Search Results

Search found 5157 results on 207 pages for 'logic gates'.

Page 44/207 | < Previous Page | 40 41 42 43 44 45 46 47 48 49 50 51  | Next Page >

  • The Enterprise Side of JavaFX: Part Two

    - by Janice J. Heiss
    A new article, part of a three-part series, now up on the front page of otn/java, by Java Champion Adam Bien, titled “The Enterprise Side of JavaFX,” shows developers how to implement the LightView UI dashboard with JavaFX 2. Bien explains that “the RESTful back end of the LightView application comes with a rudimentary HTML page that is used to start/stop the monitoring service, set the snapshot interval, and activate/deactivate the GlassFish monitoring capabilities.”He explains that “the configuration view implemented in the org.lightview.view.Browser component is needed only to start or stop the monitoring process or set the monitoring interval.”Bien concludes his article with a general summary of the principles applied:“JavaFX encourages encapsulation without forcing you to build models for each visual component. With the availability of bindable properties, the boundary between the view and the model can be reduced to an expressive set of bindable properties. Wrapping JavaFX components with ordinary Java classes further reduces the complexity. Instead of dealing with low-level JavaFX mechanics all the time, you can build simple components and break down the complexity of the presentation logic into understandable pieces. CSS skinning further helps with the separation of the code that is needed for the implementation of the presentation logic and the visual appearance of the application on the screen. You can adjust significant portions of an application's look and feel directly in CSS files without touching the actual source code.”Check out the article here.

    Read the article

  • Tomcat + Spring + CI workflow

    - by ex3v
    We're starting our very first project with Spring and java web stack. This project will be mainly about rewriting quite large ERP/CRM from Zend Framework to Java. Important factor in my question is that I come from php territory, where things (in terms of quality) tend to look different than in java world. Fatcs: there will be 2-3 developers, at least one of developers uses Windows, rest uses Linux, there is one remote linux-based machine, which should handle test and production instances, after struggling with buggy legacy code, we want to introduce good programming and development practices (CI, tests, clean code and so on) client: internal, frequent business logic changes, scrum, daily deployments What I want to achieve is good workflow on as many development stages as possible (coding - commiting - testing - deploying). The problem is that I've never done this before, so I don't know what are best practices to do this. What I have so far is: developers code locally, there is vagrant instance on every development machine, managed by puppet. It contains the same linux, jenkins and tomcat versions as production machine, while coding, developer deploys to vagrant machine, after local merge to test branch, jenkins on vagrant handles tests, when everything is fine, developer pushes commits and merges jenkins on remote machine pulls commit from test branch, runs tests and so on, if everything looks green, jenkins deploys to test tomcat instance Deployment to production is manual (altough it can be done using helping scripts) when business logic is tested by other divisions and everything looks fine to client. Now, the real question: does above make any sense? Things that I'm not sure about: Remote machine: won't there be any problems with two (or even three, as jenkins might need one) instances of same app on tomcat? Using vagrant to develop on php environment is just vise. Isn't this overkill while using Tomcat? I mean, is there higher probability that tomcat will act the same on every machine? Is there sense of having local jenkins on vagrant?

    Read the article

  • ORM and component-based architecture

    - by EagleBeek
    I have joined an ongoing project, where the team calls their architecture "component-based". The lowest level is one big database. The data access (via ORM) and business layers are combined into various components, which are separated according to business logic. E.g., there's a component for handling bank accounts, one for generating invoices, etc. The higher levels of service contracts and presentation are irrelevant for the question, so I'll omit them here. From my point of view the separation of the data access layer into various components seems counterproductive, because it denies us the relational mapping capabilities of the ORM. E.g., when I want to query all invoices for one customer I have to identify the customer with the "customers" component and then make another call to the "invoices" component to get the invoices for this customer. My impression is that it would be better to leave the data access in one component and separate it from business logic, which may well be cut into various components. Does anybody have some advice? Have I overlooked something?

    Read the article

  • Can too much abstraction be bad?

    - by m3th0dman
    As programmers I feel that our goal is to provide good abstractions on the given domain model and business logic. But where should this abstraction stop? How to make the trade-off between abstraction and all it's benefits (flexibility, ease of changing etc.) and ease of understanding the code and all it's benefits. I believe I tend to write code overly abstracted and I don't know how good is it; I often tend to write it like it is some kind of a micro-framework, which consists of two parts: Micro-Modules which are hooked up in the micro-framework: these modules are easy to be understood, developed and maintained as single units. This code basically represents the code that actually does the functional stuff, described in requirements. Connecting code; now here I believe stands the problem. This code tends to be complicated because it is sometimes very abstracted and is hard to be understood at the beginning; this arises due to the fact that it is only pure abstraction, the base in reality and business logic being performed in the code presented 1; from this reason this code is not expected to be changed once tested. Is this a good approach at programming? That it, having changing code very fragmented in many modules and very easy to be understood and non-changing code very complex from the abstraction POV? Should all the code be uniformly complex (that is code 1 more complex and interlinked and code 2 more simple) so that anybody looking through it can understand it in a reasonable amount of time but change is expensive or the solution presented above is good, where "changing code" is very easy to be understood, debugged, changed and "linking code" is kind of difficult. Note: this is not about code readability! Both code at 1 and 2 is readable, but code at 2 comes with more complex abstractions while code 1 comes with simple abstractions.

    Read the article

  • How should I architect a personal schedule manager that runs 24/7?

    - by Crawford Comeaux
    I've developed an ADHD management system for myself that's attempting to change multiple habits at once. I know this is counter to conventional wisdom, but I've tried the conventional for years & am now trying it my way. (just wanted to say that to try and prevent it from distracting people from the actual question) Anyway, I'd like to write something to run on a remote server that monitors me, helps me build/avoid certain habits, etc. What this amounts to is a system that: runs 24/7 may have multiple independent tasks to run at once may have tasks that require other tasks to run first lets tasks be scheduled by specific time, recurrence (ie. "run every 5 mins"), or interval (ie. "run from 2pm to 3pm") My first naive attempt at this was just a single PHP script scheduled to run every minute by cron (language was chosen in order to use a certain library, but no longer necessary). The logic behind when to run this or that portion of code got hairy pretty quick. So my question is how should I approach this from here? I'm not tied to any one language, though I'm partial to python/javascript. Thoughts: Could be done as a set of scripts that include a scheduling mechanism with one script per bit of logic...but the idea just feels wrong to me. Building it as a daemon could be helpful, but still unsure what to do about dozens of if-else statements for detecting the current time

    Read the article

  • How exactly to implement multiple threads in a game

    - by xerwin
    So I recently started learning Java, and having a interest in playing games as well as developing them, naturally I want to create game in Java. I have experience with games in C# and C++ but all of them were single-threaded simple games. But now, I learned how easy it is to make threads in Java, I want to take things to the next level. I started thinking about how would I actually implement threading in a game. I read couple of articles that say the same thing "Usually you have thread for rendering, for updating game logic, for AI, ..." but I haven't (or didn't look hard enough) found example of implementation. My idea how to make implementation is something like this (example for AI) public class AIThread implements Runnable{ private List<AI> ai; private Player player; /*...*/ public void run() { for (int i = 0; i < ai.size(); i++){ ai.get(i).update(player); } Thread.sleep(/* sleep until the next game "tick" */); } } I think this could work. If I also had a rendering and updating thread list of AI in both those threads, since I need to draw the AI and I need to calculate the logic between player and AI(But that could be moved to AIThread, but as an example) . Coming from C++ I'm used to do thing elegantly and efficiently, and this seems like neither of those. So what would be the correct way to handle this? Should I just keep multiple copies of resources in each thread or should I have the resources on one spot, declared with synchronized keyword? I'm afraid that could cause deadlocks, but I'm not yet qualified enough to know when a code will produce deadlock.

