Search Results

Search found 22098 results on 884 pages for 'service oriented architec'.

Page 42/884 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • JS closures - Passing a function to a child, how should the shared object be accessed

    - by slicedtoad
    I have a design and am wondering what the appropriate way to access variables is. I'll demonstrate with this example since I can't seem to describe it better than the title. Term is an object representing a bunch of time data (a repeating duration of time defined by a bunch of attributes) Term has some print functionality but does not implement the print functions itself, rather they are passed in as anonymous functions by the parent. This would be similar to how shaders can be passed to a renderer rather than defined by the renderer. A container (let's call it Box) has a Schedule object that can understand and use Term objects. Box creates Term objects and passes them to Schedule as required. Box also defines the print functions stored in Term. A print function usually takes an argument and uses it to return a string based on that argument and Term's internal data. Sometime the print function could also use data stored in Schedule, though. I'm calling this data shared. So, the question is, what is the best way to access this shared data. I have a lot of options since JS has closures and I'm not familiar enough to know if I should be using them or avoiding them in this case. Options: Create a local "reference" (term used lightly) to the shared data (data is not a primitive) when defining the print function by accessing the shared data through Schedule from Box. Example: var schedule = function(){ var sched = Schedule(); var t1 = Term( function(x){ // Term.print() return (x + sched.data).format(); }); }; Bind it to Term explicitly. (Pass it in Term's constructor or something). Or bind it in Sched after Box passes it. And then access it as an attribute of Term. Pass it in at the same time x is passed to the print function, (from sched). This is the most familiar way for my but it doesn't feel right given JS's closure ability. Do something weird like bind some context and arguments to print. I'm hoping the correct answer isn't purely subjective. If it is, then I guess the answer is just "do whatever works". But I feel like there are some significant differences between the approaches that could have a large impact when stretched beyond my small example.

    Read the article

  • Very simple OOP question

    - by Mosty Mostacho
    I was creating and discussing a class diagram with a partner of mine. To simplify things, I've modify the real domain we're working on and made up the following diagram: Basically, a company works on constructions that are quite different one from each other but are still constructions. Note I've added one field for each class but there should be many more. Now, I thought this was the way to go but my partner told me that if in the future new construction classes appear we would have to modify the Company class, which is correct. So the new proposed class diagram would be this: Now I've been wondering: Should the fact that in no place of the application will there be mixed lists of planes and bridges affect the design in any way? When we have to list only planes for a company, how are we supposed to distinguish them from the other elements in the list without checking for their class names? Related to the previous question, is it correct to assume that this type of diagram should be high-level and this is something it shouldn't matter at this stage but rather be thought and decided at implementation time? Any comment will be appreciated.

    Read the article

  • How do we keep dependent data structures up to date?

    - by Geo
    Suppose you have a parse tree, an abstract syntax tree, and a control flow graph, each one logically derived from the one before. In principle it is easy to construct each graph given the parse tree, but how can we manage the complexity of updating the graphs when the parse tree is modified? We know exactly how the tree has been modified, but how can the change be propagated to the other trees in a way that doesn't become difficult to manage? Naturally the dependent graph can be updated by simply reconstructing it from scratch every time the first graph changes, but then there would be no way of knowing the details of the changes in the dependent graph. I currently have four ways to attempt to solve this problem, but each one has difficulties. Nodes of the dependent tree each observe the relevant nodes of the original tree, updating themselves and the observer lists of original tree nodes as necessary. The conceptual complexity of this can become daunting. Each node of the original tree has a list of the dependent tree nodes that specifically depend upon it, and when the node changes it sets a flag on the dependent nodes to mark them as dirty, including the parents of the dependent nodes all the way down to the root. After each change we run an algorithm that is much like the algorithm for constructing the dependent graph from scratch, but it skips over any clean node and reconstructs each dirty node, keeping track of whether the reconstructed node is actually different from the dirty node. This can also get tricky. We can represent the logical connection between the original graph and the dependent graph as a data structure, like a list of constraints, perhaps designed using a declarative language. When the original graph changes we need only scan the list to discover which constraints are violated and how the dependent tree needs to change to correct the violation, all encoded as data. We can reconstruct the dependent graph from scratch as though there were no existing dependent graph, and then compare the existing graph and the new graph to discover how it has changed. I'm sure this is the easiest way because I know there are algorithms available for detecting differences, but they are all quite computationally expensive and in principle it seems unnecessary so I'm deliberately avoiding this option. What is the right way to deal with these sorts of problems? Surely there must be a design pattern that makes this whole thing almost easy. It would be nice to have a good solution for every problem of this general description. Does this class of problem have a name?

