Search Results

Search found 16987 results on 680 pages for 'second'.

Page 435/680 | < Previous Page | 431 432 433 434 435 436 437 438 439 440 441 442  | Next Page >

  • Oracle Releases New Mainframe Re-Hosting in Oracle Tuxedo 11g

    - by Jason Williamson
    I'm excited to say that we've released our next generation of Re-hosting in 11g. In fact I'm doing some hands-on labs now for our Systems Integrators in Italy in a couple of weeks and targeting Latin America next month. If you are an SI, or Rehosting firm and are looking to become an Oracle Partner or get a better understanding of Tuxedo and how to use the workbench for rehosting...drop me a line. Oracle Tuxedo Application Runtime for CICS and Batch 11g provides a CICS API emulation and Batch environment that exploits the full range of Oracle Tuxedo's capabilities. Re-hosted applications run in a multi-node, grid environment with centralized production control. Also, enterprise integration of CICS application services benefits from an open and SOA-enabled framework. Key features include: CICS Application Runtime: Can run IBM CICS applications unchanged in an application grid, which enables the distribution of large workloads across multiple processors and nodes. This simplifies CICS administration and can scale to over 100,000 users and over 50,000 transactions per second. 3270 Terminal Server: Protects business users from change through support for tn3270 terminal emulation. Distributed CICS Resource Management: Simplifies deployment and administration by allowing customers to run CICS regions in a distributed configuration. Batch Application Runtime: Provides robust IBM JES-like job management that enables local or remote job submissions. In addition, distributed batch initiators can enable parallelization of jobs and support fail-over, shortening the batch window and helping to meet stringent SLAs. Batch Execution Environment: Helps to run IBM batch unchanged and also supports JCL functionality and all common batch utilities. Oracle Tuxedo Application Rehosting Workbench 11g provides a set of automated migration tools integrated around a central repository. The tools provide high precision which results in very low error rates and the ability to handle large applications. This enables less expensive, low-risk migration projects. Key capabilities include: Workbench Repository and Cataloguer: Ensures integrity of the migrated application assets through full dependency checking. The Cataloguer generates and maintains all relevant meta-data on source and target components. File Migrator: Supports reliable migration of datasets and flat files to an ISAM or Oracle Database 11g. This is done through the automated migration utilities for data unloading, reloading and validation. It also generates logical access functions to shield developers from data repository changes. DB2 Migrator: Similarly, this tool automates the migration of DB2 schema and data to Oracle Database 11g. COBOL Migrator: Supports migration of IBM mainframe COBOL assets (OLTP and Batch) to open systems. Adapts programs for compiler dialects and data access variations. JCL Migrator: Supports migration of IBM JCL jobs to a Tuxedo ART environment, maintaining the flow and characteristics of batch jobs.

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • JCP.Next - Early Adopters of JCP 2.8

    - by Heather VanCura
    JCP.Next is a series of three JSRs (JSR 348, JSR 355 and JSR 358), to be defined through the JCP process itself, with the JCP Executive Committee serving as the Expert Group. The proposed JSRs will modify the JCP's processes  - the Process Document and Java Specification Participation Agreement (JSPA) and will apply to all new JSRs for all Java platforms.   The first - JCP.next.1, or more formally JSR 348, Towards a new version of the Java Community Process - was completed and put into effect in October 2011 as JCP 2.8. This focused on a small number of simple but important changes to make our process more transparent and to enable broader participation. We're already seeing the benefits of these changes as new and existing JSRs adopt the new requirements. The second - JSR 355, Executive Committee Merge, is also Final. You can read the JCP 2.9 Process Document .  As part of the JSR 355 Final Release, the JCP Executive Committee published revisions to the JCP Process Document (version 2.9) and the EC Standing Rules (version 2.2).  The changes went into effect following the 2012 EC Elections in November. The third JSR 358, A major revision of the Java Community Process was submitted in June 2012.  This JSR will modify the Java Specification Participation Agreement (JSPA) as well as the Process Document, and will tackle a large number of complex issues, many of them postponed from JSR 348. For these reasons, the JCP EC (acting as the Expert Group for this JSR), expects to spend a considerable amount of time working on. The JSPA is defined by the JCP as "a one-year, renewable agreement between the Member and Oracle. The success of the Java community depends upon an open and transparent JCP program.  JSR 358, A major revision of the Java Community Process, is now in process and can be followed on java.net. The following JSRs and Spec Leads were the early adopters of JCP 2.8, who voluntarily migrated their JSRs from JCP 2.x to JCP 2.8 or above.  More candidates for 2012 JCP Star Spec Leads! JSR 236, Concurrency Utilities for Java EE (Anthony Lai/Oracle), migrated April 2012 JSR 308, Annotations on Java Types (Michael Ernst, Alex Buckley/Oracle), migrated September 2012 JSR 335, Lambda Expressions for the Java Programming Language (Brian Goetz/Oracle), migrated October 2012 JSR 337, Java SE 8 Release Contents (Mark Reinhold/Oracle) – EG Formation, migrated September 2012 JSR 338, Java Persistence 2.1 (Linda DeMichiel/Oracle), migrated January 2012 JSR 339, JAX-RS 2.0: The Java API for RESTful Web Services (Santiago Pericas-Geertsen, Marek Potociar/Oracle), migrated July 2012 JSR 340, Java Servlet 3.1 Specification (Shing Wai Chan, Rajiv Mordani/Oracle), migrated August 2012 JSR 341, Expression Language 3.0 (Kin-man Chung/Oracle), migrated August 2012 JSR 343, Java Message Service 2.0 (Nigel Deakin/Oracle), migrated March 2012 JSR 344, JavaServer Faces 2.2 (Ed Burns/Oracle), migrated September 2012 JSR 345, Enterprise JavaBeans 3.2 (Marina Vatkina/Oracle), migrated February 2012 JSR 346, Contexts and Dependency Injection for Java EE 1.1 (Pete Muir/RedHat) – migrated December 2011

    Read the article

  • Windows Azure Use Case: High-Performance Computing (HPC)

