Search Results

Search found 23062 results on 923 pages for 'multiple models'.

Page 419/923 | < Previous Page | 415 416 417 418 419 420 421 422 423 424 425 426  | Next Page >

  • Patterns for Handling Changing Property Sets in C++

    - by Bhargav Bhat
    I have a bunch "Property Sets" (which are simple structs containing POD members). I'd like to modify these property sets (eg: add a new member) at run time so that the definition of the property sets can be externalized and the code itself can be re-used with multiple versions/types of property sets with minimal/no changes. For example, a property set could look like this: struct PropSetA { bool activeFlag; int processingCount; /* snip few other such fields*/ }; But instead of setting its definition in stone at compile time, I'd like to create it dynamically at run time. Something like: class PropSet propSetA; propSetA("activeFlag",true); //overloading the function call operator propSetA("processingCount",0); And the code dependent on the property sets (possibly in some other library) will use the data like so: bool actvFlag = propSet["activeFlag"]; if(actvFlag == true) { //Do Stuff } The current implementation behind all of this is as follows: class PropValue { public: // Variant like class for holding multiple data-types // overloaded Conversion operator. Eg: operator bool() { return (baseType == BOOLEAN) ? this->ToBoolean() : false; } // And a method to create PropValues various base datatypes static FromBool(bool baseValue); }; class PropSet { public: // overloaded[] operator for adding properties void operator()(std::string propName, bool propVal) { propMap.insert(std::make_pair(propName, PropVal::FromBool(propVal))); } protected: // the property map std::map<std::string, PropValue> propMap; }; This problem at hand is similar to this question on SO and the current approach (described above) is based on this answer. But as noted over at SO this is more of a hack than a proper solution. The fundamental issues that I have with this approach are as follows: Extending this for supporting new types will require significant code change. At the bare minimum overloaded operators need to be extended to support the new type. Supporting complex properties (eg: struct containing struct) is tricky. Supporting a reference mechanism (needed for an optimization of not duplicating identical property sets) is tricky. This also applies to supporting pointers and multi-dimensional arrays in general. Are there any known patterns for dealing with this scenario? Essentially, I'm looking for the equivalent of the visitor pattern, but for extending class properties rather than methods. Edit: Modified problem statement for clarity and added some more code from current implementation.

    Read the article

  • Is there a better term than "smoothness" or "granularity" to describe this language feature?

    - by Chris
    One of the best things about programming is the abundance of different languages. There are general purpose languages like C++ and Java, as well as little languages like XSLT and AWK. When comparing languages, people often use things like speed, power, expressiveness, and portability as the important distinguishing features. There is one characteristic of languages I consider to be important that, so far, I haven't heard [or been able to come up with] a good term for: how well a language scales from writing tiny programs to writing huge programs. Some languages make it easy and painless to write programs that only require a few lines of code, e.g. task automation. But those languages often don't have enough power to solve large problems, e.g. GUI programming. Conversely, languages that are powerful enough for big problems often require far too much overhead for small problems. This characteristic is important because problems that look small at first frequently grow in scope in unexpected ways. If a programmer chooses a language appropriate only for small tasks, scope changes can require rewriting code from scratch in a new language. And if the programmer chooses a language with lots of overhead and friction to solve a problem that stays small, it will be harder for other people to use and understand than necessary. Rewriting code that works fine is the single most wasteful thing a programmer can do with their time, but using a bazooka to kill a mosquito instead of a flyswatter isn't good either. Here are some of the ways this characteristic presents itself. Can be used interactively - there is some environment where programmers can enter commands one by one Requires no more than one file - neither project files nor makefiles are required for running in batch mode Can easily split code across multiple files - files can refeence each other, or there is some support for modules Has good support for data structures - supports structures like arrays, lists, and especially classes Supports a wide variety of features - features like networking, serialization, XML, and database connectivity are supported by standard libraries Here's my take on how C#, Python, and shell scripting measure up. Python scores highest. Feature C# Python shell scripting --------------- --------- --------- --------------- Interactive poor strong strong One file poor strong strong Multiple files strong strong moderate Data structures strong strong poor Features strong strong strong Is there a term that captures this idea? If not, what term should I use? Here are some candidates. Scalability - already used to decribe language performance, so it's not a good idea to overload it in the context of language syntax Granularity - expresses the idea of being good just for big tasks versus being good for big and small tasks, but doesn't express anything about data structures Smoothness - expresses the idea of low friction, but doesn't express anything about strength of data structures or features Note: Some of these properties are more correctly described as belonging to a compiler or IDE than the language itself. Please consider these tools collectively as the language environment. My question is about how easy or difficult languages are to use, which depends on the environment as well as the language.