    Read the article

  • If immutable objects are good, why do people keep creating mutable objects?

    - by Vinoth Kumar
    If immutable objects are good,simple and offers benefits in concurrent programming why do programmers keep creating mutable objects? I have four years of experience in Java programming and as I see it, the first thing people do after creating a class is generate getters and setters in the IDE (thus making it mutable). Is there a lack of awareness or can we get away with using mutable objects in most scenarios?

    Read the article

  • Turning your code inside out (functional style) compared to a OO paradigm

    - by Acaz Souza
    I have find this article Turning Your Code Inside Out and I want to know how this approach described in article is for OO programmers/languages. Is this style of design used in OO programmers/languages? What's downsides and goodsides of this approach in a OO language? Update: OO objects have state and behavior, the design explained in article is stateless. Is not only Single Responsability Principle. (If I'm talking shit, please explain to me instead of only downside/close votes)

    Read the article

  • What is considered third party code?

    - by Songo
    Inspired by this question Using third-party libraries - always use a wrapper? I wanted to know what people actually consider as third-party libraries. Example from PHP: If I'm building an application using Zend framework, should I treat Zend framework libraries as third party code? Example from C#: If I'm building a desktop application, should I treat all .Net classes as third party code? Example from Java: Should I treat all libraries in the JDK as third party libraries? Some people say that if a library is stable and won't change often then one doesn't need to wrap it. However I fail to see how one would test a class that depends on a third party code without wrapping it.

    Read the article

  • Better solution then simple factory method when concrete implementations have different attributes

    - by danip
    abstract class Animal { function eat() {..} function sleep() {..} function isSmart() } class Dog extends Animal { public $blnCanBark; function isSmart() { return $this->blnCanBark; } } class Cat extends Animal { public $blnCanJumpHigh; function isSmart() { return $this->blnCanJumpHigh; } } .. and so on up to 10-20 animals. Now I created a factory using simple factory method and try to create instances like this: class AnimalFactory { public static function create($strName) { switch($strName) { case 'Dog': return new Dog(); case 'Cat': return new Cat(); default: break; } } } The problem is I can't set the specific attributes like blnCanBark, blnCanJumpHigh in an efficient way. I can send all of them as extra params to create but this will not scale to more then a few classes. Also I can't break the inheritance because a lot of the basic functionality is the same. Is there a better pattern to solve this?

    Read the article

  • A programming language that does not allow IO. Haskell is not a pure language

    - by TheIronKnuckle
    (I asked this on Stack Overflow and it got closed as off-topic, I was a bit confused until I read the FAQ, which discouraged subjective theoratical debate style questions. The FAQ here doesn't seem to have a problem with it and it sounds like this is a more appropriate place to post. If this gets closed again, forgive me, I'm not trying to troll) Are there any 100% pure languages (as I describe in the Stack Overflow post) out there already and if so, could they feasibly be used to actually do stuff? i.e. do they have an implementation? I'm not looking for raw maths on paper/Pure lambda calculus. However Pure lambda calculus with a compiler or a runtime system attached is something I'd be interested in hearing about.

    Read the article

  • Pattern for a class that does only one thing

    - by Heinzi
    Let's say I have a procedure that does stuff: void doStuff(initalParams) { ... } Now I discover that "doing stuff" is quite a compex operation. The procedure becomes large, I split it up into multiple smaller procedures and soon I realize that having some kind of state would be useful while doing stuff, so that I need to pass less parameters between the small procedures. So, I factor it out into its own class: class StuffDoer { private someInternalState; public Start(initalParams) { ... } // some private helper procedures here ... } And then I call it like this: new StuffDoer().Start(initialParams); or like this: new StuffDoer(initialParams).Start(); And this is what feels wrong. When using the .NET or Java API, I always never call new SomeApiClass().Start(...);, which makes me suspect that I'm doing it wrong. Sure, I could make StuffDoer's constructor private and add a static helper method: public static DoStuff(initalParams) { new StuffDoer().Start(initialParams); } But then I'd have a class whose external interface consists of only one static method, which also feels weird. Hence my question: Is there a well-established pattern for this type of classes that have only one entry point and have no "externally recognizable" state, i.e., instance state is only required during execution of that one entry point?