    Read the article

  • Web Crawler for Learnign Topics on Wikipedia

    - by Chris Okyen
    When I want to learn a vast topic on wikipedia, I don't know where to start. For instance say I want to learn about Binary Stars, I then have to know other things linked on that pages and linked pages on all the linked pages and so on for the specified number of levels. I want to write a web crawler like HTTracker or something similiar, that will display a heiarchy of the links on a certain page and the links on those linked pages.I wish to use as much prewritten code as possible. Here is an example: Pretending we are bending the rules by grabing links from only the first sentence of each pages The example archives and "processes" two levels deep The page is Ternary operation The First Level In mathematics a ternary operation is an N-ary operation The Second Level Under Mathmatics: Mathematics (from Greek µ???µa máthema, “knowledge, study, learning”) is the abstract study of topics encompassing quantity, structure, space, change and others; it has no generally accepted definition. Under N-ary In logic,mathematics, and computer science, the arity i/'ær?ti/ of a function or operation is the number of arguments or operands that the function takes Under Operation In its simplest meaning in mathematics and logic, an operation is an action or procedure which produces a new value from one or more input values ------------------------------------------------------------------------- I need some way to determine what oder to approach all these wiki pages to learn the concept ( in this case ternary operations )... Following along with this exmpakle, one way to show the path to read would a printout flowout like so: This shows that the first sentence of the Mathematics page doesn't link to the first sentence of pages linked on ternary page two levels deep. (Please tell me how I should explain this ) --- In otherwords, the child node of the top pages first sentence, ternary_operation, does not have any child nodes that reference the children of the top pages other children nodes- N-ary and operation. Thus it is safe to read this first. Since N-ary has a link to operations we shoudl read the operation page second and finally read the N-ary page last. Again, I wish to use as much prewritten code as possible, and was wondering what language to use and what would be the simpliest way to go about doing this if there isn't already somethign out there? Thank You!

    Read the article

  • Design Pattern for Skipping Steps in a Wizard

    - by Eric J.
    I'm designing a flexible Wizard system that presents a number of screens to complete a task. Some screens may need to be skipped based on answers to prompts on one or more previous screens. The conditions to skip a given screen need to be editable by a non-technical user via a UI. Multiple conditions need only be combined with and. I have an initial design in mind, but it feels inelegant. I wonder if there's a better way to approach this class of problem. Initial Design UI where The first column allows the user to select a question from a previous screen. The second column allows the user to select an operator applicable to the type of question asked. The third column allows the user to enter one or more values depending on the selected operator. Object Model public enum Operations { ... } public class Condition { int QuestionId { get; set; } Operations Operation { get; set; } List<object> Parameters { get; private set; } } List<Condition> pageSkipConditions; Controller Logic bool allConditionsTrue = pageSkipConditions.Count > 0; foreach (Condition c in pageSkipConditions) { allConditionsTrue &= Evaluate(previousAnswers, c); } // ... private bool Evaluate(List<Answers> previousAnswers, Condition c) { switch (c.Operation) { case Operations.StartsWith: // logic for this operation // etc. } }