    Read the article

  • Using lookahead assertions in regular expressions

    - by Greg Jackson
    I use regular expressions on a daily basis, as my daily work is 90% in Perl (legacy codebase, but that's a different issue). Despite this, I still find lookahead and lookbehind to be terribly confusing and often unreadable. Right now, if I were to get a code review with a lookahead or lookbehind, I would immediately send it back to see if the problem can be solved by using multiple regular expressions or a different approach. The following are the main reasons I tend not to like them: They can be terribly unreadable. Lookahead assertions, for example, start from the beginning of the string no matter where they are placed. That, among other things, can cause some very "interesting" and non-obvious behaviors. It used to be the case that many languages didn't support lookahead/lookbehind (or supported them as "experimental features"). This isn't the case quite as much, but there's still always the question as to how well it's supported. Quite frankly, they feel like a dirty hack. Regexps often already are, but they can also be quite elegant, and have gained widespread acceptance. I've gotten by without any need for them at all... sometimes I think that they're extraneous. Now, I'll freely admit that especially the last two reasons aren't really good ones, but I felt that I should enumerate what goes through my mind when I see one. I'm more than willing to change my mind about them, but I feel that they violate some of my core tenets of programming, including: Code should be as readable as possible without sacrificing functionality -- this may include doing something in a less efficient, but clearer was as long as the difference is negligible or unimportant to the application as a whole. Code should be maintainable -- if another programmer comes along to fix my code, non-obvious behavior can hide bugs or make functional code appear buggy (see readability) "The right tool for the right job" -- I'm sure you can come up with contrived examples that could use lookahead, but I've never come across something that really needs them in my real-world development work. Is there anything that they're really the best tool for, as opposed to, say, multiple regexps (or, alternatively, are they the best tool for most cases they're used for today). My question is this: Is it good practice to use lookahead/lookbehind in regular expressions, or are they simply a hack that have found their way into modern production code? I'd be perfectly happy to be convinced that I'm wrong about this, and simple examples are useful for examples or illustration, but by themselves, won't be enough to convince me.

    Read the article

  • Broadcom BCM4312 Not Working

    - by ptran221
    I have a HP MINI 210-1010NR and just installed Ubuntu 11.04 and I can't get my wireless to work.I have checked through multiple Q&A's throughout this FAQ and tried them all. When I go over the wireless thing at the top it says "Wireless Networks device not ready(firmware missing)." Okay, now here is my lspci -vvnn | grep 14e4 02:00.0 Network controller [0280]: Broadcom Corporation BCM4312 802.11b/g LP-PHY [14e4:4315] (rev 01) Also, when I try to open additional drivers it says that "Downloading package indexes failed, please check your network status."

    Read the article

  • Are there deprecated practices for multithread and multiprocessor programming that I should no longer use?

    - by DeveloperDon
    In the early days of FORTRAN and BASIC, essentially all programs were written with GOTO statements. The result was spaghetti code and the solution was structured programming. Similarly, pointers can have difficult to control characteristics in our programs. C++ started with plenty of pointers, but use of references are recommended. Libraries like STL can reduce some of our dependency. There are also idioms to create smart pointers that have better characteristics, and some version of C++ permit references and managed code. Programming practices like inheritance and polymorphism use a lot of pointers behind the scenes (just as for, while, do structured programming generates code filled with branch instructions). Languages like Java eliminate pointers and use garbage collection to manage dynamically allocated data instead of depending on programmers to match all their new and delete statements. In my reading, I have seen examples of multi-process and multi-thread programming that don't seem to use semaphores. Do they use the same thing with different names or do they have new ways of structuring protection of resources from concurrent use? For example, a specific example of a system for multithread programming with multicore processors is OpenMP. It represents a critical region as follows, without the use of semaphores, which seem not to be included in the environment. th_id = omp_get_thread_num(); #pragma omp critical { cout << "Hello World from thread " << th_id << '\n'; } This example is an excerpt from: http://en.wikipedia.org/wiki/OpenMP Alternatively, similar protection of threads from each other using semaphores with functions wait() and signal() might look like this: wait(sem); th_id = get_thread_num(); cout << "Hello World from thread " << th_id << '\n'; signal(sem); In this example, things are pretty simple, and just a simple review is enough to show the wait() and signal() calls are matched and even with a lot of concurrency, thread safety is provided. But other algorithms are more complicated and use multiple semaphores (both binary and counting) spread across multiple functions with complex conditions that can be called by many threads. The consequences of creating deadlock or failing to make things thread safe can be hard to manage. Do these systems like OpenMP eliminate the problems with semaphores? Do they move the problem somewhere else? How do I transform my favorite semaphore using algorithm to not use semaphores anymore?