    Read the article

  • Rails: Law of Demeter Confusion

    - by user2158382
    I am reading a book called Rails AntiPatterns and they talk about using delegation to to avoid breaking the Law of Demeter. Here is their prime example: They believe that calling something like this in the controller is bad (and I agree) @street = @invoice.customer.address.street Their proposed solution is to do the following: class Customer has_one :address belongs_to :invoice def street address.street end end class Invoice has_one :customer def customer_street customer.street end end @street = @invoice.customer_street They are stating that since you only use one dot, you are not breaking the Law of Demeter here. I think this is incorrect, because you are still going through customer to go through address to get the invoice's street. I primarily got this idea from a blog post I read: http://www.dan-manges.com/blog/37 In the blog post the prime example is class Wallet attr_accessor :cash end class Customer has_one :wallet # attribute delegation def cash @wallet.cash end end class Paperboy def collect_money(customer, due_amount) if customer.cash < due_ammount raise InsufficientFundsError else customer.cash -= due_amount @collected_amount += due_amount end end end The blog post states that although there is only one dot customer.cash instead of customer.wallet.cash, this code still violates the Law of Demeter. Now in the Paperboy collect_money method, we don't have two dots, we just have one in "customer.cash". Has this delegation solved our problem? Not at all. If we look at the behavior, a paperboy is still reaching directly into a customer's wallet to get cash out. EDIT I completely understand and agree that this is still a violation and I need to create a method in Wallet called withdraw that handles the payment for me and that I should call that method inside the Customer class. What I don't get is that according to this process, my first example still violates the Law of Demeter because Invoice is still reaching directly into Customer to get the street. Can somebody help me clear the confusion. I have been searching for the past 2 days trying to let this topic sink in, but it is still confusing.

    Read the article

  • Relative encapsulation design

    - by taher1992
    Let's say I am doing a 2D application with the following design: There is the Level object that manages the world, and there are world objects which are entities inside the Level object. A world object has a location and velocity, as well as size and a texture. However, a world object only exposes get properties. The set properties are private (or protected) and are only available to inherited classes. But of course, Level is responsible for these world objects, and must somehow be able to manipulate at least some of its private setters. But as of now, Level has no access, meaning world objects must change its private setters to public (violating encapsulation). How to tackle this problem? Should I just make everything public? Currently what I'm doing is having a inner class inside game object that does the set work. So when Level needs to update an objects location it goes something like this: void ChangeObject(GameObject targetObject, int newX, int newY){ // targetObject.SetX and targetObject.SetY cannot be set directly var setter = new GameObject.Setter(targetObject); setter.SetX(newX); setter.SetY(newY); } This code feels like overkill, but it doesn't feel right to have everything public so that anything can change an objects location for example.

    Read the article

  • Make methods that do not depend on instance fields, static?

    - by m3th0dman
    Recently I started programming in Groovy for a integration testing framework, for a Java project. I use Intellij IDEA with Groovy plug-in and I am surprised to see as a warning for all the methods that are non-static and do not depend on any instance fields. In Java, however, this is not an issue (at least from IDE's point of view). Should all methods that do not depend onto any instance fields be transformed into static functions? If true, is this specific to Groovy or it is available for OOP in general? And why?

    Read the article

  • Recommened design pattern to handle multiple compression algorithms for a class hierarchy

    - by sgorozco
    For all you OOD experts. What would be the recommended way to model the following scenario? I have a certain class hierarchy similar to the following one: class Base { ... } class Derived1 : Base { ... } class Derived2 : Base { ... } ... Next, I would like to implement different compression/decompression engines for this hierarchy. (I already have code for several strategies that best handle different cases, like file compression, network stream compression, legacy system compression, etc.) I would like the compression strategy to be pluggable and chosen at runtime, however I'm not sure how to handle the class hierarchy. Currently I have a tighly-coupled design that looks like this: interface ICompressor { byte[] Compress(Base instance); } class Strategy1Compressor : ICompressor { byte[] Compress(Base instance) { // Common compression guts for Base class ... // if( instance is Derived1 ) { // Compression guts for Derived1 class } if( instance is Derived2 ) { // Compression guts for Derived2 class } // Additional compression logic to handle other class derivations ... } } As it is, whenever I add a new derived class inheriting from Base, I would have to modify all compression strategies to take into account this new class. Is there a design pattern that allows me to decouple this, and allow me to easily introduce more classes to the Base hierarchy and/or additional compression strategies?

