Search Results

Search found 22098 results on 884 pages for 'service oriented architec'.

Page 42/884 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • Liskov principle: violation by type-hinting

    - by Elias Van Ootegem
    According to the Liskov principle, a construction like the one below is invalid, as it strengthens a pre-condition. I know the example is pointless/nonsense, but when I last asked a question like this, and used a more elaborate code sample, it seemed to distract people too much from the actual question. //Data models abstract class Argument { protected $value = null; public function getValue() { return $this->value; } abstract public function setValue($val); } class Numeric extends Argument { public function setValue($val) { $this->value = $val + 0;//coerce to number return $this; } } //used here: abstract class Output { public function printValue(Argument $arg) { echo $this->format($arg); return $this; } abstract public function format(Argument $arg); } class OutputNumeric extends Output { public function format(Numeric $arg)//<-- VIOLATION! { $format = is_float($arg->getValue()) ? '%.3f' : '%d'; return sprintf($format, $arg->getValue()); } } My question is this: Why would this kind of "violation" be considered harmful? So much so that some languages, like the one I used in this example (PHP), don't even allow this? I'm not allowed to strengthen the type-hint of an abstract method but, by overriding the printValue method, I am allowed to write: class OutputNumeric extends Output { final public function printValue(Numeric $arg) { echo $this->format($arg); } public function format(Argument $arg) { $format = is_float($arg->getValue()) ? '%.3f' : '%d'; return sprintf($format, $arg->getValue()); } } But this would imply repeating myself for each and every child of Output, and makes my objects harder to reuse. I understand why the Liskov principle exists, don't get me wrong, but I find it somewhat difficult to fathom why the signature of an abstract method in an abstract class has to be adhered to so much stricter than a non-abstract method. Could someone explain to me why I'm not allowed to hind at a child class, in a child class? The way I see it, the child class OutputNumeric is a specific use-case of Output, and thus might need a specific instance of Argument, namely Numeric. Is it really so wrong of me to write code like this?

    Read the article

  • Pattern for a class that does only one thing

    - by Heinzi
    Let's say I have a procedure that does stuff: void doStuff(initalParams) { ... } Now I discover that "doing stuff" is quite a compex operation. The procedure becomes large, I split it up into multiple smaller procedures and soon I realize that having some kind of state would be useful while doing stuff, so that I need to pass less parameters between the small procedures. So, I factor it out into its own class: class StuffDoer { private someInternalState; public Start(initalParams) { ... } // some private helper procedures here ... } And then I call it like this: new StuffDoer().Start(initialParams); or like this: new StuffDoer(initialParams).Start(); And this is what feels wrong. When using the .NET or Java API, I always never call new SomeApiClass().Start(...);, which makes me suspect that I'm doing it wrong. Sure, I could make StuffDoer's constructor private and add a static helper method: public static DoStuff(initalParams) { new StuffDoer().Start(initialParams); } But then I'd have a class whose external interface consists of only one static method, which also feels weird. Hence my question: Is there a well-established pattern for this type of classes that have only one entry point and have no "externally recognizable" state, i.e., instance state is only required during execution of that one entry point?

    Read the article

  • Accessing a Web Service: Learning Resource needed

    - by abel
    I have been searching for resources to learn (Java) Web Services. Although I have found a lot of resources and tutorials on JWS, I am confused with the version numbers, the abbreviations and Metro. Plus the last update to Metro was in 2008. Is it a worthwile thing to learn? I wanted to learn how to access Web Services, since an upcoming project is about accessing one. I have some experience with OAuth on Twitter(using code available). Things I know about the project: I have to access a Web Service. Java is the preferred platform to use(Although I know I can use any). Axis can be used to access the Web Service(I have never used Axis) I have a meeting scheduled to learn more, but I sure don't want to look silly since I am no Java expert, have never created or accessed Web Services using Java. My Questions: 1.Can someone point me to a tutorial which will help me learn how to access a already running Web Service (Preferably SOAP(?), not REST. It's XML based) 2. Will you recommend using PHP or Python to do the work of accessing the web service? I am expecting a lot of nay saying, but I hope I get some answers too. I will clarify things if needed.

    Read the article

  • A programming language that does not allow IO. Haskell is not a pure language

    - by TheIronKnuckle
    (I asked this on Stack Overflow and it got closed as off-topic, I was a bit confused until I read the FAQ, which discouraged subjective theoratical debate style questions. The FAQ here doesn't seem to have a problem with it and it sounds like this is a more appropriate place to post. If this gets closed again, forgive me, I'm not trying to troll) Are there any 100% pure languages (as I describe in the Stack Overflow post) out there already and if so, could they feasibly be used to actually do stuff? i.e. do they have an implementation? I'm not looking for raw maths on paper/Pure lambda calculus. However Pure lambda calculus with a compiler or a runtime system attached is something I'd be interested in hearing about.

    Read the article

  • Better solution then simple factory method when concrete implementations have different attributes

    - by danip
    abstract class Animal { function eat() {..} function sleep() {..} function isSmart() } class Dog extends Animal { public $blnCanBark; function isSmart() { return $this->blnCanBark; } } class Cat extends Animal { public $blnCanJumpHigh; function isSmart() { return $this->blnCanJumpHigh; } } .. and so on up to 10-20 animals. Now I created a factory using simple factory method and try to create instances like this: class AnimalFactory { public static function create($strName) { switch($strName) { case 'Dog': return new Dog(); case 'Cat': return new Cat(); default: break; } } } The problem is I can't set the specific attributes like blnCanBark, blnCanJumpHigh in an efficient way. I can send all of them as extra params to create but this will not scale to more then a few classes. Also I can't break the inheritance because a lot of the basic functionality is the same. Is there a better pattern to solve this?

    Read the article

  • Can you point me to a nontrivial strategy pattern implementation?

    - by Eugen Martynov
    We are faced implementing a registration workflow with many branches. There are three main flows which in some conditions lead to one another. Each flow has at least four different steps; some steps interact with the server, and every step adds more information to the state. Also the requirement is to have it persistent between sessions, so if the user closes the app (this is a mobile app), it will restore the process from the last completed step with the state from the previous session. I think this could benefit from the use of the strategy pattern, but I've never had to implement it for such a complex case. Does anyone know of any examples in open source or articles from which I could find inspiration? Preferably the examples would be from a live/working/stable application. I'm interested in Java implementation mostly; we are developing for Java mobile phones: android, blackberry and J2ME. We have an SDK which is quite well separated from platform specific implementations, but examples in C++, C#, Objective-C or Python would be acceptable.

    Read the article

  • Relative encapsulation design

    - by taher1992
    Let's say I am doing a 2D application with the following design: There is the Level object that manages the world, and there are world objects which are entities inside the Level object. A world object has a location and velocity, as well as size and a texture. However, a world object only exposes get properties. The set properties are private (or protected) and are only available to inherited classes. But of course, Level is responsible for these world objects, and must somehow be able to manipulate at least some of its private setters. But as of now, Level has no access, meaning world objects must change its private setters to public (violating encapsulation). How to tackle this problem? Should I just make everything public? Currently what I'm doing is having a inner class inside game object that does the set work. So when Level needs to update an objects location it goes something like this: void ChangeObject(GameObject targetObject, int newX, int newY){ // targetObject.SetX and targetObject.SetY cannot be set directly var setter = new GameObject.Setter(targetObject); setter.SetX(newX); setter.SetY(newY); } This code feels like overkill, but it doesn't feel right to have everything public so that anything can change an objects location for example.

    Read the article

  • Is ORM an Anti-Pattern?

    - by derphil
    I had a very stimulating and interessting discussion with a colleague about ORM and it's Pros and Cons. In my opinion, an ORM is useful only in the rarest cases. At least in my experience. But I don't want to list my own arguments at this time. So I ask you, what do you think about ORM? What are the Pros and the Cons? P.S. I've posted this "question" yesterday on Stackoverflow, but some of the user think, that this should better posted here.

    Read the article

  • Information Spilling Across Object Boundaries

    - by Winston Ewert
    Many times my business objects tend to have situations where information needs to cross object boundaries too often. When doing OO, we want information to be in one object and as much as possible all code dealing with that information should be in that object. However, business rules do not follow this principle giving me trouble. As an example suppose that we have an Order which has a number of OrderItems which refers to an InventoryItem which has a price. I invoke Order.GetTotal() which sums the result of OrderItem.GetPrice() which multiples a quantity by InventoryItem.GetPrice(). So far so good. But then we find out that some items are sold with a two for one deal. We can handle this by having OrderItem.GetPrice() do something like InventoryItem.GetPrice( quantity ) and letting InventoryItem deal with this. However, then we find out that the two-for-one deal only lasts for a particular time period. This time period needs to be based on the date of the order. Now we change OrderItem.GetPrice() to be InventoryItem.GetPrice( quatity, order.GetDate() ) But then we need to support different prices depending on how long the customer has been in the system: InventoryItem.GetPrice( quantity, order.GetDate(), order.GetCustomer() ) But then it turns out that the two-for-one deals apply not just to buying multiple of the same inventory item but multiple for any item in a InventoryCategory. At this point we throw up our hands and just give the InventoryItem the order item and allow it to travel over the object reference graph via accessors to get the information its needs: InventoryItem.GetPrice( this ) TL;DR I want to have coupling in objects, but business rules often force me to access information from all over the place in order to make particular decisions. Are there good techniques for dealing with this? Do others find the same problem?