    Read the article

  • How to create a virtual network with Azure Connect

    - by Herve Roggero
    If you are trying to establish a virtual network between machines located in disparate networks, you can either use VPN, Virtual Network or Azure Connect. If you want to establish a connection between machines located in Windows Azure, you should consider using the Virtual Network service. If you want to establish a connection between local machines and Virtual Machines in Windows Azure, you may be able to use your existing VPN device (assuming you have one), as long as the device is supported by Microsoft. If the VPN device you are using isn’t supported, or if you are trying to create a virtual network between machines from disparate networks (such as machines located in another cloud provider), you can use Azure Connect. This blog post explains how Azure Connect can help you create virtual networks between multiple servers in the cloud, various servers in different cloud environments, and on-premise. Note: Azure Connect is currently in Technical Preview. About Azure Connect Let’s do a quick review of Azure Connect. This technology implements an IPSec tunnel from machines to to a relay service located in the Microsoft cloud (Azure). So in essence, Azure Connect doesn’t provide a point-to-point connection between machines; the network communication is tunneled through the relay service. The relay service in turn offers a mechanism to enforce basic communication rules that you define through Groups. We will review this later. You could network two or more VMs in the Azure cloud (although you should consider using a Virtual Network if you go this route), or servers in the Azure cloud and other machines in the Amazon cloud for example, or even two or more on-premise servers located in different locations for which a direct network connection is not an option. You can place any number of machines in your topology. Azure Connect gives you great flexibility on how you want to build your virtual network across various environments. So Azure Connect makes sense when you want to: Connect machines located in different cloud providers Connect on-premise machines running in different locations Connect Azure VMs with on-premise (if you do not have a VPN device, or if your device is not supported) Connect Azure Roles (Worker Roles, Web Roles) with on-premise servers or in other cloud providers The diagram below shows you a high level network topology that involves machines in the Windows Azure cloud, other cloud providers and on-premise. You should note that the only required component in this diagram is the Relay itself. The other machines are optional (although your network is useful only if you have two or more machines involved). Relay agents are currently available in three geographic areas: US, Europe and Asia. You can change which region you want to use in the Windows Azure management portal. High Level Network Topology With Azure Connect Azure Connect Agent Azure Connect establishes a virtual network and creates virtual adapters on your machines; these virtual adapters communicate through the Relay using IPSec. This is achieved by installing an agent (the Azure Connect Agent) on all the machines you want in your network topology. However, you do not need to install the agent on Worker Roles and Web Roles; that’s because the agent is already installed for you. Any other machine, including Virtual Machines in Windows Azure, needs the agent installed.  To install the agent, simply go to your Windows Azure portal (http://windows.azure.com) and click on Networks on the bottom left panel. You will see a list of subscriptions under Connect. If you select a subscription, you will be able to click on the Install Local Endpoint icon on top. Clicking on this icon will begin the download and installation process for the agent. Activating Roles for Azure Connect As previously mentioned, you do not need to install the Azure Connect Agent on Worker Roles and Web Roles because it is already loaded. However, you do need to activate them if you want the roles to participate in your network topology. To do this, you will need to click on the Get Activation Token icon. The activation token must then be copied and placed in the configuration file of your roles. For more information on how to perform this step, visit MSDN at http://msdn.microsoft.com/en-us/library/windowsazure/gg432964.aspx. Firewall Rules Note that specific firewall rules must exist to allow the agent to communicate through the Relay. You will need to allow TCP 443 and ICMPv6. For additional information, please visit MSDN at http://msdn.microsoft.com/en-us/library/windowsazure/gg433061.aspx. CA Certificates You can optionally require agents to sign their activation request with the Relay using a trusted certificate issued by a Certificate Authority (CA). Click on Activation Options to learn more. Groups To create your network topology you must first create a group. A group represents a logical container of endpoints (or machines) that can communicate through the Relay. You can create multiple groups allowing you to manage network communication differently. For example you could create a DEVELOPMENT group and a PRODUCTION group. To add an endpoint you must first install an agent that will create a virtual adapter on the machine on which it is installed (as discussed in the previous section). Once you have created a group and installed the agents, the machines will appear in the Windows Azure management portal and you can start assigning machines to groups. The next figure shows you that I created a group called LocalGroup and assigned two machines (both on-premise) to that group. Groups and Computers in Azure Connect As I mentioned previously you can allow these machines to establish a network connection. To do this, you must enable the Interconnected option in the group. The following diagram shows you the definition of the group. In this topology I chose to include local machines only, but I could also add worker roles and web roles in the Azure Roles section (you must first activate your roles, as discussed previously). You could also add other Groups, allowing you to manage inter-group communication. Defining a Group in Azure Connect Testing the Connection Now that my agents have been installed on my two machines, the group defined and the Interconnected option checked, I can test the connection between my machines. The next screenshot shows you that I sent a PING request to DEVLAP02 from DEVDSK02. The PING request was successful. Note however that the time is in the hundreds of milliseconds on average. That is to be expected because the machines are connecting through the Relay located in the cloud. Going through the Relay introduces an extra hop in the communication chain, so if your systems rely on high performance, you may want to conduct some basic performance tests. Sending a PING Request Through The Relay Conclusion As you can see, creating a network topology between machines using the Azure Connect service is simple. It took me less than five minutes to create the above configuration, including the time it took to install the Azure Connect agents on the two machines. The flexibility of Azure Connect allows you to create a virtual network between disparate environments, as long as your operating systems are supported by the agent. For more information on Azure Connect, visit the MSDN website at http://msdn.microsoft.com/en-us/library/windowsazure/gg432997.aspx. About Herve Roggero Herve Roggero, Windows Azure MVP, is the founder of Blue Syntax Consulting, a company specialized in cloud computing products and services. Herve's experience includes software development, architecture, database administration and senior management with both global corporations and startup companies. Herve holds multiple certifications, including an MCDBA, MCSE, MCSD. He also holds a Master's degree in Business Administration from Indiana University. Herve is the co-author of "PRO SQL Azure" from Apress and runs the Azure Florida Association (on LinkedIn: http://www.linkedin.com/groups?gid=4177626). For more information on Blue Syntax Consulting, visit www.bluesyntax.net. Special Thanks I would like thank those that helped me figure out how Azure Connect works: Marcel Meijer - http://blogs.msmvps.com/marcelmeijer/ Michael Wood - Http://www.mvwood.com Glenn Block - http://www.codebetter.com/glennblock Yves Goeleven - http://cloudshaper.wordpress.com/ Sandrino Di Mattia - http://fabriccontroller.net/ Mike Martin - http://techmike2kx.wordpress.com

    Read the article

  • What are the advantages of the delegate pattern over the observer pattern?

    - by JoJo
    In the delegate pattern, only one object can directly listen to another object's events. In the observer pattern, any number of objects can listen to a particular object's events. When designing a class that needs to notify other object(s) of events, why would you ever use the delegate pattern over the observer pattern? I see the observer pattern as more flexible. You may only have one observer now, but a future design may require multiple observers.

    Read the article

  • Windows Azure Diagnostics: Next to Useless?

    - by Your DisplayName here!
    To quote my good friend Christian: “Tracing is probably one of the most discussed topics in the Windows Azure world. Not because it is freaking cool – but because it can be very tedious and partly massively counter-intuitive.” <rant> The .NET Framework has this wonderful facility called TraceSource. You define a named trace and route that to a configurable listener. This gives you a lot of flexibility – you can create a single trace file – or multiple ones. There is even nice tooling around that. SvcTraceViewer from the SDK let’s you open the XML trace files – you can filter and sort by trace source and event type, aggreate multiple files…blablabla. Just what you would expect from a decent tracing infrastructure. Now comes Windows Azure. I was already were grateful that starting with the SDK 1.2 we finally had a way to do tracing and diagnostics in the cloud (kudos!). But the way the Azure DiagnosticMonitor is currently implemented – could be called flawed. The Azure SDK provides a DiagnosticsMonitorTraceListener – which is the right way to go. The only problem is, that way this works is, that all traces (from all sources) get written to an ETW trace. Then the DiagMon listens to these traces and copies them periodically to your storage account. So far so good. But guess what happens to your nice trace files: the trace source names get “lost”. They appear in your message text at the end. So much for filtering and sorting and aggregating (regex #fail or #win??). Every trace line becomes an entry in a Azure Storage Table – the svclog format is gone. So much for the existing tooling. To solve that problem, one workaround was to write your own trace listener (!) that creates svclog files inside of local storage and use the DiagMon to copy those. Christian has a blog post about that. OK done that. Now it turns out that this mechanism does not work anymore in 1.3 with FullIIS (see here). Quoting: “Some IIS 7.0 logs not collected due to permissions issues...The root cause to both of these issues is the permissions on the log files.” And the workaround: “To read the files yourself, log on to the instance with a remote desktop connection.” Now then have fun with your multi-instance deployments…. </rant>

    Read the article

  • Ord function implementation in Delphi

    - by Federico Zancan
    Purely as an exercise at home, aimed to better understand some language basics, I tried to reimplement the Ord function, but I came across a problem. In fact, the existing Ord function can accept arguments of a variety of different types (AnsiChar, Char, WideChar, Enumeration, Integer, Int64) and can return Integer or Int64. I can't figure out how to declare multiple versions of the same function. How should this be coded in Delphi?

    Read the article

  • Text editor capable of running complex Regular Expressions?

    - by Mashimom
    I want to find a text editor capable of running and mainly storing regular expressions for later re-use. It should also be able to run them across multiple files. I know I can get all that with grep, but there is not much for re-use on it. I was able to get some regular expression functionality on Gedit with plugins, but not nearly close to my needs. There is EditPad Pro for Windows (runs on wine) but native is always better :)

    Read the article

  • Generating FileUpload at runtime

    How to create multiple FileUploads at runtime and access their values using ASP.net...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Move data from others user accounts in my user account

    - by user118136
    I had problems with compiz setting and I make multiple accounts, now I want to transfer my information from all deleted users in my current account, some data I can not copy because I am not right to read, I type in terminal "sudo nautilus" and I get the permission for read, but the copied data is available only for superusers and I must charge the permissions for each file and each folder. How I can copy the information with out the superuser rights OR how I can charge the permissions for selected folder and all files and folders included in it?

    Read the article

  • Scaling Down Pixel Art?

    - by Michael Stum
    There's plenty of algorithms to scale up pixel art (I prefer hqx personally), but are there any notable algorithms to scale it down? In my case, the game is designed to run at 1280x720, but if someone plays at a lower resolution I want it to still look good. Most Pixel Art discussions center around 320x200 or 640x480 and upscaling for use in console emulators, but I wonder how modern 2D games like the Monkey Island Remake look good on lower resolutions? (Ignoring the options of having multiple versions of assets (essentially, mipmapping))

    Read the article

  • Code Analysis Rule Sets in Visual Studio 2010

    - by Anthony Trudeau
    Microsoft Visual Studio 2010 introduces the concept of rule sets when configuring code analysis.  This is a valuable change from Visual Studio 2008 that I didn't even realize I wanted.  Visual Studio 2008 by default selected all rules and then you had to remove rules on an item by item basis. The rule sets fall into logical groups including "Microsoft All Rules", "Microsoft Basic Correctness Rules", "Microsoft Security Rules", et al.  And within the project properties you can select one rule set, multiple rule sets, or you can define your own rule set based upon another. Selecting a single rule set is obviously the easiest option.  The default rule set when you create a new project is the "Microsoft Minimum Recommended Rules".  However, in my opinion the recommended rules are just too permissive.  For that reason you might want to change your rule set to "Microsoft All Rules" until you get around to creating your own rule set; or alternately you can select multiple rule sets which is an option from the rule set combo box.  The Visual Studio documentation has comprehensive help on what is contained within the rule sets. Creating your own rule set is easy if not obvious.  You need to start a rule set from an existing rule set.  To get started select a rule set in the combo box within the Code Analysis tab of the project properties.  I selected the "Microsoft All Rules" for my rule set, but you may find it easier to start with the "Microsoft Minimum Recommended Rules" if your rules are on the more permissive side. Once your rule set is selected click the Open button.  This will display a dialog that is similar in composition to the rules selection from Visual Studio 2008.  Browsing through the tree view you can select or deselect individual rules within their categories; and you can indicate that the rules are flagged as errors instead of the default which is a warning.  A nice touch to the form is that you get a help pane when you select an individual rule.  That helped me considerably when I first configured my rule set. Once you have finished selecting your rules click the Save tool button, specify a location and name, and click the Save button on the Save As dialog.  Once you're back on the Code Analysis tab you'll choose the Browse option within the combo box and open the file you just created.

    Read the article

  • London: SQLFAQ 2010 Festive Soirée (Buffet & Dance) - 17th December

    - by NeilHambly
    On the 17th December (Friday Evening) I'm holding a Xmas Soirée (Buffet & Dance) @ Central London club, so dress to impress & join us for this festive Soirée, Enjoy a Fabulous buffet, along with reserved seating for the evening, fee also includes cover charge to club areas which ahs multiple different dance floors & music Cost Per Person is £25 (Includes finger buffet & first drink, resevred seating & club access) Please notify me if you wish to be included in this as bookings...(read more)

    Read the article

  • Unlocking Productivity

    - by Michael Snow
    Unlocking Productivity in Life Sciences with Consolidated Content Management by Joe Golemba, Vice President, Product Management, Oracle WebCenter As life sciences organizations look to become more operationally efficient, the ability to effectively leverage information is a competitive advantage. Whether data mining at the drug discovery phase or prepping the sales team before a product launch, content management can play a key role in developing, organizing, and disseminating vital information. The goal of content management is relatively straightforward: put the information that people need where they can find it. A number of issues can complicate this; information sits in many different systems, each of those systems has its own security, and the information in those systems exists in many different formats. Identifying and extracting pertinent information from mountains of farflung data is no simple job, but the alternative—wasted effort or even regulatory compliance issues—is worse. An integrated information architecture can enable health sciences organizations to make better decisions, accelerate clinical operations, and be more competitive. Unstructured data matters Often when we think of drug development data, we think of structured data that fits neatly into one or more research databases. But structured data is often directly supported by unstructured data such as experimental protocols, reaction conditions, lot numbers, run times, analyses, and research notes. As life sciences companies seek integrated views of data, they are typically finding diverse islands of data that seemingly have no relationship to other data in the organization. Information like sales reports or call center reports can be locked into siloed systems, and unavailable to the discovery process. Additionally, in the increasingly networked clinical environment, Web pages, instant messages, videos, scientific imaging, sales and marketing data, collaborative workspaces, and predictive modeling data are likely to be present within an organization, and each source potentially possesses information that can help to better inform specific efforts. Historically, content management solutions that had 21CFR Part 11 capabilities—electronic records and signatures—were focused mainly on content-enabling manufacturing-related processes. Today, life sciences companies have many standalone repositories, requiring different skills, service level agreements, and vendor support costs to manage them. With the amount of content doubling every three to six months, companies have recognized the need to manage unstructured content from the beginning, in order to increase employee productivity and operational efficiency. Using scalable and secure enterprise content management (ECM) solutions, organizations can better manage their unstructured content. These solutions can also be integrated with enterprise resource planning (ERP) systems or research systems, making content available immediately, in the context of the application and within the flow of the employee’s typical business activity. Administrative safeguards—such as content de-duplication—can also be applied within ECM systems, so documents are never recreated, eliminating redundant efforts, ensuring one source of truth, and maintaining content standards in the organization. Putting it in context Consolidating structured and unstructured information in a single system can greatly simplify access to relevant information when it is needed through contextual search. Using contextual filters, results can include therapeutic area, position in the value chain, semantic commonalities, technology-specific factors, specific researchers involved, or potential business impact. The use of taxonomies is essential to organizing information and enabling contextual searches. Taxonomy solutions are composed of a hierarchical tree that defines the relationship between different life science terms. When overlaid with additional indexing related to research and/or business processes, it becomes possible to effectively narrow down the amount of data that is returned during searches, as well as prioritize results based on specific criteria and/or prior search history. Thus, search results are more accurate and relevant to an employee’s day-to-day work. For example, a search for the word "tissue" by a lab researcher would return significantly different results than a search for the same word performed by someone in procurement. Of course, diverse data repositories, combined with the immense amounts of data present in an organization, necessitate that the data elements be regularly indexed and cached beforehand to enable reasonable search response times. In its simplest form, indexing of a single, consolidated data warehouse can be expected to be a relatively straightforward effort. However, organizations require the ability to index multiple data repositories, enabling a single search to reference multiple data sources and provide an integrated results listing. Security and compliance Beyond yielding efficiencies and supporting new insight, an enterprise search environment can support important security considerations as well as compliance initiatives. For example, the systems enable organizations to retain the relevance and the security of the indexed systems, so users can only see the results to which they are granted access. This is especially important as life sciences companies are working in an increasingly networked environment and need to provide secure, role-based access to information across multiple partners. Although not officially required by the 21 CFR Part 11 regulation, the U.S. Food and Drug Administraiton has begun to extend the type of content considered when performing relevant audits and discoveries. Having an ECM infrastructure that provides centralized management of all content enterprise-wide—with the ability to consistently apply records and retention policies along with the appropriate controls, validations, audit trails, and electronic signatures—is becoming increasingly critical for life sciences companies. Making the move Creating an enterprise-wide ECM environment requires moving large amounts of content into a single enterprise repository, a daunting and risk-laden initiative. The first key is to focus on data taxonomy, allowing content to be mapped across systems. The second is to take advantage new tools which can dramatically speed and reduce the cost of the data migration process through automation. Additional content need not be frozen while it is migrated, enabling productivity throughout the process. The ability to effectively leverage information into success has been gaining importance in the life sciences industry for years. The rapid adoption of enterprise content management, both in operational processes as well as in scientific management, are clear indicators that the companies are looking to use all available data to be better informed, improve decision making, minimize risk, and increase time to market, to maintain profitability and be more competitive. As more and more varieties and sources of information are brought under the strategic management umbrella, the ability to divine knowledge from the vast pool of information is increasingly difficult. Simple search engines and basic content management are increasingly unable to effectively extract the right information from the mountains of data available. By bringing these tools into context and integrating them with business processes and applications, we can effectively focus on the right decisions that make our organizations more profitable. More Information Oracle will be exhibiting at DIA 2012 in Philadelphia on June 25-27. Stop by our booth Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} (#2825) to learn more about the advantages of a centralized ECM strategy and see the Oracle WebCenter Content solution, our 21 CFR Part 11 compliant content management platform.