    Read the article

  • Accessing a Web Service: Learning Resource needed

    - by abel
    I have been searching for resources to learn (Java) Web Services. Although I have found a lot of resources and tutorials on JWS, I am confused with the version numbers, the abbreviations and Metro. Plus the last update to Metro was in 2008. Is it a worthwile thing to learn? I wanted to learn how to access Web Services, since an upcoming project is about accessing one. I have some experience with OAuth on Twitter(using code available). Things I know about the project: I have to access a Web Service. Java is the preferred platform to use(Although I know I can use any). Axis can be used to access the Web Service(I have never used Axis) I have a meeting scheduled to learn more, but I sure don't want to look silly since I am no Java expert, have never created or accessed Web Services using Java. My Questions: 1.Can someone point me to a tutorial which will help me learn how to access a already running Web Service (Preferably SOAP(?), not REST. It's XML based) 2. Will you recommend using PHP or Python to do the work of accessing the web service? I am expecting a lot of nay saying, but I hope I get some answers too. I will clarify things if needed.

    Read the article

  • What is the use of Association, Aggregation and Composition (Encapsulation) in Classes

    - by SahilMahajanMj
    I have gone through lots of theories about what is encapsulation and the three techniques of implementing it, which are Association, Aggregation and Composition. What i found is, Encapsulation Encapsulation is the technique of making the fields in a class private and providing access to the fields via public methods. If a field is declared private, it cannot be accessed by anyone outside the class, thereby hiding the fields within the class. For this reason, encapsulation is also referred to as data hiding. Encapsulation can be described as a protective barrier that prevents the code and data being randomly accessed by other code defined outside the class. Access to the data and code is tightly controlled by an interface. The main benefit of encapsulation is the ability to modify our implemented code without breaking the code of others who use our code. With this feature Encapsulation gives maintainability, flexibility and extensibility to our code. Association Association is a relationship where all object have their own lifecycle and there is no owner. Let’s take an example of Teacher and Student. Multiple students can associate with single teacher and single student can associate with multiple teachers but there is no ownership between the objects and both have their own lifecycle. Both can create and delete independently. Aggregation Aggregation is a specialize form of Association where all object have their own lifecycle but there is ownership and child object can not belongs to another parent object. Let’s take an example of Department and teacher. A single teacher can not belongs to multiple departments, but if we delete the department teacher object will not destroy. We can think about “has-a” relationship. Composition Composition is again specialize form of Aggregation and we can call this as a “death” relationship. It is a strong type of Aggregation. Child object dose not have their lifecycle and if parent object deletes all child object will also be deleted. Let’s take again an example of relationship between House and rooms. House can contain multiple rooms there is no independent life of room and any room can not belongs to two different house if we delete the house room will automatically delete. The question is: Now these all are real world examples. I am looking for some description about how to use these techniques in actual class code. I mean what is the point for using three different techniques for encapsulation, How these techniques could be implemented and How to choose which technique is applicable at time.

    Read the article

  • Can you point me to a nontrivial strategy pattern implementation?

    - by Eugen Martynov
    We are faced implementing a registration workflow with many branches. There are three main flows which in some conditions lead to one another. Each flow has at least four different steps; some steps interact with the server, and every step adds more information to the state. Also the requirement is to have it persistent between sessions, so if the user closes the app (this is a mobile app), it will restore the process from the last completed step with the state from the previous session. I think this could benefit from the use of the strategy pattern, but I've never had to implement it for such a complex case. Does anyone know of any examples in open source or articles from which I could find inspiration? Preferably the examples would be from a live/working/stable application. I'm interested in Java implementation mostly; we are developing for Java mobile phones: android, blackberry and J2ME. We have an SDK which is quite well separated from platform specific implementations, but examples in C++, C#, Objective-C or Python would be acceptable.

    Read the article

  • When to use identity comparison instead of equals?

    - by maaartinus
    I wonder why would anybody want to use identity comparison for fields in equals, like here (Java syntax): class C { private A a; public boolean equals(Object other) { // standard boring prelude if (other==this) return true; if (other==null) return false; if (other.getClass() != this.getClass()) return false; C c = (C) other; // the relevant part if (c.a != this.a) return false; // more tests... and then return true; } // getter, setters, hashCode, ... } Using == is a bit faster than equals and a bit shorter (due to no need for null tests), too, but in what cases (if any) you'd say it's really better to use == for fields inside equals?

    Read the article

  • Help to understand the abstract factory pattern

    - by Chobeat
    I'm learning the 23 design patterns of the GoF. I think I've found a way to understand and simplify how the Abstract Factory works but I would like to know if this is a correct assumption or if I am wrong. What I want to know is if we can see the result of the Abstract Factory method as a matrix of possible products where there's a Product for every "Concrete Factory" x "AbstractProduct" where the Concrete Factory is a single implementation among the implementations of an AbstractFactory and an AbstractProduct is an interface among the interfaces to create Products. Is this correct or am I missing something?

    Read the article

  • Inheritance vs composition in this example

    - by Gerenuk
    I'm wondering about the differences between inheritance and composition examined with concrete code relevant arguments. In particular my example was Inheritance: class Do: def do(self): self.doA() self.doB() def doA(self): pass def doB(self): pass class MyDo(Do): def doA(self): print("A") def doB(self): print("B") x=MyDo() vs Composition: class Do: def __init__(self, a, b): self.a=a self.b=b def do(self): self.a.do() self.b.do() x=Do(DoA(), DoB()) (Note for composition I'm missing code so it's not actually shorter) Can you name particular advantages of one or the other? I'm think of: composition is useful if you plan to reuse DoA() in another context inheritance seems easier; no additional references/variables/initialization method doA can access internal variable (be it a good or bad thing :) ) inheritance groups logic A and B together; even though you could equally introduce a grouped delegate object inheritance provides a preset class for the users; with composition you'd have to encapsule the initialization in a factory so that the user does have to assemble the logic and the skeleton ... Basically I'd like to examine the implications of inheritance vs composition. I heard often composition is prefered, but I'd like to understand that by example. Of course I can always start with one and refactor later to the other.

    Read the article

  • DB Schema for ACL involving 3 subdomains

    - by blacktie24
    Hi, I am trying to design a database schema for a web app which has 3 subdomains: a) internal employees b) clients c) contractors. The users will be able to communicate with each other to some degree, and there may be some resources that overlap between them. Any thoughts about this schema? Really appreciate your time and thoughts on this. Cheers! -- -- Table structure for table locations CREATE TABLE IF NOT EXISTS locations ( id bigint(20) NOT NULL, name varchar(250) NOT NULL ) ENGINE=InnoDB DEFAULT CHARSET=latin1; -- -- Table structure for table privileges CREATE TABLE IF NOT EXISTS privileges ( id int(11) NOT NULL AUTO_INCREMENT, name varchar(255) NOT NULL, resource_id int(11) NOT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=10 ; -- -- Table structure for table resources CREATE TABLE IF NOT EXISTS resources ( id int(11) NOT NULL AUTO_INCREMENT, name varchar(255) NOT NULL, user_type enum('internal','client','expert') NOT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=3 ; -- -- Table structure for table roles CREATE TABLE IF NOT EXISTS roles ( id int(11) NOT NULL AUTO_INCREMENT, name varchar(255) NOT NULL, type enum('position','department') NOT NULL, parent_id int(11) DEFAULT NULL, user_type enum('internal','client','expert') NOT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=3 ; -- -- Table structure for table role_perms CREATE TABLE IF NOT EXISTS role_perms ( id int(11) NOT NULL AUTO_INCREMENT, role_id int(11) NOT NULL, privilege_id int(11) NOT NULL, mode varchar(250) NOT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=2 ; -- -- Table structure for table users CREATE TABLE IF NOT EXISTS users ( id int(10) unsigned NOT NULL AUTO_INCREMENT, email varchar(255) NOT NULL, password varchar(255) NOT NULL, salt varchar(255) NOT NULL, type enum('internal','client','expert') NOT NULL, first_name varchar(255) NOT NULL, last_name varchar(255) NOT NULL, location_id int(11) NOT NULL, phone varchar(255) NOT NULL, status enum('active','inactive') NOT NULL DEFAULT 'active', PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=4 ; -- -- Table structure for table user_perms CREATE TABLE IF NOT EXISTS user_perms ( id int(11) NOT NULL AUTO_INCREMENT, user_id int(11) NOT NULL, privilege_id int(11) NOT NULL, mode varchar(250) NOT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=2 ; -- -- Table structure for table user_roles CREATE TABLE IF NOT EXISTS user_roles ( id int(11) NOT NULL, user_id int(11) NOT NULL, role_id int(11) NOT NULL ) ENGINE=InnoDB DEFAULT CHARSET=latin1;

