Search Results

Search found 1068 results on 43 pages for 'relation'.

Page 43/43 | < Previous Page | 39 40 41 42 43 

  • Is That REST API Really RPC? Roy Fielding Seems to Think So.

    - by Rich Apodaca
    A large amount of what I thought I knew about REST is apparently wrong - and I'm not alone. This question has a long lead-in, but it seems to be necessary because the information is a bit scattered. The actual question comes at the end if you're already familiar with this topic. From the first paragraph of Roy Fielding's REST APIs must be hypertext-driven, it's pretty clear he believes his work is being widely misinterpreted: I am getting frustrated by the number of people calling any HTTP-based interface a REST API. Today’s example is the SocialSite REST API. That is RPC. It screams RPC. There is so much coupling on display that it should be given an X rating. Fielding goes on to list several attributes of a REST API. Some of them seem to go against both common practice and common advice on SO and other forums. For example: A REST API should be entered with no prior knowledge beyond the initial URI (bookmark) and set of standardized media types that are appropriate for the intended audience (i.e., expected to be understood by any client that might use the API). ... A REST API must not define fixed resource names or hierarchies (an obvious coupling of client and server). ... A REST API should spend almost all of its descriptive effort in defining the media type(s) used for representing resources and driving application state, or in defining extended relation names and/or hypertext-enabled mark-up for existing standard media types. ... The idea of "hypertext" plays a central role - much more so than URI structure or what HTTP verbs mean. "Hypertext" is defined in one of the comments: When I [Fielding] say hypertext, I mean the simultaneous presentation of information and controls such that the information becomes the affordance through which the user (or automaton) obtains choices and selects actions. Hypermedia is just an expansion on what text means to include temporal anchors within a media stream; most researchers have dropped the distinction. Hypertext does not need to be HTML on a browser. Machines can follow links when they understand the data format and relationship types. I'm guessing at this point, but the first two points above seem to suggest that API documentation for a Foo resource that looks like the following leads to tight coupling between client and server and has no place in a RESTful system. GET /foos/{id} # read a Foo POST /foos/{id} # create a Foo PUT /foos/{id} # update a Foo Instead, an agent should be forced to discover the URIs for all Foos by, for example, issuing a GET request against /foos. (Those URIs may turn out to follow the pattern above, but that's beside the point.) The response uses a media type that is capable of conveying how to access each item and what can be done with it, giving rise to the third point above. For this reason, API documentation should focus on explaining how to interpret the hypertext contained in the response. Furthermore, every time a URI to a Foo resource is requested, the response contains all of the information needed for an agent to discover how to proceed by, for example, accessing associated and parent resources through their URIs, or by taking action after the creation/deletion of a resource. The key to the entire system is that the response consists of hypertext contained in a media type that itself conveys to the agent options for proceeding. It's not unlike the way a browser works for humans. But this is just my best guess at this particular moment. Fielding posted a follow-up in which he responded to criticism that his discussion was too abstract, lacking in examples, and jargon-rich: Others will try to decipher what I have written in ways that are more direct or applicable to some practical concern of today. I probably won’t, because I am too busy grappling with the next topic, preparing for a conference, writing another standard, traveling to some distant place, or just doing the little things that let me feel I have I earned my paycheck. So, two simple questions for the REST experts out there with a practical mindset: how do you interpret what Fielding is saying and how do you put it into practice when documenting/implementing REST APIs? Edit: this question is an example of how hard it can be to learn something if you don't have a name for what you're talking about. The name in this case is "Hypermedia as the Engine of Application State" (HATEOAS).

    Read the article

  • Qt - drag and drop with graphics view framework

    - by David Davidson
    I'm trying to make a simple draggable item using the graphics framework. Here's the code for what I did so far: Widget class: class Widget : public QWidget { Q_OBJECT public: Widget(QWidget *parent = 0); ~Widget(); }; Widget::Widget(QWidget *parent) : QWidget(parent) { DragScene *scene = new DragScene(); DragView *view = new DragView(); QHBoxLayout *layout = new QHBoxLayout(); DragItem *item = new DragItem(); view->setAcceptDrops(true); scene->addItem(item); view->setScene(scene); layout->addWidget(view); this->setLayout(layout); } Widget::~Widget() { } DragView class: class DragView : public QGraphicsView { public: DragView(QWidget *parent = 0); }; DragView::DragView(QWidget *parent) : QGraphicsView(parent) { setRenderHints(QPainter::Antialiasing); } DragScene class: class DragScene : public QGraphicsScene { public: DragScene(QObject* parent = 0); protected: void dragEnterEvent(QGraphicsSceneDragDropEvent *event); void dragMoveEvent(QGraphicsSceneDragDropEvent *event); void dragLeaveEvent(QGraphicsSceneDragDropEvent *event); void dropEvent(QGraphicsSceneDragDropEvent *event); }; DragScene::DragScene(QObject* parent) : QGraphicsScene(parent) { } void DragScene::dragEnterEvent(QGraphicsSceneDragDropEvent *event){ } void DragScene::dragMoveEvent(QGraphicsSceneDragDropEvent *event){ } void DragScene::dragLeaveEvent(QGraphicsSceneDragDropEvent *event){ } void DragScene::dropEvent(QGraphicsSceneDragDropEvent *event){ qDebug() << event->pos(); event->acceptProposedAction(); DragItem *item = new DragItem(); this->addItem(item); item->setPos(event->pos()); } DragItem class: class DragItem : public QGraphicsItem { public: DragItem(QGraphicsItem *parent = 0); QRectF boundingRect() const; void paint(QPainter *painter, const QStyleOptionGraphicsItem *option, QWidget *widget = 0); protected: void mouseDoubleClickEvent(QGraphicsSceneMouseEvent *event); void mouseMoveEvent(QGraphicsSceneMouseEvent *event); void mousePressEvent(QGraphicsSceneMouseEvent *event); void mouseReleaseEvent(QGraphicsSceneMouseEvent *event); }; DragItem::DragItem(QGraphicsItem *parent) : QGraphicsItem(parent) { setFlag(QGraphicsItem::ItemIsMovable); } QRectF DragItem::boundingRect() const{ const QPointF *p0 = new QPointF(-10,-10); const QPointF *p1 = new QPointF(10,10); return QRectF(*p0,*p1); } void DragItem::paint(QPainter *painter, const QStyleOptionGraphicsItem *option, QWidget *widget){ if(painter == 0) painter = new QPainter(); painter->drawEllipse(QPoint(0,0),10,10); } void DragItem::mouseDoubleClickEvent(QGraphicsSceneMouseEvent *event){ } void DragItem::mouseMoveEvent(QGraphicsSceneMouseEvent *event){ } void DragItem::mousePressEvent(QGraphicsSceneMouseEvent *event){ QMimeData* mime = new QMimeData(); QDrag* drag = new QDrag(event->widget()); drag->setMimeData(mime); drag->exec(); } void DragItem::mouseReleaseEvent(QGraphicsSceneMouseEvent *event){ } main.cpp instantiates a Widget and shows it. When I try to drag the circle, the app just creates another circle over the original one, regardless of where I release the drag. qDebug() in DragScene's dropEvent() shows QPointF(0,0) everytime the drag ends. I'm having a hard time trying to understand exactly what I have to do, which classes I should subclass, which methods needs to be overriden, to make this work. The documentation on this isn't very detailed. I'd like to know how to make this work, and if there's some other, more comprehensive resource to learn about the graphics view framework, besides the official documentation (which is excellent btw, but it would be great if there was a more detailed treatise on the subject). EDIT: Following badgerr's advice, I replaced item-pos() in DragScene::dropEvent() with item-scenePos(), now the drop event creates a new circle in the drop site, which is more or less what I wanted. But the original circle is still in place, and while the drag is in progress, the item doesn't follow the mouse cursor. The QGraphicsSceneDragDropEvent documentation says that pos() should return the cursor position in relation to the view that sent the event, which, unless I got it wrong, shouldn't be (0,0) all the time. Weird. I've read in a forum post that you can use QDrag::setPixMap() to show something during the drag, and in examples I've seen pictures being set as pixmaps, but how do I make the pixmap just like the graphics item I'm supposed to be dragging?

    Read the article

  • How should I change my Graph structure (very slow insertion)?

    - by Nazgulled
    Hi, This program I'm doing is about a social network, which means there are users and their profiles. The profiles structure is UserProfile. Now, there are various possible Graph implementations and I don't think I'm using the best one. I have a Graph structure and inside, there's a pointer to a linked list of type Vertex. Each Vertex element has a value, a pointer to the next Vertex and a pointer to a linked list of type Edge. Each Edge element has a value (so I can define weights and whatever it's needed), a pointer to the next Edge and a pointer to the Vertex owner. I have a 2 sample files with data to process (in CSV style) and insert into the Graph. The first one is the user data (one user per line); the second one is the user relations (for the graph). The first file is quickly inserted into the graph cause I always insert at the head and there's like ~18000 users. The second file takes ages but I still insert the edges at the head. The file has about ~520000 lines of user relations and takes between 13-15mins to insert into the Graph. I made a quick test and reading the data is pretty quickly, instantaneously really. The problem is in the insertion. This problem exists because I have a Graph implemented with linked lists for the vertices. Every time I need to insert a relation, I need to lookup for 2 vertices, so I can link them together. This is the problem... Doing this for ~520000 relations, takes a while. How should I solve this? Solution 1) Some people recommended me to implement the Graph (the vertices part) as an array instead of a linked list. This way I have direct access to every vertex and the insertion is probably going to drop considerably. But, I don't like the idea of allocating an array with [18000] elements. How practically is this? My sample data has ~18000, but what if I need much less or much more? The linked list approach has that flexibility, I can have whatever size I want as long as there's memory for it. But the array doesn't, how am I going to handle such situation? What are your suggestions? Using linked lists is good for space complexity but bad for time complexity. And using an array is good for time complexity but bad for space complexity. Any thoughts about this solution? Solution 2) This project also demands that I have some sort of data structures that allows quick lookup based on a name index and an ID index. For this I decided to use Hash Tables. My tables are implemented with separate chaining as collision resolution and when a load factor of 0.70 is reach, I normally recreate the table. I base the next table size on this http://planetmath.org/encyclopedia/GoodHashTablePrimes.html. Currently, both Hash Tables hold a pointer to the UserProfile instead of duplication the user profile itself. That would be stupid, changing data would require 3 changes and it's really dumb to do it that way. So I just save the pointer to the UserProfile. The same user profile pointer is also saved as value in each Graph Vertex. So, I have 3 data structures, one Graph and two Hash Tables and every single one of them point to the same exact UserProfile. The Graph structure will serve the purpose of finding the shortest path and stuff like that while the Hash Tables serve as quick index by name and ID. What I'm thinking to solve my Graph problem is to, instead of having the Hash Tables value point to the UserProfile, I point it to the corresponding Vertex. It's still a pointer, no more and no less space is used, I just change what I point to. Like this, I can easily and quickly lookup for each Vertex I need and link them together. This will insert the ~520000 relations pretty quickly. I thought of this solution because I already have the Hash Tables and I need to have them, then, why not take advantage of them for indexing the Graph vertices instead of the user profile? It's basically the same thing, I can still access the UserProfile pretty quickly, just go to the Vertex and then to the UserProfile. But, do you see any cons on this second solution against the first one? Or only pros that overpower the pros and cons on the first solution? Other Solution) If you have any other solution, I'm all ears. But please explain the pros and cons of that solution over the previous 2. I really don't have much time to be wasting with this right now, I need to move on with this project, so, if I'm doing to do such a change, I need to understand exactly what to change and if that's really the way to go. Hopefully no one fell asleep reading this and closed the browser, sorry for the big testament. But I really need to decide what to do about this and I really need to make a change. P.S: When answering my proposed solutions, please enumerate them as I did so I know exactly what are you talking about and don't confuse my self more than I already am.

    Read the article

  • ASP.Net repeater item.DataItem is null

    - by mattgcon
    Within a webpage, upon loading, I fill a dataset with two table with a relation between those tables and then load the data into a repeater with a nested repeater. This can also occur after the user clicks on a button. The data gets loaded from a SQL database and the repeater datasource is set to the dataset after a postback. However, when ItemDataBound occurs the Item.Dataitem is always null. Why would this occur? below is my HTML repeater code <asp:Repeater ID="rptCustomSpaList" runat="server" onitemdatabound="rptCustomSpaList_ItemDataBound"> <HeaderTemplate> </HeaderTemplate> <ItemTemplate> <table> <tr> <td> <asp:Label ID="Label3" runat="server" Text="Spa Series:"></asp:Label> </td> <td> <asp:Label ID="Label4" runat="server" Text='<%#DataBinder.Eval(Container.DataItem, "SPASERIESVALUE") %>'></asp:Label> </td> </tr> <tr> <td> <asp:Label ID="Label5" runat="server" Text="Spa Model:"></asp:Label> </td> <td> <asp:Label ID="Label6" runat="server" Text='<%#DataBinder.Eval(Container.DataItem, "SPAMODELVALUE") %>'></asp:Label> </td> </tr> <tr> <td> <asp:Label ID="Label9" runat="server" Text="Acrylic Color:"></asp:Label> </td> <td> <asp:Label ID="Label10" runat="server" Text='<%#DataBinder.Eval(Container.DataItem, "ACRYLICCOLORVALUE") %>'></asp:Label> </td> </tr> <tr> <td> <asp:Label ID="Label11" runat="server" Text="Cabinet Color:"></asp:Label> </td> <td> <asp:Label ID="Label12" runat="server" Text='<%#DataBinder.Eval(Container.DataItem, "CABPANCOLORVALUE") %>'></asp:Label> </td> </tr> <tr> <td> <asp:Label ID="Label17" runat="server" Text="Cabinet Type:"></asp:Label> </td> <td> <asp:Label ID="Label18" runat="server" Text='<%#DataBinder.Eval(Container.DataItem, "CABINETVALUE") %>'></asp:Label> </td> </tr> <tr> <td> <asp:Label ID="Label13" runat="server" Text="Cover Color:"></asp:Label> </td> <td> <asp:Label ID="Label14" runat="server" Text='<%#DataBinder.Eval(Container.DataItem, "COVERCOLORVALUE") %>'></asp:Label> </td> </tr> </table> <asp:Label ID="Label15" runat="server" Text="Options:"></asp:Label> <asp:Repeater ID="rptCustomSpaItem" runat="server"> <HeaderTemplate> <table> </HeaderTemplate> <ItemTemplate> <tr> <td> <asp:Label ID="Label1" runat="server" Text='<%#DataBinder.Eval(Container.DataItem, "PROPERTY") %>'></asp:Label> </td> <td> <asp:Label ID="Label2" runat="server" Text='<%#DataBinder.Eval(Container.DataItem, "VALUE") %>'></asp:Label> </td> </tr> </ItemTemplate> <FooterTemplate> </table> </FooterTemplate> </asp:Repeater> <table> <tr> <td style="padding-top:15px;padding-bottom:30px;"> <asp:Label ID="Label7" runat="server" Text="Configured Price:"></asp:Label> </td> <td style="padding-top:15px;padding-bottom:30px;"> <asp:Label ID="Label8" runat="server" Text='<%#DataBinder.Eval(Container.DataItem, "SPAVALUEVALUE") %>'></asp:Label> </td> </tr> </table> <asp:Label ID="Label16" runat="server" Text="------"></asp:Label> </ItemTemplate> <FooterTemplate></FooterTemplate> </asp:Repeater>