    Read the article

  • Organizing Git repositories with common nested sub-modules

    - by André Caron
    I'm a big fan of Git sub-modules. I like to be able to track a dependency along with its version, so that you can roll-back to a previous version of your project and have the corresponding version of the dependency to build safely and cleanly. Moreover, it's easier to release our libraries as open source projects as the history for libraries is separate from that of the applications that depend on them (and which are not going to be open sourced). I'm setting up workflow for multiple projects at work, and I was wondering how it would be if we took this approach a bit of an extreme instead of having a single monolithic project. I quickly realized there is a potential can of worms in really using sub-modules. Supposing a pair of applications: studio and player, and dependent libraries core, graph and network, where dependencies are as follows: core is standalone graph depends on core (sub-module at ./libs/core) network depdends on core (sub-module at ./libs/core) studio depends on graph and network (sub-modules at ./libs/graph and ./libs/network) player depends on graph and network (sub-modules at ./libs/graph and ./libs/network) Suppose that we're using CMake and that each of these projects has unit tests and all the works. Each project (including studio and player) must be able to be compiled standalone to perform code metrics, unit testing, etc. The thing is, a recursive git submodule fetch, then you get the following directory structure: studio/ studio/libs/ (sub-module depth: 1) studio/libs/graph/ studio/libs/graph/libs/ (sub-module depth: 2) studio/libs/graph/libs/core/ studio/libs/network/ studio/libs/network/libs/ (sub-module depth: 2) studio/libs/network/libs/core/ Notice that core is cloned twice in the studio project. Aside from this wasting disk space, I have a build system problem because I'm building core twice and I potentially get two different versions of core. Question How do I organize sub-modules so that I get the versioned dependency and standalone build without getting multiple copies of common nested sub-modules? Possible solution If the the library dependency is somewhat of a suggestion (i.e. in a "known to work with version X" or "only version X is officially supported" fashion) and potential dependent applications or libraries are responsible for building with whatever version they like, then I could imagine the following scenario: Have the build system for graph and network tell them where to find core (e.g. via a compiler include path). Define two build targets, "standalone" and "dependency", where "standalone" is based on "dependency" and adds the include path to point to the local core sub-module. Introduce an extra dependency: studio on core. Then, studio builds core, sets the include path to its own copy of the core sub-module, then builds graph and network in "dependency" mode. The resulting folder structure looks like: studio/ studio/libs/ (sub-module depth: 1) studio/libs/core/ studio/libs/graph/ studio/libs/graph/libs/ (empty folder, sub-modules not fetched) studio/libs/network/ studio/libs/network/libs/ (empty folder, sub-modules not fetched) However, this requires some build system magic (I'm pretty confident this can be done with CMake) and a bit of manual work on the part of version updates (updating graph might also require updating core and network to get a compatible version of core in all projects). Any thoughts on this?