    Read the article

  • Share Mulitple Classes as one dll or a lib with Mulitple Projects

    - by JNL
    Currently I have some shared class files(.cpp and .h) which I include them in around 20 Projects. Currently I have to include them in all of the projects. So if I get some business requirments and I change some of the shared(.cpp or .h) files I have to include them in all the 20 Projects which is kind of tedious. Is there a way where I can create a shared dll or library and include it all of my Projects. So if I have to change it, I just have to change it once and then just Add Reference to include that dll or library which contains all the shared(.cpp, .h) files. Any help/recommendations regarding the same, will be highly appreciated. I am using VS2012 for VC++.

    Read the article

  • Metaobject protocol:Why is it known as an important concept

    - by sushant
    Metaobject protocol is protocol for metaobjects in a programming languages. Although I understand it on simple terms, I want to know the reason and a summary of real world usage patterns of this protocol. So, why exactly is metaobject and more importantly metaobject protocol is such a good idea. I want to know the problem which led to its evolution and also, its high power usage. Opinions as well as general overview/description/alternate explanations are also welcome.

    Read the article

  • In which object should I implement wait()/notify()?

    - by Christopher Francisco
    I'm working in an Android project with multithreading. Basically I have to wait to the server to respond before sending more data. The data sending task is delimited by the flag boolean hasServerResponded so the Thread will loop infinitely without doing anything until the flag becomes true. Since this boolean isn't declared as volatile (yet), and also looping without doing anything wastes resources, I thought maybe I should use AtomicBoolean and also implement wait() / notify() mechanism. Should I use the AtomicBoolean object notify() and wait() methods or should I create a lock Object?

    Read the article

  • Why to say, my function is of IFly type rather than saying it's Airplane type

    - by Vishwas Gagrani
    Say, I have two classes: Airplane and Bird, both of them fly. Both implement the interface IFly. IFly declares a function StartFlying(). Thus both Airplane and Bird have to define the function, and use it as per their requirement. Now when I make a manual for class reference, what should I write for the function StartFlying? 1) StartFlying is a function of type IFly . 2) StartFlying is a function of type Airplane 3) StartFlying is a function of type Bird. My opinion is 2 and 3 are more informative. But what i see is that class references use the 1st one. They say what interface the function is declared in. Problem is, I really don't get any usable information from knowing StartFlying is IFly type. However, knowing that StartFlying is a function inside Airplane and Bird, is more informative, as I can decide which instance (Airplane or Bird ) to use. Any lights on this: how saying StartFlying is a function of type IFly, can help a programmer understanding how to use the function?

    Read the article

  • Design for object with optional and modifiable attributtes?

    - by Ikuzen
    I've been using the Builder pattern to create objects with a large number of attributes, where most of them are optional. But up until now, I've defined them as final, as recommended by Joshua Block and other authors, and haven't needed to change their values. I am wondering what should I do though if I need a class with a substantial number of optional but non-final (mutable) attributes? My Builder pattern code looks like this: public class Example { //All possible parameters (optional or not) private final int param1; private final int param2; //Builder class public static class Builder { private final int param1; //Required parameters private int param2 = 0; //Optional parameters - initialized to default //Builder constructor public Builder (int param1) { this.param1 = param1; } //Setter-like methods for optional parameters public Builder param2(int value) { param2 = value; return this; } //build() method public Example build() { return new Example(this); } } //Private constructor private Example(Builder builder) { param1 = builder.param1; param2 = builder.param2; } } Can I just remove the final keyword from the declaration to be able to access the attributes externally (through normal setters, for example)? Or is there a creational pattern that allows optional but non-final attributes that would be better suited in this case?

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >