Search Results

Search found 15423 results on 617 pages for 'uses clause'.

Page 42/617 | < Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >

  • Is order of parameters for database Command object really important?

    - by nawfal
    I was debugging a database operation code and I found that proper UPDATE was never happening though the code never failed as such. This is the code: condb.Open(); OleDbCommand dbcom = new OleDbCommand("UPDATE Word SET word=?,sentence=?,mp3=? WHERE id=? AND exercise_id=?", condb); dbcom.Parameters.AddWithValue("id", wd.ID); dbcom.Parameters.AddWithValue("exercise_id", wd.ExID); dbcom.Parameters.AddWithValue("word", wd.Name); dbcom.Parameters.AddWithValue("sentence", wd.Sentence); dbcom.Parameters.AddWithValue("mp3", wd.Mp3); But after some tweaking this worked: condb.Open(); OleDbCommand dbcom = new OleDbCommand("UPDATE Word SET word=?,sentence=?,mp3=? WHERE id=? AND exercise_id=?", condb); dbcom.Parameters.AddWithValue("word", wd.Name); dbcom.Parameters.AddWithValue("sentence", wd.Sentence); dbcom.Parameters.AddWithValue("mp3", wd.Mp3); dbcom.Parameters.AddWithValue("id", wd.ID); dbcom.Parameters.AddWithValue("exercise_id", wd.ExID); Why is it so important that the parameters in WHERE clause has to be given the last in case of OleDb connection? Having worked with MySQL previously, I could (and usually do) write parameters of WHERE clause first because that's more logical to me. Is parameter order important when querying database in general? Some performance concern or something? Is there a specific order to be maintained in case of other databases like DB2, Sqlite etc? Update: I got rid of ? and included proper names with and without @. The order is really important. In both cases only when WHERE clause parameters was mentioned last, actual update happened. To make matter worse, in complex queries, its hard to know ourselves which order is Access expecting, and in all situations where order is changed, the query doesnt do its intended duty with no warning/error!!

    Read the article

  • Returning a recordcount from a subquery in a result set.

    - by KeRiCr
    I am attempting to return a rowcount from a subquery as part of a result set. Here is a sample that I've tried that didn't work: SELECT recordID , GroupIdentifier , count() AS total , (SELECT COUNT() FROM table WHERE intActingAsBoolean = 1) AS Approved FROM table WHERE date_format(Datevalue, '%Y%m%d') BETWEEN 'startDate' AND 'endDate' GROUP BY groupIdentifier What I'm attempting to return for 'Approved' is the number of records for the grouped value where intActingAsBoolean = 1. I have also tried modifying the where clause by giving the main query a table alias and applying an AND clause to match the groupidentifier in the subquery to the main query. None of these are returning the correct results. The query as written returns all records in the table where intActingAsBoolean = 1. This query is being run against a MySQL database.

    Read the article

  • How do I perform a dynamic select in Linq?

    - by Matt Mangold
    I am trying to figure out how to dynamically specify the properties for my select clause in a linq query. Lets say I have a collection of employee objects. At run time, the end user will be specifying which properties they would like to see for those employees, so I need to be able to dynamically construct my Linq select clause. I have used the dynamic Linq library, but I prefer not to use that, because it requires me to build a string to pass to the select method. I'd like to understand how to do this via Expressions.

    Read the article

  • LINQ 2 SQL Insert Error(with Guids)

    - by Refracted Paladin
    I have the below LINQ method that I use to create the empty EmploymentPLan. After that I simply UPDATE. For some reason this works perfectly for myself but for my users they are getting the following error -- The target table 'dbo.tblEmploymentPrevocServices' of the DML statement cannot have any enabled triggers if the statement contains an OUTPUT clause without INTO clause. This application is a WinForm app that connects to a local SQL 2005 Express database that is a part of a Merge Replication topology. This is an INTERNAL App only installed through ClickOnce. public static Guid InsertEmptyEmploymentPlan(int planID, string user) { using (var context = MatrixDataContext.Create()) { var empPlan = new tblEmploymentQuestionnaire { PlanID = planID, InsertDate = DateTime.Now, InsertUser = user, tblEmploymentJobDevelopmetService = new tblEmploymentJobDevelopmetService(), tblEmploymentPrevocService = new tblEmploymentPrevocService() }; context.tblEmploymentQuestionnaires.InsertOnSubmit(empPlan); context.SubmitChanges(); return empPlan.EmploymentQuestionnaireID; } }

    Read the article

  • LINQ 2 SQL Insert Error

    - by Refracted Paladin
    I have the below LINQ method that I use to create the empty EmploymentPLan. After that I simply UPDATE. For some reason this works perfectly for myself but for my users they are getting the following error -- The target table 'dbo.tblEmploymentPrevocServices' of the DML statement cannot have any enabled triggers if the statement contains an OUTPUT clause without INTO clause. This application is a WinForm app that connects to a local SQL 2005 Express database. public static Guid InsertEmptyEmploymentPlan(int planID, string user) { using (var context = MatrixDataContext.Create()) { var empPlan = new tblEmploymentQuestionnaire { PlanID = planID, InsertDate = DateTime.Now, InsertUser = user, tblEmploymentJobDevelopmetService = new tblEmploymentJobDevelopmetService(), tblEmploymentPrevocService = new tblEmploymentPrevocService() }; context.tblEmploymentQuestionnaires.InsertOnSubmit(empPlan); context.SubmitChanges(); return empPlan.EmploymentQuestionnaireID; } }

    Read the article

  • Status corresponding to Minimum value

    - by Lijo
    Hi Team, I am using SQL Server 2005. I have a table as given below. There can be multiple cancellations for each FundingID. I want to select the FundingCancellationReason corrersponding to minimum date for each funding. I wrote a query as follows. It is an SQL error 1) Could you please help me to avoid the SQL Error? 2) Is there any better logic to achieve the same? CREATE TABLE #FundingCancellation( [FundingCancellationID] INT IDENTITY(1,1) NOT NULL, [FundingID] INT , FundingCancellationDt SMALLDATETIME , FundingCancellationReason VARCHAR(50) ) SELECT FundingID, MIN(FundingCancellationDt), ( SELECT FundingCancellationReason FROM #FundingCancellation FC2 WHERE FC1.FundingID = FC2.FundingID AND FC2.FundingCancellationDt = MIN(FundingCancellationDt) ) [Reason Corresponding Minimum Date] FROM #FundingCancellation FC1 GROUP BY FundingID -- An aggregate may not appear in the WHERE clause unless it is in a subquery contained in a HAVING clause or a select list, and the column being aggregated is an outer reference. I have seen the similar approach working in a somewhat complex query. So I believe tehre will be a way to correct my query Thanks Lijo

    Read the article

  • Filtering with joined tables

    - by viraptor
    I'm trying to get some query performance improved, but the generated query does not look the way I expect it to. The results are retrieved using: query = session.query(SomeModel). options(joinedload_all('foo.bar')). options(joinedload_all('foo.baz')). options(joinedload('quux.other')) What I want to do is filter on the table joined via 'first', but this way doesn't work: query = query.filter(FooModel.address == '1.2.3.4') It results in a clause like this attached to the query: WHERE foos.address = '1.2.3.4' Which doesn't do the filtering in a proper way, since the generated joins attach tables foos_1 and foos_2. If I try that query manually but change the filtering clause to: WHERE foos_1.address = '1.2.3.4' AND foos_2.address = '1.2.3.4' It works fine. The question is of course - how can I achieve this with sqlalchemy itself?

    Read the article

  • SQL UDF Group By Parameter Issue

    - by Ryan Strauss
    I'm having some issues with a group by clause in SQL. I have the following basic function: CREATE FUNCTION dbo.fn_GetWinsYear (@Year int) RETURNS int AS BEGIN declare @W int select @W = count(1) from tblGames where WinLossForfeit = 'W' and datepart(yyyy,Date) = @Year return @W END I'm trying to run the following basic query: select dbo.fn_GetWinsYear(datepart(yyyy,date)) from tblGames group by datepart(yyyy,date) However, I'm encountering the following error message: Column 'tblGames.Date' is invalid in the select list because it is not contained in either an aggregate function or the GROUP BY clause. Any ideas why this is occurring? FYI, I know I can remove the function and combine into one call but I'd like to keep the function in place if possible.

    Read the article

  • No mapping for LONGVARCHAR in Hibernate 3.2

    - by jimbokun
    I am running Hibernate 3.2.0 with MySQL 5.1. After updating the group_concat_max_len in MySQL (because of a group_concat query that was exceeding the default value), I got the following exception when executing a SQLQuery with a group_concat clause: "No Dialect mapping for JDBC type: -1" -1 is the java.sql.Types value for LONGVARCHAR. Evidently, increasing the group_concat_max_len value causes calls to group_concat to return a LONGVARCHAR value. This appears to be an instance of this bug: http://opensource.atlassian.com/projects/hibernate/browse/HHH-3892 I guess there is a fix for this issue in Hibernate 3.5, but that is still a development version, so I am hesitant to put it into production, and don't know if it would cause issues for other parts of my code base. I could also just use JDBC queries, but then I have to replace every instance of a SQLQuery with a group_concat clause. Any other suggestions?

    Read the article

  • what is wrong with my create table SQL?

    - by George2
    Hello everyone, I am using SQL Server 2008 management studio to execute the following SQL statements, and here is the related error message from SQL Server management studio. Any ideas what is wrong? SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO Create TABLE [dbo].[BatchStatus]( [BatchID] [uniqueidentifier] NOT NULL CONSTRAINT [PK_BatchStatus_ID], [BatchStatus] [int] NULL, CONSTRAINT [PK_BatchStatus_ID] PRIMARY KEY CLUSTERED ( [BatchID] ASC )WITH (IGNORE_DUP_KEY = OFF) ON [PRIMARY] ) ON [PRIMARY] GO Msg 102, Level 15, State 1, Line 3 Incorrect syntax near ','. Msg 319, Level 15, State 1, Line 8 Incorrect syntax near the keyword 'with'. If this statement is a common table expression, an xmlnamespaces clause or a change tracking context clause, the previous statement must be terminated with a semicolon. thanks in advance, George

    Read the article

  • Jquery ajax get - how to output data based on condition?

    - by arunas_t
    Hello, there, I have a such piece of code: $("#choose").change(function(){ $.get("get_results.php", {name: $("#choose").val()}, function(data){ if(data !== ""){ $("#results").html(data); }else{ $("#results").html('<strong>Sorry, no records.</strong>'); } }); }); Now the problem is that the first condition ( if(data !== "") ) is always evaluated correctly and executed, but the else clause ('Sorry, no records') never shows up. Can anyone spot the error? Data passed for the else clause is specifically "". Thank You.

    Read the article

  • How to test that variable is not equal to multiple things? Python

    - by M830078h
    This is the piece of code I have: choice = "" while choice != "1" and choice != "2" and choice != "3": choice = raw_input("pick 1, 2 or 3") if choice == "1": print "1 it is!" elif choice == "2": print "2 it is!" elif choice == "3": print "3 it is!" else: print "You should choose 1, 2 or 3" While it works, I feel that it's really clumsy, specifically the while clause. What if I have more acceptable choices? Is there a better way to make the clause?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • How does Comparison Sites work?

    - by Vijay
    Need your thinking on how does these Comparision Sites actually work. Sites like Junglee.com policybazaar.com and there are many like these which provides comaprision of products , fares etc. grabbed from different websites. I had read a little about it and what i found is-: These sites uses Feeds of the sites data. These sites uses APIs of the sites which are actually provided by those sites. And for some sites which do not have any of these two posibility then the Comparision sites uses web-crawler to crawl their data. This is what i have found out. If you think there is more things to it please do give your own views. But i want to know these for my learning purpose and a little for curiosity- how does they actually matches the crawled data , feeds, and other so that there is no duplicacy. What is the process or algorithms for it. And where should i go to learn these concepts. References for books , articles or anything else.

    Read the article

  • How to get SQL Railroad Diagrams from MSDN BNF syntax notation.

    - by Phil Factor
    pre {margin-bottom:.0001pt; font-size:8.0pt; font-family:"Courier New"; margin-left: 0cm; margin-right: 0cm; margin-top: 0cm; } On SQL Server Books-On-Line, in the Transact-SQL Reference (database Engine), every SQL Statement has its syntax represented in  ‘Backus–Naur Form’ notation (BNF)  syntax. For a programmer in a hurry, this should be ideal because It is the only quick way to understand and appreciate all the permutations of the syntax. It is a great feature once you get your eye in. It isn’t the only way to get the information;  You can, of course, reverse-engineer an understanding of the syntax from the examples, but your understanding won’t be complete, and you’ll have wasted time doing it. BNF is a good start in representing the syntax:  Oracle and SQLite go one step further, and have proper railroad diagrams for their syntax, which is a far more accessible way of doing it. There are three problems with the BNF on MSDN. Firstly, it is isn’t a standard version of  BNF, but an ancient fork from EBNF, inherited from Sybase. Secondly, it is excruciatingly difficult to understand, and thirdly it has a number of syntactic and semantic errors. The page describing DML triggers, for example, currently has the absurd BNF error that makes it state that all statements in the body of the trigger must be separated by commas.  There are a few other detail problems too. Here is the offending syntax for a DML trigger, pasted from MSDN. Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML Trigger) CREATE TRIGGER [ schema_name . ]trigger_name ON { table | view } [ WITH <dml_trigger_option> [ ,...n ] ] { FOR | AFTER | INSTEAD OF } { [ INSERT ] [ , ] [ UPDATE ] [ , ] [ DELETE ] } [ NOT FOR REPLICATION ] AS { sql_statement [ ; ] [ ,...n ] | EXTERNAL NAME <method specifier [ ; ] > }   <dml_trigger_option> ::=     [ ENCRYPTION ]     [ EXECUTE AS Clause ]   <method_specifier> ::=  This should, of course, be /* Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML Trigger) */ CREATE TRIGGER [ schema_name . ]trigger_name ON { table | view } [ WITH <dml_trigger_option> [ ,...n ] ] { FOR | AFTER | INSTEAD OF } { [ INSERT ] [ , ] [ UPDATE ] [ , ] [ DELETE ] } [ NOT FOR REPLICATION ] AS { {sql_statement [ ; ]} [ ...n ] | EXTERNAL NAME <method_specifier> [ ; ] }   <dml_trigger_option> ::=     [ ENCRYPTION ]     [ EXECUTE AS CLAUSE ]   <method_specifier> ::=     assembly_name.class_name.method_name I’d love to tell Microsoft when I spot errors like this so they can correct them but I can’t. Obviously, there is a mechanism on MSDN to get errors corrected by using comments, but that doesn’t work for me (*Error occurred while saving your data.”), and when I report that the comment system doesn’t work to MSDN, I get no reply. I’ve been trying to create railroad diagrams for all the important SQL Server SQL statements, as good as you’d find for Oracle, and have so far published the CREATE TABLE and ALTER TABLE railroad diagrams based on the BNF. Although I’ve been aware of them, I’ve never realised until recently how many errors there are. Then, Colin Daley created a translator for the SQL Server dialect of  BNF which outputs standard EBNF notation used by the W3C. The example MSDN BNF for the trigger would be rendered as … /* Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML Trigger) */ create_trigger ::= 'CREATE TRIGGER' ( schema_name '.' ) ? trigger_name 'ON' ( table | view ) ( 'WITH' dml_trigger_option ( ',' dml_trigger_option ) * ) ? ( 'FOR' | 'AFTER' | 'INSTEAD OF' ) ( ( 'INSERT' ) ? ( ',' ) ? ( 'UPDATE' ) ? ( ',' ) ? ( 'DELETE' ) ? ) ( 'NOT FOR REPLICATION' ) ? 'AS' ( ( sql_statement ( ';' ) ? ) + | 'EXTERNAL NAME' method_specifier ( ';' ) ? )   dml_trigger_option ::= ( 'ENCRYPTION' ) ? ( 'EXECUTE AS CLAUSE' ) ?   method_specifier ::= assembly_name '.' class_name '.' method_name Colin’s intention was to allow anyone to paste SQL Server’s BNF notation into his website-based parser, and from this generate classic railroad diagrams via Gunther Rademacher's Railroad Diagram Generator.  Colin's application does this for you: you're not aware that you are moving to a different site.  Because Colin's 'translator' it is a parser, it will pick up syntax errors. Once you’ve fixed the syntax errors, you will get the syntax in the form of a human-readable railroad diagram and, in this form, the semantic mistakes become flamingly obvious. Gunter’s Railroad Diagram Generator is brilliant. To be able, after correcting the MSDN dialect of BNF, to generate a standard EBNF, and from thence to create railroad diagrams for SQL Server’s syntax that are as good as Oracle’s, is a great boon, and many thanks to Colin for the idea. Here is the result of the W3C EBNF from Colin’s application then being run through the Railroad diagram generator. create_trigger: dml_trigger_option: method_specifier:   Now that’s much better, you’ll agree. This is pretty easy to understand, and at this point any error is immediately obvious. This should be seriously useful, and it is to me. However  there is that snag. The BNF is generally incorrect, and you can’t expect the average visitor to mess about with it. The answer is, of course, to correct the BNF on MSDN and maybe even add railroad diagrams for the syntax. Stop giggling! I agree it won’t happen. In the meantime, we need to collaboratively store and publish these corrected syntaxes ourselves as we do them. How? GitHub?  SQL Server Central?  Simple-Talk? What should those of us who use the system  do with our corrected EBNF so that anyone can use them without hassle?

    Read the article

  • Are spurious TCP connections on port 53 a problem?

    - by Darren Greaves
    I run a server which amongst other things uses tinydns for DNS and axfrdns for handling transfer requests from our secondary DNS (another system). I understand that tinydns uses port 53 on UDP and axfrdns uses port 53 on TCP. I've configured axfrdns to only allow connections from my agreed secondary host. I run logcheck to monitor my logs and every day I see spurious connections on port 53 (TCP) from seemingly random hosts. They usually turn out to be from ADSL connections. My question is; are these innocent requests or a security risk? I am happy to block repeat offenders using iptables but don't want to block innocent users of one of the websites I host. Thanks, Darren.

    Read the article

  • Creating XML in SQL Server

    XML has become a common form of representing and exchanging data in today's information age. SQL Server introduced XML-centric capabilities in SQL Server 2000. That functionality has been expanded in later releases. One aspect of working with XML is creating XML from relational data, which is accomplished utilizing the FOR XML clause in SQL Server.

    Read the article

  • Using OpenQuery

    - by Derek Dieter
    The OPENQUERY command is used to initiate an ad-hoc distributed query using a linked-server. It is initiated by specifying OPENQUERY as the table name in the from clause. Essentially, it opens a linked server, then executes a query as if executing from that server. While executing queries directly and receiving data directly in this [...]

    Read the article

  • SQL SERVER – Introduction to CUME_DIST – Analytic Functions Introduced in SQL Server 2012

    - by pinaldave
    This blog post is written in response to the T-SQL Tuesday post of Prox ‘n’ Funx. This is a very interesting subject. By the way Brad Schulz is my favorite guy when it is about blogging. I respect him as well learn a lot from him. Everybody is writing something new his subject, I decided to start SQL Server 2012 analytic functions series. SQL Server 2012 introduces new analytical function CUME_DIST(). This function provides cumulative distribution value. It will be very difficult to explain this in words so I will attempt small example to explain you this function. Instead of creating new table, I will be using AdventureWorks sample database as most of the developer uses that for experiment. Let us fun following query. USE AdventureWorks GO SELECT SalesOrderID, OrderQty, CUME_DIST() OVER(ORDER BY SalesOrderID) AS CDist FROM Sales.SalesOrderDetail WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY CDist DESC GO Above query will give us following result. Now let us understand what is the formula behind CUME_DIST and why the values in SalesOrderID = 43670 are 1. Let us take more example and be clear about why the values in SalesOrderID = 43667 are 0.5. Now let us enhence the same example and use PARTITION BY into the OVER clause and see the results. Run following query in SQL Server 2012. USE AdventureWorks GO SELECT SalesOrderID, OrderQty, ProductID, CUME_DIST() OVER(PARTITION BY SalesOrderID ORDER BY ProductID ) AS CDist FROM Sales.SalesOrderDetail s WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY s.SalesOrderID DESC, CDist DESC GO Now let us see the result of this query. We are have changed the ORDER BY clause as well partitioning by SalesOrderID. You can see that CUME_DIST() function provides us different results. Additionally now we see value 1 multiple times. As we are using partitioning for each group of SalesOrderID we get the CUME_DIST() value. CUME_DIST() was long awaited Analytical function and I am glad to see it in SQL Server 2012. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Function, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • How to: group by month with SQL

    - by AngelEyes
    I took this particular code from http://weblogs.sqlteam.com/jeffs/archive/2007/09/10/group-by-month-sql.aspx, a good read. Shows you what to avoid and why.   The recommended technique is the following:   GROUP BY dateadd(month, datediff(month, 0, SomeDate),0)   By the way, in the "select" clause, you can use the following:   SELECT         month(dateadd(month, datediff(month, 0, SomeDate),0)) as [month],         year(dateadd(month, datediff(month, 0, SomeDate),0)) as [year],   Just remember to also sort properly if needed:   ORDER BY dateadd(month, datediff(month, 0, SomeDate),0)

    Read the article

  • Using CTAS & Exchange Partition Replace IAS for Copying Partition on Exadata

    - by Bandari Huang
    Usage Scenario: Copy data&index from one partition to another partition in a partitioned table. Solution: Create a partition definition Copy data from one partition to another partiton by 'Insert as select (IAS)' Create a nonpartitioned table by 'Create table as select (CTAS)' Convert a nonpartitioned table into a partition of partitoned table by exchangng their data segments. Rebuild unusable index Exchange Partition Convertion Mutual convertion between a partition (or subpartition) and a nonpartitioned table Mutual convertion between a hash-partitioned table and a partition of a composite *-hash partitioned table Mutual convertiton a [range | list]-partitioned table into a partition of a composite *-[range | list] partitioned table. Exchange Partition Usage Scenario High-speed data loading of new, incremental data into an existing partitioned table in DW environment Exchanging old data partitions out of a partitioned table, the data is purged from the partitioned table without actually being deleted and can be archived separately Exchange Partition Syntax ALTER TABLE schema.table EXCHANGE [PARTITION|SUBPARTITION] [partition|subprtition] WITH TABLE schema.table [INCLUDE|EXCLUDING] INDEX [WITH|WITHOUT] VALIDATION UPDATE [INDEXES|GLOBAL INDEXES] INCLUDING | EXCLUDING INDEXES Specify INCLUDING INDEXES if you want local index partitions or subpartitions to be exchanged with the corresponding table index (for a nonpartitioned table) or local indexes (for a hash-partitioned table). Specify EXCLUDING INDEXES if you want all index partitions or subpartitions corresponding to the partition and all the regular indexes and index partitions on the exchanged table to be marked UNUSABLE. If you omit this clause, then the default is EXCLUDING INDEXES. WITH | WITHOUT VALIDATION Specify WITH VALIDATION if you want Oracle Database to return an error if any rows in the exchanged table do not map into partitions or subpartitions being exchanged. Specify WITHOUT VALIDATION if you do not want Oracle Database to check the proper mapping of rows in the exchanged table. If you omit this clause, then the default is WITH VALIDATION.  UPADATE INDEX|GLOBAL INDEX Unless you specify UPDATE INDEXES, the database marks UNUSABLE the global indexes or all global index partitions on the table whose partition is being exchanged. Global indexes or global index partitions on the table being exchanged remain invalidated. (You cannot use UPDATE INDEXES for index-organized tables. Use UPDATE GLOBAL INDEXES instead.) Exchanging Partitions&Subpartitions Notes Both tables involved in the exchange must have the same primary key, and no validated foreign keys can be referencing either of the tables unless the referenced table is empty.  When exchanging partitioned index-organized tables: – The source and target table or partition must have their primary key set on the same columns, in the same order. – If key compression is enabled, then it must be enabled for both the source and the target, and with the same prefix length. – Both the source and target must be index organized. – Both the source and target must have overflow segments, or neither can have overflow segments. Also, both the source and target must have mapping tables, or neither can have a mapping table. – Both the source and target must have identical storage attributes for any LOB columns. 

    Read the article

  • SQL Server Contains Equivalent

    - by Derek D.
    Many Oracle developers trying to find the SQL Server function compatible with their Contains clause will most likely accidently end up on this page. Therefore, this page will be devoted to them rather than the SQL Server’s Contains function which is used for full-text searching. The most similar function to Oracle’s contains is charindex. The usage [...]

    Read the article

< Previous Page | 38 39 40 41 42 43 44 45 46 47 48 49  | Next Page >