Search Results

Search found 25660 results on 1027 pages for 'dotnetnuke development'.

Page 438/1027 | < Previous Page | 434 435 436 437 438 439 440 441 442 443 444 445  | Next Page >

  • Storing game objects with generic object information

    - by Mick
    In a simple game object class, you might have something like this: public abstract class GameObject { protected String name; // other properties protected double x, y; public GameObject(String name, double x, double y) { // etc } // setters, getters } I was thinking, since a lot of game objects (ex. generic monsters) will share the same name, movement speed, attack power, etc, it would be better to have all that information shared between all monsters of the same type. So I decided to have an abstract class "ObjectData" to hold all this shared information. So whenever I create a generic monster, I would use the same pre-created "ObjectData" for it. Now the above class becomes more like this: public abstract class GameObject { protected ObjectData data; protected double x, y; public GameObject(ObjectData data, double x, double y) { // etc } // setters, getters public String getName() { return data.getName(); } } So to tailor this specifically for a Monster (could be done in a very similar way for Npcs, etc), I would add 2 classes. Monster which extends GameObject, and MonsterData which extends ObjectData. Now I'll have something like this: public class Monster extends GameObject { public Monster(MonsterData data, double x, double y) { super(data, x, y); } } This is where my design question comes in. Since MonsterData would hold data specific to a generic monster (and would vary with what say NpcData holds), what would be the best way to access this extra information in a system like this? At the moment, since the data variable is of type ObjectData, I'll have to cast data to MonsterData whenever I use it inside the Monster class. One solution I thought of is this, but this might be bad practice: public class Monster extends GameObject { private MonsterData data; // <- this part here public Monster(MonsterData data, double x, double y) { super(data, x, y); this.data = data; // <- this part here } } I've read that for one I should generically avoid overwriting the underlying classes variables. What do you guys think of this solution? Is it bad practice? Do you have any better solutions? Is the design in general bad? How should I redesign this if it is? Thanks in advanced for any replies, and sorry about the long question. Hopefully it all makes sense!

    Read the article

  • Progress bar in Super Hexagon using OpenGL ES 2 (Android)

    - by user16547
    I'm wondering how the progress bar in Super Hexagon was made. (see image, top left) Actually I am not very sure how to implement a progress bar at all using OpenGL ES 2 on Android, but I am asking specifically about the one used in Super Hexagon because it seems to me less straightforward / obvious than others: the bar changes its colour during game play. I think one possibility is to use the built-in Android progress bar. I can see from some Stackoverflow questions that you can change the default blue colour to whatever you want, but I'm not sure whether you can update it during the game play. The other possibility I can think of for implementing a progress bar is to have a small texture that starts with a scale of 0 and that you keep scaling until it reaches the maximum size, representing 100%. But this suffers from the same problem as before: you'll not be able to update the colour of the texture during run-time. It's fixed. So what's the best way to approach this problem? *I'm assuming he didn't use a particular library, although if he did, it would be interesting to know. I'm interested in a pure OpenGL ES 2 + Android solution.

    Read the article

  • 3D zooming technique to maintain the relative position of an object on screen

    - by stark
    Is it possible to zoom to a certain point on screen by modifying the field of view and rotating the view of the camera as to keep that point/object in the same place on screen while zooming ? Changing the camera position is not allowed. I projected the 3D pos of the object on screen and remembered it. Then on each frame I calculate the direction to it in camera space and then I construct a rotation matrix to align this direction to Z axis (in cam space). After this, I calculate the direction from the camera to the object in world space and transform this vector with the matrix I obtained earlier and then use this final vector as the camera's new direction. And it's actually "kinda working", the problem is that it is more/less off than the camera's rotation before starting to zoom depending on the area you are trying to zoom in (larger error on edges/corners). It looks acceptable, but I'm not settling for only this. Any suggestions/resources for doing this technique perfectly? If some of you want to explain the math in detail, be my guest, I can understand these things well.

    Read the article

  • 2D Rectangle Collision Response with Multiple Rectangles

    - by Justin Skiles
    Similar to: Collision rectangle response I have a level made up of tiles where the edges of the level are made up of collidable rectangles. The player's collision box is represented by a rectangle as well. The player can move in 8 directions. The player's velocity is equal in X and Y directions and constant. Each update, I am checking the player's collision against all tiles that are a certain distance away. When the player collides with a rectangle, I am finding the intersection depth and resolving along the most shallow axis followed by the other axis. This resolution happens for both axes simultaneously. See below for two examples of situations where I am having trouble. Moving up-left against the left wall In the scenario below, the player is colliding with two tiles. The tile intersection depth is equal on both axes for the top tile and more shallow in the X axis for the middle tile. Because the player is moving up the wall, the player should slide in an upward direction along the wall. This works properly as long as the rectangle with the more shallow depth is evaluated first. If the equal intersection depth rectangle is evaluated first, there is a chance the player becomes stuck. Moving up-left against the top wall Here is an identical scenario with the exception that the collision is with the top wall. The same problem occurs at the corners when intersection depth is equal for both axes. I guess my overall question is: How can I ensure that collision response occurs on tiles that have non-equal intersection depth before tiles that have equal intersection depth in order to get around the weirdness that occurs at these corners. Sean's answer in the linked question was good, but his solution required having different velocity components in a certain direction. My situation has equal velocities, so there's no good way to tell which direction to resolve at corners. I hope I have made my explanation clear.

    Read the article

  • How to build a "traffic AI"?

    - by Lunikon
    A project I am working on right now features a lot of "traffic" in the sense of cars moving along roads, aircraft moving aroun an apron etc. As of now the available paths are precalculated, so nodes are generated automatically for crossings which themselves are interconnected by edges. When a character/agent spawns into the world it starts at some node and finds a path to a target node by means of a simply A* algorithm. The agent follows the path and ultimately reaches its destination. No problem so far. Now I need to enable the agents to avoid collisions and to handle complex traffic situations. Since I'm new to the field of AI I looked up several papers/articles on steering behavior but found them to be too low-level. My problem consists less of the actual collision avoidance (which is rather simple in this case because the agents follow strictly defined paths) but of situations like one agent leaving a dead-end while another one wants to enter exactly the same one. Or two agents meeting at a bottleneck which only allows one agent to pass at a time but both need to pass it (according to the optimal route found before) and they need to find a way to let the other one pass first. So basically the main aspect of the problem would be predicting traffic movement to avoid dead-locks. Difficult to describe, but I guess you get what I mean. Do you have any recommendations for me on where to start looking? Any papers, sample projects or similar things that could get me started? I appreciate your help!

    Read the article

  • Xna GS 4 Animation Sample bone transforms not copying correctly

    - by annonymously
    I have a person model that is animated and a suitcase model that is not. The person can pick up the suitcase and it should move to the location of the hand bone of the person model. Unfortunately the suitcase doesn't follow the animation correctly. it moves with the hand's animation but its position is under the ground and way too far to the right. I haven't scaled any of the models myself. Thank you. The source code (forgive the rough prototype code): Matrix[] tran = new Matrix[man.model.Bones.Count];// The absolute transforms from the animation player man.model.CopyAbsoluteBoneTransformsTo(tran); Vector3 suitcasePos, suitcaseScale, tempSuitcasePos = new Vector3();// Place holders for the Matrix Decompose Quaternion suitcaseRot = new Quaternion(); // The transformation of the right hand bone is decomposed tran[man.model.Bones["HPF_RightHand"].Index].Decompose(out suitcaseScale, out suitcaseRot, out tempSuitcasePos); suitcasePos = new Vector3(); suitcasePos.X = tempSuitcasePos.Z;// The axes are inverted for some reason suitcasePos.Y = -tempSuitcasePos.Y; suitcasePos.Z = -tempSuitcasePos.X; suitcase.Position = man.Position + suitcasePos;// The actual Suitcase properties suitcase.Rotation = man.Rotation + new Vector3(suitcaseRot.X, suitcaseRot.Y, suitcaseRot.Z); I am also copying the bone transforms from the animation player in the Person class like so: // The transformations from the AnimationPlayer Matrix[] skinTrans = new Matrix[model.Bones.Count]; skinTrans = player.GetBoneTransforms(); // copy each transformation to its corresponding bone for (int i = 0; i < skinTrans.Length; i++) { model.Bones[i].Transform = skinTrans[i]; }

    Read the article

  • Continuous Movement of gun bullet

    - by Siddharth
    I was using box2d for the movement of the body. When I apply gravity (0,0) the bullet continuously move but when I change gravity to the earth the behavior was changed. I also try to apply continuous force to the bullet body but the behavior was not so good. So please provide any suggestion to continuously move bullet body in earth gravity. currentVelocity = bulletBody.getLinearVelocity(); if (currentVelocity.len() < speed|| currentVelocity.len() > speed + 0.25f) { velocityChange = Math.abs(speed - currentVelocity.len()); currentVelocity.set(currentVelocity.x* velocityChange, currentVelocity.y*velocityChange); bulletBody.applyLinearImpulse(currentVelocity,bulletBody.getWorldCenter()); } I apply above code for the continuous velocity of the body. And also I did not able to find any setGravityScale method in the library.

    Read the article

  • Importing FBX with multiple meshes in UDK

    - by andresp
    I need to import into UDK a several amount of FBX models (representing buildings) which are composed by various submeshes (walls, windows, roof...). I need to keep the individual meshes (can't use the merge option) but I also need to work with the building as a whole. Do you know if this is possible? How? Also, is there a way to keep the textures assignment for the FBX models after importing them to Unreal? Doing the process manually (importing model, importing texture, assign to the material, assign the material to each mesh and submesh) for 100 or 200 models (to import an entire city from City Engine), isn't viable.

    Read the article

  • Loading and drawing materials using Lib3ds

    - by Dfowj
    Hey all, i'm currently using Lib3ds to load models into my C++/OpenGL project. So far, i've been follow the model loading tutorial found here. The tutorial gives a good example of how to draw the vertices and normals using VBO's, but so far i've been lost as how to do the same thing with materials. Could i get an explanation/example of how to both load and draw materials of my meshes using Lib3ds and OpenGL?

    Read the article

  • 3D Vector "End Point" Calculation for procedural Vector Graphics

    - by FrostFlame64
    Alright, So I need some help with some Vector Math. I've developing some game Engines that have Procedural Fractal Generation for Some Graphics, such as using Lindenmayer Systems for generating Trees and Plants. L-Systems, are drawn by using Turtle Graphics, which is a form of Vector graphics. I first created a system to draw in 2D Graphics, which works perfectly fine. But now I want to make a 3D equivalent, and I’ve run into an issue. For my 2D Version, I created a Method for quickly determining the “End Point” of a Vector-like movement. Given a starting point (X, Y), a direction (between 0 and 360 degrees), and a distance, the end point is calculated by these formulas: newX = startX + distance * Sin((PI * direction) / 180) newY = startY + distance * Cos((PI * direction) / 180) Now I need something Similarly Equivalent for performing this Calculation in 3D, But I haven’t been able to Google anything that could show me how to do this. I'm flexible enough to get whatever required information is needed for this method calculation, in any reasonable form (Vector3, Quaternion, ect). To summarize: Given a starting point/vector position in 3D space (X, Y, Z), a Direction in 3D space (Vector3, Quaternion, ect), and a Distance, I need to find the “End Point” in 3D Space. Thank you for your time and help.

    Read the article

  • Input Handling and Game loop

    - by Bob Coder
    So, I intercept the WM_KEYDOWN and other messages. Thing is, my game can't/shouldn't react to these messages just yet, since my game might be currently drawing to the screen or in the middle of updating my game entities. So the idea is to keep a keyboardstate and mousestate, which is updated by the part of my code that intercepts the windows messages. These states just keep track of which keys/buttons are currently pressed. Then, at the start of my game's update function, I access these keyboard and mouse states and my game reacts to the user input. Now, which is the best way to access these states? I assume that windows messages can be sent whenever, so the keyboard/mouse states are constantly being edited. Accessing say a list of currently pressed keys in the keyboard state the same time another part of the code is editing the list would cause problems. Should I make a deep copy of a state and act on that? How would I deal with the garbage generated though, this would take place every frame.

    Read the article

  • Kinect Hand tracking in xna

    - by N0xus
    I'm trying to create an application using the Kinect to simulate the following project: Kinect Hand Tracking I want my project to have similar usability with the Kinect tracking hand and finger positions for use in a menu system, or to navigate another system. What I would like to know is; is it possible for the exact same to be accomplished in XNA using Kinect? I know that it can be done in Winform / C#, but I know XNA / C# a lot better and would (ideally) prefer to use that.

    Read the article

  • How can I determine if a cube is adjacent to another cube, and optimize its buffers if so?

    - by Christian Frantz
    I'm trying to optimize the rendering of a collection of cubes, (based on an answer I was given to another question I asked). I understand the logic behind occlusion culling, but I'm having trouble with the code. When I create a cube, I want to determine if that cube is touching another existing cube, and if so I don't want to generate the redundant data in my vertex or index buffers. I'm planning on making a method that I call from my cube constructor so that everytime I create a cube, these checks are made, and neither occluded face is ever drawn. How would I go about this?

    Read the article

  • Are there any good html 5 mmo design tutorials? [on hold]

    - by Dwight Spencer
    Hey all. I got a rather inspired after playing gaia online's zOMG and wanted to revive an old project idea I've had laying around for a few years now. I'm looking to work with html5 (ie canvas, svg based sprites, & WebGL) to build a graphical web based MUD/MMO. Obviously, this is a new take on an old idea and after searching google I haven't really turned up many good resources. But does anyone have any tutorials or other resources to point me in the right direction?

    Read the article

  • How do I have to take into account the direction in which the camera is facing when creating a first person strafe (left/right) movement

    - by Chris
    This is the code I am currently using, and it works great, except for the strafe always causes the camera to move along the X axis which is not relative to the direction in which the camera is actually facing. As you can see currently only the x location is updated: [delta * -1, 0, 0] How should I take into account the direction in which the camera is facing (I have the camera's target x,y,z) when creating a first person strafe (left/right) movement? case 'a': var eyeOriginal = g_eye; var targetOriginal = g_target; var viewEye = g_math.subVector(g_eye, g_target); var viewTarget = g_math.subVector(g_target, g_eye); viewEye = g_math.addVector([delta * -1, 0, 0], viewEye); viewTarget = g_math.addVector([delta * -1, 0, 0], viewTarget); g_eye = g_math.addVector(viewEye, targetOriginal); g_target = g_math.addVector(viewTarget, eyeOriginal); break; case 'd': var eyeOriginal = g_eye; var targetOriginal = g_target; var viewEye = g_math.subVector(g_eye, g_target); var viewTarget = g_math.subVector(g_target, g_eye); viewEye = g_math.addVector([delta, 0, 0], viewEye); viewTarget = g_math.addVector([delta, 0, 0], viewTarget); g_eye = g_math.addVector(viewEye, targetOriginal); g_target = g_math.addVector(viewTarget, eyeOriginal); break;

    Read the article

  • improve Collision detection memory usage (blocks with bullets)

    - by Eddy
    i am making a action platform 2D game, something like Megaman. I am using XNA to make it. already made player phisics,collisions, bullets, enemies and AIs, map editor, scorolling X Y camera (about 75% of game is finished ). as i progressed i noticed that my game would be more interesting to play if bullets would be destroyed on collision with regular(stationary ) map blocks, only problem is that if i use my collision detection (each bullet with each block) sometimes it begins to lag(btw if my bullet exits the screen player can see it is removed from bullet list) So how to improve my collision detection so that memory usage would be so high? :) ( on a map 300x300 blocks for example don't think that bigger map should be made); int block = 0; int bulet= 0; bool destroy_bullet = false; while (bulet < bullets.Count) { while (block < blocks.Count) { if (bullets[bulet].P_Bul_rec.Intersects( blocks[block].rect)) {//bullets and block are Lists that holds objects of bullet and block classes //P_Bul_rec just bullet rectangle destroy_bullet = true; } block++; } if (destroy_bullet) { bullets.RemoveAt(bulet); destroy_bullet = false; } else { bulet++; } block = 0; }

    Read the article

  • Beggining OpenGL vs beggining DirectX and some question about the philosophical difference between them

    - by jokoon
    I'm begginning with Direct X at school, and my teacher said it was harder to begin with than OpenGL, but I read several things that in fact, Direct X was more advanced than OpenGL in terms of recent graphic cards features. Since I'm far from wanting to do top notch effects, which can already be implemented with existing engines and/or shaders, I wanted to know your opinion: Can OpenGL be considered like a more basic, KISS, hardware agnostic, graphic library to just do 3D with acceleration, and consider DirectX like a top notch, game-oriented graphic API that will always support the next-gen 3D chips ? Citation from wikipedia on http://en.wikipedia.org/wiki/Id_Tech_5 : John Carmack mentioned in his keynote at QuakeCon 2007 that the id Tech 5 engine will not be using the DirectX 10 API. I don't want to seem like I'm minding open source because Carmack does and because he is famous, it's just that android and iPhone are out there, and Direct X doesn't seems to me to be the necessary API to know, since Windows supports OpenGL, and since the 360 is just a console among other consoles.

    Read the article

  • How do I implement movement in a WPF Adventure game?

    - by ZeroPhase
    I'm working on making a short WPF adventure game. The only major hurdle I have right now is how to animate objects on the screen correctly. I've experimented with DoubleAnimation and ThicknessAnimation both enable movement of the character, but the speed is a bit erratic. The objects I'm trying to move around are labels in a grid, I'm checking the mouse's position in terms of the canvas I have the grid in. Does anyone have any suggestions for coding the movement, while still allowing mouse clicks to pick up items when needed? It would be nice if I could continue using the Visual Studio GUI Editor. By the way, I'm fine with scrapping labels in a grid for a more ideal object to manipulate. Here's my movement code: ThicknessAnimation ta = new ThicknessAnimation(); The event handling movement: private void Hansel_MouseLeftButtonDown(object sender, MouseButtonEventArgs e) { ta.FillBehavior = FillBehavior.HoldEnd; ta.From = Hansel.Margin; double newX = Mouse.GetPosition(PlayArea).X; double newY = Mouse.GetPosition(PlayArea).Y; if (newX < Convert.ToDouble(Hansel.Margin.Left)) { //newX = -1 * newX; ta.To = new Thickness(0, newY, newX, 0); } else if (newY < Convert.ToDouble(Hansel.Margin.Top)) { newY = -1 * newY; } else { ta.To = new Thickness(newX, newY, 0, 0); } ta.Duration = new Duration(TimeSpan.FromSeconds(2)); Hansel.BeginAnimation(Grid.MarginProperty, ta); } ScreenShot with annotations: http://i1118.photobucket.com/albums/k608/sealclubberr/clickToMove_zps9d4a33cc.png ScreenShot with example movement: http://i1118.photobucket.com/albums/k608/sealclubberr/clickToMove_zps51f2359f.jpg

    Read the article

  • Is using the student version of 3DS Max and Unity3d legal?