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: High-Performance Computing (also called Technical Computing) at its most simplistic is a layout of computer workloads where a “head node” accepts work requests, and parses them out to “worker nodes'”. This is useful in cases such as scientific simulations, drug research, MatLab work and where other large compute loads are required. It’s not the immediate-result type computing many are used to; instead, a “job” or group of work requests is sent to a cluster of computers and the worker nodes work on individual parts of the calculations and return the work to the scheduler or head node for the requestor in a batch-request fashion. This is typical to the way that many mainframe computing use-cases work. You can use commodity-based computers to create an HPC Cluster, such as the Linux application called Beowulf, and Microsoft has a server product for HPC using standard computers, called the Windows Compute Cluster that you can read more about here. The issue with HPC (from any vendor) that some organization have is the amount of compute nodes they need. Having too many results in excess infrastructure, including computers, buildings, storage, heat and so on. Having too few means that the work is slower, and takes longer to return a result to the calling application. Unless there is a consistent level of work requested, predicting the number of nodes is problematic. Implementation: Recently, Microsoft announced an internal partnership between the HPC group (Now called the Technical Computing Group) and Windows Azure. You now have two options for implementing an HPC environment using Windows. You can extend the current infrastructure you have for HPC by adding in Compute Nodes in Windows Azure, using a “Broker Node”.  You can then purchase time for adding machines, and then stop paying for them when the work is completed. This is a common pattern in groups that have a constant need for HPC, but need to “burst” that load count under certain conditions. The second option is to install only a Head Node and a Broker Node onsite, and host all Compute Nodes in Windows Azure. This is often the pattern for organizations that need HPC on a scheduled and periodic basis, such as financial analysis or actuarial table calculations. References: Blog entry on Hybrid HPC with Windows Azure: http://blogs.msdn.com/b/ignitionshowcase/archive/2010/12/13/high-performance-computing-on-premise-and-in-the-windows-azure-cloud.aspx  Links for further research on HPC, includes Windows Azure information: http://blogs.msdn.com/b/ncdevguy/archive/2011/02/16/handy-links-for-hpc-and-azure.aspx 

    Read the article

  • Enable Thumbnail Previews for Firefox in Windows 7 Taskbar

    - by Asian Angel
    Are you tired of waiting for the official activation of Taskbar Thumbnail Previews in Firefox? See how easy it is to enable them now with a simple about:config hack. Note: We have briefly covered this before but present it here in a more detailed format. Before For our example we opened all of the websites in the HTG Network in tabs… When hovering over the Firefox Icon in the Taskbar, you only see the one thumbnail. There are two things in particular to notice here: 1.) The Tab Bar for Firefox is displayed with all four tabs visible in the Thumbnail Preview  2.) The “Taskbar Icon” itself is displaying as singular with no “fanned edge” on the right side. Hack the About:Config Settings To get the Thumbnail Previews working you will need to make a modification in the about:config settings. Type about:config in the Address Bar and press Enter. Unless you have previously disabled the warning you will see this message after pressing Enter. Click on the I promise! Button to finish entering the settings. In the Filter Address Bar either type or copy and paste the following about:config entry: browser.taskbar.previews.enable After you enter that in, you should see the entry listing as shown here. At this point there are two methods that you can choose to alter the entry. The first method is to right click on the entry and select Toggle and the second method is to double click on the entry. Both work equally well…choose the method that you like best. Once the about:config entry has been changed, you will need to restart Firefox for it to take effect. After restarting Firefox on our system the Thumbnail Previews were definitely looking very nice. Notice that the Tab Bar is no longer displayed in the Thumbnail Previews. The Taskbar Icon also had a “fanned edge” indicating that multiple tabs were open. Conclusion If you are tired of waiting for Mozilla to officially activate Taskbar Thumbnail Previews in Firefox, then you can go ahead and start enjoying them now. For more great Firefox 3.6.x about:config hacks read our article here. Similar Articles Productive Geek Tips Vista Style Popup Previews for Firefox TabsDisable IE 8 Thumbnail Previews on Windows 7 TaskbarIncrease the size of Taskbar Preview Thumbnails in Windows 7Workaround for Vista Taskbar Thumbnail Previews Not Showing CorrectlyDisable Thumbnail Previews in Windows 7 or Vista Explorer TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Cool Looking Skins for Windows Media Player 12 Move the Mouse Pointer With Your Face Movement Using eViacam Boot Windows Faster With Boot Performance Diagnostics Create Ringtones For Your Android Phone With RingDroid Enhance Your Laptop’s Battery Life With These Tips Easily Search Food Recipes With Recipe Chimp

    Read the article

  • Cocos3d lighting problem

    - by Parasithe
    I'm currently working on a cocos3d project, but I'm having some trouble with lighting and I have no idea how to solve it. I've tried everything and the lighting is always as bad in the game. The first picture is from 3ds max (the software we used for 3d) and the second is from my iphone app. http://prntscr.com/ly378 http://prntscr.com/ly2io As you can see, the lighting is really bad in the app. I manually add my spots and the ambiant light. Here is all my lighting code : _spot = [CC3Light lightWithName: @"Spot" withLightIndex: 0]; // Set the ambient scene lighting. ccColor4F ambientColor = { 0.9, 0.9, 0.9, 1 }; self.ambientLight = ambientColor; //Positioning _spot.target = [self getNodeNamed:kCharacterName]; _spot.location = cc3v( 400, 400, -600 ); // Adjust the relative ambient and diffuse lighting of the main light to // improve realisim, particularly on shadow effects. _spot.diffuseColor = CCC4FMake(0.8, 0.8, 0.8, 1.0); _spot.specularColor = CCC4FMake(0, 0, 0, 1); [_spot setAttenuationCoefficients:CC3AttenuationCoefficientsMake(0, 0, 1)]; // Another mechansim for adjusting shadow intensities is shadowIntensityFactor. // For better effect, set here to a value less than one to lighten the shadows // cast by the main light. _spot.shadowIntensityFactor = 0.75; [self addChild:_spot]; _spot2 = [CC3Light lightWithName: @"Spot2" withLightIndex: 1]; //Positioning _spot2.target = [self getNodeNamed:kCharacterName]; _spot2.location = cc3v( -550, 400, -800 ); _spot2.diffuseColor = CCC4FMake(0.8, 0.8, 0.8, 1.0); _spot2.specularColor = CCC4FMake(0, 0, 0, 1); [_spot2 setAttenuationCoefficients:CC3AttenuationCoefficientsMake(0, 0, 1)]; _spot2.shadowIntensityFactor = 0.75; [self addChild:_spot2]; I'd really appreciate if anyone would have some tip on how to fix the lighting. Maybe my spots are bad? maybe it's the material? I really have no idea. Any help would be welcomed. I already ask some help on cocos2d forums. I had some answers but I need more help.

    Read the article

  • How to share two keyboard on the same laptop, french iso layout and usa ansi layout keyboard with usb?

    - by reyman64
    I recently buy a "noppoo choc mini" with this specific ANSI US-INTERNATIONAL pc84 layout. This specific keyboard have only 84 key , a 60% (compact tenkeyless) reduced layout My problem is simple, there is no keyboard layout into Ubuntu 12.04 which correspond to this usa normal ansi layout ... so it's the same problem with reduced version and only 84 key .. I search a template of normal ANSI US-INTERNATIONAL for xmodmap/xkb, and after i can try to manually map the other key. I search on google, and i don't find any other user which have same problem, so it's seem i have not the good keywoard to search this information.. Edit 1 : Here you can see there is probably a bug in ubuntu, because the layout for USA with dead key is not correct ! I have this : http://minus.com/lEdKMrsNAwkVA And other users have this for the same layout : http://i.stack.imgur.com/p52XG.png EDIT 2 It seems after a "sudo dpkg-reconfigure keyboard-configuration" : french standard keyboard pc105 + precision M65 keyboard from dell laptop Now i can see the good us layout in parameters, but i cannot have the iso layout for french usage... EDIT 3 Ok, after reboot i understand the probleme, i explain. I have one laptop with integrated french keyboard, and i want to use my usb keyboard which use a usa ANSI layout. It seem it's impossible in ubuntu and "dpkg-reconfigure keyboard-configuration" to share two different physical layout (ANSI and EU ISO) on the same computer ... EDIT4 Ok, it seems i can switch the physical layout (ISO <- ANSI) with this command in terminal : setxkbmap -layout us setxkbmap -layout us -variant alt-intl an setxkbmap -layout fr It's very complicated qnd it seem ubuntu 12.04 have big problem with keyboard manager ... because all works great with these two commands, without ANY change into the system parameters keyboard !!! Second bug ? The image of the layout for fr is buggy, the layout is not ISO, but i can press on the letter "< " at the left of right shift without any problem ! You can see the image here (french alternative with ANSI layout ? it's crazy ?) : http: //minus.com/lXsDJwoeyWAfF Can you help me on this point ? I'm lost with xkb, and manual mapping is very complicated ... Thanks a lot, SR

    Read the article

  • Play a New Random Game Each Day in Chrome

    - by Asian Angel
    Being able to unwind for a few moments each day can make the time pass so much better and help you feel refreshed. If your favorite method for relaxing is playing a quick game, then join us as we take a look at the Random Games from MyGiochi.net extension for Google Chrome. Random Games from MyGiochi.net in Action The really great thing about this extension is that each day you can have a new random game to play. If you love variety this is definitely going to be a perfect match for you. We got “Power Golf” as our random game of the day. Here is a look at things once we got started…this one can be a lot of fun to play. Time to move on to the third hole now… What if you want something different from the game available on any given day? In the upper right corner you will find links for “game categories” that you can look through (clicking on the links will open a new tab). Since the links are in Italian you might need to experiment a little bit to find the category that you want to browse through. We chose the “Games for Girls Category”. With Chrome’s new built in “Translation Bar” you can easily switch the page over to the language of your choice. Note: Translation Bar available in Dev Channel releases. Ready to choose a fun game to play! You really can have a lot of fun with the games available at My Giochi. With our “game of the day” we had a second option for other games to try. More games equals more fun! Conclusion If playing online games is your favorite way to relax then the MyGiochi.net extension will make a great addition to your browser. Have fun with all of those new games each day! Links Download the Random Games from MyGiochi.net extension (Google Chrome Extensions) Similar Articles Productive Geek Tips Geek Fun: Play Alien Arena the Free FPS GamePlay Avalanche!! in Google ChromeFriday Fun: Get Your Mario OnFriday Fun: Play Bubble QuodFriday Fun: 13 Days in Hell TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional How to Browse Privately in Firefox Kill Processes Quickly with Process Assassin Need to Come Up with a Good Name? Try Wordoid StockFox puts a Lightweight Stock Ticker in your Statusbar Explore Google Public Data Visually The Ultimate Excel Cheatsheet

    Read the article

  • Gawker Passwords

    - by Nick Harrison
    There has been much news about the hack of the Gawker web sites. There has even been an analysis of the common passwords found. This list is embarrassing in many ways. The most common password was "123456". The second most common password was "password". Much has also been written providing advice on how to create good passwords. This article provides some interesting advice, none of which should be taken. Anyone reading my blog, probably already knows the importance of strong passwords, so I am not going to reiterate the reasons here. My target audience is more the folks defining password complexity requirements. A user cannot come up with a strong password, if we have complexity requirements that don't make sense. With that in mind, here are a few guidelines:  Long Passwords Insist on long passwords. In some cases, you may need to change to allow a long password. I have seen many places that cap passwords at 8 characters. Passwords need to be at least 8 characters minimal. Consider how much stronger the passwords would be if you double the length. Passwords that are 15-20 characters will be that much harder to crack. There is no need to have limit passwords to 8 characters. Don't Require Special Characters Many complexity rules will require that your password include a capital letter, a lower case letter, a number, and one of the "special" characters, the shits above the number keys. The problem with such rules is that the resulting passwords are harder to remember. It also means that you will have a smaller set of characters in the resulting passwords. If you must include one of the 9 digits and one of the 9 "special" characters, then you have dramatically reduced the character set that will make up the final password. Two characters will be one of 10 possible values instead of one of 70. Two additional characters will be one of 26 possible characters instead of a 70 character potential character set. If you limit passwords to 8 characters, you are left with only 7 characters having the full set of 70 potential values. With these character restrictions in place, there are 1.6 x1012 possible passwords. Without these special character restrictions, but allowing numbers and special characters, you get a total of 5.76x1014 possible passwords. Even if you only allowed upper and lower case characters, you will still have 2.18X1014 passwords. You can do the math any number of ways, requiring special characters will always weaken passwords. Now imagine the number of passwords when you require more than 8 characters.  If you are responsible for defining complexity rules, I urge you to take these guidelines into account. What other guidelines do you follow?

    Read the article

  • SQL SERVER – Inviting Ideas for SQL in Sixty Seconds – 12/12/12

    - by pinaldave
    Today is 12/12/12 – I am not sure when will I write this kind of date again – maybe never. This opportunity comes once in a lifetime when we have the same date, month and year all have same digit. December 12th is one of the most fantastic day in my personal life. Four years ago, this day I got married to my wife – Nupur Dave.  Here are photos of our wedding (Dec 12, 2008). Here is a very interesting photo of myself earlier this year. It is not photoshoped or modified photo. The only modification I have done here is to add arrow and speech bubble. Every Wednesday I tried to put one SQL in Sixty Seconds Video. The journey has been fantastic and so far I have put a total of 35 SQL in Sixty Seconds Video. The goal of the video is to learn something in 1 minute. In our daily life we are all very busy and hardly have time for anything. No matter how much we are busy – we all have one minute of time. Sometime we wait for a minute in elevators, at the escalator, at a coffee shop, or just waiting for our phone reboot. Today is a fantastic day – 12/12/12. Let me invite all of you submits SQL in Sixty Seconds idea. If I like your idea and create a sixty second video over it – you will win surprise learning material from me. There are two very simple rules of the contest: - I should have not have already recorded the tip. The tip should be descriptive. Do not just suggest to cover “Performance Tuning” or “How to Create Index” or “More of reporting services”. The tip should have around 100 words of description explaining SQL Tip. The contest is open forever. The winner will be announced whenever I use the tip to convert to video. If I use your tip, I will for sure mention in the blog post that it is inspired from your suggestion. Meanwhile, do not forget to subscribe YouTube Channel. Here are my latest three videos from SQL in Sixty Seconds. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: About Me, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology, Video

    Read the article

  • Silverlight Cream for April 05, 2010 -- #831

    - by Dave Campbell
    In this Issue: Rénald Nollet, Davide Zordan(-2-, -3-), Scott Barnes, Kirupa, Christian Schormann, Tim Heuer, Yavor Georgiev, and Bea Stollnitz. Shoutouts: Yavor Georgiev posted the material for his MIX 2010 talk: what’s new in WCF in Silverlight 4 Erik Mork and crew posted their This Week in Silverlight 4.1.2010 Tim Huckaby and MSDN Bytes interviewed Erik Mork: Silverlight Consulting Life – MSDN Bytes Interview From SilverlightCream.com: Home Loan Application for Windows Phone Rénald Nollet has a WP7 app up, with source, for calculating Home Loan application information. He also discusses some control issues he had with the emulator. Experiments with Multi-touch: A Windows Phone Manipulation sample Davide Zordan has updated the multi-touch project on CodePlex, and added a WP7 sample using multi-touch. Silverlight 4, MEF and MVVM: EventAggregator, ImportingConstructor and Unit Tests Davide Zordan has a second post up on MEF, MVVM, and Prism, oh yeah, and also Unit Testing... the code is available, so take a look at what he's all done with this. Silverlight 4, MEF and MVVM: MEFModules, Dynamic XAP Loading and Navigation Applications Davide Zordan then builds on the previous post and partitions the app into several XAPs put together at runtime with MEF. Silverlight Installation/Preloader Experience - BarnesStyle Scott Barnes talks about the install experience he wanted to get put into place... definitely a good read and lots of information. Changing States using GoToStateAction Kirupa has a quick run-through of Visual States, and then demonstrates using GoToStateAction and a note for a Blend 4 addition. Blend 4: About Path Layout, Part IV Christian Schormann has the next tutorial up in his series on Path Layout, and he's explaining Motion Path and Text on a Path. Managing service references and endpoint configurations for Silverlight applications Helping solve a common and much reported problem of managing service references, Tim Heuer details his method of resolving it and additional tips and tricks to boot. Some known WCF issues in Silverlight 4 Yavor Georgiev, a Program Manager for WCF blogged about the issues that they were not able to fix due to scheduling of the release How can I update LabeledPieChart to use the latest toolkit? Bea Stollnitz revisits some of her charting posts to take advantage of the unsealing of toolkit classes in labeling the Chart and PieSeries Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • How to migrate ASP.NET MVC 3 , MVC4 project to ASP.NET MVC5 ?

    - by Anirudha
    Originally posted on: http://geekswithblogs.net/anirugu/archive/2013/10/16/how-to-migrate-asp.net-mvc-3--mvc4-project-to.aspxSoon you will see a new version of MVC5 in VS2013. MVC5 will be incorporated in VS2013. MVC3 will not be supported in VS2013. I confirmed it on channel9 last time. So People who have installed only VS2013 or doesn’t have old version will be got trouble with the project that is still in MVC3. This error happen because MVC4 and 5 installation doesn’t contain the DLL that is used in Version 3 of ASP.NET MVC.   Don’t be panic. You guys want to upgrade your project. Here is a trick  to solve the issue.   When you open the project you have seen that in Reference there is some dll that have yellow icon. This means that dll are missing or not found in your configuration or system.   Now remember that dll name. Remove them from reference and add them from adding reference. I telling you to remove so VS will not prevent you to add new version of same assembly. Add all those assembly. Those dll will be following : System.Web.Mvc Razor and Webpages Dll.   Remember that in MVC3 we use old version of these assembly. Now When you done by adding all assembly then now open web.config.   There is 2 web.config file in our mvc project.  One is in root folder and second in Views folder. You need to update all those version no. This is not a big deal if you know the name of assembly. Now if you web.config show you assembly version as 3.000.00 then 3 would be replaced with 4 or 5 according to version no. Same thing need to applied all dll for both web.config.   Note :- In VS Template Views goes in ~/Views folder but if someone use any other folder then Views for views and those folder have also web.config then remember to update them also. Your project will be compile and make no warning and error but that certainly not work. for examples areas/views and themes/views that contain web.config also need to be updated with newer assembly version no.   After done these thing you can compile your project and it will be work as it should be Thanks for read my post. Follow me on FB and Twitter to stay updated

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • IT Admin for Thrill Seekers

    - by Tony Davis
    A developer suggested to me recently that the life of the DBA was, surely, a dull one. My first reaction was indignation, but quickly followed by the thought that for many people excitement isn't necessarily the most desirable aspect of their job. It's true that some aspects of the DBA role seem guaranteed to quieten the pulse; in the days of tape backups, time must have slowed to eternity for the person whose job it was to oversee this process, placing tapes into secure containers, ensuring correct labeling, and.sorry, I drifted off there for a second. On the other hand, if you follow the adventures of the likes of Brent Ozar or Tom LaRock, you'd be forgiven for thinking that much of a database guy's time is spent, metaphorically, diving through plate glass windows in tight fitting underwear in order to extract grateful occupants from burning database applications. Alas it isn't true of the majority, but it isn't as dull as some people imagine, and is a helter-skelter ride compared with some other IT roles. Every IT department has people who toil away in shadowy corners doing quiet but mysterious tasks. When you ask them to explain what they do, you almost immediately want them to stop, but you hear enough to appreciate that these tasks are often absolutely vital to the smooth functioning of an IT organization. Compared with them, the DBAs are prima donnas. Here are a few nominations: Installation engineer - install all of the company's laptops and workstations, and software, deal with licensing, shipping and data entry.many organizations, especially those subject to tight regulation, would simply grind to a halt without their efforts. Localization engineer - Not quite software engineering, not quite translation, the job is to rebuild a product in a different language and make sure everything still works. QA Tester - firstly, I should say that the testers at Red Gate seem to me some of the most-fulfilled in the company. I refer here to the QA Tester whose job is more-or-less entirely to read a script, click some buttons and make sure the actual and expected values match. Configuration manager - for example, someone whose main job is to configure build environments so that devs can access their source code; assuredly necessary for the smooth functioning and productivity of the team, and hopefully well-paid. So what other sort of job in IT should one choose if the work of a DBA proves to be too exciting? Or are these roles secretly more exciting than many imagine? I invite you all to put forward your own suggestions. Cheers, Tony.

    Read the article

  • SQL SERVER – Saturday Fun Puzzle with SQL Server DATETIME2 and CAST

    - by pinaldave
    Note: I have used SQL Server 2012 for this small fun experiment. Here is what we are going to do. We will run the script one at time instead of running them all together and try to guess the answer. I am confident that many will get it correct but if you do not get correct, you learn something new. Let us create database and sample table. CREATE DATABASE DB2012 GO USE DB2012 GO CREATE TABLE TableDT (DT1 VARCHAR(100), DT2 DATETIME2, DT1C AS DT1, DT2C AS DT2); INSERT INTO TableDT (DT1, DT2) SELECT GETDATE(), GETDATE() GO There are four columns in the table. The first column DT1 is regular VARCHAR and second DT2 is DATETIME2. Both of the column are been populated with the same data as I have used the function GETDATE(). Now let us do the SELECT statement and get the result from both the columns. Before running the query please guess the answer and write it down on the paper or notepad. Question 1: Guess the resultset SELECT DT1, DT2 FROM TableDT GO Now once again run the select statement on the same table but this time retrieve the computed columns only. Once again I suggest you write down the result on the notepad. Question 2: Guess the resultset SELECT DT1C, DT2C FROM TableDT GO Now here is the best part. Let us use the CAST function over the computed columns. Here I do want you to stop and guess the answer for sure. If you have not done it so far, stop do it, believe me you will like it. Question 3: Guess the resultset SELECT CAST(DT1C AS DATETIME2) CDT1C, CAST(DT2C AS DATETIME2) CDT1C FROM TableDT GO Now let us inspect all the answers together and see how many of you got it correct. Answer 1: Answer 2: Answer 3:  If you have not tried to run the script so far, you can execute all the three of the above script together over here and see the result together. SELECT CAST(DT1C AS DATETIME2) CDT1C, CAST(DT2C AS DATETIME2) CDT1C FROM TableDT GO Here is the Saturday Fun question to you – why do we get same result from both of the expressions in Question 3, where as in question 2 both the expression have different answer. I will publish the valid answer with explanation in future blog posts. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL DateTime, SQL Puzzle, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Wireless Drivers for Broadcom BCM 4321 (14e4:4329) will not stay connected to a wireless network

    - by Eugene
    So, I'm not necessary new to Linux, I just never took the time to learn it, so please, bare with me. I just swapped out one of my wireless cards from one computer to another. This wireless card in question would be a "Broadcom BCM4321 (14e4:4329)" or actually a "Netgear WN311B Rangemax Next 270 Mbps Wireless PCI Adapter", but that's not important. I've tried (but probably screwed up in the process) installing the "wl" , "b43" and "brcmsmac" drivers, or at least I think I did. Currently I have only the following drivers loaded: eugene@EugeneS-PCu:~$ lsmod | grep "brcmsmac\|b43\|ssb\|bcma\|wl" b43 387371 0 bcma 52096 1 b43 mac80211 630653 1 b43 cfg80211 484040 2 b43,mac80211 ssb_hcd 12869 0 ssb 62379 2 b43,ssb_hcd The main issue is that with most of the drivers available that I've installed, they will find my wireless network but, they will only stay connected for about a minute with abnormally slow speed and then all of a sudden disconnect. Currently, the computer is hooked into another to share it's connect so that I can install drivers from the internet instead of loading them on to a flash drive and doing it offline. If anyone has any insight to the problem, that would be awesome. If not, I'll probably just look up how to install the Windows closed source driver. Edit 1: Even when I try the method here, as suggested when this was marked as a duplicate, I still can't stay connected to a wireless network. Edit 2: After discussing my issue with @Luis, he opened my question back up and told me to include the tests/procedures in the comments. Basically I did this: Read the first answer of the link above when this question was marked as duplicate which involved installing removing bcmwl-kernel-source and instead install firmware-b43-installer and b43-fwcutter. No change of result and contacted Luis in the comments, who then told me to try the second answer which involved removing my previous mistake and installing bcmwl-kernel-source Now the Network Manger (this has happend before, but usally I fixed it by using a different driver) even recognizes WiFi exist (both non-literal and literal). Luis who then suggested sudo rfkill unblock all rfkill unblock all didn't return anything, so I decide to try sudo rfkill list all. Returns nothing (no wonder rfkill unblock all did nothing). I enter lsmod | grep "brcmsmac\|b43\|ssb\|bcma\|wl" and that returns nothing. Try loading the driver by entering sudo modprobe b43 and try lsmod | grep "brcmsmac\|b43\|ssb\|bcma\|wl" again. Returns this: eugene@Eugenes-uPC:~$ sudo modprobe b43 eugene@Eugenes-uPC:~$ lsmod | grep "brcmsmac\|b43\|ssb\|bcma\|wl" b43 387371 0 bcma 52096 1 b43 mac80211 630653 1 b43 cfg80211 484040 2 b43,mac80211 ssb_hcd 12869 0 ssb 62379 2 b43,ssb_hcd So to recap: Currently Network Manager doesn't recognize Wireless exists, b43 drivers are loaded and I've currently hardwired a connect from my laptop to the computer that's causing this.

    Read the article

  • Silverlight Cream for November 20, 2011 -- #1169

    - by Dave Campbell
    In this Issue: Andrea Boschin, Michael Crump, Michael Sync, WindowsPhoneGeek, Jesse Liberty, Derik Whittaker, Sumit Dutta, Jeff Blankenburg(-2-), and Beth Massi. Above the Fold: WP7: "Silver VNC 1.0 for Windows Phone "Mango"" Andrea Boschin Metro/WinRT/W8: "Lighting up your C# Metro apps by being a Share Source" Derik Whittaker LightSwitch: "Using the Save and Query Pipeline to “Archive” Deleted Records" Beth Massi Shoutouts: Michael Palermo's latest Desert Mountain Developers is up Michael Washington's latest Visual Studio #LightSwitch Daily is up From SilverlightCream.com: Silver VNC 1.0 for Windows Phone "Mango" Andrea Boschin published the first release of his "Silver VNC" version 1.0 on CodePlex. Check out the video on the blog post to see the capabilities, then go grab it from CodePlex. Fixing a broken toolbox (In Visual Studio 2010 SP1) Not Silverlight or Metro, but near to us all is Visual Studio... read how Michael Crump resolves the 'broken' toolbox that we all get now and then Windows Phone 7 – USB Device Not Recognized Error Michael Sync is looking for ideas about an error he gets any time he updates his phone. Windows Phone Toolkit MultiselectList in depth| Part2: Data Binding WindowsPhoneGeek has up the second part of his tutorial series on the MultiselectList from the Windows Phone Toolkit... this part is about data binding, complete with lots of code, discussion, pictures, and project to download New Mini-Tutorial Video Series Jesse Liberty started a new video series based on his Mango Mini tutorials. They will be on Channel 9, and he has a link on this post to the index. The firs of the series is on animation without code Lighting up your C# Metro apps by being a Share Source Derik Whittaker continues investigating Metro with this post about how to set your app up to share its content with other apps Part 21 - Windows Phone 7 - Toast Push Notification Sumit Dutta has part 21 of his WP7 series up and is talking about Toast Notification by creating a Windows form app for sending notifications to the WP7 app for viewing 31 Days of Mango | Day #6: Motion Jeff Blankenburg's Day 6 in his Mango series is about the Motion class which combines the data we get from the Accelerometer, Compass, and Gyroscope of the last couple days of posts 31 Days of Mango | Day #7: Raw Camera Data In Day 7, Jeff Blankenburg talks about the Camera on the WP7 and how to use the raw data in your own application Using the Save and Query Pipeline to “Archive” Deleted Records Beth Massi's latest LightSwith post is this one on tapping into the Save and Query pipelines to perform some data processing prior to saving or pulling data Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • What does your Python development workbench look like?

    - by Fabian Fagerholm
    First, a scene-setter to this question: Several questions on this site have to do with selection and comparison of Python IDEs. (The top one currently is What IDE to use for Python). In the answers you can see that many Python programmers use simple text editors, many use sophisticated text editors, and many use a variety of what I would call "actual" integrated development environments – a single program in which all development is done: managing project files, interfacing with a version control system, writing code, refactoring code, making build configurations, writing and executing tests, "drawing" GUIs, and so on. Through its GUI, an IDE supports different kinds of workflows to accomplish different tasks during the journey of writing a program or making changes to an existing one. The exact features vary, but a good IDE has sensible workflows and automates things to let the programmer concentrate on the creative parts of writing software. The non-IDE way of writing large programs relies on a collection of tools that are typically single-purpose; they do "one thing well" as per the Unix philosophy. This "non-integrated development environment" can be thought of as a workbench, supported by the OS and generic interaction through a text or graphical shell. The programmer creates workflows in their mind (or in a wiki?), automates parts and builds a personal workbench, often gradually and as experience accumulates. The learning curve is often steeper than with an IDE, but those who have taken the time to do this can often claim deeper understanding of their tools. (Whether they are better programmers is not part of this question.) With advanced editor-platforms like Emacs, the pieces can be integrated into a whole, while with simpler editors like gedit or TextMate, the shell/terminal is typically the "command center" to drive the workbench. Sometimes people extend an existing IDE to suit their needs. What does your Python development workbench look like? What workflows have you developed and how do they work? For the first question, please give the main "driving" program – the one that you use to control the rest (Emacs, shell, etc.) the "small tools" -- the programs you reach for when doing different tasks For the second question, please describe what the goal of the workflow is (eg. "set up a new project" or "doing initial code design" or "adding a feature" or "executing tests") what steps are in the workflow and what commands you run for each step (eg. in the shell or in Emacs) Also, please describe the context of your work: do you write small one-off scripts, do you do web development (with what framework?), do you write data-munching applications (what kind of data and for what purpose), do you do scientific computing, desktop apps, or something else? Note: A good answer addresses the perspectives above – it doesn't just list a bunch of tools. It will typically be a long answer, not a short one, and will take some thinking to produce; maybe even observing yourself working.

    Read the article

  • Using SQL Source Control and Vault Professional Part 4

    - by Ajarn Mark Caldwell
    Two weeks ago I upgraded our installation of Fortress to the latest version, which is now named Vault Professional.  This is the version of Vault (i.e. Vault Standard 5.1 / Vault Professional 5.1) that will be officially supported with Red-Gate SQL Source Control 2.1.  While the folks at Red-Gate did a fantastic job of working with me to get SQL Source Control to work with the older Fortress version, we weren’t going to just sit on that.  There are a couple of things that Vault Professional cleaned up for us, such as improved integration with Visual Studio 2010, so it was a win all around. Shortly after that upgrade, I received notice from Red-Gate that they had a new Early Access version of SQL Source Control available that included the ability to source control static data.  The idea here is that you probably have a few fairly static lookup tables in your system, and those data values are similar in concept to source code, and should be versioned in your source control management system also.  I agree with this, but please be wise…somebody out there is bound to try to use this feature as their disaster recovery for their entire database, and that is NOT the purpose.  First off, you should never have your PROD (or LIVE, whatever you call it) system attached to source control.  Source Control is for development, not for PROD systems.  Second, use the features that are intended for this purpose, such as BACKUP and RESTORE. Laying that tangent aside, it is great that now you can include these critical values in your repository and make them part of a deployment process.  As you would guess, SQL Source Control uses SQL Data Compare to create the data change scripts just like it uses SQL Compare to create the schema change scripts.  Once again, they did a very good job with the integration to their other products.  At this point we are really starting to see some good payback on our investment in the full SQL Developer Bundle.  Those products were worth the investment back when we only used them sporadically for troubleshooting and DBA analysis, but now with SQL Source Control, they are becoming everyday-use products for the development team. I like this software (SQL Source Control) so much that I am about to break my own rules and distribute it to my team to use even though it is still in beta.  This is the first time that I have approved the use of any beta software in a production scenario (actively building our next versions of internal software) but I predict that the usability and productivity gain of using SQL Source Control over manual scripting is worth the risk.  Of course, I have also put this beta software through its paces pretty well to be comfortable with it, and Red-Gate has proven their responsiveness to issues that came up in my early beta testing, and so I am willing to bet on their continued support.  Likewise, SourceGear, the maker of Vault Professional, has proven itself to me as well, and so the combination of SQL Source Control with Vault Professional is the new standard for my development team.

    Read the article

  • Set Custom Reload Times for Individual Webpages in Chrome

    - by Asian Angel
    Do you have a webpage that needs to be reloaded every so often or perhaps you have multiple webpages that each need their own individual reload time? Now you can have the best of both with the AutoReloader extension for Google Chrome. Using AutoReloader When you first look at the drop-down window everything will be in a neutral “waiting” state. You can start using the extension immediately by simply entering the desired “time frame” for reloading a webpage. Notice for the “Repeat Option” that “0 = Continuous”… You may want to have a quick look through the “Options” to see if there are any “operational changes” that you would like to make. Once you enter a time click on the “Set Link” to start the timer. Notice that you can view the time remaining on the “Toolbar Button” unless you disabled the feature in the “Options”. Clicking on the “Toolbar Button” will show a larger version of the timer in the drop-down window along with a “Cancel Current Timer Link”. Here is the best part of all with AutoReloader…you can set up your own customized list of “Reload Times” and then access them through the drop-down window. Using the two times shown here we were able to set the “Productive Geek Webpage” up for 30 second reloads and the “TinyHacker Webpage” up for 1 minute reloads at the same time. There was no conflict whatsoever in running both “reload times” simultaneously. This is a really terrific feature! Conclusion Whether you have only one webpage or multiple pages that need periodic reloading (such as tracking a Woot-Off or an Ebay auction) the AutoReloader extension is the perfect tool for the job. Running custom reload times simultaneously have never been easier. Links Download the AutoReloader extension (Google Chrome Extensions) Similar Articles Productive Geek Tips Set Up Automatic Timed Page Reloading on Your Webpages in FirefoxRemove Custom about:config Entries the Easy WayEnable Vista Black Style Theme for Google Chrome in XPActivate the Redesigned New-Tab Interface in Google ChromeModify Tab Ordering in Google Chrome TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional The Growth of Citibank Quickly Switch between Tabs in IE Windows Media Player 12: Tweak Video & Sound with Playback Enhancements Own a cell phone, or does a cell phone own you? Make your Joomla & Drupal Sites Mobile with OSMOBI Integrate Twitter and Delicious and Make Life Easier

    Read the article

  • Live CD / Live USB much faster than full install

    - by user29347
    I've observed it on both laptops I own! HP Compaq nx6125 and Ubuntu 11.04 x64 - somewhat solved Lenovo Thinkpad T500 and Ubuntu 11.10 x64 - help needed! I'm still struggling with the Thinkpad to get performance level similar to that of 10 y.o. laptops... All in all a really serious issue with multiple versions of Ubuntu that renders computers with perfectly compatible hardware unusable, as far as out of the box experience is concerned. Troubleshooting resultant issues seems to be a hard case even for users with some experience with installing graphics drivers. EDIT: I can't really post additional details. Two different ubuntu versions, two laptops, two different set of graph. drivers (OS vs ATI prop.) - all with the same symptoms. Also I can't stress enough how massive the performance degradation is compared to a healthy system. For that reason I ask for input from people who may know roughly what are we dealing with here. I can post more details if we were to focus on my current Thinkpad T500. In that case my current system details: Lenovo Thinkpad T500 Ubuntu 11.10 x64 ATI Mobility Radeon HD 3650 (also see the "What I have already tried" section about Intel graphics tested) ATI Catalyst 11.10 drivers OCZ Agility 3 SSD but! same with the default driver for ATI the card same with the prop. driver for the ATI card from Jockey (Additional drivers applet) What I have already tried: 0. Switching to Intel integrated card (Intel GMA 4500M HD) with the default driver - same effects = may indicate not driver related problem but a problem with something of global influence like e.g. nomodeset or other I don't even know about. (What you can read above) ATI Catalyst 11.10 and radeon.modeset=0 boot parameter + disabled Wait for VBlank. Unity 2D Ubuntu 10.04 LTS tested (ubuntu-10.04.3-desktop-i386.iso): Both live USB and installed version blazing fast! (on the default drivers - without even installing the proprietary fglrx drivers). re2 a) seems to give me the only significant results (still poor) - perfect Unity elements performance with the same crawling stuttering/lagging when dragging windows around. re2 b) this happens often http://i17.photobucket.com/albums/b68/Bucic/ubuntuforumsorg/Screenshotat2011-10-28083140.png re2 c) Sometimes I am able to witness a normal performance when dragging a window around but only for a second or two. When I try to shake it longer it starts to lag and it will keep lagging like that with an increased probability of what you see in the sshot in point re2 b). re2 d) I can't establish the radeon.modeset=0 influence though. Once it seems to work be smooth with it, the other time - without it. Really can't tell.

    Read the article

  • Avoiding Flicker with JQuery Tabs

    - by Damon
    I am a huge fan of JQuery because it seems like every time I want to do something it has a plugin that already does it.  Adding a tabbed interface to a web page was always quite an annoyance, but JQuery UI offers a pretty descent tabs solution (click here to see it).  If you read through the documentation, you'll find that you can create a tabbed interface by calling the tabs() method on an element containing an unordered list.  The only problem that I've experienced with the method is that on slower machines you can see the unordered list render out in its original state before being updated into the final tabbed interface.  A quick way to fix that issues is to set the CSS display property of the element to none, then call the show() method directly after calling the tabs() method.  This keeps the element completely hidden while JQuery sets up the tabs interface and eliminates the flicker. <SCRIPT type="text/javascript">      $(function()      {           $("#tabs").tabs();           $("#tabs").show();      }); </SCRIPT> <div id="tabs" style="display:none;">     <ul>         <li><a href="#tabs-1">First Tab</a></li>         <li><a href="#tabs-2">Second Tab</a></li>         <li><a href="#tabs-3">Third Tab</a></li>     </ul>     ... </div>

    Read the article

  • Grub2 -- Dualboot Ubuntu LTS 12.04 and Windows 7 -- Detects two Windows 7 (loader) entries

    - by DarkIron112
    this is the first question I have ever asked the Ubuntu Community. :D I'm fairly new to Ubuntu, but I understand the basics and know how to navigate the Terminal. I also know how to ask for/research my problems before asking for/ help. I have scoured the internet high and low and learned much of how Grub2 works. But nothing has helped me to solve my problem. My problem is this: I have a computer that has three hard drives. It previously had Windows XP, but I upgraded to Windows 7. I also installed Ubuntu 12.04 LTS (Precise Pangolin). During my installation of Windows 7, there was a failure and I had to restart the installation. Afterwards, I installed Ubuntu. After some trouble removing all traces of the XP OS (Ubuntu auto-detected it, but not Windows 7) I got the two OSes working flawlessly. Or, almost. When booting up, Grub2 used to display Ubuntu, Ubuntu Recovery Mode, Other Versions of Linux, memtest, followed by "Windows 7 (loader) on /dev/sda1" and "Windows 7 (loader) on /dev/sdb1". I eventually removed Recovery Mode, Other Versions, and Memtest. Now, when I run: sudo update-grub I get this print-out: Generating grub.cfg ... Found linux image: /boot/vmlinuz-3.2.0-26-generic Found initrd image: /boot/initrd.img-3.2.0-26-generic Found Windows 7 (loader) on /dev/sda1 Found Windows 7 (loader) on /dev/sdb1 I would like to remove "Windows 7 (loader) on /dev/sda1", as it is a broken entry that shouldn't exist, and must have been installed during my first Windows 7 attempt. I cannot find a Windows 7 entry in /etc/grub.d... And I don't know where to look. Here is a layout of my hard drives: /dev/sda1/ (1.82 TiB), NTFS ("Media") /dev/sdb1/ (100 Mib), NTFS ("System Reserved") /dev/sdb2/ (149 GiB), NTFS ("Windows 7") /dev/sdb3/ (149 GiB), Extended (" ") /dev/sdb4/ (145 GiB), ext4 (" ") /dev/sdb5/ (4 GiB), linux-swap (" ") /dev/sdc1/ (488.28 GiB), NTFS ("Downloads") /dev/sdc2/ (488.28 GiB), NTFS ("AltMedia") /dev/sdc3/ (886.45 GiB), NTFS ("Personal") unallocated (2.09 MiB), unallocated What I think has happened: Windows 7 installed first and badly. I installed it again. First, there was Windows XP to guide where the bootloader went to so it was put on /dev/sdb1/. But, the second time no such guide existed so the machine put another bootloader on /dev/sda1/. sda1, by the way, is the only partition on a 2TB drive. No boot record partition appears to exist according to gedit. I'm not sure where Grub2 is getting this information from. But, there it is. Is there anything somebody can do to help me? Or, is there any more information I should add? Thank you, community!

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • VLC will sometimes have issues displaying video in fullscreen. What could cause this? How would I troubleshoot the issue?

    - by George Marian
    Recently VLC has been having issues displaying video in fullscreen mode. AFAIK, nothing has changed with the video card drivers and it's certainly the same version of VLC. (/me shakes a fist at the repository maintainers) This has worked without issue in the past. In fact, I've had as many as 6 instances of VLC running, each playing a video. One was always fullscreen on my second monitor, while the others were tiled on my primary monitor. I was able to toggle any of the other 5 into fullscreen mode and the video displayed without issue. Lately, I've been having trouble running 2 instances in fullscreen mode. (Sometimes, even a single instance will not display the video in fullscreen.) VLC will continue to play the video, but in fullscreen mode I see nothing but a black screen. Sometimes, the video will display if I maximize the VLC window. Other times, I have to settle for a smaller sized window. I don't know if this is pertinent, but sometimes changing the min/max state of a Firefox window (Minefield, specifically) seemed to allow the troublesome instance to display the video in fullscreen mode. However, that did not prove to be a consistent workaround. Sometimes, it seemed that closing a Firefox window did the trick, though that isn't consistently successful either. (I futzed with Firefox, because with the crazy number of windows and tabs that I normally have open, it regularly hogs about 1 GB of RAM.) Another bit of funkiness that comes to mind is the fact that my secondary monitor is considered the primary on boot-up. I use xrandr to designate the real 1st monitor as primary after boot-up, as suggested by someone in a question I asked on the Unix & Linux SE site. Specs: Ubuntu 10.10 w/ Gnome and Compiz 8GB RAM AMD Phenom II 965 Black Edition Asus M4A79 Deluxe mobo XFX ATI Radeon HD 5750 w/ 1GB RAM VLC is configured to use the hardware overlay for video (as per the default setting) Does anyone have an idea what may cause this issue or how I may go about troubleshooting it? Update: Right now I have 2 instances of VLC playing, each in fullscreen mode on a separate monitor. This is what I see:

    Read the article

< Previous Page | 431 432 433 434 435 436 437 438 439 440 441 442  | Next Page >