    Read the article

  • Rails: Law of Demeter Confusion

    - by user2158382
    I am reading a book called Rails AntiPatterns and they talk about using delegation to to avoid breaking the Law of Demeter. Here is their prime example: They believe that calling something like this in the controller is bad (and I agree) @street = @invoice.customer.address.street Their proposed solution is to do the following: class Customer has_one :address belongs_to :invoice def street address.street end end class Invoice has_one :customer def customer_street customer.street end end @street = @invoice.customer_street They are stating that since you only use one dot, you are not breaking the Law of Demeter here. I think this is incorrect, because you are still going through customer to go through address to get the invoice's street. I primarily got this idea from a blog post I read: http://www.dan-manges.com/blog/37 In the blog post the prime example is class Wallet attr_accessor :cash end class Customer has_one :wallet # attribute delegation def cash @wallet.cash end end class Paperboy def collect_money(customer, due_amount) if customer.cash < due_ammount raise InsufficientFundsError else customer.cash -= due_amount @collected_amount += due_amount end end end The blog post states that although there is only one dot customer.cash instead of customer.wallet.cash, this code still violates the Law of Demeter. Now in the Paperboy collect_money method, we don't have two dots, we just have one in "customer.cash". Has this delegation solved our problem? Not at all. If we look at the behavior, a paperboy is still reaching directly into a customer's wallet to get cash out. EDIT I completely understand and agree that this is still a violation and I need to create a method in Wallet called withdraw that handles the payment for me and that I should call that method inside the Customer class. What I don't get is that according to this process, my first example still violates the Law of Demeter because Invoice is still reaching directly into Customer to get the street. Can somebody help me clear the confusion. I have been searching for the past 2 days trying to let this topic sink in, but it is still confusing.

    Read the article

  • Dependency Injection: Only for single-instance objects?

    - by HappyDeveloper
    What if I want to also decouple my application, from classes like Product or User? (which usually have more than one instance) Take a look at this example: class Controller { public function someAction() { $product_1 = new Product(); $product_2 = new Product(); // do something with the products } } Is it right to say that Controller now depends on Product? I was thinking that we could decouple them too (as we would with single-instance objects like Database) In this example, however ugly, they are decoupled: class Controller { public function someAction(ProductInterface $new_product) { $product_1 = clone $new_product; $product_2 = clone $new_product; // do something with the products } } Has anyone done something like this before? Is it excessive?

    Read the article

  • Metaobject protocol:Why is it known as an important concept

    - by sushant
    Metaobject protocol is protocol for metaobjects in a programming languages. Although I understand it on simple terms, I want to know the reason and a summary of real world usage patterns of this protocol. So, why exactly is metaobject and more importantly metaobject protocol is such a good idea. I want to know the problem which led to its evolution and also, its high power usage. Opinions as well as general overview/description/alternate explanations are also welcome.

    Read the article

  • Make methods that do not depend on instance fields, static?

    - by m3th0dman
    Recently I started programming in Groovy for a integration testing framework, for a Java project. I use Intellij IDEA with Groovy plug-in and I am surprised to see as a warning for all the methods that are non-static and do not depend on any instance fields. In Java, however, this is not an issue (at least from IDE's point of view). Should all methods that do not depend onto any instance fields be transformed into static functions? If true, is this specific to Groovy or it is available for OOP in general? And why?

    Read the article

  • What is considered third party code?

    - by Songo
    Inspired by this question Using third-party libraries - always use a wrapper? I wanted to know what people actually consider as third-party libraries. Example from PHP: If I'm building an application using Zend framework, should I treat Zend framework libraries as third party code? Example from C#: If I'm building a desktop application, should I treat all .Net classes as third party code? Example from Java: Should I treat all libraries in the JDK as third party libraries? Some people say that if a library is stable and won't change often then one doesn't need to wrap it. However I fail to see how one would test a class that depends on a third party code without wrapping it.

    Read the article

  • When to decide to introduce interfaces (pure abstract base classes) in C++?

    - by Honza Brabec
    Assume that you are developing a functionality and are 90% sure that the implementation class will stay alone. If I was in this position in Java I would probably not use the interface right now to keep the things simple. In Java it is easy to refactor the code and extract the interface later. In C++ the refactoring is not always so easy. It may require replacing values with smart pointers (because of the introduction of polymorphism) and other non-trivial tasks. On the other hand I don't much like the idea of introducing virtual calls when I am 90% sure they won't be needed. After all speed is one of the reasons to prefer C++ over simpler languages.

    Read the article

  • JS closures - Passing a function to a child, how should the shared object be accessed

    - by slicedtoad
    I have a design and am wondering what the appropriate way to access variables is. I'll demonstrate with this example since I can't seem to describe it better than the title. Term is an object representing a bunch of time data (a repeating duration of time defined by a bunch of attributes) Term has some print functionality but does not implement the print functions itself, rather they are passed in as anonymous functions by the parent. This would be similar to how shaders can be passed to a renderer rather than defined by the renderer. A container (let's call it Box) has a Schedule object that can understand and use Term objects. Box creates Term objects and passes them to Schedule as required. Box also defines the print functions stored in Term. A print function usually takes an argument and uses it to return a string based on that argument and Term's internal data. Sometime the print function could also use data stored in Schedule, though. I'm calling this data shared. So, the question is, what is the best way to access this shared data. I have a lot of options since JS has closures and I'm not familiar enough to know if I should be using them or avoiding them in this case. Options: Create a local "reference" (term used lightly) to the shared data (data is not a primitive) when defining the print function by accessing the shared data through Schedule from Box. Example: var schedule = function(){ var sched = Schedule(); var t1 = Term( function(x){ // Term.print() return (x + sched.data).format(); }); }; Bind it to Term explicitly. (Pass it in Term's constructor or something). Or bind it in Sched after Box passes it. And then access it as an attribute of Term. Pass it in at the same time x is passed to the print function, (from sched). This is the most familiar way for my but it doesn't feel right given JS's closure ability. Do something weird like bind some context and arguments to print. I'm hoping the correct answer isn't purely subjective. If it is, then I guess the answer is just "do whatever works". But I feel like there are some significant differences between the approaches that could have a large impact when stretched beyond my small example.

    Read the article

  • When to use identity comparison instead of equals?

    - by maaartinus
    I wonder why would anybody want to use identity comparison for fields in equals, like here (Java syntax): class C { private A a; public boolean equals(Object other) { // standard boring prelude if (other==this) return true; if (other==null) return false; if (other.getClass() != this.getClass()) return false; C c = (C) other; // the relevant part if (c.a != this.a) return false; // more tests... and then return true; } // getter, setters, hashCode, ... } Using == is a bit faster than equals and a bit shorter (due to no need for null tests), too, but in what cases (if any) you'd say it's really better to use == for fields inside equals?

    Read the article

  • An ideal way to decode JSON documents in C?

    - by AzizAG
    Assuming I have an API to consume that uses JSON as a data transmission method, what is an ideal way to decode the JSON returned by each API resource? For example, in Java I'd create a class for each API resource then initiate an object of that class and consume data from it. for example: class UserJson extends JsonParser { public function UserJson(String document) { /*Initial document parsing goes here...*/ } //A bunch of getter methods . . . . } The probably do something like this: UserJson userJson = new UserJson(jsonString);//Initial parsing goes in the constructor String username = userJson.getName();//Parse JSON name property then return it as a String. Or when using a programming language with associative arrays(i.e., hash table) the decoding process doesn't require creating a class: (PHP) $userJson = json_decode($jsonString);//Decode JSON as key=>value $username = $userJson['name']; But, when I'm programming in procedural programming languages (C), I can't go with either method, since C is neither OOP nor supports associative arrays(by default, at least). What is the "correct" method of parsing pre-defined JSON strings(i.e., JSON documents specified by the API provider via examples or documentation)? The method I'm currently using is creating a file for each API resource to parse, the problem with this method is that it's basically a lousy version of the OOP method, as it looks exactly like the OOP method but doesn't provide any OOP benefits(e.g., can't pass an object of the parser, etc.). I've been thinking about encapsulating each API resource parser file in a publicly accessed structure(pointing all functions/publicly usable variables to the structure) then accessing the parser file code from within the structure(parser.parse(), parser.getName(), etc.). As this way looks a bit better than the my current method, it still just a rip off the OOP way, isn't it? Any suggestions for methods to parse JSON documents on procedural programming lanauges? Any comments on the methods I'm currently using(either 3 of them)?

    Read the article

  • Is loose coupling w/o use cases an anti-pattern?

    - by dsimcha
    Loose coupling is, to some developers, the holy grail of well-engineered software. It's certainly a good thing when it makes code more flexible in the face of changes that are likely to occur in the foreseeable future, or avoids code duplication. On the other hand, efforts to loosely couple components increase the amount of indirection in a program, thus increasing its complexity, often making it more difficult to understand and often making it less efficient. Do you consider a focus on loose coupling without any use cases for the loose coupling (such as avoiding code duplication or planning for changes that are likely to occur in the foreseeable future) to be an anti-pattern? Can loose coupling fall under the umbrella of YAGNI?

    Read the article

  • Why to say, my function is of IFly type rather than saying it's Airplane type

    - by Vishwas Gagrani
    Say, I have two classes: Airplane and Bird, both of them fly. Both implement the interface IFly. IFly declares a function StartFlying(). Thus both Airplane and Bird have to define the function, and use it as per their requirement. Now when I make a manual for class reference, what should I write for the function StartFlying? 1) StartFlying is a function of type IFly . 2) StartFlying is a function of type Airplane 3) StartFlying is a function of type Bird. My opinion is 2 and 3 are more informative. But what i see is that class references use the 1st one. They say what interface the function is declared in. Problem is, I really don't get any usable information from knowing StartFlying is IFly type. However, knowing that StartFlying is a function inside Airplane and Bird, is more informative, as I can decide which instance (Airplane or Bird ) to use. Any lights on this: how saying StartFlying is a function of type IFly, can help a programmer understanding how to use the function?

    Read the article

  • Learning PHP OOP

    - by Ryan Murphy
    I have been coding PHP for about 2 years now and I THINK that I have a very good grasps of the fundamental parts of PHP, i.e. Functions foreach/IF statements sessions/cookies POST/GET Amongst a few others. I want to move on to learning OOP PHP now, so learning how to use classes and making it a really valuable skill. I have 1 requirement, the source must be a respected source that doesn't teach developers bad habits. I have the book: PHP and MySQL Web Development However, as useful as that is I would like an online source. I would like to know from people with experience in OOP PHP, how and where did they learn OOP PHP. Obviously by doing, but I would really appreciate some great resources which help me along the way.

    Read the article

  • Using dot To Access Object Attribute and Proper abstraction

    - by cobie
    I have been programming in python and java for quite a number of years and one thing i find myself doing is using the setters and getters from java in python but a number of blogs seem to think using the dot notation for access is the pythonic way. What I would like to know is if using dot to access methods does not violate abstraction principle. If for example I implement an attribute as a single object and use dot notation to access, if I wanted to change the code later so that the attribute is represented by a list of objects, that would require quite some heavy lifting which violates abstraction principle.

    Read the article

  • Recommened design pattern to handle multiple compression algorithms for a class hierarchy

    - by sgorozco
    For all you OOD experts. What would be the recommended way to model the following scenario? I have a certain class hierarchy similar to the following one: class Base { ... } class Derived1 : Base { ... } class Derived2 : Base { ... } ... Next, I would like to implement different compression/decompression engines for this hierarchy. (I already have code for several strategies that best handle different cases, like file compression, network stream compression, legacy system compression, etc.) I would like the compression strategy to be pluggable and chosen at runtime, however I'm not sure how to handle the class hierarchy. Currently I have a tighly-coupled design that looks like this: interface ICompressor { byte[] Compress(Base instance); } class Strategy1Compressor : ICompressor { byte[] Compress(Base instance) { // Common compression guts for Base class ... // if( instance is Derived1 ) { // Compression guts for Derived1 class } if( instance is Derived2 ) { // Compression guts for Derived2 class } // Additional compression logic to handle other class derivations ... } } As it is, whenever I add a new derived class inheriting from Base, I would have to modify all compression strategies to take into account this new class. Is there a design pattern that allows me to decouple this, and allow me to easily introduce more classes to the Base hierarchy and/or additional compression strategies?

    Read the article

  • best way to "introduce" OOP/OOD to team of experienced C++ engineers

    - by DXM
    I am looking for an efficient way, that also doesn't come off as an insult, to introduce OOP concepts to existing team members? My teammates are not new to OO languages. We've been doing C++/C# for a long time so technology itself is familiar. However, I look around and without major infusion of effort (mostly in the form of code reviews), it seems what we are producing is C code that happens to be inside classes. There's almost no use of single responsibility principle, abstractions or attempts to minimize coupling, just to name a few. I've seen classes that don't have a constructor but get memset to 0 every time they are instantiated. But every time I bring up OOP, everyone always nods and makes it seem like they know exactly what I'm talking about. Knowing the concepts is good, but we (some more than others) seem to have very hard time applying them when it comes to delivering actual work. Code reviews have been very helpful but the problem with code reviews is that they only occur after the fact so to some it seems we end up rewriting (it's mostly refactoring, but still takes lots of time) code that was just written. Also code reviews only give feedback to an individual engineer, not the entire team. I am toying with the idea of doing a presentation (or a series) and try to bring up OOP again along with some examples of existing code that could've been written better and could be refactored. I could use some really old projects that no one owns anymore so at least that part shouldn't be a sensitive issue. However, will this work? As I said most people have done C++ for a long time so my guess is that a) they'll sit there thinking why I'm telling them stuff they already know or b) they might actually take it as an insult because I'm telling them they don't know how to do the job they've been doing for years if not decades. Is there another approach which would reach broader audience than a code review would, but at the same time wouldn't feel like a punishment lecture? I'm not a fresh kid out of college who has utopian ideals of perfectly designed code and I don't expect that from anyone. The reason I'm writing this is because I just did a review of a person who actually had decent high-level design on paper. However if you picture classes: A - B - C - D, in the code B, C and D all implement almost the same public interface and B/C have one liner functions so that top-most class A is doing absolutely all the work (down to memory management, string parsing, setup negotiations...) primarily in 4 mongo methods and, for all intents and purposes, calls almost directly into D. Update: I'm a tech lead(6 months in this role) and do have full support of the group manager. We are working on a very mature product and maintenance costs are definitely letting themselves be known.

    Read the article

  • design a model for a system of dependent variables

    - by dbaseman
    I'm dealing with a modeling system (financial) that has dozens of variables. Some of the variables are independent, and function as inputs to the system; most of them are calculated from other variables (independent and calculated) in the system. What I'm looking for is a clean, elegant way to: define the function of each dependent variable in the system trigger a re-calculation, whenever a variable changes, of the variables that depend on it A naive way to do this would be to write a single class that implements INotifyPropertyChanged, and uses a massive case statement that lists out all the variable names x1, x2, ... xn on which others depend, and, whenever a variable xi changes, triggers a recalculation of each of that variable's dependencies. I feel that this naive approach is flawed, and that there must be a cleaner way. I started down the path of defining a CalculationManager<TModel> class, which would be used (in a simple example) something like as follows: public class Model : INotifyPropertyChanged { private CalculationManager<Model> _calculationManager = new CalculationManager<Model>(); // each setter triggers a "PropertyChanged" event public double? Height { get; set; } public double? Weight { get; set; } public double? BMI { get; set; } public Model() { _calculationManager.DefineDependency<double?>( forProperty: model => model.BMI, usingCalculation: (height, weight) => weight / Math.Pow(height, 2), withInputs: model => model.Height, model.Weight); } // INotifyPropertyChanged implementation here } I won't reproduce CalculationManager<TModel> here, but the basic idea is that it sets up a dependency map, listens for PropertyChanged events, and updates dependent properties as needed. I still feel that I'm missing something major here, and that this isn't the right approach: the (mis)use of INotifyPropertyChanged seems to me like a code smell the withInputs parameter is defined as params Expression<Func<TModel, T>>[] args, which means that the argument list of usingCalculation is not checked at compile time the argument list (weight, height) is redundantly defined in both usingCalculation and withInputs I am sure that this kind of system of dependent variables must be common in computational mathematics, physics, finance, and other fields. Does someone know of an established set of ideas that deal with what I'm grasping at here? Would this be a suitable application for a functional language like F#? Edit More context: The model currently exists in an Excel spreadsheet, and is being migrated to a C# application. It is run on-demand, and the variables can be modified by the user from the application's UI. Its purpose is to retrieve variables that the business is interested in, given current inputs from the markets, and model parameters set by the business.

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >