_TABLE) INTO table1 FROM dual; SELECT CAST(MULTISET ( SELECT user_id, created FROM all_users WHERE LOWER(username) >= 'm' ) AS EMPLOYEE_TABLE) INTO table2 FROM dual; WITH combined AS ( SELECT employee_id, hire_date FROM TABLE(table1) UNION SELECT employee_id, hire_date FROM TABLE(table2) ) SELECT CAST(MULTISET ( SELECT * FROM combined ) AS EMPLOYEE_TABLE) INTO return_table FROM dual; RETURN return_table; END TEST_FUNCTION2; SELECT * FROM TABLE (TEST_FUNCTION()); -- Throws exception ORA-03113. SELECT * FROM TABLE (TEST_FUNCTION2()); -- Works

    Read the article

  • How to call stored procedure by hibernate?

    - by user367097
    Hi I have an oracle stored procedure GET_VENDOR_STATUS_COUNT(DOCUMENT_ID IN NUMBER , NOT_INVITED OUT NUMBER,INVITE_WITHDRAWN OUT NUMBER,... rest all parameters are OUT parameters. In hbm file I have written - <sql-query name="getVendorStatus" callable="true"> <return-scalar column="NOT_INVITED" type="string"/> <return-scalar column="INVITE_WITHDRAWN" type="string"/> <return-scalar column="INVITED" type="string"/> <return-scalar column="DISQUALIFIED" type="string"/> <return-scalar column="RESPONSE_AWAITED" type="string"/> <return-scalar column="RESPONSE_IN_PROGRESS" type="string"/> <return-scalar column="RESPONSE_RECEIVED" type="string"/> { call GET_VENDOR_STATUS_COUNT(:DOCUMENT_ID , :NOT_INVITED ,:INVITE_WITHDRAWN ,:INVITED ,:DISQUALIFIED ,:RESPONSE_AWAITED ,:RESPONSE_IN_PROGRESS ,:RESPONSE_RECEIVED ) } </sql-query> In java I have written - session.getNamedQuery("getVendorStatus").setParameter("DOCUMENT_ID", "DOCUMENT_ID").setParameter("NOT_INVITED", "NOT_INVITED") ... continue till all the parametes . I am getting the sql exception 18:29:33,056 WARN [JDBCExceptionReporter] SQL Error: 1006, SQLState: 72000 18:29:33,056 ERROR [JDBCExceptionReporter] ORA-01006: bind variable does not exist Please let me know what is the exact process of calling a stored procedure from hibernate. I do not want to use JDBC callable statement.

    Read the article

  • JDBC programms running long time performance issue

    - by phyerbarte
    My program has an issue with Oracle query performance, I believe the SQL have good performance, because it returns quickly in SQLPlus. But when my program has been running for a long time, like 1 week, the SQL query (using JDBC) becomes slower (In my logs, the query time is much longer than when I originally started the program). When I restart my program, the query performance comes back to normal. I think it is could be something wrong with the way I use the preparedStatement, because the SQL I'm using does not use placeholders "?" at all. Just a complex select query. The query process is done by a util class. Here is the pertinent code building the query: public List<String[]> query(String sql, String[] args) { Connection conn = null; conn = openConnection(); conn.setAutocommit(true); .... PreparedStatement preStatm = null; ResultSet rs = null; ....//set preparedstatment arg code rs = preStatm.executeQuery(); .... finally{ //close rs //close prestatm //close connection } } In my case, the args is always null, so it just passes a query sql to this query method. Is that possible this way could slow down the DB query after program long time running? Or I should use statement instead, or just pass args with "?" in the SQL? How can I find out the root cause for my issue? Thanks.

    Read the article

  • Timestamps and Intervals: NUMTOYMINTERVAL SYSTDATE CALCULATION SQL QUERY

    - by MeachamRob
    I am working on a homework problem, I'm close but need some help with a data conversion I think. Or sysdate - start_date calculation The question is: Using the EX schema, write a SELECT statement that retrieves the date_id and start_date from the Date_Sample table (format below), followed by a column named Years_and_Months_Since_Start that uses an interval function to retrieve the number of years and months that have elapsed between the start_date and the sysdate. (Your values will vary based on the date you do this lab.) Display only the records with start dates having the month and day equal to Feb 28 (of any year). DATE_ID START_DATE YEARS_AND_MONTHS_SINCE_START 2 Sunday , February 28, 1999 13-8 4 Monday , February 28, 2005 7-8 5 Tuesday , February 28, 2006 6-8 Our EX schema that refers to this question is simply a Date_Sample Table with two columns: DATE_ID NUMBER NOT Null START_DATE DATE I Have written this code: SELECT date_id, TO_CHAR(start_date, 'Day, MONTH DD, YYYY') AS start_date , NUMTOYMINTERVAL((SYSDATE - start_date), 'YEAR') AS years_and_months_since_start FROM date_sample WHERE TO_CHAR(start_date, 'MM/DD') = '02/28'; But my Years and months since start column is not working properly. It's getting very high numbers for years and months when the date calculated is from 1999-ish. ie, it should be 13-8 and I'm getting 5027-2 so I know it's not correct. I used NUMTOYMINTERVAL, which should be correct, but don't think the sysdate-start_date is working. Data Type for start_date is simply date. I tried ROUND but maybe need some help to get it right. Something is wrong with my calculation and trying to figure out how to get the correct interval there. Not sure if I have provided enough information to everyone but I will let you know if I figure it out before you do. It's a question from Murach's Oracle and SQL/PL book, chapter 17 if anyone else is trying to learn that chapter. Page 559.

    Read the article

  • Cannot locate record in delphi ADO query

    - by Danatela
    I can't locate any record in TADOQuery using PK. First, I was trying to use standard Locate method: PPUQuery.Locate('ID', SpPlansQuery['PPONREC'], []); It always returns False, but manual search (passing the whole query matching ID with given PPONREC which is really slow) finds the desired row. I tried using loPartialKey and switched CursorLocation of query to clUseServer, but it didn't help. Next, I tried to filter my PPUQuery: PPUQuery.Filter := 'ID = ' + VarToStr(SpPlansQuery['PPONREC']); PPUQuery.Filtered := True; PPUQuery.First; But after that the PPUQuery.Eof is True and PPUQuery.RecordCount equals 0. Underlying database is Oracle 9 and the ID is of type INTEGER and is PK of table TPORDER_CMK. PPUQuery.SQL is: SELECT tp.*, la.*, lm.*, ld.*, ld1.*, to_cmk.* FROM ppu_plan.tporder_cmk tp JOIN PPU_PLAN.LARTICLES la ON TP.ARTICLE = LA.ID JOIN PPU_PLAN.LMATERIAL lm ON TP.MATERIAL = lm.id JOIN PPU_PLAN.LCADEP ld ON TP.CADEP = LD.ID JOIN PPU_PLAN.LCADEP ld1 ON TP.PRODUCER = LD1.ID JOIN PPU_PLAN.TORDER_CMK to_cmk ON TP.order_id=TO_cmk.ID WHERE TP.PLAN_ID = :pplan_id What should I try next and how to solve this problem?

    Read the article

  • Data base design with Blob

    - by mmuthu
    Hi, I have a situation where i need to store the binary data into database as blob column. There are three different table exists in my database where in i need to store a blob data for each record. Not every record will have the blob data all the time. It is time and user based. The table one will have to store the *.doc files almost for all the record The table two will have to store the *.xml optionally. The table three will have to store images (not sure what is frequency, etc) Now my questions is whether it is a good idea to maintain a separate table to store the blob data pointing it to the respective table PK's (Yes, there will be no FK's and assuming program will maintain it). It will be some thing like below, BLOB|PK_ID|TABLE_NAME Alternatively, is it a good idea to keep the blob column in respective tables. As for as my application runtime is concerned, The table 2 will be read very frequently. Though the blob column will not be required. The table 2 record will gets deleted frequently. Similarly other blob data in respective table will not be accessed frequently. All of the blob content will be read on-demand basis. I'm thinking first approach will work better for me. What do you guys think? Btw, I'm using Oracle.