    - by SubZeron
    I am developing an indie game together with my friend using Unity3D engine. I bought "Silo 3D" for modeling two month ago and for texturing I use 3D coat. We plan to sell our game in the future. For the animations I work with 3DS max (only animation part). My question is, can I work with a students license? The license for the original version is too expensive for me. I am still at the university and I can not buy the 3DS Max license which costs 4000 €. As an alternative I have the choice beetween Blender (can´t work with this software and don't have time to invest for learning a new program) and Truespace (can´t export fbx animation and specially with bones) so for me, 3DS Max is the best choice to be effective and quick. Is it possible to prove it when I export my fbx characters from 3DS Max to Unity3D? I mean can they find out that I have used the students license of 3DS Max for the animations after the release of the game? Maybe with help of DRM? Can I solve that problem when I export the fbx from 3DS Max to Blender and after that export the same fbx to Unity3D?

    Read the article

  • how to label a cuboid using open gl?

    - by usha
    hi this is how my 3dcuboid looks ,i have attached complete code , i want to label this cuboid using different name across sides how is it possible using opengl in android...plz help me out public class MyGLRenderer implements Renderer { Context context; Cuboid rect; private float mCubeRotation; // private static float angleCube = 0; // Rotational angle in degree for cube (NEW) // private static float speedCube = -1.5f; // Rotational speed for cube (NEW) public MyGLRenderer(Context context) { rect = new Cuboid(); this.context = context; } public void onDrawFrame(GL10 gl) { // TODO Auto-generated method stub gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); gl.glLoadIdentity(); // Reset the model-view matrix gl.glTranslatef(0.2f, 0.0f, -8.0f); // Translate right and into the screen gl.glScalef(0.8f, 0.8f, 0.8f); // Scale down (NEW) gl.glRotatef(mCubeRotation, 1.0f, 1.0f, 1.0f); // gl.glRotatef(angleCube, 1.0f, 1.0f, 1.0f); // rotate about the axis (1,1,1) (NEW) rect.draw(gl); mCubeRotation -= 0.15f; //angleCube += speedCube; } public void onSurfaceChanged(GL10 gl, int width, int height) { // TODO Auto-generated method stub if (height == 0) height = 1; // To prevent divide by zero float aspect = (float)width / height; // Set the viewport (display area) to cover the entire window gl.glViewport(0, 0, width, height); // Setup perspective projection, with aspect ratio matches viewport gl.glMatrixMode(GL10.GL_PROJECTION); // Select projection matrix gl.glLoadIdentity(); // Reset projection matrix // Use perspective projection GLU.gluPerspective(gl, 45, aspect, 0.1f, 100.f); gl.glMatrixMode(GL10.GL_MODELVIEW); // Select model-view matrix gl.glLoadIdentity(); // Reset } public void onSurfaceCreated(GL10 gl, EGLConfig config) { // TODO Auto-generated method stub gl.glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set color's clear-value to black gl.glClearDepthf(1.0f); // Set depth's clear-value to farthest gl.glEnable(GL10.GL_DEPTH_TEST); // Enables depth-buffer for hidden surface removal gl.glDepthFunc(GL10.GL_LEQUAL); // The type of depth testing to do gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST); // nice perspective view gl.glShadeModel(GL10.GL_SMOOTH); // Enable smooth shading of color gl.glDisable(GL10.GL_DITHER); // Disable dithering for better performance }} public class Cuboid{ private FloatBuffer mVertexBuffer; private FloatBuffer mColorBuffer; private ByteBuffer mIndexBuffer; private float vertices[] = { //width,height,depth -2.5f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, 1.0f, -1.0f, -2.5f, 1.0f, -1.0f, -2.5f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -2.5f, 1.0f, 1.0f }; private float colors[] = { // R,G,B,A COLOR 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.5f, 0.0f, 1.0f, 1.0f, 0.5f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f }; private byte indices[] = { // VERTEX 0,1,2,3,4,5,6,7 REPRESENTATION FOR FACES 0, 4, 5, 0, 5, 1, 1, 5, 6, 1, 6, 2, 2, 6, 7, 2, 7, 3, 3, 7, 4, 3, 4, 0, 4, 7, 6, 4, 6, 5, 3, 0, 1, 3, 1, 2 }; public Cuboid() { ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4); byteBuf.order(ByteOrder.nativeOrder()); mVertexBuffer = byteBuf.asFloatBuffer(); mVertexBuffer.put(vertices); mVertexBuffer.position(0); byteBuf = ByteBuffer.allocateDirect(colors.length * 4); byteBuf.order(ByteOrder.nativeOrder()); mColorBuffer = byteBuf.asFloatBuffer(); mColorBuffer.put(colors); mColorBuffer.position(0); mIndexBuffer = ByteBuffer.allocateDirect(indices.length); mIndexBuffer.put(indices); mIndexBuffer.position(0); } public void draw(GL10 gl) { gl.glFrontFace(GL10.GL_CW); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, mVertexBuffer); gl.glColorPointer(4, GL10.GL_FLOAT, 0, mColorBuffer); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); gl.glDrawElements(GL10.GL_TRIANGLES, 36, GL10.GL_UNSIGNED_BYTE, mIndexBuffer); gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_COLOR_ARRAY); } } public class Draw3drect extends Activity { private GLSurfaceView glView; // Use GLSurfaceView // Call back when the activity is started, to initialize the view @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); glView = new GLSurfaceView(this); // Allocate a GLSurfaceView glView.setRenderer(new MyGLRenderer(this)); // Use a custom renderer this.setContentView(glView); // This activity sets to GLSurfaceView } // Call back when the activity is going into the background @Override protected void onPause() { super.onPause(); glView.onPause(); } // Call back after onPause() @Override protected void onResume() { super.onResume(); glView.onResume(); } }

    Read the article

  • How is the gimbal locked problem solved using accumulative matrix transformations

    - by Luke San Antonio
    I am reading the online "Learning Modern 3D Graphics Programming" book by Jason L. McKesson As of now, I am up to the gimbal lock problem and how to solve it using quaternions. However right here, at the Quaternions page. Part of the problem is that we are trying to store an orientation as a series of 3 accumulated axial rotations. Orientations are orientations, not rotations. And orientations are certainly not a series of rotations. So we need to treat the orientation of the ship as an orientation, as a specific quantity. I guess this is the first spot I start to get confused, the reason is because I don't see the dramatic difference between orientations and rotations. I also don't understand why an orientation cannot be represented by a series of rotations... Also: The first thought towards this end would be to keep the orientation as a matrix. When the time comes to modify the orientation, we simply apply a transformation to this matrix, storing the result as the new current orientation. This means that every yaw, pitch, and roll applied to the current orientation will be relative to that current orientation. Which is precisely what we need. If the user applies a positive yaw, you want that yaw to rotate them relative to where they are current pointing, not relative to some fixed coordinate system. The concept, I understand, however I don't understand how if accumulating matrix transformations is a solution to this problem, how the code given in the previous page isn't just that. Here's the code: void display() { glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glutil::MatrixStack currMatrix; currMatrix.Translate(glm::vec3(0.0f, 0.0f, -200.0f)); currMatrix.RotateX(g_angles.fAngleX); DrawGimbal(currMatrix, GIMBAL_X_AXIS, glm::vec4(0.4f, 0.4f, 1.0f, 1.0f)); currMatrix.RotateY(g_angles.fAngleY); DrawGimbal(currMatrix, GIMBAL_Y_AXIS, glm::vec4(0.0f, 1.0f, 0.0f, 1.0f)); currMatrix.RotateZ(g_angles.fAngleZ); DrawGimbal(currMatrix, GIMBAL_Z_AXIS, glm::vec4(1.0f, 0.3f, 0.3f, 1.0f)); glUseProgram(theProgram); currMatrix.Scale(3.0, 3.0, 3.0); currMatrix.RotateX(-90); //Set the base color for this object. glUniform4f(baseColorUnif, 1.0, 1.0, 1.0, 1.0); glUniformMatrix4fv(modelToCameraMatrixUnif, 1, GL_FALSE, glm::value_ptr(currMatrix.Top())); g_pObject->Render("tint"); glUseProgram(0); glutSwapBuffers(); } To my understanding, isn't what he is doing (modifying a matrix on a stack) considered accumulating matrices, since the author combined all the individual rotation transformations into one matrix which is being stored on the top of the stack. My understanding of a matrix is that they are used to take a point which is relative to an origin (let's say... the model), and make it relative to another origin (the camera). I'm pretty sure this is a safe definition, however I feel like there is something missing which is blocking me from understanding this gimbal lock problem. One thing that doesn't make sense to me is: If a matrix determines the difference relative between two "spaces," how come a rotation around the Y axis for, let's say, roll, doesn't put the point in "roll space" which can then be transformed once again in relation to this roll... In other words shouldn't any further transformations to this point be in relation to this new "roll space" and therefore not have the rotation be relative to the previous "model space" which is causing the gimbal lock. That's why gimbal lock occurs right? It's because we are rotating the object around set X, Y, and Z axes rather than rotating the object around it's own, relative axes. Or am I wrong? Since apparently this code I linked in isn't an accumulation of matrix transformations can you please give an example of a solution using this method. So in summary: What is the difference between a rotation and an orientation? Why is the code linked in not an example of accumulation of matrix transformations? What is the real, specific purpose of a matrix, if I had it wrong? How could a solution to the gimbal lock problem be implemented using accumulation of matrix transformations? Also, as a bonus: Why are the transformations after the rotation still relative to "model space?" Another bonus: Am I wrong in the assumption that after a transformation, further transformations will occur relative to the current? Also, if it wasn't implied, I am using OpenGL, GLSL, C++, and GLM, so examples and explanations in terms of these are greatly appreciated, if not necessary. The more the detail the better! Thanks in advance...

    Read the article

  • How do I cap rendering of tiles in a 2D game with SDL?

    - by farmdve
    I have some boilerplate code working, I basically have a tile based map composed of just 3 colors, and some walls and render with SDL. The tiles are in a bmp file, but each tile inside it corresponds to an internal number of the type of tile(color, or wall). I have pretty basic collision detection and it works, I can also detetc continuous presses, which allows me to move pretty much anywhere I want. I also have a moving camera, which follows the object. The problem is that, the tile based map is bigger than the resolution, thus not all of the map can be displayed on the screen, but it's still rendered. I would like to cap it, but since this is new to me, I pretty much have no idea. Although I cannot post all the code, as even though I am a newbie and the code pretty basic, it's already quite a few lines, I can post what I tried to do void set_camera() { //Center the camera over the dot camera.x = ( player.box.x + DOT_WIDTH / 2 ) - SCREEN_WIDTH / 2; camera.y = ( player.box.y + DOT_HEIGHT / 2 ) - SCREEN_HEIGHT / 2; //Keep the camera in bounds. if(camera.x < 0 ) { camera.x = 0; } if(camera.y < 0 ) { camera.y = 0; } if(camera.x > LEVEL_WIDTH - camera.w ) { camera.x = LEVEL_WIDTH - camera.w; } if(camera.y > LEVEL_HEIGHT - camera.h ) { camera.y = LEVEL_HEIGHT - camera.h; } } set_camera() is the function which calculates the camera position based on the player's positions. I won't pretend I know much about it. Rectangle box = {0,0,0,0}; for(int t = 0; t < TOTAL_TILES; t++) { if(box.x < (camera.x - TILE_WIDTH) || box.y > (camera.y - TILE_HEIGHT)) apply_surface(box.x - camera.x, box.y - camera.y, surface, screen, &clips[tiles[t]]); box.x += TILE_WIDTH; //If we've gone too far if(box.x >= LEVEL_WIDTH) { //Move back box.x = 0; //Move to the next row box.y += TILE_HEIGHT; } } This is basically my render code. The for loop loops over 192 tiles stored in an int array, each with their own unique value describing the tile type(wall or one of three possible colored tiles). box is an SDL_Rect containing the current position of the tile, which is calculated on render. TILE_HEIGHT and TILE_WIDTH are of value 80. So the cap is determined by if(box.x < (camera.x - TILE_WIDTH) || box.y > (camera.y - TILE_HEIGHT)) However, this is just me playing with the values and see what doesn't break it. I pretty much have no idea how to calculate it. My screen resolution is 1024/768, and the tile map is of size 1280/960.

    Read the article

  • Logic that can traverse all possible layouts, but not checking every combination of identical pieces?

    - by George Bailey
    Suppose we have a grid of arbitrary size, which is filled by blocks of various widths and heights. There are many 2x2 blocks (meaning they take a total of 4 cells in the grid) and many 3x3 blocks, as well as some 5x4, 4x5, 2x3, etc. I was hoping I could set up a program that would look at all possible layouts, and rank them, and find the best one. Simply it would look at all possible positions of these blocks, and see what setup is the best rank. (the rank based on how many of these can be connected by a roadway system of 1x1 road blocks, and how many squares can be left empty after this is done. - wanting to fit the most blocks as possible with the least roads.) My question, is how should I traverse all the possibilities? I could take all the blocks and try them one at a time, but since all 2x2 blocks are equal, and there are a couple dozen of them, there is no point in trying every combination there, as in the following AA BBB AA BBB CCBBB CCEEE DD EEE DD EEE is exactly the same as CC EEE CC EEE AAEEE AABBB DD BBB DD BBB You notice that there are 2 3x3 blocks and 3 2x2 blocks in my two examples. Based on the model I have now, the computer would try both of these combinations, as well as many others. The problem is that it is going to try every single possible variation of my couple dozen 2x2 blocks. And that is sorely inefficient. Is there a reasonable way to take out this duplicated work, somehow getting the computer program to treat all 2x2 blocks as equal/identical, instead of one requiring rearranging/swapping of these identical blocks? Can this be done?

    Read the article

  • My frustum culling is culling from the wrong point

    - by Xbetas
    I'm having problems with my frustum being in the wrong origin. It follows the rotation of my camera but not the position. In my camera class I'm generating a view-matrix: void Camera::Update() { UpdateViewMatrix(); glMatrixMode(GL_MODELVIEW); //glLoadIdentity(); glLoadMatrixf(GetViewMatrix().m); } Then extracting the planes using the projection matrix and modelview matrix: void UpdateFrustum() { Matrix4x4 projection, model, clip; glGetFloatv(GL_PROJECTION_MATRIX, projection.m); glGetFloatv(GL_MODELVIEW_MATRIX, model.m); clip = model * projection; m_Planes[RIGHT][0] = clip.m[ 3] - clip.m[ 0]; m_Planes[RIGHT][1] = clip.m[ 7] - clip.m[ 4]; m_Planes[RIGHT][2] = clip.m[11] - clip.m[ 8]; m_Planes[RIGHT][3] = clip.m[15] - clip.m[12]; NormalizePlane(RIGHT); m_Planes[LEFT][0] = clip.m[ 3] + clip.m[ 0]; m_Planes[LEFT][1] = clip.m[ 7] + clip.m[ 4]; m_Planes[LEFT][2] = clip.m[11] + clip.m[ 8]; m_Planes[LEFT][3] = clip.m[15] + clip.m[12]; NormalizePlane(LEFT); m_Planes[BOTTOM][0] = clip.m[ 3] + clip.m[ 1]; m_Planes[BOTTOM][1] = clip.m[ 7] + clip.m[ 5]; m_Planes[BOTTOM][2] = clip.m[11] + clip.m[ 9]; m_Planes[BOTTOM][3] = clip.m[15] + clip.m[13]; NormalizePlane(BOTTOM); m_Planes[TOP][0] = clip.m[ 3] - clip.m[ 1]; m_Planes[TOP][1] = clip.m[ 7] - clip.m[ 5]; m_Planes[TOP][2] = clip.m[11] - clip.m[ 9]; m_Planes[TOP][3] = clip.m[15] - clip.m[13]; NormalizePlane(TOP); m_Planes[NEAR][0] = clip.m[ 3] + clip.m[ 2]; m_Planes[NEAR][1] = clip.m[ 7] + clip.m[ 6]; m_Planes[NEAR][2] = clip.m[11] + clip.m[10]; m_Planes[NEAR][3] = clip.m[15] + clip.m[14]; NormalizePlane(NEAR); m_Planes[FAR][0] = clip.m[ 3] - clip.m[ 2]; m_Planes[FAR][1] = clip.m[ 7] - clip.m[ 6]; m_Planes[FAR][2] = clip.m[11] - clip.m[10]; m_Planes[FAR][3] = clip.m[15] - clip.m[14]; NormalizePlane(FAR); } void NormalizePlane(int side) { float length = 1.0/(float)sqrt(m_Planes[side][0] * m_Planes[side][0] + m_Planes[side][1] * m_Planes[side][1] + m_Planes[side][2] * m_Planes[side][2]); m_Planes[side][0] /= length; m_Planes[side][1] /= length; m_Planes[side][2] /= length; m_Planes[side][3] /= length; } And check against it with: bool PointInFrustum(float x, float y, float z) { for(int i = 0; i < 6; i++) { if( m_Planes[i][0] * x + m_Planes[i][1] * y + m_Planes[i][2] * z + m_Planes[i][3] <= 0 ) return false; } return true; } Then i render using: camera->Update(); UpdateFrustum(); int numCulled = 0; for(int i = 0; i < (int)meshes.size(); i++) { if(!PointInFrustum(meshCenter.x, meshCenter.y, meshCenter.z)) { meshes[i]->SetDraw(false); numCulled++; } else meshes[i]->SetDraw(true); } What am i doing wrong?

    Read the article

  • Is chess-like AI really inapplicable in turn-based strategy games?

    - by Joh
    Obviously, trying to apply the min-max algorithm on the complete tree of moves works only for small games (I apologize to all chess enthusiasts, by "small" I do not mean "simplistic"). For typical turn-based strategy games where the board is often wider than 100 tiles and all pieces in a side can move simultaneously, the min-max algorithm is inapplicable. I was wondering if a partial min-max algorithm which limits itself to N board configurations at each depth couldn't be good enough? Using a genetic algorithm, it might be possible to find a number of board configurations that are good wrt to the evaluation function. Hopefully, these configurations might also be good wrt to long-term goals. I would be surprised if this hasn't been thought of before and tried. Has it? How does it work?

    Read the article

< Previous Page | 434 435 436 437 438 439 440 441 442 443 444 445  | Next Page >