    Read the article

  • MySQL Multi-Aggregated Rows in Crosstab Queries

    MySQL's crosstabs contain aggregate functions on two or more fields, presented in a tabular format. In a multi-aggregate crosstab query, two different functions can be applied to the same field or the same function can be applied to multiple fields on the same (row or column) axis. Rob Gravelle shows you how to apply two different functions to the same field in order to create grouping levels in the row axis.

    Read the article

  • MySQL Multi-Aggregated Rows in Crosstab Queries

    MySQL's crosstabs contain aggregate functions on two or more fields, presented in a tabular format. In a multi-aggregate crosstab query, two different functions can be applied to the same field or the same function can be applied to multiple fields on the same (row or column) axis. Rob Gravelle shows you how to apply two different functions to the same field in order to create grouping levels in the row axis.

    Read the article

  • Need your feedback on our new SQL Server Connectivity portal

    - by The Official Microsoft IIS Site
    SQL Server, as a database product, has grown over the years and there are multiple ways to connect to it. Often, the different ways to connect to the database get documented and discussed in the various technology sections, and the technology choice determines which connectivity method one is going to use. For example, if one is writing a C++ application then one has to go with ODBC whereas a PHP web site developer will choose the PHP driver of course. Until now, this information was scattered all...(read more)

    Read the article

  • How do I make a more or less realistic water surface?

    - by Johnny
    I want to make a similar water surface like in this picture: http://www.publicdomainpictures.net/pictures/20000/velka/water-surface-detail-11291208064MpI.jpg I need the water surface in the same view than in the picture. Is it possible to work without shaders? I want to develop a little game for Xbox Live Indie Marketplace, Windows Phone and maybe later iPhone/iPad. How should I make the water surface, so that it works on multiple platforms?

    Read the article

  • Oracle WebCenter: Composite Applications & Mash-Ups

    - by kellsey.ruppel(at)oracle.com
    We’ve talked in previous weeks about the key goals of the new release of WebCenter are providing a Modern User Experience, unparalleled Application Integration, converging all the best of the existing portal platforms into WebCenter and delivering a Common User Experience Architecture.  We’ve provided an overview of Oracle WebCenter and discussed some of the other key goals in previous weeks, and this week, we’ll focus on how with the new release of Oracle WebCenter you can create composite applications and mashups.We recently talked with Sachin Agarwal, Director of Product Management of Enterprise 2.0 at Oracle around the topic of Composite Applications and Mashups. Oracle WebCenter provides a rich set of tools and capabilities for pulling in content, applications and collaboration functionality from various different sources and weaving them together into what we call Mashups. Mashups that also consists of transactional applications from multiple sources are specifically called Composite Applications. With the latest release of Oracle WebCenter one can develop highly productive tasked based interfaces that aggregate a related set of applications that are part of a business process and provide in context collaboration tools so that users don’t have to navigate away to different tabs to achieve these tasks. For instance, a call center representative (CSR), not only needs to be able to pull customer information from a CRM application like Siebel, but also related information from Oracle E-Business Suite about whether a specific order has shipped. The CSR will be far more efficient if he or she does not have to open different tabs to login into multiple applications while the customer is waiting, but can access all this information in one mashup.Oracle WebCenter Suite provides a comprehensive set of tooling that enables a business user to quickly aggregate together a mashup and wire-in different backend applications to create a custom dashboard. Not only does Oracle WebCenter supports a wide set of standards (WSRP 1.0, 2.0, JSR 168, JSR 286) that allow portlets  from other applications to be surfaced within WebCenter, but it also provides tools to bring in other web applications such as .Net Applications  as well as SharePoint webparts. The new Business Mash-up editor allows business users to take any Oracle Application or 3rd party application and wire the backend data sources or APIs to a rich set of visualizations and reuse them in mashups.  Moreover, Business users can customize or personalize any page using Oracle WebCenter Composer’s on-the-fly visual page editing features. Users access and select different resource components available in Oracle WebCenter’s Business Dictionary in order to add new content to the page. The Business Dictionary provides a role-based view of available components or resources, and these components can include information from a variety of enterprise resources such as enterprise applications, managed content, rich media, business processes, or business intelligence systems. Together, Oracle WebCenter’s Composer and Business Dictionary give users access to a powerful, yet easy to use, set of tools to personalize and extend their Oracle WebCenter portals and applications without involving IT.Keep checking back this week as we share more information on how you can easily create Commposite Applications and Mashups with Oracle WebCenter .Technorati Tags: UXP, collaboration, enterprise 2.0, modern user experience, oracle, portals, webcenter, applications, mashups, composite applications

    Read the article

  • Oracle WebCenter: Composite Applications & Mash-Ups

    - by kellsey.ruppel(at)oracle.com
    We’ve talked in previous weeks about the key goals of the new release of WebCenter are providing a Modern User Experience, unparalleled Application Integration, converging all the best of the existing portal platforms into WebCenter and delivering a Common User Experience Architecture.  We’ve provided an overview of Oracle WebCenter and discussed some of the other key goals in previous weeks, and this week, we’ll focus on how with the new release of Oracle WebCenter you can create composite applications and mashups.We recently talked with Sachin Agarwal, Director of Product Management of Enterprise 2.0 at Oracle around the topic of Composite Applications and Mashups. Oracle WebCenter provides a rich set of tools and capabilities for pulling in content, applications and collaboration functionality from various different sources and weaving them together into what we call Mashups. Mashups that also consists of transactional applications from multiple sources are specifically called Composite Applications. With the latest release of Oracle WebCenter one can develop highly productive tasked based interfaces that aggregate a related set of applications that are part of a business process and provide in context collaboration tools so that users don’t have to navigate away to different tabs to achieve these tasks. For instance, a call center representative (CSR), not only needs to be able to pull customer information from a CRM application like Siebel, but also related information from Oracle E-Business Suite about whether a specific order has shipped. The CSR will be far more efficient if he or she does not have to open different tabs to login into multiple applications while the customer is waiting, but can access all this information in one mashup.Oracle WebCenter Suite provides a comprehensive set of tooling that enables a business user to quickly aggregate together a mashup and wire-in different backend applications to create a custom dashboard. Not only does Oracle WebCenter supports a wide set of standards (WSRP 1.0, 2.0, JSR 168, JSR 286) that allow portlets  from other applications to be surfaced within WebCenter, but it also provides tools to bring in other web applications such as .Net Applications  as well as SharePoint webparts. The new Business Mash-up editor allows business users to take any Oracle Application or 3rd party application and wire the backend data sources or APIs to a rich set of visualizations and reuse them in mashups.  Moreover, Business users can customize or personalize any page using Oracle WebCenter Composer’s on-the-fly visual page editing features. Users access and select different resource components available in Oracle WebCenter’s Business Dictionary in order to add new content to the page. The Business Dictionary provides a role-based view of available components or resources, and these components can include information from a variety of enterprise resources such as enterprise applications, managed content, rich media, business processes, or business intelligence systems. Together, Oracle WebCenter’s Composer and Business Dictionary give users access to a powerful, yet easy to use, set of tools to personalize and extend their Oracle WebCenter portals and applications without involving IT.Keep checking back this week as we share more information on how you can easily create Commposite Applications and Mashups with Oracle WebCenter .Technorati Tags: UXP, collaboration, enterprise 2.0, modern user experience, oracle, portals, webcenter, applications, mashups, composite applications

    Read the article

  • Oracle WebCenter: Composite Applications & Mash-Ups

    - by kellsey.ruppel(at)oracle.com
    We’ve talked in previous weeks about the key goals of the new release of WebCenter are providing a Modern User Experience, unparalleled Application Integration, converging all the best of the existing portal platforms into WebCenter and delivering a Common User Experience Architecture.  We’ve provided an overview of Oracle WebCenter and discussed some of the other key goals in previous weeks, and this week, we’ll focus on how with the new release of Oracle WebCenter you can create composite applications and mashups.We recently talked with Sachin Agarwal, Director of Product Management of Enterprise 2.0 at Oracle around the topic of Composite Applications and Mashups. Oracle WebCenter provides a rich set of tools and capabilities for pulling in content, applications and collaboration functionality from various different sources and weaving them together into what we call Mashups. Mashups that also consists of transactional applications from multiple sources are specifically called Composite Applications. With the latest release of Oracle WebCenter one can develop highly productive tasked based interfaces that aggregate a related set of applications that are part of a business process and provide in context collaboration tools so that users don’t have to navigate away to different tabs to achieve these tasks. For instance, a call center representative (CSR), not only needs to be able to pull customer information from a CRM application like Siebel, but also related information from Oracle E-Business Suite about whether a specific order has shipped. The CSR will be far more efficient if he or she does not have to open different tabs to login into multiple applications while the customer is waiting, but can access all this information in one mashup.Oracle WebCenter Suite provides a comprehensive set of tooling that enables a business user to quickly aggregate together a mashup and wire-in different backend applications to create a custom dashboard. Not only does Oracle WebCenter supports a wide set of standards (WSRP 1.0, 2.0, JSR 168, JSR 286) that allow portlets  from other applications to be surfaced within WebCenter, but it also provides tools to bring in other web applications such as .Net Applications  as well as SharePoint webparts. The new Business Mash-up editor allows business users to take any Oracle Application or 3rd party application and wire the backend data sources or APIs to a rich set of visualizations and reuse them in mashups.  Moreover, Business users can customize or personalize any page using Oracle WebCenter Composer’s on-the-fly visual page editing features. Users access and select different resource components available in Oracle WebCenter’s Business Dictionary in order to add new content to the page. The Business Dictionary provides a role-based view of available components or resources, and these components can include information from a variety of enterprise resources such as enterprise applications, managed content, rich media, business processes, or business intelligence systems. Together, Oracle WebCenter’s Composer and Business Dictionary give users access to a powerful, yet easy to use, set of tools to personalize and extend their Oracle WebCenter portals and applications without involving IT.Keep checking back this week as we share more information on how you can easily create Commposite Applications and Mashups with Oracle WebCenter .Technorati Tags: UXP, collaboration, enterprise 2.0, modern user experience, oracle, portals, webcenter, applications, mashups, composite applications

    Read the article

< Previous Page | 415 416 417 418 419 420 421 422 423 424 425 426  | Next Page >