    Read the article

  • Opencart Dashboard show last months statistics

    - by John Magnolia
    How could I added the option to show the statistics for last month. PHP public function chart() { $this->load->language('common/home'); $data = array(); $data['order'] = array(); $data['customer'] = array(); $data['xaxis'] = array(); $data['order']['label'] = $this->language->get('text_order'); $data['customer']['label'] = $this->language->get('text_customer'); if (isset($this->request->get['range'])) { $range = $this->request->get['range']; } else { $range = 'month'; } switch ($range) { case 'day': for ($i = 0; $i < 24; $i++) { $query = $this->db->query("SELECT COUNT(*) AS total FROM `" . DB_PREFIX . "order` WHERE order_status_id > '0' AND (DATE(date_added) = DATE(NOW()) AND HOUR(date_added) = '" . (int)$i . "') GROUP BY HOUR(date_added) ORDER BY date_added ASC"); if ($query->num_rows) { $data['order']['data'][] = array($i, (int)$query->row['total']); } else { $data['order']['data'][] = array($i, 0); } $query = $this->db->query("SELECT COUNT(*) AS total FROM " . DB_PREFIX . "customer WHERE DATE(date_added) = DATE(NOW()) AND HOUR(date_added) = '" . (int)$i . "' GROUP BY HOUR(date_added) ORDER BY date_added ASC"); if ($query->num_rows) { $data['customer']['data'][] = array($i, (int)$query->row['total']); } else { $data['customer']['data'][] = array($i, 0); } $data['xaxis'][] = array($i, date('H', mktime($i, 0, 0, date('n'), date('j'), date('Y')))); } break; case 'week': $date_start = strtotime('-' . date('w') . ' days'); for ($i = 0; $i < 7; $i++) { $date = date('Y-m-d', $date_start + ($i * 86400)); $query = $this->db->query("SELECT COUNT(*) AS total FROM `" . DB_PREFIX . "order` WHERE order_status_id > '0' AND DATE(date_added) = '" . $this->db->escape($date) . "' GROUP BY DATE(date_added)"); if ($query->num_rows) { $data['order']['data'][] = array($i, (int)$query->row['total']); } else { $data['order']['data'][] = array($i, 0); } $query = $this->db->query("SELECT COUNT(*) AS total FROM `" . DB_PREFIX . "customer` WHERE DATE(date_added) = '" . $this->db->escape($date) . "' GROUP BY DATE(date_added)"); if ($query->num_rows) { $data['customer']['data'][] = array($i, (int)$query->row['total']); } else { $data['customer']['data'][] = array($i, 0); } $data['xaxis'][] = array($i, date('D', strtotime($date))); } break; default: case 'month': for ($i = 1; $i <= date('t'); $i++) { $date = date('Y') . '-' . date('m') . '-' . $i; $query = $this->db->query("SELECT COUNT(*) AS total FROM `" . DB_PREFIX . "order` WHERE order_status_id > '0' AND (DATE(date_added) = '" . $this->db->escape($date) . "') GROUP BY DAY(date_added)"); if ($query->num_rows) { $data['order']['data'][] = array($i, (int)$query->row['total']); } else { $data['order']['data'][] = array($i, 0); } $query = $this->db->query("SELECT COUNT(*) AS total FROM " . DB_PREFIX . "customer WHERE DATE(date_added) = '" . $this->db->escape($date) . "' GROUP BY DAY(date_added)"); if ($query->num_rows) { $data['customer']['data'][] = array($i, (int)$query->row['total']); } else { $data['customer']['data'][] = array($i, 0); } $data['xaxis'][] = array($i, date('j', strtotime($date))); } break; case 'year': for ($i = 1; $i <= 12; $i++) { $query = $this->db->query("SELECT COUNT(*) AS total FROM `" . DB_PREFIX . "order` WHERE order_status_id > '0' AND YEAR(date_added) = '" . date('Y') . "' AND MONTH(date_added) = '" . $i . "' GROUP BY MONTH(date_added)"); if ($query->num_rows) { $data['order']['data'][] = array($i, (int)$query->row['total']); } else { $data['order']['data'][] = array($i, 0); } $query = $this->db->query("SELECT COUNT(*) AS total FROM " . DB_PREFIX . "customer WHERE YEAR(date_added) = '" . date('Y') . "' AND MONTH(date_added) = '" . $i . "' GROUP BY MONTH(date_added)"); if ($query->num_rows) { $data['customer']['data'][] = array($i, (int)$query->row['total']); } else { $data['customer']['data'][] = array($i, 0); } $data['xaxis'][] = array($i, date('M', mktime(0, 0, 0, $i, 1, date('Y')))); } break; } $this->response->setOutput(json_encode($data)); } HTML <select name="range"> <option value="day">Today</option> <option value="week">This Week</option> <option value="month">This Month</option> <option value="year">This Year</option> </select>

    Read the article

  • MS Access Premiere Products Exercise

    - by rynwtts
    I am working with Microsoft Access, Premiere Products Exercises for a college course. I can't seem to get past a specific question. We are working with DBDL and E-R Diagrams. The question is here. Indicate the changes you need to make to the design of the Premiere Products database to support the following situation. A customer is not necessarily represented by a single sales rep but can be represented by several sales reps. when a customer places an order, the sales rep who gets the commission on the order must be one of the collection of sales reps who represents the customer. In the database already each customer is represented by a sales rep. Which yields a one to one relationship. I need to enable a customer to have several sales reps, and make it so that only those sales rep will be eligible for commission upon each order.

    Read the article

  • CVE-2006-3744 Multiple Integer overflow vulnerabilities in ImageMagick

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2006-3744 Numeric Errors vulnerability 5.1 ImageMagick Solaris 10 SPARC: 136882-03 X86: 136883-03 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Older SAS1 hardware Vs. newer SAS2 hardware

    - by user12620172
    I got a question today from someone asking about the older SAS1 hardware from over a year ago that we had on the older 7x10 series. They didn't leave an email so I couldn't respond directly, but I said this blog would be blunt, frank, and open so I have no problem addressing it publicly. A quick history lesson here: When Sun first put out the 7x10 family hardware, the 7410 and 7310 used a SAS1 backend connection to a JBOD that had SATA drives in it. This JBOD was not manufactured by Sun nor did Sun own the IP for it. Now, when Oracle took over, they had a problem with that, and I really can’t blame them. The decision was made to cut off that JBOD and it’s manufacturer completely and use our own where Oracle controlled both the IP and the manufacturing. So in the summer of 2010, the cut was made, and the 7410 and 7310 had a hardware refresh and now had a SAS2 backend going to a SAS2 JBOD with SAS2 drives instead of SATA. This new hardware had two big advantages. First, there was a nice performance increase, mostly due to the faster backend. Even better, the SAS2 interface on the drives allowed for a MUCH faster failover between cluster heads, as the SATA drives were the bottleneck on the older hardware. In September of 2010 there was a major refresh of the rest of the 7000 hardware, the controllers and the other family members, and that’s where we got today’s current line-up of the 7x20 series. So the 7x20 has always used the new trays, and the 7410 and 7310 have used the new SAS2 trays since last July of 2010. Now for the bad news. People who have the 7410 and 7310 from BEFORE the July 2010 cutoff have the models with SAS1 HBAs in them to connect to the older SAS1 trays. Remember, that manufacturer cut all ties with us and stopped making the JBOD, so there’s just no way to get more of them, as they don’t exist. There are some options, however. Oracle support does support taking out the SAS1 HBAs in the old 7410 and 7310 and put in newer SAS2 HBAs which can talk to the new trays. Hey, I didn’t say it was a great option, I just said it’s an option. I fully realize that you would then have a SAS1 JBOD full of SATA drives that you could no longer connect. I do know a client that did this, and took the SAS1 JBOD and connected it to another server and formatted the drives and is using it as a plain, non-7000 JBOD. This is not supported by Oracle support. The other option is to just keep it as-is, as it works just fine, but you just can’t expand it. Then you can get a newer 7x20 series, and use the built-in ZFSSA replication feature to move the data over. Now you can use the newer one for your production data and use the older one for DR, snaps and clones.

    Read the article

  • BPEL 11.1.1.2 Certified for Prebuilt E-Business Suite 12.1.3 SOA Integrations

    - by Steven Chan
    A new certification was released simultaneously with the E-Business Suite 12.1.3 Maintenance Pack late last year:  the use of BPEL 11g Version 11.1.1.2 with E-Business Suite 12.1.3.  There are two major options for SOA-related integrations for the E-Business Suite:Custom integrations using the Oracle Application Server (SOA) Adapter for Oracle ApplicationsPrebuilt SOA integrations for E-Business Suite using BPEL Process ManagerFor more background about these two options, please see this article:BPEL 10.1.3.5 Certified for Prebuilt E-Business Suite 12 SOA Integrations

    Read the article

  • EBS 11i and R12 certified with DB 11gR2 11.2.0.1 on Windows

    - by Steven Chan
    Oracle Database 11g Release 2 (11gR2) version 11.2.0.1 is now certified with Oracle E-Business Suite 11i and 12 on the following Microsoft Windows Server (32-bit) and Windows x64 (64-bit) operating systems:Windows Server 2003 (32-bit and 64-bit) Windows Server 2003 R2 (32-bit and 64-bit)Windows Server 2008 (32-bit and 64-bit)Windows Server 2008 R2 (64-bit only)Certified EBS ReleasesOracle E-Business Suite Release 11.5.10.2Oracle E-Business Suite Release 12.0.4 or higherOracle E-Business Suite Release  12.1.1 or higher

    Read the article

  • JMX Based Monitoring - Part Two - JVM Monitoring

    - by Anthony Shorten
    This the second article in the series focussing on the JMX based monitoring capabilities possible with the Oracle Utilities Application Framework. In all versions of the Oracle utilities Application Framework, it is possible to use the basic JMX based monitoring available with the Java Virtual Machine to provide basic statistics ablut the JVM. In Java 5 and above, the JVM automatically allowed local monitoring of the JVM statistics from an approporiate console. When I say local I mean the monitoring tool must be executed from the same machine (and in some cases the same user that is running the JVM) to connect to the JVM directly. If you are using jconsole, for example, then you must have access to a GUI (X-Windows or Windows) to display the jconsole output. This is the easist way of monitoring without doing too much configration but is not always practical. Java offers a remote monitorig capability to allow yo to connect to a remotely executing JVM from a console (like jconsole). To use this facility additional JVM options must be added to the command line that started the JVM. Details of the additional options for the version of the Java you are running is located at the JMX information site. Typically to remotely connect to a running JVM that JVM must be configured with the following categories of options: JMX Port - The JVM must allow connections on a listening port specified on the command line Connection security - The connection to the JVM can be secured. This is recommended as JMX is not just a monitoring protocol it is a managemet protocol. It is possible to change values in a running JVM using JMX and there are NO "Are you sure?" safeguards. For a Oracle Utilities Application Framework based application there are a few guidelines when configuring and using this JMX based remote monitoring of the JVM's: Online JVM - The JVM used to run the online system is embedded within the J2EE Web Application Server. To enable JMX monitoring on this JVM you can either change the startup script that starts the Web Application Server or check whether your J2EE Web Application natively supports JVM statistics collection. Child JVM's (COBOL only) - The Child JVM's should not be monitored using this method as they are recycled regularly by the configuration and therefore statistics collected are of little value. Batch Threadpoools - Batch already has a JMX interface (which will be covered in another article). Additional monitoring can be enabled but the base supported monitoring is sufficient for most needs. If you are an Oracle Utilities Application Framework site, then you can specify the additional options for JMX Java monitoring on the OPTS paramaters supported for each component of the architecture. Just ensure the port numbers used are unique for each JVM running on any machine.

    Read the article

  • The Incremental Architect&acute;s Napkin - #1 - It&acute;s about the money, stupid

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/05/24/the-incremental-architectacutes-napkin---1---itacutes-about-the.aspx Software development is an economic endeavor. A customer is only willing to pay for value. What makes a software valuable is required to become a trait of the software. We as software developers thus need to understand and then find a way to implement requirements. Whether or in how far a customer really can know beforehand what´s going to be valuable for him/her in the end is a topic of constant debate. Some aspects of the requirements might be less foggy than others. Sometimes the customer does not know what he/she wants. Sometimes he/she´s certain to want something - but then is not happy when that´s delivered. Nevertheless requirements exist. And developers will only be paid if they deliver value. So we better focus on doing that. Although is might sound trivial I think it´s important to state the corollary: We need to be able to trace anything we do as developers back to some requirement. You decide to use Go as the implementation language? Well, what´s the customer´s requirement this decision is linked to? You decide to use WPF as the GUI technology? What´s the customer´s requirement? You decide in favor of a layered architecture? What´s the customer´s requirement? You decide to put code in three classes instead of just one? What´s the customer´s requirement behind that? You decide to use MongoDB over MySql? What´s the customer´s requirement behind that? etc. I´m not saying any of these decisions are wrong. I´m just saying whatever you decide be clear about the requirement that´s driving your decision. You have to be able to answer the question: Why do you think will X deliver more value to the customer than the alternatives? Customers are not interested in romantic ideals of hard working, good willing, quality focused craftsmen. They don´t care how and why you work - as long as what you deliver fulfills their needs. They want to trust you to recognize this as your top priority - and then deliver. That´s all. Fundamental aspects of requirements If you´re like me you´re probably not used to such scrutinization. You want to be trusted as a professional developer - and decide quite a few things following your gut feeling. Or by relying on “established practices”. That´s ok in general and most of the time - but still… I think we should be more conscious about our decisions. Which would make us more responsible, even more professional. But without further guidance it´s hard to reason about many of the myriad decisions we´ve to make over the course of a software project. What I found helpful in this situation is structuring requirements into fundamental aspects. Instead of one large heap of requirements then there are smaller blobs. With them it´s easier to check if a decisions falls in their scope. Sure, every project has it´s very own requirements. But all of them belong to just three different major categories, I think. Any requirement either pertains to functionality, non-functional aspects or sustainability. For short I call those aspects: Functionality, because such requirements describe which transformations a software should offer. For example: A calculator software should be able to add and multiply real numbers. An auction website should enable you to set up an auction anytime or to find auctions to bid for. Quality, because such requirements describe how functionality is supposed to work, e.g. fast or secure. For example: A calculator should be able to calculate the sinus of a value much faster than you could in your head. An auction website should accept bids from millions of users. Security of Investment, because functionality and quality need not just be delivered in any way. It´s important to the customer to get them quickly - and not only today but over the course of several years. This aspect introduces time into the “requrements equation”. Security of Investments (SoI) sure is a non-functional requirement. But I think it´s important to not subsume it under the Quality (Q) aspect. That´s because SoI has quite special properties. For one, SoI for software means something completely different from what it means for hardware. If you buy hardware (a car, a hair blower) you find that a worthwhile investment, if the hardware does not change it´s functionality or quality over time. A car still running smoothly with hardly any rust spots after 10 years of daily usage would be a very secure investment. So for hardware (or material products, if you like) “unchangeability” (in the face of usage) is desirable. With software you want the contrary. Software that cannot be changed is a waste. SoI for software means “changeability”. You want to be sure that the software you buy/order today can be changed, adapted, improved over an unforseeable number of years so as fit changes in its usage environment. But that´s not the only reason why the SoI aspect is special. On top of changeability[1] (or evolvability) comes immeasurability. Evolvability cannot readily be measured by counting something. Whether the changeability is as high as the customer wants it, cannot be determined by looking at metrics like Lines of Code or Cyclomatic Complexity or Afferent Coupling. They may give a hint… but they are far, far from precise. That´s because of the nature of changeability. It´s different from performance or scalability. Also it´s because a customer cannot tell upfront, “how much” evolvability he/she wants. Whether requirements regarding Functionality (F) and Q have been met, a customer can tell you very quickly and very precisely. A calculation is missing, the calculation takes too long, the calculation time degrades with increased load, the calculation is accessible to the wrong users etc. That´s all very or at least comparatively easy to determine. But changeability… That´s a whole different thing. Nevertheless over time the customer will develop a feedling if changeability is good enough or degrading. He/she just has to check the development of the frequency of “WTF”s from developers ;-) F and Q are “timeless” requirement categories. Customers want us to deliver on them now. Just focusing on the now, though, is rarely beneficial in the long run. So SoI adds a counterweight to the requirements picture. Customers want SoI - whether they know it or not, whether they state if explicitly or not. In closing A customer´s requirements are not monolithic. They are not all made the same. Rather they fall into different categories. We as developers need to recognize these categories when confronted with some requirement - and take them into account. Only then can we make true professional decisions, i.e. conscious and responsible ones. I call this fundamental trait of software “changeability” and not “flexibility” to distinguish to whom it´s a concern. “Flexibility” to me means, software as is can easily be adapted to a change in its environment, e.g. by tweaking some config data or adding a library which gets picked up by a plug-in engine. “Flexibiltiy” thus is a matter of some user. “Changeability”, on the other hand, to me means, software can easily be changed in its structure to adapt it to new requirements. That´s a matter of the software developer. ?

    Read the article

  • SIM to OIM Migration: A How-to Guide to Avoid Costly Mistakes (SDG Corporation)

    - by Darin Pendergraft
    In the fall of 2012, Oracle launched a major upgrade to its IDM portfolio: the 11gR2 release.  11gR2 had four major focus areas: More simplified and customizable user experience Support for cloud, mobile, and social applications Extreme scalability Clear upgrade path For SUN migration customers, it is critical to develop and execute a clearly defined plan prior to beginning this process.  The plan should include initiation and discovery, assessment and analysis, future state architecture, review and collaboration, and gap analysis.  To help better understand your upgrade choices, SDG, an Oracle partner has developed a series of three whitepapers focused on SUN Identity Manager (SIM) to Oracle Identity Manager (OIM) migration. In the second of this series on SUN Identity Manager (SIM) to Oracle Identity Manager (OIM) migration, Santosh Kumar Singh from SDG  discusses the proper steps that should be taken during the planning-to-post implementation phases to ensure a smooth transition from SIM to OIM. Read the whitepaper for Part 2: Download Part 2 from SDGC.com In the last of this series of white papers, Santosh will talk about Identity and Access Management best practices and how these need to be considered when going through with an OIM migration. If you have not taken the opportunity, please read the first in this series which discusses the Migration Approach, Methodology, and Tools for you to consider when planning a migration from SIM to OIM. Read the white paper for part 1: Download Part 1 from SDGC.com About the Author: Santosh Kumar Singh Identity and Access Management (IAM) Practice Leader Santosh, in his capacity as SDG Identity and Access Management (IAM) Practice Leader, has direct senior management responsibility for the firm's strategy, planning, competency building, and engagement deliverance for this Practice. He brings over 12+ years of extensive IT, business, and project management and delivery experience, primarily within enterprise directory, single sign-on (SSO) application, and federated identity services, provisioning solutions, role and password management, and security audit and enterprise blueprint. Santosh possesses strong architecture and implementation expertise in all areas within these technologies and has repeatedly lead teams in successfully deploying complex technical solutions. About SDG: SDG Corporation empowers forward thinking companies to strategize their future, realize their vision, and minimize their IT risk. SDG distinguishes itself by offering flexible business models to fit their clients’ needs; faster time-to-market with its pre-built solutions and frameworks; a broad-based foundation of domain experts, and deep program management expertise. (www.sdgc.com)

    Read the article

  • The Product Owner

    - by Robert May
    In a previous post, I outlined the rules of Scrum.  This post details one of those rules. Picking a most important part of Scrum is difficult.  All of the rules are required, but if there were one rule that is “more” required that every other rule, its having a good Product Owner.  Simply put, the Product Owner can make or break the project. Duties of the Product Owner A Product Owner has many duties and responsibilities.  I’ll talk about each of these duties in detail below. A Product Owner: Discovers and records stories for the backlog. Prioritizes stories in the Product Backlog, Release Backlog and Iteration Backlog. Determines Release dates and Iteration Dates. Develops story details and helps the team understand those details. Helps QA to develop acceptance tests. Interact with the Customer to make sure that the product is meeting the customer’s needs. Discovers and Records Stories for the Backlog When I do Scrum, I always use User Stories as the means for capturing functionality that’s required in the system.  Some people will use Use Cases, but the same rule applies.  The Product Owner has the ultimate responsibility for figuring out what functionality will be in the system.  Many different mechanisms for capturing this input can be used.  User interviews are great, but all sources should be considered, including talking with Customer Support types.  Often, they hear what users are struggling with the most and are a great source for stories that can make the application easier to use. Care should be taken when soliciting user stories from technical types such as programmers and the people that manage them.  They will almost always give stories that are very technical in nature and may not have a direct benefit for the end user.  Stories are about adding value to the company.  If the stories don’t have direct benefit to the end user, the Product Owner should question whether or not the story should be implemented.  In general, technical stories should be included as tasks in User Stories.  Technical stories are often needed, but the ultimate value to the user is in user based functionality, so technical stories should be considered nothing more than overhead in providing that user functionality. Until the iteration prior to development, stories should be nothing more than short, one line placeholders. An exercise called Story Planning can be used to brainstorm and come up with stories.  I’ll save the description of this activity for another blog post. For more information on User Stories, please read the book User Stories Applied by Mike Cohn. Prioritizes Stories in the Product Backlog, Release Backlog and Iteration Backlog Prioritization of stories is one of the most difficult tasks that a Product Owner must do.  A key concept of Scrum done right is the need to have the team working from a single set of prioritized stories.  If the team does not have a single set of prioritized stories, Scrum will likely fail at your organization.  The Product Owner is the ONLY person who has the responsibility to prioritize that list.  The Product Owner must be very diplomatic and sincerely listen to the people around him so that he can get the priorities correct. Just listening will still not yield the proper priorities.  Care must also be taken to ensure that Return on Investment is also considered.  Ultimately, determining which stories give the most value to the company for the least cost is the most important factor in determining priorities.  Product Owners should be willing to look at cold, hard numbers to determine the order for stories.  Even when many people want a feature, if that features is costly to develop, it may not have as high of a return on investment as features that are cheaper, but not as popular. The act of prioritization often causes conflict in an environment.  Customer Service thinks that feature X is the most important, because it will stop people from calling.  Operations thinks that feature Y is the most important, because it will stop servers from crashing.  Developers think that feature Z is most important because it will make writing software much easier for them.  All of these are useful goals, but the team can have only one list of items, and each item must have a priority that is different from all other stories.  The Product Owner will determine which feature gives the best return on investment and the other features will have to wait their turn, which means that someone will not have their top priority feature implemented first. A weak Product Owner will refuse to do prioritization.  I’ve heard from multiple Product Owners the following phrase, “Well, it’s all got to be done, so what does it matter what order we do it in?”  If your product owner is using this phrase, you need a new Product Owner.  Order is VERY important.  In Scrum, every release is potentially shippable.  If the wrong priority items are developed, then the value added in each release isn’t what it should be.  Additionally, the Product Owner with this mindset doesn’t understand Agile.  A product is NEVER finished, until the company has decided that it is no longer a going concern and they are no longer going to sell the product.  Therefore, prioritization isn’t an event, its something that continues every day.  The logical extension of the phrase “It’s all got to be done” is that you will never ship your product, since a product is never “done.”  Once stories have been prioritized, assigning them to the Release Backlog and the Iteration Backlog becomes relatively simple.  The top priority items are copied into the respective backlogs in order and the task is complete.  The team does have the right to shuffle things around a little in the iteration backlog.  For example, they may determine that working on story C with story A is appropriate because they’re related, even though story B is technically a higher priority than story C.  Or they may decide that story B is too big to complete in the time available after Story A has tasks created, so they’ll work on Story C since it’s smaller.  They can’t, however, go deep into the backlog to pick stories to implement.  The team and the Product Owner should work together to determine what’s best for the company. Prioritization is time consuming, but its one of the most important things a Product Owner does. Determines Release Dates and Iteration Dates Product owners are responsible for determining release dates for a product.  A common misconception that Product Owners have is that every “release” needs to correspond with an actual release to customers.  This is not the case.  In general, releases should be no more than 3 months long.  You  may decide to release the product to the customers, and many companies do release the product to customers, but it may also be an internal release. If a release date is too far away, developers will fall into the trap of not feeling a sense of urgency.  The date is far enough away that they don’t need to give the release their full attention.  Additionally, important tasks, such as performance tuning, regression testing, user documentation, and release preparation, will not happen regularly, making them much more difficult and time consuming to do.  The more frequently you do these tasks, the easier they are to accomplish. The Product Owner will be a key participant in determining whether or not a release should be sent out to the customers.  The determination should be made on whether or not the features contained in the release are valuable enough  and complete enough that the customers will see real value in the release.  Often, some features will take more than three months to get them to a state where they qualify for a release or need additional supporting features to be released.  The product owner has the right to make this determination. In addition to release dates, the Product Owner also will help determine iteration dates.  In general, an iteration length should be chosen and the team should follow that iteration length for an extended period of time.  If the iteration length is changed every iteration, you’re not doing Scrum.  Iteration lengths help the team and company get into a rhythm of developing quality software.  Iterations should be somewhere between 2 and 4 weeks in length.  Any shorter, and significant software will likely not be developed.  Any longer, and the team won’t feel urgency and planning will become very difficult. Iterations may not be extended during the iteration.  Companies where Scrum isn’t really followed will often use this as a strategy to complete all stories.  They don’t want to face the harsh reality of what their true performance is, and looking good is more important than seeking visibility and improving the process and team.  Companies like this typically don’t allow failure.  This is unhealthy.  Failure is part of life and unless we learn from it, we can’t improve.  I would much rather see a team push out stories to the next iteration and then have healthy discussions about why they failed rather than extend the iteration and not deal with the core problems. If iteration length varies, retrospectives become more difficult.  For example, evaluating the performance of the team’s estimation efforts becomes much more difficult if the iteration length varies.  Also, the team must have a velocity measurement.  If the iteration length varies, measuring velocity becomes impossible and upper management no longer will have the ability to evaluate the teams performance.  People external to the team will no longer have the ability to determine when key features are likely to be developed.  Variable iterations cause the entire company to fail and likely cause Scrum to fail at an organization. Develops Story Details and Helps the Team Understand Those Details A key concept in Scrum is that the stories are nothing more than a placeholder for a conversation.  Stories should be nothing more than short, one line statements about the functionality.  The team will then converse with the Product Owner about the details about that story.  The product owner needs to have a very good idea about what the details of the story are and needs to be able to help the team understand those details. Too often, we see this requirement as being translated into the need for comprehensive documentation about the story, including old fashioned requirements documentation.  The team should only develop the documentation that is required and should not develop documentation that is only created because their is a process to do so. In general, what we see that works best is the iteration before a team starts development work on a story, the Product Owner, with other appropriate business analysts, will develop the details of that story.  They’ll figure out what business rules are required, potentially make paper prototypes or other light weight mock-ups, and they seek to understand the story and what is implied.  Note that the time allowed for this task is deliberately short.  The Product Owner only has a single iteration to develop all of the stories for the next iteration. If more than one iteration is used, I’ve found that teams will end up with Big Design Up Front and traditional requirements documents.  This is a waste of time, since the team will need to then have discussions with the Product Owner to figure out what the requirements document says.  Instead of this, skip making the pretty pictures and detailing the nuances of the requirements and build only what is minimally needed by the team to do development.  If something comes up during development, you can address it at that time and figure out what you want to do.  The goal is to keep things as light weight as possible so that everyone can move as quickly as possible. Helps QA to Develop Acceptance Tests In Scrum, no story can be counted until it is accepted by QA.  Because of this, acceptance tests are very important to the team.  In general, acceptance tests need to be developed prior to the iteration or at the very beginning of the iteration so that the team can make sure that the tasks that they develop will fulfill the acceptance criteria. The Product Owner will help the team, including QA, understand what will make the story acceptable.  Note that the Product Owner needs to be careful about specifying that the feature will work “Perfectly” at the end of the iteration.  In general, features are developed a little bit at a time, so only the bit that is being developed should be considered as necessary for acceptance. A weak Product Owner will make statements like “Do it right the first time.”  Not only are these statements damaging to the team (like they would try to do it WRONG the first time . . .), they’re also ignoring the iterative nature of Scrum.  Additionally, a weak product owner will seek to add scope in the acceptance testing.  For example, they will refuse to determine acceptance at the beginning of the iteration, and then, after the team has planned and committed to the iteration, they will expand scope by defining acceptance.  This often causes the team to miss the iteration because scope that wasn’t planned on is included.  There are ways that the team can mitigate this problem.  For example, include extra “Product Owner” time to deal with the uncertainty that you know will be introduced by the Product Owner.  This will slow the perceived velocity of the team and is not ideal, since they’ll be doing more work than they get credit for. Interact with the Customer to Make Sure that the Product is Meeting the Customer’s Needs Once development is complete, what the team has worked on should be put in front of real live people to see if it meets the needs of the customer.  One of the great things about Agile is that if something doesn’t work, we can revisit it in a future iteration!  This frees up the team to make the best decision now and know that if that decision proves to be incorrect, the team can revisit it and change that decision. Features are about adding value to the customer, so if the customer doesn’t find them useful, then having the team make tweaks is valuable.  In general, most software will be 80 to 90 percent “right” after the initial round and only minor tweaks are required.  If proper coding standards are followed, these tweaks are usually minor and easy to accomplish.  Product Owners that are doing a good job will encourage real users to see and use the software, since they know that they are trying to add value to the customer. Poor product owners will think that they know the answers already, that their customers are silly and do stupid things and that they don’t need customer input.  If you have a product owner that is afraid to show the team’s work to real customers, you probably need a different product owner. Up Next, “Who Makes a Good Product Owner.” Followed by, “Messing with the Team.” Technorati Tags: Scrum,Product Owner

    Read the article

< Previous Page | 413 414 415 416 417 418 419 420 421 422 423 424  | Next Page >