    Read the article

  • What Every Developer Should Know About MSI Components

    - by Alois Kraus
    Hopefully nothing. But if you have to do more than simple XCopy deployment and you need to support updates, upgrades and perhaps side by side scenarios there is no way around MSI. You can create Msi files with a Visual Studio Setup project which is severely limited or you can use the Windows Installer Toolset. I cannot talk about WIX with my German colleagues because WIX has a very special meaning. It is funny to always use the long name when I talk about deployment possibilities. Alternatively you can buy commercial tools which help you to author Msi files but I am not sure how good they are. Given enough pain with existing solutions you can also learn the MSI Apis and create your own packaging solution. If I were you I would use either a commercial visual tool when you do easy deployments or use the free Windows Installer Toolset. Once you know the WIX schema you can create well formed wix xml files easily with any editor. Then you can “compile” from the wxs files your Msi package. Recently I had the “pleasure” to get my hands dirty with C++ (again) and the MSI technology. Installation is a complex topic but after several month of digging into arcane MSI issues I can safely say that there should exist an easier way to install and update files as today. I am not alone with this statement as John Robbins (creator of the cool tool Paraffin) states: “.. It's a brittle and scary API in Windows …”. To help other people struggling with installation issues I present you the advice I (and others) found useful and what will happen if you ignore this advice. What is a MSI file? A MSI file is basically a database with tables which reference each other to control how your un/installation should work. The basic idea is that you declare via these tables what you want to install and MSI controls the how to get your stuff onto or off your machine. Your “stuff” consists usually of files, registry keys, shortcuts and environment variables. Therefore the most important tables are File, Registry, Environment and Shortcut table which define what will be un/installed. The key to master MSI is that every resource (file, registry key ,…) is associated with a MSI component. The actual payload consists of compressed files in the CAB format which can either be embedded into the MSI file or reside beside the MSI file or in a subdirectory below it. To examine MSI files you need Orca a free MSI editor provided by MS. There is also another free editor called Super Orca which does support diffs between MSI and it does not lock the MSI files. But since Orca comes with a shell extension I tend to use only Orca because it is so easy to right click on a MSI file and open it with this tool. How Do I Install It? Double click it. This does work for fresh installations as well as major upgrades. Updates need to be installed via the command line via msiexec /i <msi> REINSTALL=ALL REINSTALLMODE=vomus   This tells the installer to reinstall all already installed features (new features will NOT be installed). The reinstallmode letters do force an overwrite of the old cached package in the %WINDIR%\Installer folder. All files, shortcuts and registry keys are redeployed if they are missing or need to be replaced with a newer version. When things did go really wrong and you want to overwrite everything unconditionally use REINSTALLMODE=vamus. How To Enable MSI Logs? You can download a MSI from Microsoft which installs some registry keys to enable full MSI logging. The log files can be found in your %TEMP% folder and are called MSIxxxx.log. Alternatively you can add to your msiexec command line the option msiexec …. /l*vx <LogFileName> Personally I find it rather strange that * does not mean full logging. To really get all logs I need to add v and x which is documented in the msiexec help but I still find this behavior unintuitive. What are MSI components? The whole MSI logic is bound to the concept of MSI components. Nearly every msi table has a Component column which binds an installable resource to a component. Below are the screenshots of the FeatureComponents and Component table of an example MSI. The Feature table defines basically the feature hierarchy.  To find out what belongs to a feature you need to look at the FeatureComponents table where for each feature the components are listed which will be installed when a feature is installed. The MSI components are defined in the  Component table. This table has as first column the component name and as second column the component id which is a GUID. All resources you want to install belong to a MSI component. Therefore nearly all MSI tables have a Component_ column which contains the component name. If you look e.g. a the File table you see that every file belongs to a component which is true for all other tables which install resources. The component table is the glue between all other tables which contain the resources you want to install. So far so easy. Why is MSI then so complex? Most MSI problems arise from the fact that you did violate a MSI component rule in one or the other way. When you install a feature the reference count for all components belonging to this feature will increase by one. If your component is installed by more than one feature it will get a higher refcount. When you uninstall a feature its refcount will drop by one. Interesting things happen if the component reference count reaches zero: Then all associated resources will be deleted. That looks like a reasonable thing and it is. What it makes complex are the strange component rules you have to follow. Below are some important component rules from the Tao of the Windows Installer … Rule 16: Follow Component Rules Components are a very important part of the Installer technology. They are the means whereby the Installer manages the resources that make up your application. The SDK provides the following guidelines for creating components in your package: Never create two components that install a resource under the same name and target location. If a resource must be duplicated in multiple components, change its name or target location in each component. This rule should be applied across applications, products, product versions, and companies. Two components must not have the same key path file. This is a consequence of the previous rule. The key path value points to a particular file or folder belonging to the component that the installer uses to detect the component. If two components had the same key path file, the installer would be unable to distinguish which component is installed. Two components however may share a key path folder. Do not create a version of a component that is incompatible with all previous versions of the component. This rule should be applied across applications, products, product versions, and companies. Do not create components containing resources that will need to be installed into more than one directory on the user’s system. The installer installs all of the resources in a component into the same directory. It is not possible to install some resources into subdirectories. Do not include more than one COM server per component. If a component contains a COM server, this must be the key path for the component. Do not specify more than one file per component as a target for the Start menu or a Desktop shortcut. … And these rules do not even talk about component ids, update packages and upgrades which you need to understand as well. Lets suppose you install two MSIs (MSI1 and MSI2) which have the same ComponentId but different component names. Both do install the same file. What will happen when you uninstall MSI2?   Hm the file should stay there. But the component names are different. Yes and yes. But MSI uses not use the component name as key for the refcount. Instead the ComponentId column of the Component table which contains a GUID is used as identifier under which the refcount is stored. The components Comp1 and Comp2 are identical from the MSI perspective. After the installation of both MSIs the Component with the Id {100000….} has a refcount of two. After uninstallation of one MSI there is still a refcount of one which drops to zero just as expected when we uninstall the last msi. Then the file which was the same for both MSIs is deleted. You should remember that MSI keeps a refcount across MSIs for components with the same component id. MSI does manage components not the resources you did install. The resources associated with a component are then and only then deleted when the refcount of the component reaches zero.   The dependencies between features, components and resources can be described as relations. m,k are numbers >= 1, n can be 0. Inside a MSI the following relations are valid Feature    1  –> n Components Component    1 –> m Features Component      1  –>  k Resources These relations express that one feature can install several components and features can share components between them. Every (meaningful) component will install at least one resource which means that its name (primary key to stay in database speak) does occur in some other table in the Component column as value which installs some resource. Lets make it clear with an example. We want to install with the feature MainFeature some files a registry key and a shortcut. We can then create components Comp1..3 which are referenced by the resources defined in the corresponding tables.   Feature Component Registry File Shortcuts MainFeature Comp1 RegistryKey1     MainFeature Comp2   File.txt   MainFeature Comp3   File2.txt Shortcut to File2.txt   It is illegal that the same resource is part of more than one component since this would break the refcount mechanism. Lets illustrate this:            Feature ComponentId Resource Reference Count Feature1 {1000-…} File1.txt 1 Feature2 {2000-….} File1.txt 1 The installation part works well but what happens when you uninstall Feature2? Component {20000…} gets a refcount of zero where MSI deletes all resources belonging to this component. In this case File1.txt will be deleted. But Feature1 still has another component {10000…} with a refcount of one which means that the file was deleted too early. You just have ruined your installation. To fix it you then need to click on the Repair button under Add/Remove Programs to let MSI reinstall any missing registry keys, files or shortcuts. The vigilant reader might has noticed that there is more in the Component table. Beside its name and GUID it has also an installation directory, attributes and a KeyPath. The KeyPath is a reference to a file or registry key which is used to detect if the component is already installed. This becomes important when you repair or uninstall a component. To find out if the component is already installed MSI checks if the registry key or file referenced by the KeyPath property does exist. When it does not exist it assumes that it was either already uninstalled (can lead to problems during uninstall) or that it is already installed and all is fine. Why is this detail so important? Lets put all files into one component. The KeyPath should be then one of the files of your component to check if it was installed or not. When your installation becomes corrupt because a file was deleted you cannot repair it with the Repair button under Add/Remove Programs because MSI checks the component integrity via the Resource referenced by its KeyPath. As long as you did not delete the KeyPath file MSI thinks all resources with your component are installed and never executes any repair action. You get even more trouble when you try to remove files during an upgrade (you cannot remove files during an update) from your super component which contains all files. The only way out and therefore best practice is to assign for every resource you want to install an extra component. This ensures painless updatability and repairs and you have much less effort to remove specific files during an upgrade. In effect you get this best practice relation Feature 1  –> n Components Component   1  –>  1 Resources MSI Component Rules Rule 1 – One component per resource Every resource you want to install (file, registry key, value, environment value, shortcut, directory, …) must get its own component which does never change between versions as long as the install location is the same. Penalty If you add more than one resources to a component you will break the repair capability of MSI because the KeyPath is used to check if the component needs repair. MSI ComponentId Files MSI 1.0 {1000} File1-5 MSI 2.0 {2000} File2-5 You want to remove File1 in version 2.0 of your MSI. Since you want to keep the other files you create a new component and add them there. MSI will delete all files if the component refcount of {1000} drops to zero. The files you want to keep are added to the new component {2000}. Ok that does work if your upgrade does uninstall the old MSI first. This will cause the refcount of all previously installed components to reach zero which means that all files present in version 1.0 are deleted. But there is a faster way to perform your upgrade by first installing your new MSI and then remove the old one.  If you choose this upgrade path then you will loose File1-5 after your upgrade and not only File1 as intended by your new component design.   Rule 2 – Only add, never remove resources from a component If you did follow rule 1 you will not need Rule 2. You can add in a patch more resources to one component. That is ok. But you can never remove anything from it. There are tricky ways around that but I do not want to encourage bad component design. Penalty Lets assume you have 2 MSI files which install under the same component one file   MSI1 MSI2 {1000} - ComponentId {1000} – ComponentId File1.txt File2.txt   When you install and uninstall both MSIs you will end up with an installation where either File1 or File2 will be left. Why? It seems that MSI does not store the resources associated with each component in its internal database. Instead Windows will simply query the MSI that is currently uninstalled for all resources belonging to this component. Since it will find only one file and not two it will only uninstall one file. That is the main reason why you never can remove resources from a component!   Rule 3 Never Remove A Component From an Update MSI. This is the same as if you change the GUID of a component by accident for your new update package. The resulting update package will not contain all components from the previously installed package. Penalty When you remove a component from a feature MSI will set the feature state during update to Advertised and log a warning message into its log file when you did enable MSI logging. SELMGR: ComponentId '{2DCEA1BA-3E27-E222-484C-D0D66AEA4F62}' is registered to feature 'xxxxxxx, but is not present in the Component table.  Removal of components from a feature is not supported! MSI (c) (24:44) [07:53:13:436]: SELMGR: Removal of a component from a feature is not supported Advertised means that MSI treats all components of this feature as not installed. As a consequence during uninstall nothing will be removed since it is not installed! This is not only bad because uninstall does no longer work but this feature will also not get the required patches. All other features which have followed component versioning rules for update packages will be updated but the one faulty feature will not. This results in very hard to find bugs why an update was only partially successful. Things got better with Windows Installer 4.5 but you cannot rely on that nobody will use an older installer. It is a good idea to add to your update msiexec call MSIENFORCEUPGRADECOMPONENTRULES=1 which will abort the installation if you did violate this rule.

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How to shoot yourself in the foot (DO NOT Read in the office)

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2013/06/21/how-to-shoot-yourself-in-the-foot-do-not-read.aspxLet me make it absolutely clear - the following is:merely collated by your Geek from http://www.codeproject.com/Lounge.aspx?msg=3917012#xx3917012xxvery, very very funny so you read it in the presence of others at your own riskso here is the list - you have been warned!C You shoot yourself in the foot.   C++ You accidently create a dozen instances of yourself and shoot them all in the foot. Providing emergency medical assistance is impossible since you can't tell which are bitwise copies and which are just pointing at others and saying "That's me, over there."   FORTRAN You shoot yourself in each toe, iteratively, until you run out of toes, then you read in the next foot and repeat. If you run out of bullets, you continue anyway because you have no exception-handling facility.   Modula-2 After realizing that you can't actually accomplish anything in this language, you shoot yourself in the head.   COBOL USEing a COLT 45 HANDGUN, AIM gun at LEG.FOOT, THEN place ARM.HAND.FINGER on HANDGUN.TRIGGER and SQUEEZE. THEN return HANDGUN to HOLSTER. CHECK whether shoelace needs to be retied.   Lisp You shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds...   BASIC Shoot yourself in the foot with a water pistol. On big systems, continue until entire lower body is waterlogged.   Forth Foot yourself in the shoot.   APL You shoot yourself in the foot; then spend all day figuring out how to do it in fewer characters.   Pascal The compiler won't let you shoot yourself in the foot.   Snobol If you succeed, shoot yourself in the left foot. If you fail, shoot yourself in the right foot.   HyperTalk Put the first bullet of the gun into foot left of leg of you. Answer the result.   Prolog You tell your program you want to be shot in the foot. The program figures out how to do it, but the syntax doesn't allow it to explain.   370 JCL You send your foot down to MIS with a 4000-page document explaining how you want it to be shot. Three years later, your foot comes back deep-fried.   FORTRAN-77 You shoot yourself in each toe, iteratively, until you run out of toes, then you read in the next foot and repeat. If you run out of bullets, you continue anyway because you still can't do exception-processing.   Modula-2 (alternative) You perform a shooting on what might be currently a foot with what might be currently a bullet shot by what might currently be a gun.   BASIC (compiled) You shoot yourself in the foot with a BB using a SCUD missile launcher.   Visual Basic You'll really only appear to have shot yourself in the foot, but you'll have so much fun doing it that you won't care.   Forth (alternative) BULLET DUP3 * GUN LOAD FOOT AIM TRIGGER PULL BANG! EMIT DEAD IF DROP ROT THEN (This takes about five bytes of memory, executes in two to ten clock cycles on any processor and can be used to replace any existing function of the language as well as in any future words). (Welcome to bottom up programming - where you, too, can perform compiler pre-processing instead of writing code)   APL (alternative) You hear a gunshot and there's a hole in your foot, but you don't remember enough linear algebra to understand what happened. or @#&^$%&%^ foot   Pascal (alternative) Same as Modula-2 except that the bullet is not the right type for the gun and your hand is blown off.   Snobol (alternative) You grab your foot with your hand, then rewrite your hand to be a bullet. The act of shooting the original foot then changes your hand/bullet into yet another foot (a left foot).   Prolog (alternative) You attempt to shoot yourself in the foot, but the bullet, failing to find its mark, backtracks to the gun, which then explodes in your face.   COMAL You attempt to shoot yourself in the foot with a water pistol, but the bore is clogged, and the pressure build-up blows apart both the pistol and your hand. or draw_pistol aim_at_foot(left) pull_trigger hop(swearing)   Scheme As Lisp, but none of the other appendages are aware of this happening.   Algol You shoot yourself in the foot with a musket. The musket is aesthetically fascinating and the wound baffles the adolescent medic in the emergency room.   Ada If you are dumb enough to actually use this language, the United States Department of Defense will kidnap you, stand you up in front of a firing squad and tell the soldiers, "Shoot at the feet." or The Department of Defense shoots you in the foot after offering you a blindfold and a last cigarette. or After correctly packaging your foot, you attempt to concurrently load the gun, pull the trigger, scream and shoot yourself in the foot. When you try, however, you discover that your foot is of the wrong type. or After correctly packing your foot, you attempt to concurrently load the gun, pull the trigger, scream, and confidently aim at your foot knowing it is safe. However the cordite in the round does an Unchecked Conversion, fires and shoots you in the foot anyway.   Eiffel   You create a GUN object, two FOOT objects and a BULLET object. The GUN passes both the FOOT objects a reference to the BULLET. The FOOT objects increment their hole counts and forget about the BULLET. A little demon then drives a garbage truck over your feet and grabs the bullet (both of it) on the way. Smalltalk You spend so much time playing with the graphics and windowing system that your boss shoots you in the foot, takes away your workstation and makes you develop in COBOL on a character terminal. or You send the message shoot to gun, with selectors bullet and myFoot. A window pops up saying Gunpowder doesNotUnderstand: spark. After several fruitless hours spent browsing the methods for Trigger, FiringPin and IdealGas, you take the easy way out and create ShotFoot, a subclass of Foot with an additional instance variable bulletHole. Object Oriented Pascal You perform a shooting on what might currently be a foot with what might currently be a bullet fired from what might currently be a gun.   PL/I You consume all available system resources, including all the offline bullets. The Data Processing & Payroll Department doubles its size, triples its budget, acquires four new mainframes and drops the original one on your foot. Postscript foot bullets 6 locate loadgun aim gun shoot showpage or It takes the bullet ten minutes to travel from the gun to your foot, by which time you're long since gone out to lunch. The text comes out great, though.   PERL You stab yourself in the foot repeatedly with an incredibly large and very heavy Swiss Army knife. or You pick up the gun and begin to load it. The gun and your foot begin to grow to huge proportions and the world around you slows down, until the gun fires. It makes a tiny hole, which you don't feel. Assembly Language You crash the OS and overwrite the root disk. The system administrator arrives and shoots you in the foot. After a moment of contemplation, the administrator shoots himself in the foot and then hops around the room rabidly shooting at everyone in sight. or You try to shoot yourself in the foot only to discover you must first reinvent the gun, the bullet, and your foot.or The bullet travels to your foot instantly, but it took you three weeks to load the round and aim the gun.   BCPL You shoot yourself somewhere in the leg -- you can't get any finer resolution than that. Concurrent Euclid You shoot yourself in somebody else's foot.   Motif You spend days writing a UIL description of your foot, the trajectory, the bullet and the intricate scrollwork on the ivory handles of the gun. When you finally get around to pulling the trigger, the gun jams.   Powerbuilder While attempting to load the gun you discover that the LoadGun system function is buggy; as a work around you tape the bullet to the outside of the gun and unsuccessfully attempt to fire it with a nail. In frustration you club your foot with the butt of the gun and explain to your client that this approximates the functionality of shooting yourself in the foot and that the next version of Powerbuilder will fix it.   Standard ML By the time you get your code to typecheck, you're using a shoot to foot yourself in the gun.   MUMPS You shoot 583149 AK-47 teflon-tipped, hollow-point, armour-piercing bullets into even-numbered toes on odd-numbered feet of everyone in the building -- with one line of code. Three weeks later you shoot yourself in the head rather than try to modify that line.   Java You locate the Gun class, but discover that the Bullet class is abstract, so you extend it and write the missing part of the implementation. Then you implement the ShootAble interface for your foot, and recompile the Foot class. The interface lets the bullet call the doDamage method on the Foot, so the Foot can damage itself in the most effective way. Now you run the program, and call the doShoot method on the instance of the Gun class. First the Gun creates an instance of Bullet, which calls the doFire method on the Gun. The Gun calls the hit(Bullet) method on the Foot, and the instance of Bullet is passed to the Foot. But this causes an IllegalHitByBullet exception to be thrown, and you die.   Unix You shoot yourself in the foot or % ls foot.c foot.h foot.o toe.c toe.o % rm * .o rm: .o: No such file or directory % ls %   370 JCL (alternative) You shoot yourself in the head just thinking about it.   DOS JCL You first find the building you're in in the phone book, then find your office number in the corporate phone book. Then you have to write this down, then describe, in cubits, your exact location, in relation to the door (right hand side thereof). Then you need to write down the location of the gun (loading it is a proprietary utility), then you load it, and the COBOL program, and run them, and, with luck, it may be run tonight.   VMS   $ MOUNT/DENSITY=.45/LABEL=BULLET/MESSAGE="BYE" BULLET::BULLET$GUN SYS$BULLET $ SET GUN/LOAD/SAFETY=OFF/SIGHT=NONE/HAND=LEFT/CHAMBER=1/ACTION=AUTOMATIC/ LOG/ALL/FULL SYS$GUN_3$DUA3:[000000]GUN.GNU $ SHOOT/LOG/AUTO SYS$GUN SYS$SYSTEM:[FOOT]FOOT.FOOT   %DCL-W-ACTIMAGE, error activating image GUN -CLI-E-IMGNAME, image file $3$DUA240:[GUN]GUN.EXE;1 -IMGACT-F-NOTNATIVE, image is not an OpenVMS Alpha AXP image or %SYS-F-FTSHT, foot shot (fifty lines of traceback omitted) sh,csh, etc You can't remember the syntax for anything, so you spend five hours reading manual pages, then your foot falls asleep. You shoot the computer and switch to C.   Apple System 7 Double click the gun icon and a window giving a selection for guns, target areas, plus balloon help with medical remedies, and assorted sound effects. Click "shoot" button and a small bomb appears with note "Error of Type 1 has occurred."   Windows 3.1 Double click the gun icon and wait. Eventually a window opens giving a selection for guns, target areas, plus balloon help with medical remedies, and assorted sound effects. Click "shoot" button and a small box appears with note "Unable to open Shoot.dll, check that path is correct."   Windows 95 Your gun is not compatible with this OS and you must buy an upgrade and install it before you can continue. Then you will be informed that you don't have enough memory.   CP/M I remember when shooting yourself in the foot with a BB gun was a big deal.   DOS You finally found the gun, but can't locate the file with the foot for the life of you.   MSDOS You shoot yourself in the foot, but can unshoot yourself with add-on software.   Access You try to point the gun at your foot, but it shoots holes in all your Borland distribution diskettes instead.   Paradox Not only can you shoot yourself in the foot, your users can too.   dBase You squeeze the trigger, but the bullet moves so slowly that by the time your foot feels the pain, you've forgotten why you shot yourself anyway. or You buy a gun. Bullets are only available from another company and are promised to work so you buy them. Then you find out that the next version of the gun is the one scheduled to actually shoot bullets.   DBase IV, V1.0 You pull the trigger, but it turns out that the gun was a poorly designed hand grenade and the whole building blows up.   SQL You cut your foot off, send it out to a service bureau and when it returns, it has a hole in it but will no longer fit the attachment at the end of your leg. or Insert into Foot Select Bullet >From Gun.Hand Where Chamber = 'LOADED' And Trigger = 'PULLED'   Clipper You grab a bullet, get ready to insert it in the gun so that you can shoot yourself in the foot and discover that the gun that the bullets fits has not yet been built, but should be arriving in the mail _REAL_SOON_NOW_. Oracle The menus for coding foot_shooting have not been implemented yet and you can't do foot shooting in SQL.   English You put your foot in your mouth, then bite it off. (For those who don't know, English is a McDonnell Douglas/PICK query language which allegedly requires 110% of system resources to run happily.) Revelation [an implementation of the PICK Operating System] You'll be able to shoot yourself in the foot just as soon as you figure out what all these bullets are for.   FlagShip Starting at the top of your head, you aim the gun at yourself repeatedly until, half an hour later, the gun is finally pointing at your foot and you pull the trigger. A new foot with a hole in it appears but you can't work out how to get rid of the old one and your gun doesn't work anymore.   FidoNet You put your foot in your mouth, then echo it internationally.   PicoSpan [a UNIX-based computer conferencing system] You can't shoot yourself in the foot because you're not a host. or (host variation) Whenever you shoot yourself in the foot, someone opens a topic in policy about it.   Internet You put your foot in your mouth, shoot it, then spam the bullet so that everybody gets shot in the foot.   troff rmtroff -ms -Hdrwp | lpr -Pwp2 & .*place bullet in footer .B .NR FT +3i .in 4 .bu Shoot! .br .sp .in -4 .br .bp NR HD -2i .*   Genetic Algorithms You create 10,000 strings describing the best way to shoot yourself in the foot. By the time the program produces the optimal solution, humans have evolved wings and the problem is moot.   CSP (Communicating Sequential Processes) You only fail to shoot everything that isn't your foot.   MS-SQL Server MS-SQL Server’s gun comes pre-loaded with an unlimited supply of Teflon coated bullets, and it only has two discernible features: the muzzle and the trigger. If that wasn't enough, MS-SQL Server also puts the gun in your hand, applies local anesthetic to the skin of your forefinger and stitches it to the gun's trigger. Meanwhile, another process has set up a spinal block to numb your lower body. It will then proceeded to surgically remove your foot, cryogenically freeze it for preservation, and attach it to the muzzle of the gun so that no matter where you aim, you will shoot your foot. In order to avoid shooting yourself in the foot, you need to unstitch your trigger finger, remove your foot from the muzzle of the gun, and have it surgically reattached. Then you probably want to get some crutches and go out to buy a book on SQL Server Performance Tuning.   Sybase Sybase's gun requires assembly, and you need to go out and purchase your own clip and bullets to load the gun. Assembly is complicated by the fact that Sybase has hidden the gun behind a big stack of reference manuals, but it hasn't told you where that stack is. While you were off finding the gun, assembling it, buying bullets, etc., Sybase was also busy surgically removing your foot and cryogenically freezing it for preservation. Instead of attaching it to the muzzle of the gun, though, it packed your foot on dry ice and sent it UPS-Ground to an unnamed hookah bar somewhere in the middle east. In order to shoot your foot, you must modify your gun with a GPS system for targeting and hire some guy named "Indy" to find the hookah bar and wire the coordinates back to you. By this time, you've probably become so daunted at the tasks stand between you and shooting your foot that you hire a guy who's read all the books on Sybase to help you shoot your foot. If you're lucky, he'll be smart enough both to find your foot and to stop you from shooting it.   Magic software You spend 1 week looking up the correct syntax for GUN. When you find it, you realise that GUN will not let you shoot in your own foot. It will allow you to shoot almost anything but your foot. You then decide to build your own gun. You can't use the standard barrel since this will only allow for standard bullets, which will not fire if the barrel is pointed at your foot. After four weeks, you have created your own custom gun. It blows up in your hand without warning, because you failed to initialise the safety catch and it doesn't know whether the initial state is "0", 0, NULL, "ZERO", 0.0, 0,0, "0.0", or "0,00". You fix the problem with your remaining hand by nesting 12 safety catches, and then decide to build the gun without safety catch. You then shoot the management and retire to a happy life where you code in languages that will allow you to shoot your foot in under 10 days.FirefoxLets you shoot yourself in as many feet as you'd like, while using multiple great addons! IEA moving target in terms of standard ammunition size and doesn't always work properly with non-Microsoft ammunition, so sometimes you shoot something other than your foot. However, it's the corporate world's standard foot-shooting apparatus. Hackers seem to enjoy rigging websites up to trigger cascading foot-shooting failures. Windows 98 About the same as Windows 95 in terms of overall bullet capacity and triggering mechanisms. Includes updated DirectShot API. A new version was released later on to support USB guns, Windows 98 SE.WPF:You get your baseball glove and a ball and you head out to your backyard, where you throw balls to your pitchback. Then your unkempt-haired-cargo-shorts-and-sandals-with-white-socks-wearing neighbor uses XAML to sculpt your arm into a gun, the ball into a bullet and the pitchback into your foot. By now, however, only the neighbor can get it to work and he's only around from 6:30 PM - 3:30 AM. LOGO: You very carefully lay out the trajectory of the bullet. Then you start the gun, which fires very slowly. You walk precisely to the point where the bullet will travel and wait, but just before it gets to you, your class time is up and one of the other kids has already used the system to hack into Sony's PS3 network. Flash: Someone has designed a beautiful-looking gun that anyone can shoot their feet with for free. It weighs six hundred pounds. All kinds of people are shooting themselves in the feet, and sending the link to everyone else so that they can too. That is, except for the criminals, who are all stealing iOS devices that the gun won't work with.APL: Its (mostly) all greek to me. Lisp: Place ((gun in ((hand sight (foot then shoot))))) (Lots of Insipid Stupid Parentheses)Apple OS/X and iOS Once a year, Steve Jobs returns from sick leave to tell millions of unwavering fans how they will be able to shoot themselves in the foot differently this year. They retweet and blog about it ad nauseam, and wait in line to be the first to experience "shoot different".Windows ME Usually fails, even at shooting you in the foot. Yo dawg, I heard you like shooting yourself in the foot. So I put a gun in your gun, so you can shoot yourself in the foot while you shoot yourself in the foot. (Okay, I'm not especially proud of this joke.) Windows 2000 Now you really do have to log in, before you are allowed to shoot yourself in the foot.Windows XPYou thought you learned your lesson: Don't use Windows ME. Then, along came this new creature, built on top of Windows NT! So you spend the next couple days installing antivirus software, patches and service packs, just so you can get that driver to install, and then proceed to shoot yourself in the foot. Windows Vista Newer! Glossier! Shootier! Windows 7 The bullets come out a lot smoother. Active Directory Each bullet now has an attached Bullet Identifier, and can be uniquely identified. Policies can be applied to dictate fragmentation, and the gun will occasionally have a confusing delay after the trigger has been pulled. PythonYou try to use import foot; foot.shoot() only to realize that's only available in 3.0, to which you can't yet upgrade from 2.7 because of all those extension libs lacking support. Solaris Shoots best when used on SPARC hardware, but still runs the trigger GUI under Java. After weeks of learning the appropriate STOP command to prevent the trigger from automatically being pressed on boot, you think you've got it under control. Then the one time you ever use dtrace, it hits a bug that fires the gun. MySQL The feature that allows you to shoot yourself in the foot has been in development for about 6 years, and they are adding it into the next version, which is coming out REAL SOON NOW, promise! But you can always check it out of source control and try it yourself (just not in any environment where data integrity is important because it will probably explode.) PostgreSQLAllows you to have a smug look on your face while you shoot yourself in the foot, because those MySQL guys STILL don't have that feature. NoSQL Barrel? Who needs a barrel? Just put the bullet on your foot, and strike it with a hammer. See? It's so much simpler and more efficient that way. You can even strike multiple bullets in one swing if you swing with a good enough arc, because hammers are easy to use. Getting them to synchronize is a little difficult, though.Eclipse There are about a dozen different packages for shooting yourself in the foot, with weird interdependencies on outdated components. Once you finally navigate the morass and get one installed, you then have something to look at while you shoot yourself in the foot with that package: You can watch the screen redraw.Outlook Makes it really easy to let everyone know you shot yourself in the foot!Shooting yourself in the foot using delegates.You really need to shoot yourself in the foot but you hate firearms (you don't want any dependency on the specifics of shooting) so you delegate it to somebody else. You don't care how it is done as long is shooting your foot. You can do it asynchronously in case you know you may faint so you are called back/slapped in the face by your shooter/friend (or background worker) when everything is done.C#You prepare the gun and the bullet, carefully modeling all of the physics of a bullet traveling through a foot. Just before you're about to pull the trigger, you stumble on System.Windows.BodyParts.Foot.ShootAt(System.Windows.Firearms.IGun gun) in the extended framework, realize you just wasted the entire afternoon, and shoot yourself in the head.PHP<?phprequire("foot_safety_check.php");?><!DOCTYPE HTML><html><head> <!--Lower!--><title>Shooting me in the foot</title></head> <body> <!--LOWER!!!--><leg> <!--OK, I made this one up...--><footer><?php echo (dungSift($_SERVER['HTTP_USER_AGENT'], "ie"))?("Your foot is safe, but you might want to wear a hard hat!"):("<div class=\"shot\">BANG!</div>"); ?></footer></leg> </body> </html>

    Read the article

  • JPA : optimize EJB-QL query involving large many-to-many join table

    - by Fabien
    Hi all. I'm using Hibernate Entity Manager 3.4.0.GA with Spring 2.5.6 and MySql 5.1. I have a use case where an entity called Artifact has a reflexive many-to-many relation with itself, and the join table is quite large (1 million lines). As a result, the HQL query performed by one of the methods in my DAO takes a long time. Any advice on how to optimize this and still use HQL ? Or do I have no choice but to switch to a native SQL query that would perform a join between the table ARTIFACT and the join table ARTIFACT_DEPENDENCIES ? Here is the problematic query performed in the DAO : @SuppressWarnings("unchecked") public List<Artifact> findDependentArtifacts(Artifact artifact) { Query query = em.createQuery("select a from Artifact a where :artifact in elements(a.dependencies)"); query.setParameter("artifact", artifact); List<Artifact> list = query.getResultList(); return list; } And the code for the Artifact entity : package com.acme.dependencytool.persistence.model; import java.util.ArrayList; import java.util.List; import javax.persistence.CascadeType; import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.FetchType; import javax.persistence.GeneratedValue; import javax.persistence.Id; import javax.persistence.JoinColumn; import javax.persistence.JoinTable; import javax.persistence.ManyToMany; import javax.persistence.Table; import javax.persistence.UniqueConstraint; @Entity @Table(name = "ARTIFACT", uniqueConstraints={@UniqueConstraint(columnNames={"GROUP_ID", "ARTIFACT_ID", "VERSION"})}) public class Artifact { @Id @GeneratedValue @Column(name = "ID") private Long id = null; @Column(name = "GROUP_ID", length = 255, nullable = false) private String groupId; @Column(name = "ARTIFACT_ID", length = 255, nullable = false) private String artifactId; @Column(name = "VERSION", length = 255, nullable = false) private String version; @ManyToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER) @JoinTable( name="ARTIFACT_DEPENDENCIES", joinColumns = @JoinColumn(name="ARTIFACT_ID", referencedColumnName="ID"), inverseJoinColumns = @JoinColumn(name="DEPENDENCY_ID", referencedColumnName="ID") ) private List<Artifact> dependencies = new ArrayList<Artifact>(); public Long getId() { return id; } public void setId(Long id) { this.id = id; } public String getGroupId() { return groupId; } public void setGroupId(String groupId) { this.groupId = groupId; } public String getArtifactId() { return artifactId; } public void setArtifactId(String artifactId) { this.artifactId = artifactId; } public String getVersion() { return version; } public void setVersion(String version) { this.version = version; } public List<Artifact> getDependencies() { return dependencies; } public void setDependencies(List<Artifact> dependencies) { this.dependencies = dependencies; } } Thanks in advance. EDIT 1 : The DDLs are generated automatically by Hibernate EntityMananger based on the JPA annotations in the Artifact entity. I have no explicit control on the automaticaly-generated join table, and the JPA annotations don't let me explicitly set an index on a column of a table that does not correspond to an actual Entity (in the JPA sense). So I guess the indexing of table ARTIFACT_DEPENDENCIES is left to the DB, MySQL in my case, which apparently uses a composite index based on both clumns but doesn't index the column that is most relevant in my query (DEPENDENCY_ID). mysql describe ARTIFACT_DEPENDENCIES; +---------------+------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +---------------+------------+------+-----+---------+-------+ | ARTIFACT_ID | bigint(20) | NO | MUL | NULL | | | DEPENDENCY_ID | bigint(20) | NO | MUL | NULL | | +---------------+------------+------+-----+---------+-------+ EDIT 2 : When turning on showSql in the Hibernate session, I see many occurences of the same type of SQL query, as below : select dependenci0_.ARTIFACT_ID as ARTIFACT1_1_, dependenci0_.DEPENDENCY_ID as DEPENDENCY2_1_, artifact1_.ID as ID1_0_, artifact1_.ARTIFACT_ID as ARTIFACT2_1_0_, artifact1_.GROUP_ID as GROUP3_1_0_, artifact1_.VERSION as VERSION1_0_ from ARTIFACT_DEPENDENCIES dependenci0_ left outer join ARTIFACT artifact1_ on dependenci0_.DEPENDENCY_ID=artifact1_.ID where dependenci0_.ARTIFACT_ID=? Here's what EXPLAIN in MySql says about this type of query : mysql explain select dependenci0_.ARTIFACT_ID as ARTIFACT1_1_, dependenci0_.DEPENDENCY_ID as DEPENDENCY2_1_, artifact1_.ID as ID1_0_, artifact1_.ARTIFACT_ID as ARTIFACT2_1_0_, artifact1_.GROUP_ID as GROUP3_1_0_, artifact1_.VERSION as VERSION1_0_ from ARTIFACT_DEPENDENCIES dependenci0_ left outer join ARTIFACT artifact1_ on dependenci0_.DEPENDENCY_ID=artifact1_.ID where dependenci0_.ARTIFACT_ID=1; +----+-------------+--------------+--------+-------------------+-------------------+---------+---------------------------------------------+------+-------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+--------------+--------+-------------------+-------------------+---------+---------------------------------------------+------+-------+ | 1 | SIMPLE | dependenci0_ | ref | FKEA2DE763364D466 | FKEA2DE763364D466 | 8 | const | 159 | | | 1 | SIMPLE | artifact1_ | eq_ref | PRIMARY | PRIMARY | 8 | dependencytooldb.dependenci0_.DEPENDENCY_ID | 1 | | +----+-------------+--------------+--------+-------------------+-------------------+---------+---------------------------------------------+------+-------+ EDIT 3 : I tried setting the FetchType to LAZY in the JoinTable annotation, but I then get the following exception : Hibernate: select artifact0_.ID as ID1_, artifact0_.ARTIFACT_ID as ARTIFACT2_1_, artifact0_.GROUP_ID as GROUP3_1_, artifact0_.VERSION as VERSION1_ from ARTIFACT artifact0_ where artifact0_.GROUP_ID=? and artifact0_.ARTIFACT_ID=? 51545 [btpool0-2] ERROR org.hibernate.LazyInitializationException - failed to lazily initialize a collection of role: com.acme.dependencytool.persistence.model.Artifact.dependencies, no session or session was closed org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: com.acme.dependencytool.persistence.model.Artifact.dependencies, no session or session was closed at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:380) at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationExceptionIfNotConnected(AbstractPersistentCollection.java:372) at org.hibernate.collection.AbstractPersistentCollection.readSize(AbstractPersistentCollection.java:119) at org.hibernate.collection.PersistentBag.size(PersistentBag.java:248) at com.acme.dependencytool.server.DependencyToolServiceImpl.createArtifactViewBean(DependencyToolServiceImpl.java:93) at com.acme.dependencytool.server.DependencyToolServiceImpl.createArtifactViewBean(DependencyToolServiceImpl.java:109) at com.acme.dependencytool.server.DependencyToolServiceImpl.search(DependencyToolServiceImpl.java:48) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at com.google.gwt.user.server.rpc.RPC.invokeAndEncodeResponse(RPC.java:527) at com.google.gwt.user.server.rpc.RemoteServiceServlet.processCall(RemoteServiceServlet.java:166) at com.google.gwt.user.server.rpc.RemoteServiceServlet.doPost(RemoteServiceServlet.java:86) at javax.servlet.http.HttpServlet.service(HttpServlet.java:637) at javax.servlet.http.HttpServlet.service(HttpServlet.java:717) at org.mortbay.jetty.servlet.ServletHolder.handle(ServletHolder.java:487) at org.mortbay.jetty.servlet.ServletHandler.handle(ServletHandler.java:362) at org.mortbay.jetty.security.SecurityHandler.handle(SecurityHandler.java:216) at org.mortbay.jetty.servlet.SessionHandler.handle(SessionHandler.java:181) at org.mortbay.jetty.handler.ContextHandler.handle(ContextHandler.java:729) at org.mortbay.jetty.webapp.WebAppContext.handle(WebAppContext.java:405) at org.mortbay.jetty.handler.HandlerWrapper.handle(HandlerWrapper.java:152) at org.mortbay.jetty.handler.RequestLogHandler.handle(RequestLogHandler.java:49) at org.mortbay.jetty.handler.HandlerWrapper.handle(HandlerWrapper.java:152) at org.mortbay.jetty.Server.handle(Server.java:324) at org.mortbay.jetty.HttpConnection.handleRequest(HttpConnection.java:505) at org.mortbay.jetty.HttpConnection$RequestHandler.content(HttpConnection.java:843) at org.mortbay.jetty.HttpParser.parseNext(HttpParser.java:647) at org.mortbay.jetty.HttpParser.parseAvailable(HttpParser.java:205) at org.mortbay.jetty.HttpConnection.handle(HttpConnection.java:380) at org.mortbay.io.nio.SelectChannelEndPoint.run(SelectChannelEndPoint.java:395) at org.mortbay.thread.QueuedThreadPool$PoolThread.run(QueuedThreadPool.java:488)

    Read the article

  • javax.validation.ConstraintViolationException: validation failed for classes during update time for groups

    - by Tim
    Hello all! I have a Java / Spring MVC 3 application, using Hibernate and a MySQL database. In my controller, I have this source code: Set<ConstraintViolation<Person>> failures = validator.validate(p); if (failures.isEmpty()) { Project project = this.projectService.findProjectById(projectid); Person newPerson = this.personService.addPerson(p); Set<Person> persons = this.personService.getAllPersonsByProjectId(projectid); persons.add(newPerson); project.setPersons(persons); Set<ConstraintViolation<Project>> failures1 = validator.validate(project); if (!failures1.isEmpty()) { System.out.println("ERROR"); } else { System.out.println("NO ERROR"); } this.projectService.updateProject(project); return Collections.singletonMap("person", newPerson); } Project and Person are a many-to-many relation annotated with @manytomany and Project is the mapping owner. The new Person is added, but on the line with this.projectService.updateProject(project); I get an error. What it does it this in a Dao Hibernate implementation: public void updateProject(Project p) { SessionFactory sessionFactory = HibernateUtil.getSessionFactory(); Session sess = sessionFactory.getCurrentSession(); Transaction tx = sess.beginTransaction(); sess.update(p); tx.commit(); } It failed on the line tx.commit();. My check with if (!failures1.isEmpty()) { tell me that there are nor errors in my project. So what's wrong here? And why there is a validation of my project? I did not call a validation method... so why is there a org.hibernate.cfg.beanvalidation.BeanValidationEventListener.validate()? I hope, someone can help me how to fix this! Best Regards, Tim. Here the full error stack trace: 13.01.2011 00:06:36 org.apache.catalina.core.ApplicationDispatcher invoke SERVE: Servlet.service() for servlet project3 threw exception javax.validation.ConstraintViolationException: validation failed for classes [com.mydomain.myproject.domain.Person] during update time for groups [javax.validation.groups.Default, ] at org.hibernate.cfg.beanvalidation.BeanValidationEventListener.validate(BeanValidationEventListener.java:155) at org.hibernate.cfg.beanvalidation.BeanValidationEventListener.onPreUpdate(BeanValidationEventListener.java:102) at org.hibernate.action.EntityUpdateAction.preUpdate(EntityUpdateAction.java:235) at org.hibernate.action.EntityUpdateAction.execute(EntityUpdateAction.java:86) at org.hibernate.engine.ActionQueue.execute(ActionQueue.java:273) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:265) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:185) at org.hibernate.event.def.AbstractFlushingEventListener.performExecutions(AbstractFlushingEventListener.java:321) at org.hibernate.event.def.DefaultFlushEventListener.onFlush(DefaultFlushEventListener.java:51) at org.hibernate.impl.SessionImpl.flush(SessionImpl.java:1216) at org.hibernate.impl.SessionImpl.managedFlush(SessionImpl.java:383) at org.hibernate.transaction.JDBCTransaction.commit(JDBCTransaction.java:133) at com.mydomain.myproject.dao.impl.ProjectDaoImplHibernate.updateProject(ProjectDaoImplHibernate.java:44) at com.mydomain.myproject.service.impl.ProjectServiceImpl.updateProject(ProjectServiceImpl.java:39) at com.mydomain.myproject.controller.ProjectPersonController.addPerson(ProjectPersonController.java:189) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.springframework.web.bind.annotation.support.HandlerMethodInvoker.invokeHandlerMethod(HandlerMethodInvoker.java:176) at org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter.invokeHandlerMethod(AnnotationMethodHandlerAdapter.java:426) at org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter.handle(AnnotationMethodHandlerAdapter.java:414) at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:790) at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:719) at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:644) at org.springframework.web.servlet.FrameworkServlet.doPost(FrameworkServlet.java:560) at javax.servlet.http.HttpServlet.service(HttpServlet.java:637) at javax.servlet.http.HttpServlet.service(HttpServlet.java:717) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.ApplicationDispatcher.invoke(ApplicationDispatcher.java:646) at org.apache.catalina.core.ApplicationDispatcher.processRequest(ApplicationDispatcher.java:436) at org.apache.catalina.core.ApplicationDispatcher.doForward(ApplicationDispatcher.java:374) at org.apache.catalina.core.ApplicationDispatcher.forward(ApplicationDispatcher.java:302) at org.tuckey.web.filters.urlrewrite.NormalRewrittenUrl.doRewrite(NormalRewrittenUrl.java:195) at org.tuckey.web.filters.urlrewrite.RuleChain.handleRewrite(RuleChain.java:159) at org.tuckey.web.filters.urlrewrite.RuleChain.doRules(RuleChain.java:141) at org.tuckey.web.filters.urlrewrite.UrlRewriter.processRequest(UrlRewriter.java:90) at org.tuckey.web.filters.urlrewrite.UrlRewriteFilter.doFilter(UrlRewriteFilter.java:417) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.springframework.web.filter.CharacterEncodingFilter.doFilterInternal(CharacterEncodingFilter.java:88) at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:76) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:298) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:857) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:588) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:489) at java.lang.Thread.run(Thread.java:619) 13.01.2011 00:06:36 org.apache.catalina.core.StandardWrapperValve invoke SERVE: Servlet.service() for servlet default threw exception javax.validation.ConstraintViolationException: validation failed for classes [com.mydomain.myproject.domain.Person] during update time for groups [javax.validation.groups.Default, ] at org.hibernate.cfg.beanvalidation.BeanValidationEventListener.validate(BeanValidationEventListener.java:155) at org.hibernate.cfg.beanvalidation.BeanValidationEventListener.onPreUpdate(BeanValidationEventListener.java:102) at org.hibernate.action.EntityUpdateAction.preUpdate(EntityUpdateAction.java:235) at org.hibernate.action.EntityUpdateAction.execute(EntityUpdateAction.java:86) at org.hibernate.engine.ActionQueue.execute(ActionQueue.java:273) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:265) at org.hibernate.engine.ActionQueue.executeActions(ActionQueue.java:185) at org.hibernate.event.def.AbstractFlushingEventListener.performExecutions(AbstractFlushingEventListener.java:321) at org.hibernate.event.def.DefaultFlushEventListener.onFlush(DefaultFlushEventListener.java:51) at org.hibernate.impl.SessionImpl.flush(SessionImpl.java:1216) at org.hibernate.impl.SessionImpl.managedFlush(SessionImpl.java:383) at org.hibernate.transaction.JDBCTransaction.commit(JDBCTransaction.java:133) at com.mydomain.myproject.dao.impl.ProjectDaoImplHibernate.updateProject(ProjectDaoImplHibernate.java:44) at com.mydomain.myproject.service.impl.ProjectServiceImpl.updateProject(ProjectServiceImpl.java:39) at com.mydomain.myproject.controller.ProjectPersonController.addPerson(ProjectPersonController.java:189) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.springframework.web.bind.annotation.support.HandlerMethodInvoker.invokeHandlerMethod(HandlerMethodInvoker.java:176) at org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter.invokeHandlerMethod(AnnotationMethodHandlerAdapter.java:426) at org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter.handle(AnnotationMethodHandlerAdapter.java:414) at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:790) at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:719) at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:644) at org.springframework.web.servlet.FrameworkServlet.doPost(FrameworkServlet.java:560) at javax.servlet.http.HttpServlet.service(HttpServlet.java:637) at javax.servlet.http.HttpServlet.service(HttpServlet.java:717) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.ApplicationDispatcher.invoke(ApplicationDispatcher.java:646) at org.apache.catalina.core.ApplicationDispatcher.processRequest(ApplicationDispatcher.java:436) at org.apache.catalina.core.ApplicationDispatcher.doForward(ApplicationDispatcher.java:374) at org.apache.catalina.core.ApplicationDispatcher.forward(ApplicationDispatcher.java:302) at org.tuckey.web.filters.urlrewrite.NormalRewrittenUrl.doRewrite(NormalRewrittenUrl.java:195) at org.tuckey.web.filters.urlrewrite.RuleChain.handleRewrite(RuleChain.java:159) at org.tuckey.web.filters.urlrewrite.RuleChain.doRules(RuleChain.java:141) at org.tuckey.web.filters.urlrewrite.UrlRewriter.processRequest(UrlRewriter.java:90) at org.tuckey.web.filters.urlrewrite.UrlRewriteFilter.doFilter(UrlRewriteFilter.java:417) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.springframework.web.filter.CharacterEncodingFilter.doFilterInternal(CharacterEncodingFilter.java:88) at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:76) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:298) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:857) at org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:588) at org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:489) at java.lang.Thread.run(Thread.java:619) UPDATE Before updating the Project where the error occurs, I add a person which have this annotated: @NotNull @Size(min = 1, max = 255) @Pattern(regexp="(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*|\"(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21\\x23-\\x5b\\x5d-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])*\")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\\[(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21-\\x5a\\x53-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])+)\\])", message="{my.email.error.message}") private String email; Without the @Pattern no error... So, what's wrong here? UPDATE-2: I use Hibernate 3.6.0.Final and I have these in my Maven pom.xml: <!-- JSR 303 with Hibernate Validator --> <dependency> <groupId>javax.validation</groupId> <artifactId>validation-api</artifactId> <version>1.0.0.GA</version> </dependency> <dependency> <groupId>org.hibernate</groupId> <artifactId>hibernate-validator</artifactId> <version>4.1.0.Final</version> </dependency>

    Read the article

  • How to find an entry-level job after you already have a graduate degree?

    - by Uri
    Note: I asked this question in early 2009. A couple of months later, I found a great job. I've previously updated this question with some tips for whoever ends up in a similar situation, and now cleaned it up a little for the benefit of the fresh batch of graduates. Original post: In my early 20s I abandoned a great C++ development career path in a major company to go to graduate school and get a research masters (3 years). I did another year in industrial research, and then moved to the US to attend graduate school again, getting another masters and a Ph.D in software engineering from a top school (another 6 years down the drain). I was coding the whole way throughout my degrees (core Java and Eclipse plug-ins) and working on research related to software engineering (usability of APIs). I ended up graduating the year of the recession, with a son on the way and the prospects of no healthcare. Academic jobs and industrial research jobs are quite scarce. Initially, I was naive, thinking that with my background, I could easily find a coding job. Big mistake. It turns out that I'm in a complicated position. Entry level positions are usually offered to college undergraduates. I attended my school's career fairs, but you could immediately see signs of Ph.D. aversion and overqualification issues. Some of the recruiters I spoke with explicitly told me that they wanted 20 year olds with clean slates, and some were looking for interns since they are in various forms of hiring freezes. I managed to get a couple of interviews from these career fairs and through recruiters. However, since I've been out of school for a long time and programming primarily in Java, I am also no longer proficient in C/C++ and the usual range of college-level interview questions that everyone uses. I had no problems with this when I was 19 and interviewing for my first job since a lot of what you do in C is manipulate pointers and I was coding C++ for fun and for school. Later I was routinely doing pointer manipulation on the job, and during my first masters taught college courses with data structures and C++. But even though I remember many properties of C++ well, it's been close to ten years since I regularly used C++ and pointers. As a Java developer I rarely had to work at this level, but experience in OOD and in writing good maintainable code is meaningless for C++ interviews. Reading books as a refresh and looking at sample code did not do the trick. I also looked at mid-to-senior level Java positions, but most of them focused on J2EE APIs rather than on core Java and required a certain number of years in industrial positions. Coding research tools and prior C++ experience doesn't count. So that sends me back to entry-level jobs that are posted through job-boards, and these are not common (mostly they are Monster junk), and small companies are even less likely to answer a Ph.D. compared to the giants who participate in top-10 career fairs. Even worse, in many companies initial screening is done by HR folks who really don't want to deal with anything anomalous like a Ph.D. Any tips on how I should approach this intractable position? For example, what should I write in cover letters? Note that while immigration is not an issue for me, I cannot go freelance as I need the benefits (and in particular group health insurance). During my studies I had no time to contribute to open-source projects or maintain a popular blog, so even if I invested in that now there would be no immediate benefit. Updates: In the two months after posting this I received several offers to work as a core Java developer in the financial industry and accepted one from a firm where I am working to this day. For those who find themselves in similar situations, here are my tips: Give up on trying to find an entry level positions. You can't undo time. Accept the fact that there is Ph.D. discrimination in the job market (some might say rightfully so). It is legal to discriminate based on education. No point fighting it. The most important tip is to focus on the language you are comfortable with. The sad truth about programming in a particular language is that it is not like riding a bike. If you haven't used a language in the last few years, and can't actually apply it routinely (not just as a refresher) before you start your search, it is going to be very difficult to do well in an interview. Now that I'm interviewing others, I routinely see it in folks with a mixed C++/Java background. We maintain "a shadow" of the old language but end up with a weird mix that makes it hard to interview on either. Entry-level folks are at an advantage here since they usually have one language. Memory can help you do great in a screening interview, but without recent day-to-day experience, code tests will be difficult. Despite the supposed relation, core Java programming and J2EE programming are two different things with different skillsets. If you come from academia, you likely have very little J2EE experience and may find it hard to get accepted for a J2EE job. J2EE jobs seem to have a larger list of acronyms in their requirements. In addition, from interviewing J2EE developers it seems that for many there is a focus on mastering specific APIs and architectures, whereas core Java development tends to be secondary. In the same way that I can no longer manipulate pointers well, a J2EE developer may have difficulties doing low level Java manipulation. This puts you at a relative advantage in competing for core Java jobs! If you are able to work for startups (in terms of family life and stability) or migrate to startup-rich areas such as the west coast, you can find many exciting opportunities where advanced degrees are a benefit. I've since been approached by several startups, although I had to decline. Work through a recruiter if possible. They have direct contacts with the hiring parties, allowing you to "stand out". It is better to get a clear yes/no confirmation from a recruiter on whether a company might be interested in interviewing you, than it is to send your resume and hope that someone will ever see it. Recruiters are also a great way of bypassing HR. However, also beware of recruiters. They have a vested interest and will go to various shady practices and pressure tactics. To find a good recruiter, talk to a friend who declined a job offer he got through a recruiter. A good recruiter, to me, is measured in how they handle that. Interview for the jobs that require your core strength. If you're rusty or entirely unfamiliar with a technology around which the job revolves, you're probably not a good match. Yes, you probably have the talent to master them, but most companies would want "instant gratification". I got my offers from companies that wanted core Java developer. I didn't do well on places that wanted advance C++ because I am too rusty and not up to date on recent libraries. I also didn't hear from companies that wanted lots of J2EE experience, and that's ok. Finding companies that want core Java without web is harder, but exists in specific industries (e.g., finance, defense). This requires a lot more legwork in terms of search, but these jobs do exist. There are different interview styles. Some companies focus on puzzles, some companies focus on algorithms, and some companies focus on design and coding skills. I had the most success in places where the questions were the most related to the function I would have been performing. Pick companies accordingly as well.

    Read the article

  • JPA : Add and remove operations on lazily initialized collection behaviour ?

    - by Albert Kam
    Hello, im currently trying out JPA 2 and using Hibernate 3.6.x as the engine. I have an entity of ReceivingGood that contains a List of ReceivingGoodDetail, and has a bidirectional relation. Some related codes for each entity follows : ReceivingGood.java @OneToMany(mappedBy="receivingGood", targetEntity=ReceivingGoodDetail.class, fetch=FetchType.LAZY, cascade = CascadeType.ALL) private List<ReceivingGoodDetail> details = new ArrayList<ReceivingGoodDetail>(); public void addReceivingGoodDetail(ReceivingGoodDetail receivingGoodDetail) { receivingGoodDetail.setReceivingGood(this); } void internalAddReceivingGoodDetail(ReceivingGoodDetail receivingGoodDetail) { this.details.add(receivingGoodDetail); } public void removeReceivingGoodDetail(ReceivingGoodDetail receivingGoodDetail) { receivingGoodDetail.setReceivingGood(null); } void internalRemoveReceivingGoodDetail(ReceivingGoodDetail receivingGoodDetail) { this.details.remove(receivingGoodDetail); } @ManyToOne @JoinColumn(name = "receivinggood_id") private ReceivingGood receivingGood; ReceivingGoodDetail.java : public void setReceivingGood(ReceivingGood receivingGood) { if (this.receivingGood != null) { this.receivingGood.internalRemoveReceivingGoodDetail(this); } this.receivingGood = receivingGood; if (receivingGood != null) { receivingGood.internalAddReceivingGoodDetail(this); } } In my experiements with both of these entities, both adding the detail to the receivingGood's collection, and even removing the detail from the receivingGood's collection, will trigger a query to fill the collection before doing the add or remove. This assumption is based on my experiments that i will paste below. My concern is that : is it ok to do changes on only a little bit of records on the collection, and the engine has to query all of the details belonging to the collection ? What if the collection would have to be filled with 1000 records when i just want to edit a single record ? Here are my experiments with the output as the comment above each method : /* Hibernate: select receivingg0_.id as id9_14_, receivingg0_.creationDate as creation2_9_14_, ... too long Hibernate: select receivingg0_.id as id10_20_, receivingg0_.creationDate as creation2_10_20_, ... too long removing existing detail from lazy collection Hibernate: select details0_.receivinggood_id as receivi13_9_8_, details0_.id as id8_, details0_.id as id10_7_, details0_.creationDate as creation2_10_7_, details0_.modificationDate as modifica3_10_7_, details0_.usercreate_id as usercreate10_10_7_, details0_.usermodify_id as usermodify11_10_7_, details0_.version as version10_7_, details0_.buyQuantity as buyQuant5_10_7_, details0_.buyUnit as buyUnit10_7_, details0_.internalQuantity as internal7_10_7_, details0_.internalUnit as internal8_10_7_, details0_.product_id as product12_10_7_, details0_.receivinggood_id as receivi13_10_7_, details0_.supplierLotNumber as supplier9_10_7_, user1_.id as id2_0_, user1_.creationDate as creation2_2_0_, user1_.modificationDate as modifica3_2_0_, user1_.usercreate_id as usercreate6_2_0_, user1_.usermodify_id as usermodify7_2_0_, user1_.version as version2_0_, user1_.name as name2_0_, user2_.id as id2_1_, user2_.creationDate as creation2_2_1_, user2_.modificationDate as modifica3_2_1_, user2_.usercreate_id as usercreate6_2_1_, user2_.usermodify_id as usermodify7_2_1_, user2_.version as version2_1_, user2_.name as name2_1_, user3_.id as id2_2_, user3_.creationDate as creation2_2_2_, user3_.modificationDate as modifica3_2_2_, user3_.usercreate_id as usercreate6_2_2_, user3_.usermodify_id as usermodify7_2_2_, user3_.version as version2_2_, user3_.name as name2_2_, user4_.id as id2_3_, user4_.creationDate as creation2_2_3_, user4_.modificationDate as modifica3_2_3_, user4_.usercreate_id as usercreate6_2_3_, user4_.usermodify_id as usermodify7_2_3_, user4_.version as version2_3_, user4_.name as name2_3_, product5_.id as id0_4_, product5_.creationDate as creation2_0_4_, product5_.modificationDate as modifica3_0_4_, product5_.usercreate_id as usercreate7_0_4_, product5_.usermodify_id as usermodify8_0_4_, product5_.version as version0_4_, product5_.code as code0_4_, product5_.name as name0_4_, user6_.id as id2_5_, user6_.creationDate as creation2_2_5_, user6_.modificationDate as modifica3_2_5_, user6_.usercreate_id as usercreate6_2_5_, user6_.usermodify_id as usermodify7_2_5_, user6_.version as version2_5_, user6_.name as name2_5_, user7_.id as id2_6_, user7_.creationDate as creation2_2_6_, user7_.modificationDate as modifica3_2_6_, user7_.usercreate_id as usercreate6_2_6_, user7_.usermodify_id as usermodify7_2_6_, user7_.version as version2_6_, user7_.name as name2_6_ from ReceivingGoodDetail details0_ left outer join COMMON_USER user1_ on details0_.usercreate_id=user1_.id left outer join COMMON_USER user2_ on user1_.usercreate_id=user2_.id left outer join COMMON_USER user3_ on user2_.usermodify_id=user3_.id left outer join COMMON_USER user4_ on details0_.usermodify_id=user4_.id left outer join Product product5_ on details0_.product_id=product5_.id left outer join COMMON_USER user6_ on product5_.usercreate_id=user6_.id left outer join COMMON_USER user7_ on product5_.usermodify_id=user7_.id where details0_.receivinggood_id=? after removing try selecting the size : 4 after removing, now flushing Hibernate: update ReceivingGood set creationDate=?, modificationDate=?, usercreate_id=?, usermodify_id=?, version=?, purchaseorder_id=?, supplier_id=?, transactionDate=?, transactionNumber=?, transactionType=?, transactionYearMonth=?, warehouse_id=? where id=? and version=? Hibernate: update ReceivingGoodDetail set creationDate=?, modificationDate=?, usercreate_id=?, usermodify_id=?, version=?, buyQuantity=?, buyUnit=?, internalQuantity=?, internalUnit=?, product_id=?, receivinggood_id=?, supplierLotNumber=? where id=? and version=? detail size : 4 */ public void removeFromLazyCollection() { String headerId = "3b373f6a-9cd1-4c9c-9d46-240de37f6b0f"; ReceivingGood receivingGood = em.find(ReceivingGood.class, headerId); // get existing detail ReceivingGoodDetail detail = em.find(ReceivingGoodDetail.class, "323fb0e7-9bb2-48dc-bc07-5ff32f30e131"); detail.setInternalUnit("MCB"); System.out.println("removing existing detail from lazy collection"); receivingGood.removeReceivingGoodDetail(detail); System.out.println("after removing try selecting the size : " + receivingGood.getDetails().size()); System.out.println("after removing, now flushing"); em.flush(); System.out.println("detail size : " + receivingGood.getDetails().size()); } /* Hibernate: select receivingg0_.id as id9_14_, receivingg0_.creationDate as creation2_9_14_, ... too long Hibernate: select receivingg0_.id as id10_20_, receivingg0_.creationDate as creation2_10_20_, ... too long adding existing detail into lazy collection Hibernate: select details0_.receivinggood_id as receivi13_9_8_, details0_.id as id8_, details0_.id as id10_7_, details0_.creationDate as creation2_10_7_, details0_.modificationDate as modifica3_10_7_, details0_.usercreate_id as usercreate10_10_7_, details0_.usermodify_id as usermodify11_10_7_, details0_.version as version10_7_, details0_.buyQuantity as buyQuant5_10_7_, details0_.buyUnit as buyUnit10_7_, details0_.internalQuantity as internal7_10_7_, details0_.internalUnit as internal8_10_7_, details0_.product_id as product12_10_7_, details0_.receivinggood_id as receivi13_10_7_, details0_.supplierLotNumber as supplier9_10_7_, user1_.id as id2_0_, user1_.creationDate as creation2_2_0_, user1_.modificationDate as modifica3_2_0_, user1_.usercreate_id as usercreate6_2_0_, user1_.usermodify_id as usermodify7_2_0_, user1_.version as version2_0_, user1_.name as name2_0_, user2_.id as id2_1_, user2_.creationDate as creation2_2_1_, user2_.modificationDate as modifica3_2_1_, user2_.usercreate_id as usercreate6_2_1_, user2_.usermodify_id as usermodify7_2_1_, user2_.version as version2_1_, user2_.name as name2_1_, user3_.id as id2_2_, user3_.creationDate as creation2_2_2_, user3_.modificationDate as modifica3_2_2_, user3_.usercreate_id as usercreate6_2_2_, user3_.usermodify_id as usermodify7_2_2_, user3_.version as version2_2_, user3_.name as name2_2_, user4_.id as id2_3_, user4_.creationDate as creation2_2_3_, user4_.modificationDate as modifica3_2_3_, user4_.usercreate_id as usercreate6_2_3_, user4_.usermodify_id as usermodify7_2_3_, user4_.version as version2_3_, user4_.name as name2_3_, product5_.id as id0_4_, product5_.creationDate as creation2_0_4_, product5_.modificationDate as modifica3_0_4_, product5_.usercreate_id as usercreate7_0_4_, product5_.usermodify_id as usermodify8_0_4_, product5_.version as version0_4_, product5_.code as code0_4_, product5_.name as name0_4_, user6_.id as id2_5_, user6_.creationDate as creation2_2_5_, user6_.modificationDate as modifica3_2_5_, user6_.usercreate_id as usercreate6_2_5_, user6_.usermodify_id as usermodify7_2_5_, user6_.version as version2_5_, user6_.name as name2_5_, user7_.id as id2_6_, user7_.creationDate as creation2_2_6_, user7_.modificationDate as modifica3_2_6_, user7_.usercreate_id as usercreate6_2_6_, user7_.usermodify_id as usermodify7_2_6_, user7_.version as version2_6_, user7_.name as name2_6_ from ReceivingGoodDetail details0_ left outer join COMMON_USER user1_ on details0_.usercreate_id=user1_.id left outer join COMMON_USER user2_ on user1_.usercreate_id=user2_.id left outer join COMMON_USER user3_ on user2_.usermodify_id=user3_.id left outer join COMMON_USER user4_ on details0_.usermodify_id=user4_.id left outer join Product product5_ on details0_.product_id=product5_.id left outer join COMMON_USER user6_ on product5_.usercreate_id=user6_.id left outer join COMMON_USER user7_ on product5_.usermodify_id=user7_.id where details0_.receivinggood_id=? after adding try selecting the size : 5 after adding, now flushing Hibernate: update ReceivingGood set creationDate=?, modificationDate=?, usercreate_id=?, usermodify_id=?, version=?, purchaseorder_id=?, supplier_id=?, transactionDate=?, transactionNumber=?, transactionType=?, transactionYearMonth=?, warehouse_id=? where id=? and version=? detail size : 5 */ public void editLazyCollection() { String headerId = "3b373f6a-9cd1-4c9c-9d46-240de37f6b0f"; ReceivingGood receivingGood = em.find(ReceivingGood.class, headerId); // get existing detail ReceivingGoodDetail detail = em.find(ReceivingGoodDetail.class, "323fb0e7-9bb2-48dc-bc07-5ff32f30e131"); detail.setInternalUnit("MCB"); System.out.println("adding existing detail into lazy collection"); receivingGood.addReceivingGoodDetail(detail); System.out.println("after adding try selecting the size : " + receivingGood.getDetails().size()); System.out.println("after adding, now flushing"); em.flush(); System.out.println("detail size : " + receivingGood.getDetails().size()); } Please share your experience on this matter ! Thank you !

    Read the article

  • Handling inheritance with overriding efficiently

    - by Fyodor Soikin
    I have the following two data structures. First, a list of properties applied to object triples: Object1 Object2 Object3 Property Value O1 O2 O3 P1 "abc" O1 O2 O3 P2 "xyz" O1 O3 O4 P1 "123" O2 O4 O5 P1 "098" Second, an inheritance tree: O1 O2 O4 O3 O5 Or viewed as a relation: Object Parent O2 O1 O4 O2 O3 O1 O5 O3 O1 null The semantics of this being that O2 inherits properties from O1; O4 - from O2 and O1; O3 - from O1; and O5 - from O3 and O1, in that order of precedence. NOTE 1: I have an efficient way to select all children or all parents of a given object. This is currently implemented with left and right indexes, but hierarchyid could also work. This does not seem important right now. NOTE 2: I have tiggers in place that make sure that the "Object" column always contains all possible objects, even when they do not really have to be there (i.e. have no parent or children defined). This makes it possible to use inner joins rather than severely less effiecient outer joins. The objective is: Given a pair of (Property, Value), return all object triples that have that property with that value either defined explicitly or inherited from a parent. NOTE 1: An object triple (X,Y,Z) is considered a "parent" of triple (A,B,C) when it is true that either X = A or X is a parent of A, and the same is true for (Y,B) and (Z,C). NOTE 2: A property defined on a closer parent "overrides" the same property defined on a more distant parent. NOTE 3: When (A,B,C) has two parents - (X1,Y1,Z1) and (X2,Y2,Z2), then (X1,Y1,Z1) is considered a "closer" parent when: (a) X2 is a parent of X1, or (b) X2 = X1 and Y2 is a parent of Y1, or (c) X2 = X1 and Y2 = Y1 and Z2 is a parent of Z1 In other words, the "closeness" in ancestry for triples is defined based on the first components of the triples first, then on the second components, then on the third components. This rule establishes an unambigous partial order for triples in terms of ancestry. For example, given the pair of (P1, "abc"), the result set of triples will be: O1, O2, O3 -- Defined explicitly O1, O2, O5 -- Because O5 inherits from O3 O1, O4, O3 -- Because O4 inherits from O2 O1, O4, O5 -- Because O4 inherits from O2 and O5 inherits from O3 O2, O2, O3 -- Because O2 inherits from O1 O2, O2, O5 -- Because O2 inherits from O1 and O5 inherits from O3 O2, O4, O3 -- Because O2 inherits from O1 and O4 inherits from O2 O3, O2, O3 -- Because O3 inherits from O1 O3, O2, O5 -- Because O3 inherits from O1 and O5 inherits from O3 O3, O4, O3 -- Because O3 inherits from O1 and O4 inherits from O2 O3, O4, O5 -- Because O3 inherits from O1 and O4 inherits from O2 and O5 inherits from O3 O4, O2, O3 -- Because O4 inherits from O1 O4, O2, O5 -- Because O4 inherits from O1 and O5 inherits from O3 O4, O4, O3 -- Because O4 inherits from O1 and O4 inherits from O2 O5, O2, O3 -- Because O5 inherits from O1 O5, O2, O5 -- Because O5 inherits from O1 and O5 inherits from O3 O5, O4, O3 -- Because O5 inherits from O1 and O4 inherits from O2 O5, O4, O5 -- Because O5 inherits from O1 and O4 inherits from O2 and O5 inherits from O3 Note that the triple (O2, O4, O5) is absent from this list. This is because property P1 is defined explicitly for the triple (O2, O4, O5) and this prevents that triple from inheriting that property from (O1, O2, O3). Also note that the triple (O4, O4, O5) is also absent. This is because that triple inherits its value of P1="098" from (O2, O4, O5), because it is a closer parent than (O1, O2, O3). The straightforward way to do it is the following. First, for every triple that a property is defined on, select all possible child triples: select Children1.Id as O1, Children2.Id as O2, Children3.Id as O3, tp.Property, tp.Value from TriplesAndProperties tp -- Select corresponding objects of the triple inner join Objects as Objects1 on Objects1.Id = tp.O1 inner join Objects as Objects2 on Objects2.Id = tp.O2 inner join Objects as Objects3 on Objects3.Id = tp.O3 -- Then add all possible children of all those objects inner join Objects as Children1 on Objects1.Id [isparentof] Children1.Id inner join Objects as Children2 on Objects2.Id [isparentof] Children2.Id inner join Objects as Children3 on Objects3.Id [isparentof] Children3.Id But this is not the whole story: if some triple inherits the same property from several parents, this query will yield conflicting results. Therefore, second step is to select just one of those conflicting results: select * from ( select Children1.Id as O1, Children2.Id as O2, Children3.Id as O3, tp.Property, tp.Value, row_number() over( partition by Children1.Id, Children2.Id, Children3.Id, tp.Property order by Objects1.[depthInTheTree] descending, Objects2.[depthInTheTree] descending, Objects3.[depthInTheTree] descending ) as InheritancePriority from ... (see above) ) where InheritancePriority = 1 The window function row_number() over( ... ) does the following: for every unique combination of objects triple and property, it sorts all values by the ancestral distance from the triple to the parents that the value is inherited from, and then I only select the very first of the resulting list of values. A similar effect can be achieved with a GROUP BY and ORDER BY statements, but I just find the window function semantically cleaner (the execution plans they yield are identical). The point is, I need to select the closest of contributing ancestors, and for that I need to group and then sort within the group. And finally, now I can simply filter the result set by Property and Value. This scheme works. Very reliably and predictably. It has proven to be very powerful for the business task it implements. The only trouble is, it is awfuly slow. One might point out the join of seven tables might be slowing things down, but that is actually not the bottleneck. According to the actual execution plan I'm getting from the SQL Management Studio (as well as SQL Profiler), the bottleneck is the sorting. The problem is, in order to satisfy my window function, the server has to sort by Children1.Id, Children2.Id, Children3.Id, tp.Property, Parents1.[depthInTheTree] descending, Parents2.[depthInTheTree] descending, Parents3.[depthInTheTree] descending, and there can be no indexes it can use, because the values come from a cross join of several tables. EDIT: Per Michael Buen's suggestion (thank you, Michael), I have posted the whole puzzle to sqlfiddle here. One can see in the execution plan that the Sort operation accounts for 32% of the whole query, and that is going to grow with the number of total rows, because all the other operations use indexes. Usually in such cases I would use an indexed view, but not in this case, because indexed views cannot contain self-joins, of which there are six. The only way that I can think of so far is to create six copies of the Objects table and then use them for the joins, thus enabling an indexed view. Did the time come that I shall be reduced to that kind of hacks? The despair sets in.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Data Modeling: Logical Modeling Exercise

    - by swisscheese
    In trying to learn the art of data storage I have been trying to take in as much solid information as possible. PerformanceDBA posted some really helpful tutorials/examples in the following posts among others: is my data normalized? and Relational table naming convention. I already asked a subset question of this model here. So to make sure I understood the concepts he presented and I have seen elsewhere I wanted to take things a step or two further and see if I am grasping the concepts. Hence the purpose of this post, which hopefully others can also learn from. Everything I present is conceptual to me and for learning rather than applying it in some production system. It would be cool to get some input from PerformanceDBA also since I used his models to get started, but I appreciate all input given from anyone. As I am new to databases and especially modeling I will be the first to admit that I may not always ask the right questions, explain my thoughts clearly, or use the right verbage due to lack of expertise on the subject. So please keep that in mind and feel free to steer me in the right direction if I head off track. If there is enough interest in this I would like to take this from the logical to physical phases to show the evolution of the process and share it here on Stack. I will keep this thread for the Logical Diagram though and start new one for the additional steps. For my understanding I will be building a MySQL DB in the end to run some tests and see if what I came up with actually works. Here is the list of things that I want to capture in this conceptual model. Edit for V1.2 The purpose of this is to list Bands, their members, and the Events that they will be appearing at, as well as offer music and other merchandise for sale Members will be able to match up with friends Members can write reviews on the Bands, their music, and their events. There can only be one review per member on a given item, although they can edit their reviews and history will be maintained. BandMembers will have the chance to write a single Comment on Reviews about the Band they are associated with. Collectively as a Band only one Comment is allowed per Review. Members can then rate all Reviews and Comments but only once per given instance Members can select their favorite Bands, music, Merchandise, and Events Bands, Songs, and Events will be categorized into the type of Genre that they are and then further subcategorized into a SubGenre if necessary. It is ok for a Band or Event to fall into more then one Genre/SubGenre combination. Event date, time, and location will be posted for a given band and members can show that they will be attending the Event. An Event can be comprised of more than one Band, and multiple Events can take place at a single location on the same day Every party will be tied to at least one address and address history shall be maintained. Each party could also be tied to more then one address at a time (i.e. billing, shipping, physical) There will be stored profiles for Bands, BandMembers, and general members. So there it is, maybe a bit involved but could be a great learning tool for many hopefully as the process evolves and input is given by the community. Any input? EDIT v1.1 In response to PerformanceDBA U.3) That means no merchandise other than Band merchandise in the database. Correct ? That was my original thought but you got me thinking. Maybe the site would want to sell its own merchandise or even other merchandise from the bands. Not sure a mod to make for that. Would it require an entire rework of the Catalog section or just the identifying relationship that exists with the Band? Attempted a mod to sell both complete albums or song. Either way they would both be in electronic format only available for download. That is why I listed an Album as being comprised of Songs rather then 2 separate entities. U.5) I understand what you bring up about the circular relation with Favorite. I would like to get to this “It is either one Entity with some form of differentiation (FavoriteType) which identifies its treatment” but how to is not clear to me. What am I missing here? u.6) “Business Rules This is probably the only area you are weak in.” Thanks for the honest response. I will readdress these but I hope to clear up some confusion in my head first with the responses I have posted back to you. Q.1) Yes I would like to have Accepted, Rejected, and Blocked. I am not sure what you are referring to as to how this would change the logical model? Q.2) A person does not have to be a User. They can exist only as a BandMember. Is that what you are asking? Minor Issue Zero, One, or More…Oops I admit I forgot to give this attention when building the model. I am submitting this version as is and will address in a future version. I need to read up more on Constraint Checking to make sure I am understanding things. M.4) Depends if you envision OrderPurchase in the future. Can you expand as to what you mean here? EDIT V1.2 In response to PerformanceDBA input... Lessons learned. I was mixing the concept of Identifying / Non-Identifying and Cardinality (i.e. Genre / SubGenre), and doing so inconsistently to make things worse. Associative Tables are not required in Logical Diagrams as their many-to-many relationships can be depicted and then expanded in the Physical Model. I was overlooking the Cardinality in a lot of the relationships The importance of reading through relationships using effective Verb Phrases to reassure I am modeling what I want to accomplish. U.2) In the concept of this model it is only required to track a Venue as a location for an Event. No further data needs to be collected. With that being said Events will take place on a given EventDate and will be hosted at a Venue. Venues will host multiple events and possibly multiple events on a given date. In my new model my thinking was that EventDate is already tied to Event . Therefore, Venue will not need a relationship with EventDate. The 5th and 6th bullets you have listed under U.2) leave me questioning my thinking though. Am I missing something here? U.3) Is it time to move the link between Item and Band up to Item and Party instead? With the current design I don't see a possibility to sell merchandise not tied to the band as you have brought up. U.5) I left as per your input rather than making it a discrete Supertype/Subtype Relationship as I don’t see a benefit of having that type of roll up. Additional Revisions AR.1) After going through the exercise for FavoriteItem, I feel that Item to Review requires a many-to-many relationship so that is indicated. Necessary? Ok here we go for v1.3 I took a few days on this version, going back and forth with my design. Once the logical process is complete, as I want to see if I am on the right track, I will go through in depth what I had learned and the troubles I faced as a beginner going through this process. The big point for this version was it took throwing in some Keys to help see what I was missing in the past. Going through the process of doing a matrix proved to be of great help also. Regardless of anything, if it wasn't for the input given by PerformanceDBA I would still be a lost soul wondering in the dark. Who knows my current design might reaffirm that I still am, but I have learned a lot so I am know I at least have a flashlight in my hand. At this point in time I admit that I am still confused about identifying and non-identifying relationships. In my model I had to use non-identifying relationships with non nulls just to join the relationships I wanted to model. In reading a lot on the subject there seems to be a lot of disagreement and indecisiveness on the subject so I did what I thought represented the right things in my model. When to force (identifying) and when to be free (non-identifying)? Anyone have inputs? EDIT V1.4 Ok took the V1.3 inputs and cleaned things up for this V1.4 Currently working on a V1.5 to include attributes.

    Read the article

  • WordPress contact form email as PDF

    - by lock
    I am using the below code for my WordPress site which is emailing all the form details as an HTML text but I need the details to be written into a PDF first and then have to email the PDF as an attachment. How can I achieve this? This is not a PHP code to use PHP's writePDF modules. So, any idea or any code to implement this? <div style="padding-left: 100px;"> [raw] [contact-form subject="Best Aussie Broker" to="[email protected]"] <div id="main34" style="border: 1px solid black; border-radius: 15px; width: 720px; padding: 15px;"> &nbsp; <h2><span style="color: #ff6600;">Express Application</span></h2> &nbsp; [contact-field label="First Name" type="name" required="true" /] [contact-field label="Last Name" type="text" /] [contact-field label="Email" type="email" required="true" /] [contact-field label="Purpose of Finance?" type="select" options="Home Loan,Refinance,Investment Loan,Debt Consolidation,Other" /] [contact-field label="Your deposit amount" type="text" /] [contact-field label="Amount you need to borrow?" type="text" /] [contact-field label="Brief description of the purpose for finance" type="textarea" required="true" /] <div><label></label> <input class="radio" type="radio" name="19" value="Single Application" onchange="showsingle();" /> <label class="radio">Single Application</label> <div class="clear-form"></div> <input class="radio" type="radio" name="19" value="Joint Application" onchange="showjoint();" /> <label class="radio">Joint Application</label> <div class="clear-form"></div> [contact-field label="Privacy Act" type="checkbox" required="true" /] I have read the Privacy Act 1988 (as Amended) and understand that by selecting the submit button I/we Authorize Best Aussie Broker to act on my/our behalf and manage personal information in relation to this application.<br> <a href="http://googleplex.com.au/pdf.pdf"><img src="http://googleplex.com.au/pdf.png" alt="" /> </a> </div> </div> <div id="single" style="display: none; width: 720px; border: 1px solid black; border-radius: 15px; padding: 15px; margin-top: 10px;"> <div style="padding-top: 10px; width: 720px; text-align: left;"> <h4><span style="color: #ff6600;">Last step then we will get all listed Australian vendors to fight it out for your best deal</span></h4> </div> <div> <label class="select" for="19-date-of-birth">Date of Birth</label> [contact-field label="Day" type="select" options="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31" /] [contact-field label="Month" type="select" options="January,February,March,April,May,June,July,August,September,October,November,December" /] [contact-field label="Year" type="select" options="2000,1999,1998,1997,1996,1995,1994,1993,1992,1991,1990,1989,1988,1987,1986,1985,1984,1983,1982,1981,1980,1979,1978,197,1976,1975,1974,1973,1972,1971,1970,1969,1968,1967,1966,1965,1964,1963,1962,1961,1960,1959,1958,1957,1956,1955,1954,1953,1952,1951,1950,1949,1948,1947,1946,1945,1944,1943,1942,1941,1940,1939,1938,1937,1936,1935,1934,1933,1932,1931,1930,1929,1928,1927,1926,1925,1924,1923,1922,1921,1920, 1919,1918,1917,1916,1915,1914,1913,1912,1911,1910,1909" /] </div> [contact-field label="Address" type="text" /] [contact-field label="Suburb" type="text" /] [contact-field label="Postcode" type="text" /] <div> [contact-field label="State" type="select" options="VIC,NSW,QLD,SA,WA,TAS,NZ,Other" /] </div> [contact-field label="Best Contact" type="radio" options="Landline,Mobile" /] [contact-field label="Phone Number" type="text" /] [contact-field label="Marital Status" type="select" options="Married,Single,Other" /] [contact-field label="Residential Status" type="select" options="Renting, Home Owned, Home Mortgage, Board, Other" /] [contact-field label="Children/Dependents" type="select" options="0,1,2,3,4,5,6" /] <div></div> [contact-field label="Gross Yearly Income" type="text" /] [contact-field label="Current Employer" type="text" /] <div> <label class="select" for="19-year-of-empl">Time at this employer</label> [contact-field label="Year" type="select" options="0,1,2,3,4,5,6,7,8,9,10,More" /] [contact-field label="Month" type="select" options="0,1,2,3,4,5,6,7,8,9,10,11,12" /] </div> <div style="padding-right: 15px;"></div> </div> <div id="joint" style="display: none; width: 720px; border: 1px solid black; border-radius: 15px; padding: 15px; margin-top: 10px;"> <div style="padding-top: 10px; width: 720px; text-align: left;"> <h4><span style="color: #ff6600;">Last step then we will get all listed Australian vendors to fight it out for your best deal</span></h4> </div> <div style="float: left; width: 320px;"> <div> <label class="select" for="19-date-of-birth1">Date of Birth</label> [contact-field label="Day" type="select" options="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31" /] [contact-field label="Month" type="select" options="January,February,March,April,May,June,July,August,September,October,November,December" /] [contact-field label="Year" type="select" options="2000,1999,1998,1997,1996,1995,1994,1993,1992,1991,1990,1989,1988,1987,1986,1985,1984,1983,1982,1981,1980,1979,1978,197,1976,1975,1974,1973,1972,1971,1970,1969,1968,1967,1966,1965,1964,1963,1962,1961,1960,1959,1958,1957,1956,1955,1954,1953,1952,1951,1950,1949,1948,1947,1946,1945,1944,1943,1942,1941,1940,1939,1938,1937,1936,1935,1934,1933,1932,1931,1930,1929,1928,1927,1926,1925,1924,1923,1922,1921,1920, 1919,1918,1917,1916,1915,1914,1913,1912,1911,1910,1909" /] </div> [contact-field label="Address" type="text" /] [contact-field label="Suburb" type="text" /] [contact-field label="Postcode" type="text" /] <div> [contact-field label="State" type="select" options="VIC,NSW,QLD,SA,WA,TAS,NZ,Other" /] </div> [contact-field label="Best Contact" type="radio" options="Landline,Mobile" /] [contact-field label="Phone Number" type="text" /] <div></div> <div></div> [contact-field label="Marital Status" type="select" options="Married,Single,Other" /] [contact-field label="Residential Status" type="select" options="Renting, Home Owned, Home Mortgage, Board, Other" /] [contact-field label="Children/Dependents" type="select" options="0,1,2,3,4,5,6" /] <div></div> <div><label class="text" for="netincome">Net Income</label> <input id="netincome" type="text" name="netincome" /> <select id="netincome-dropdown" name="netincome-dropdown"> <option>Monthly</option> <option>Yearly</option> </select></div> [contact-field label="Current Employer" type="text" /] <div> <label class="select" for="19-year-of-empl2">Time at this employer</label> [contact-field label="Year" type="select" options="0,1,2,3,4,5,6,7,8,9,10,More" /] [contact-field label="Month" type="select" options="0,1,2,3,4,5,6,7,8,9,10,11,12" /] </div> </div> <div style="float: right; width: 320px; padding-right: 50px;"> <div> <label class="select" for="19-date-of-birth3">Date of Birth</label> [contact-field label="Day" type="select" options="1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31" /] [contact-field label="Month" type="select" options="January,February,March,April,May,June,July,August,September,October,November,December" /] [contact-field label="Year" type="select" options="2000,1999,1998,1997,1996,1995,1994,1993,1992,1991,1990,1989,1988,1987,1986,1985,1984,1983,1982,1981,1980,1979,1978,197,1976,1975,1974,1973,1972,1971,1970,1969,1968,1967,1966,1965,1964,1963,1962,1961,1960,1959,1958,1957,1956,1955,1954,1953,1952,1951,1950,1949,1948,1947,1946,1945,1944,1943,1942,1941,1940,1939,1938,1937,1936,1935,1934,1933,1932,1931,1930,1929,1928,1927,1926,1925,1924,1923,1922,1921,1920, 1919,1918,1917,1916,1915,1914,1913,1912,1911,1910,1909" /] </div> [contact-field label="Address" type="text" /] [contact-field label="Suburb" type="text" /] [contact-field label="Postcode" type="text" /] <div> [contact-field label="State" type="select" options="VIC,NSW,QLD,SA,WA,TAS,NZ,Other" /] </div> [contact-field label="Best Contact" type="radio" options="Landline,Mobile" /] [contact-field label="Phone Number" type="text" /] <div></div> <div></div> [contact-field label="Marital Status" type="select" options="Married,Single,Other" /] [contact-field label="Residential Status" type="select" options="Renting, Home Owned, Home Mortgage, Board, Other" /] [contact-field label="Children/Dependents" type="select" options="0,1,2,3,4,5,6" /] <div></div> <div><label class="text" for="netincome">Net Income</label> <input id="netincome" type="text" name="netincome" /> <select id="netincome-dropdown" name="netincome-dropdown"> <option>Monthly</option> <option>Yearly</option> </select></div> [contact-field label="Current Employer" type="text" /] <div> <label class="select" for="19-year-of-empl">Time at this employer</label> [contact-field label="Year" type="select" options="0,1,2,3,4,5,6,7,8,9,10,More" /] [contact-field label="Month" type="select" options="0,1,2,3,4,5,6,7,8,9,10,11,12" /] </div> </div> <div style="clear: both;"></div> <div></div> </div> &nbsp; [/contact-form][/raw] </div>

    Read the article

  • rake migration aborted: could not find table 'roles'

    - by user464180
    I just inherited code that I'm attempting to run the migrations for but I keep getting a rake aborted error. I've come across others that have what appears to be similar issues, but most involved Heroku and I'm trying to run this locally (to start.) I've tried troubleshooting using both PostgreSQL and SQLite, and both produce the same issue. The table "roles" referenced is the second migration called, so I'm having a hard time figuring out what is causing it to not get built. Any and all assistance is greatly appreciated. Thanks in advance. Here's the roles migration: class CreateRoles < ActiveRecord::Migration def change create_table :roles do |t| t.string :name t.timestamps end end end Here is the trace for SQLite: ** Invoke db:migrate (first_time) ** Invoke environment (first_time) ** Execute environment rake aborted! Could not find table 'roles' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/sqlite_adapter.rb:470:in `table_structure' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/sqlite_adapter.rb:351:in `columns' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/schema_cache.rb:12:in `block in initialize' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/model_schema.rb:228:in `yield' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/model_schema.rb:228:in `default' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/model_schema.rb:228:in `columns' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/model_schema.rb:248:in `column_names' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/model_schema.rb:261:in `column_methods_hash' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/dynamic_matchers.rb:69:in `all_attributes_exists?' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/dynamic_matchers.rb:27:in `method_missing' /Users/sa/Documents/AptanaWorkspace/recprototype/config/initializ ers/constants.rb:1:in `<top (required)>' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:245:in `load' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:245:in `block in load' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:236:in `load_dependency' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:245:in `load' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/engi ne.rb:588:in `block (2 levels) in <class:Engine>' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/engi ne.rb:587:in `each' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/engi ne.rb:587:in `block in <class:Engine>' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/init ializable.rb:30:in `instance_exec' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/init ializable.rb:30:in `run' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/init ializable.rb:55:in `block in run_initializers' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/init ializable.rb:54:in `each' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/init ializable.rb:54:in `run_initializers' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/appl ication.rb:136:in `initialize!' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/rail tie/configurable.rb:30:in `method_missing' /Users/sa/Documents/AptanaWorkspace/recprototype/config/environme nt.rb:5:in `<top (required)>' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:251:in `require' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:251:in `block in require' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:236:in `load_dependency' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:251:in `require' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/appl ication.rb:103:in `require_environment!' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/appl ication.rb:292:in `block (2 levels) in initialize_tasks' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :205:in `call' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :205:in `block in execute' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :200:in `each' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :200:in `execute' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :158:in `block in invoke_with_call_chain' /Users/sa/.rvm/rubies/ruby-1.9.2-p318/lib/ruby/1.9.1/monitor.rb:201:in `mon_synchronize' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :151:in `invoke_with_call_chain' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :176:in `block in invoke_prerequisites' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :174:in `each' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :174:in `invoke_prerequisites' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :157:in `block in invoke_with_call_chain' /Users/sa/.rvm/rubies/ruby-1.9.2-p318/lib/ruby/1.9.1/monitor.rb:201:in `mon_synchronize' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :151:in `invoke_with_call_chain' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :144:in `invoke' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:116:in `invoke_task' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:94:in `block (2 levels) in top_level' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:94:in `each' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:94:in `block in top_level' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:133:in `standard_exception_handling' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:88:in `top_level' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:66:in `block in run' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:133:in `standard_exception_handling' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:63:in `run' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/bin/rake:33:in ` <top (required)>' /Users/sa/.rvm/gems/ruby-1.9.2-p318/bin/rake:19:in `load' /Users/sa/.rvm/gems/ruby-1.9.2-p318/bin/rake:19:in `<main>' Tasks: TOP => db:migrate => environment Here is the trace for PostgreSQL: ** Invoke db:migrate (first_time) ** Invoke environment (first_time) ** Execute environment rake aborted! PG::Error: ERROR: relation "roles" does not exist LINE 4: WHERE a.attrelid = '"roles"'::regclass ^ : SELECT a.attname, format_type(a.atttypid, a.atttypmod), d.adsrc, a .attnotnull FROM pg_attribute a LEFT JOIN pg_attrdef d ON a.attrelid = d.adrelid AND a.attnum = d.adnum WHERE a.attrelid = '"roles"'::regclass AND a.attnum > 0 AND NOT a.attisdropped ORDER BY a.attnum /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/postgresql_adapter.rb:1106:in `async_exec' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/postgresql_adapter.rb:1106:in `exec_no_cache' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/postgresql_adapter.rb:650:in `block in exec_query' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/abstract_adapter.rb:280:in `block in log' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/notifications/instrumenter.rb:20:in `instrument' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/abstract_adapter.rb:275:in `log' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/postgresql_adapter.rb:649:in `exec_query' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/postgresql_adapter.rb:1231:in `column_definitions' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/postgresql_adapter.rb:845:in `columns' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/connection_adapters/schema_cache.rb:12:in `block in initialize' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/model_schema.rb:228:in `yield' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/model_schema.rb:228:in `default' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/model_schema.rb:228:in `columns' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/model_schema.rb:248:in `column_names' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/model_schema.rb:261:in `column_methods_hash' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/dynamic_matchers.rb:69:in `all_attributes_exists?' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activerecord-3.2.1/lib/active _record/dynamic_matchers.rb:27:in `method_missing' /Users/sa/Documents/AptanaWorkspace/recprototype/config/initializ ers/constants.rb:1:in `<top (required)>' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:245:in `load' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:245:in `block in load' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:236:in `load_dependency' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:245:in `load' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/engi ne.rb:588:in `block (2 levels) in <class:Engine>' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/engi ne.rb:587:in `each' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/engi ne.rb:587:in `block in <class:Engine>' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/init ializable.rb:30:in `instance_exec' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/init ializable.rb:30:in `run' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/init ializable.rb:55:in `block in run_initializers' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/init ializable.rb:54:in `each' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/init ializable.rb:54:in `run_initializers' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/appl ication.rb:136:in `initialize!' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/rail tie/configurable.rb:30:in `method_missing' /Users/sa/Documents/AptanaWorkspace/recprototype/config/environme nt.rb:5:in `<top (required)>' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:251:in `require' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:251:in `block in require' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:236:in `load_dependency' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/activesupport-3.2.1/lib/activ e_support/dependencies.rb:251:in `require' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/appl ication.rb:103:in `require_environment!' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/railties-3.2.1/lib/rails/appl ication.rb:292:in `block (2 levels) in initialize_tasks' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :205:in `call' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :205:in `block in execute' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :200:in `each' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :200:in `execute' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :158:in `block in invoke_with_call_chain' /Users/sa/.rvm/rubies/ruby-1.9.2-p318/lib/ruby/1.9.1/monitor.rb:201:in `mon_synchronize' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :151:in `invoke_with_call_chain' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :176:in `block in invoke_prerequisites' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :174:in `each' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :174:in `invoke_prerequisites' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :157:in `block in invoke_with_call_chain' /Users/sa/.rvm/rubies/ruby-1.9.2-p318/lib/ruby/1.9.1/monitor.rb:201:in `mon_synchronize' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :151:in `invoke_with_call_chain' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/task.rb :144:in `invoke' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:116:in `invoke_task' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:94:in `block (2 levels) in top_level' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:94:in `each' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:94:in `block in top_level' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:133:in `standard_exception_handling' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:88:in `top_level' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:66:in `block in run' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:133:in `standard_exception_handling' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/lib/rake/applica tion.rb:63:in `run' /Users/sa/.rvm/gems/ruby-1.9.2-p318/gems/rake-0.9.2.2/bin/rake:33:in ` <top (required)>' /Users/sa/.rvm/gems/ruby-1.9.2-p318/bin/rake:19:in `load' /Users/sa/.rvm/gems/ruby-1.9.2-p318/bin/rake:19:in `<main>' Tasks: TOP => db:migrate => environment

    Read the article

  • web.xml not reloading in tomcat even after stop/start

    - by ajay
    This is in relation to:- http://stackoverflow.com/questions/2576514/basic-tomcat-servlet-error I changed my web.xml file, did ant compile , all, /etc/init.d/tomcat stop , start Even then my web.xml file in tomcat deployment is still unchanged. This is build.properties file:- app.name=hello catalina.home=/usr/local/tomcat manager.username=admin manager.password=admin This is my build.xml file. Is there something wrong with this:- <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <!-- General purpose build script for web applications and web services, including enhanced support for deploying directly to a Tomcat 6 based server. This build script assumes that the source code of your web application is organized into the following subdirectories underneath the source code directory from which you execute the build script: docs Static documentation files to be copied to the "docs" subdirectory of your distribution. src Java source code (and associated resource files) to be compiled to the "WEB-INF/classes" subdirectory of your web applicaiton. web Static HTML, JSP, and other content (such as image files), including the WEB-INF subdirectory and its configuration file contents. $Id: build.xml.txt 562814 2007-08-05 03:52:04Z markt $ --> <!-- A "project" describes a set of targets that may be requested when Ant is executed. The "default" attribute defines the target which is executed if no specific target is requested, and the "basedir" attribute defines the current working directory from which Ant executes the requested task. This is normally set to the current working directory. --> <project name="My Project" default="compile" basedir="."> <!-- ===================== Property Definitions =========================== --> <!-- Each of the following properties are used in the build script. Values for these properties are set by the first place they are defined, from the following list: * Definitions on the "ant" command line (ant -Dfoo=bar compile). * Definitions from a "build.properties" file in the top level source directory of this application. * Definitions from a "build.properties" file in the developer's home directory. * Default definitions in this build.xml file. You will note below that property values can be composed based on the contents of previously defined properties. This is a powerful technique that helps you minimize the number of changes required when your development environment is modified. Note that property composition is allowed within "build.properties" files as well as in the "build.xml" script. --> <property file="build.properties"/> <property file="${user.home}/build.properties"/> <!-- ==================== File and Directory Names ======================== --> <!-- These properties generally define file and directory names (or paths) that affect where the build process stores its outputs. app.name Base name of this application, used to construct filenames and directories. Defaults to "myapp". app.path Context path to which this application should be deployed (defaults to "/" plus the value of the "app.name" property). app.version Version number of this iteration of the application. build.home The directory into which the "prepare" and "compile" targets will generate their output. Defaults to "build". catalina.home The directory in which you have installed a binary distribution of Tomcat 6. This will be used by the "deploy" target. dist.home The name of the base directory in which distribution files are created. Defaults to "dist". manager.password The login password of a user that is assigned the "manager" role (so that he or she can execute commands via the "/manager" web application) manager.url The URL of the "/manager" web application on the Tomcat installation to which we will deploy web applications and web services. manager.username The login username of a user that is assigned the "manager" role (so that he or she can execute commands via the "/manager" web application) --> <property name="app.name" value="myapp"/> <property name="app.path" value="/${app.name}"/> <property name="app.version" value="0.1-dev"/> <property name="build.home" value="${basedir}/build"/> <property name="catalina.home" value="../../../.."/> <!-- UPDATE THIS! --> <property name="dist.home" value="${basedir}/dist"/> <property name="docs.home" value="${basedir}/docs"/> <property name="manager.url" value="http://localhost:8080/manager"/> <property name="src.home" value="${basedir}/src"/> <property name="web.home" value="${basedir}/web"/> <!-- ==================== External Dependencies =========================== --> <!-- Use property values to define the locations of external JAR files on which your application will depend. In general, these values will be used for two purposes: * Inclusion on the classpath that is passed to the Javac compiler * Being copied into the "/WEB-INF/lib" directory during execution of the "deploy" target. Because we will automatically include all of the Java classes that Tomcat 6 exposes to web applications, we will not need to explicitly list any of those dependencies. You only need to worry about external dependencies for JAR files that you are going to include inside your "/WEB-INF/lib" directory. --> <!-- Dummy external dependency --> <!-- <property name="foo.jar" value="/path/to/foo.jar"/> --> <!-- ==================== Compilation Classpath =========================== --> <!-- Rather than relying on the CLASSPATH environment variable, Ant includes features that makes it easy to dynamically construct the classpath you need for each compilation. The example below constructs the compile classpath to include the servlet.jar file, as well as the other components that Tomcat makes available to web applications automatically, plus anything that you explicitly added. --> <path id="compile.classpath"> <!-- Include all JAR files that will be included in /WEB-INF/lib --> <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** --> <!-- <pathelement location="${foo.jar}"/> --> <!-- Include all elements that Tomcat exposes to applications --> <fileset dir="${catalina.home}/bin"> <include name="*.jar"/> </fileset> <pathelement location="${catalina.home}/lib"/> <fileset dir="${catalina.home}/lib"> <include name="*.jar"/> </fileset> </path> <!-- ================== Custom Ant Task Definitions ======================= --> <!-- These properties define custom tasks for the Ant build tool that interact with the "/manager" web application installed with Tomcat 6. Before they can be successfully utilized, you must perform the following steps: - Copy the file "lib/catalina-ant.jar" from your Tomcat 6 installation into the "lib" directory of your Ant installation. - Create a "build.properties" file in your application's top-level source directory (or your user login home directory) that defines appropriate values for the "manager.password", "manager.url", and "manager.username" properties described above. For more information about the Manager web application, and the functionality of these tasks, see <http://localhost:8080/tomcat-docs/manager-howto.html>. --> <taskdef resource="org/apache/catalina/ant/catalina.tasks" classpathref="compile.classpath"/> <!-- ==================== Compilation Control Options ==================== --> <!-- These properties control option settings on the Javac compiler when it is invoked using the <javac> task. compile.debug Should compilation include the debug option? compile.deprecation Should compilation include the deprecation option? compile.optimize Should compilation include the optimize option? --> <property name="compile.debug" value="true"/> <property name="compile.deprecation" value="false"/> <property name="compile.optimize" value="true"/> <!-- ==================== All Target ====================================== --> <!-- The "all" target is a shortcut for running the "clean" target followed by the "compile" target, to force a complete recompile. --> <target name="all" depends="clean,compile" description="Clean build and dist directories, then compile"/> <!-- ==================== Clean Target ==================================== --> <!-- The "clean" target deletes any previous "build" and "dist" directory, so that you can be ensured the application can be built from scratch. --> <target name="clean" description="Delete old build and dist directories"> <delete dir="${build.home}"/> <delete dir="${dist.home}"/> </target> <!-- ==================== Compile Target ================================== --> <!-- The "compile" target transforms source files (from your "src" directory) into object files in the appropriate location in the build directory. This example assumes that you will be including your classes in an unpacked directory hierarchy under "/WEB-INF/classes". --> <target name="compile" depends="prepare" description="Compile Java sources"> <!-- Compile Java classes as necessary --> <mkdir dir="${build.home}/WEB-INF/classes"/> <javac srcdir="${src.home}" destdir="${build.home}/WEB-INF/classes" debug="${compile.debug}" deprecation="${compile.deprecation}" optimize="${compile.optimize}"> <classpath refid="compile.classpath"/> </javac> <!-- Copy application resources --> <copy todir="${build.home}/WEB-INF/classes"> <fileset dir="${src.home}" excludes="**/*.java"/> </copy> </target> <!-- ==================== Dist Target ===================================== --> <!-- The "dist" target creates a binary distribution of your application in a directory structure ready to be archived in a tar.gz or zip file. Note that this target depends on two others: * "compile" so that the entire web application (including external dependencies) will have been assembled * "javadoc" so that the application Javadocs will have been created --> <target name="dist" depends="compile,javadoc" description="Create binary distribution"> <!-- Copy documentation subdirectories --> <mkdir dir="${dist.home}/docs"/> <copy todir="${dist.home}/docs"> <fileset dir="${docs.home}"/> </copy> <!-- Create application JAR file --> <jar jarfile="${dist.home}/${app.name}-${app.version}.war" basedir="${build.home}"/> <!-- Copy additional files to ${dist.home} as necessary --> </target> <!-- ==================== Install Target ================================== --> <!-- The "install" target tells the specified Tomcat 6 installation to dynamically install this web application and make it available for execution. It does *not* cause the existence of this web application to be remembered across Tomcat restarts; if you restart the server, you will need to re-install all this web application. If you have already installed this application, and simply want Tomcat to recognize that you have updated Java classes (or the web.xml file), use the "reload" target instead. NOTE: This target will only succeed if it is run from the same server that Tomcat is running on. NOTE: This is the logical opposite of the "remove" target. --> <target name="install" depends="compile" description="Install application to servlet container"> <deploy url="${manager.url}" username="${manager.username}" password="${manager.password}" path="${app.path}" localWar="file://${build.home}"/> </target> <!-- ==================== Javadoc Target ================================== --> <!-- The "javadoc" target creates Javadoc API documentation for the Java classes included in your application. Normally, this is only required when preparing a distribution release, but is available as a separate target in case the developer wants to create Javadocs independently. --> <target name="javadoc" depends="compile" description="Create Javadoc API documentation"> <mkdir dir="${dist.home}/docs/api"/> <javadoc sourcepath="${src.home}" destdir="${dist.home}/docs/api" packagenames="*"> <classpath refid="compile.classpath"/> </javadoc> </target> <!-- ====================== List Target =================================== --> <!-- The "list" target asks the specified Tomcat 6 installation to list the currently running web applications, either loaded at startup time or installed dynamically. It is useful to determine whether or not the application you are currently developing has been installed. --> <target name="list" description="List installed applications on servlet container"> <list url="${manager.url}" username="${manager.username}" password="${manager.password}"/> </target> <!-- ==================== Prepare Target ================================== --> <!-- The "prepare" target is used to create the "build" destination directory, and copy the static contents of your web application to it. If you need to copy static files from external dependencies, you can customize the contents of this task. Normally, this task is executed indirectly when needed. --> <target name="prepare"> <!-- Create build directories as needed --> <mkdir dir="${build.home}"/> <mkdir dir="${build.home}/WEB-INF"/> <mkdir dir="${build.home}/WEB-INF/classes"/> <!-- Copy static content of this web application --> <copy todir="${build.home}"> <fileset dir="${web.home}"/> </copy> <!-- Copy external dependencies as required --> <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** --> <mkdir dir="${build.home}/WEB-INF/lib"/> <!-- <copy todir="${build.home}/WEB-INF/lib" file="${foo.jar}"/> --> <!-- Copy static files from external dependencies as needed --> <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** --> </target> <!-- ==================== Reload Target =================================== --> <!-- The "reload" signals the specified application Tomcat 6 to shut itself down and reload. This can be useful when the web application context is not reloadable and you have updated classes or property files in the /WEB-INF/classes directory or when you have added or updated jar files in the /WEB-INF/lib directory. NOTE: The /WEB-INF/web.xml web application configuration file is not reread on a reload. If you have made changes to your web.xml file you must stop then start the web application. --> <target name="reload" depends="compile" description="Reload application on servlet container"> <reload url="${manager.url}" username="${manager.username}" password="${manager.password}" path="${app.path}"/> </target> <!-- ==================== Remove Target =================================== --> <!-- The "remove" target tells the specified Tomcat 6 installation to dynamically remove this web application from service. NOTE: This is the logical opposite of the "install" target. --> <target name="remove" description="Remove application on servlet container"> <undeploy url="${manager.url}" username="${manager.username}" password="${manager.password}" path="${app.path}"/> </target> </project>

    Read the article

< Previous Page | 39 40 41 42 43