    Read the article

  • CodePlex Daily Summary for Thursday, May 29, 2014

    CodePlex Daily Summary for Thursday, May 29, 2014Popular ReleasesQuickMon: Version 3.13: 1. Adding an Audio/sound notifier that can be used to simply draw attention to the application of a warning pr error state is returned by a collector. 2. Adding a property for Notifiers so it can be set to 'Attended', 'Unattended' or 'Both' modes. 3. Adding a WCF method to remote agent host so the version can be checked remotely. 4. Adding some 'Sample' monitor packs to installer. Note: this release and the next release (3.14 aka Pie release) will have some breaking changes and will be incom...fnr.exe - Find And Replace Tool: 1.7: Bug fixes Refactored logic for encoding text values to command line to handle common edge cases where find/replace operation works in GUI but not in command line Fix for bug where selection in Encoding drop down was different when generating command line in some cases. It was reported in: https://findandreplace.codeplex.com/workitem/34 Fix for "Backslash inserted before dot in replacement text" reported here: https://findandreplace.codeplex.com/discussions/541024 Fix for finding replacing...VG-Ripper & PG-Ripper: VG-Ripper 2.9.59: changes NEW: Added Support for 'GokoImage.com' links NEW: Added Support for 'ViperII.com' links NEW: Added Support for 'PixxxView.com' links NEW: Added Support for 'ImgRex.com' links NEW: Added Support for 'PixLiv.com' links NEW: Added Support for 'imgsee.me' links NEW: Added Support for 'ImgS.it' linksXsemmel - XML Editor and Viewer: 29-MAY-2014: WINDOWS XP IS NO LONGER SUPPORTED If you need support for WinXP, download release 15-MAR-2014 instead. FIX: Some minor issues NEW: Better visualisation of validation issues NEW: Printing CHG: Disabled Jumplist CHG: updated to .net 4.5, WinXP NO LONGER SUPPORTEDSPART (SharePoint Admin & Reporting Tool): Installation Kit V1.1: Installation Kit SPART V1.1 This release covers, • Site Size • Count - Sites, Site Collection, Document • Site collection quota information • Site/Web apps / Site collection permission which seeks URL as input/ • Last content change for sites which displays the time stampPerformance Analyzer for Microsoft Dynamics: DynamicsPerf 1.20: Version 1.20 Improved performance in PERFHOURLYROWDATA_VW Fixed error handling encrypted triggers Added logic ACTIVITYMONITORVW to handle Context_Info for Dynamics AX 2012 and above with this flag set on AOS Added logic to optional blocking to handle Context_Info for Dynamics AX 2012 and above with this flag set on AOS Added additional queries for investigating blocking Added logic to collect Baseline capture data (NOTE: QUERY_STATS table has entire procedure cache for that db during...Toolbox for Dynamics CRM 2011/2013: XrmToolBox (v1.2014.5.28): XrmToolbox improvement XrmToolBox updates (v1.2014.5.28)Fix connecting to a connection with custom authentication without saved password Tools improvement New tool!Solution Components Mover (v1.2014.5.22) Transfer solution components from one solution to another one Import/Export NN relationships (v1.2014.3.7) Allows you to import and export many to many relationships Tools updatesAttribute Bulk Updater (v1.2014.5.28) Audit Center (v1.2014.5.28) View Layout Replicator (v1.2014.5.28) Scrip...Microsoft Ajax Minifier: Microsoft Ajax Minifier 5.10: Fix for Issue #20875 - echo switch doesn't work for CSS CSS should honor the SASS source-file comments JS should allow multi-line comment directivesClosedXML - The easy way to OpenXML: ClosedXML 0.71.1: More performance improvements. It's faster and consumes less memory.Dynamics CRM Rich UX: RichUX Managed Solution File v0.4: Added format type attribute so icons, CSS and colors may be defined by the retrieved entity record. Also added samples in documentation on setting up FetchXML and tabs. Only for demo / experimenting. Do not use in production without extensive testing. Please help make this package better by reporting all issues.Fluentx: Fluentx v1.4.0: Added object to object mapper, added new NotIn extention method, and added documentation to library with fluentx.xmlVK.NET - Vkontakte API for .NET: VkNet 1.0.5: ?????????? ????? ??????.Kartris E-commerce: Kartris v2.6002: Minor release: Double check that Logins_GetList sproc is present, sometimes seems to get missed earlier if upgrading which can give error when viewing logins page Added CSV and TXT export option; this is not Google Products compatible, but can give a good base for creating a file for some other systems such as Amazon Fixed some minor combination and options issues to improve interface back and front Turn bitcoin and some other gateways off by default Minor CSS changes Fixed currenc...SimCityPak: SimCityPak 0.3.1.0: Main New Features: Fixed Importing of Instance Names (get rid of the Dutch translations) Added advanced editor for Decal Dictionaries Added possibility to import .PNG to generate new decals Added advanced editor for Path display entriesTiny Deduplicator: Tiny Deduplicator 1.0.1.0: Increased version number to 1.0.1.0 Moved all options to a separate 'Options' dialog window. Allows the user to specify a selection strategy which will help when dealing with large numbers of duplicate files. Available options are "None," "Keep First," and "Keep Last"SEToolbox: SEToolbox 01.031.009 Release 1: Added mirroring of ConveyorTubeCurved. Updated Ship cube rotation to rotate ship back to original location (cubes are reoriented but ship appears no different to outsider), and to rotate Grouped items. Repair now fixes the loss of Grouped controls due to changes in Space Engineers 01.030. Added export asteroids. Rejoin ships will merge grouping and conveyor systems (even though broken ships currently only maintain the Grouping on one part of the ship). Installation of this version wi...Player Framework by Microsoft: Player Framework for Windows and WP v2.0: Support for new Universal and Windows Phone 8.1 projects for both Xaml and JavaScript projects. See a detailed list of improvements, breaking changes and a general overview of version 2 ADDITIONAL DOWNLOADSSmooth Streaming Client SDK for Windows 8 Applications Smooth Streaming Client SDK for Windows 8.1 Applications Smooth Streaming Client SDK for Windows Phone 8.1 Applications Microsoft PlayReady Client SDK for Windows 8 Applications Microsoft PlayReady Client SDK for Windows 8.1 Applicat...TerraMap (Terraria World Map Viewer): TerraMap 1.0.6: Added support for the new Terraria v1.2.4 update. New items, walls, and tiles Added the ability to select multiple highlighted block types. Added a dynamic, interactive highlight opacity slider, making it easier to find highlighted tiles with dark colors (and fixed blurriness from 1.0.5 alpha). Added ability to find Enchanted Swords (in the stone) and Water Bolt books Fixed Issue 35206: Hightlight/Find doesn't work for Demon Altars Fixed finding Demon Hearts/Shadow Orbs Fixed inst...DotNet.Highcharts: DotNet.Highcharts 4.0 with Examples: DotNet.Highcharts 4.0 Tested and adapted to the latest version of Highcharts 4.0.1 Added new chart type: Heatmap Added new type PointPlacement which represents enumeration or number for the padding of the X axis. Changed target framework from .NET Framework 4 to .NET Framework 4.5. Closed issues: 974: Add 'overflow' property to PlotOptionsColumnDataLabels class 997: Split container from JS 1006: Series/Categories with numeric names don't render DotNet.Highcharts.Samples Updated s...Extended WPF Toolkit™ Community Edition: Extended WPF Toolkit - 2.2.0: What's new in v2.2.0 Community Edition? Improvements and bug fixes Two new free controls: TimeSpanUpDown and RangeSlider 15 bug fixes and improvements (See the complete list of improvements in v2.2.0). Updated Live Explorer app available online as a Click Once app. Try it now! Want an easier way to install the Extended WPF Toolkit? The Extended WPF Toolkit is available on Nuget. .NET Framework notes:Requires .NET Framework 4.0 or 4.5. A build for .NET 3.5 is available but also requires ...New Projects2112110026: OOP- Lê Th? Xuân HuongASP.Net Controls Extended: ASP controls' look modified and behavior extended.Audio Tools: The project is intended to capture common knowledge about popular audio file formats and related stuff.Dnn Bootstrap Helpers: Dnn Bootstrap helpers ( Tabs, Accordion & Carousel )itouch - JS touch library for browser: this project hosts a JavaScript library which enables you to handle user's touch gestures like swiping, pinching, clicking on your web app cross platform/deviceMySQL Powershell Library: This PowerShell Module attempt to provide a convenient methods for working with MySQL. It make use of the Oracle MySQL .Net connector version 6.8.3Performance Analyzer for Microsoft Dynamics: Performance Analyzer for Microsoft Dynamics is a toolset developed by Premier Field Engineering at Microsoft for resolving performance issues with Dynamics PRISA NEW: LIBRERIA PRISAQFix Rx: This project aims at enabling Rx based programming for Quick FIX / n API by pushing events to Quick FIX / n API and subscribing to to event feeds from the API.Riccsson.System a C# .NET library for C++: Riccsson.System is a C#-like library for C++ with support of Events, Delegates, Properties, Threading, Locking, and more. For easier to port C# libraries to C++SusicoTrader: A F# / C# based trading API with connections to IB and QuickFix/n API. TestCodePlex: testTP2Academia.net: .net projectoTypeScriptTD: TypeScriptTD is a tower defense game written in TypeScript with help of the Phaser game engine. It is a port of ScriptTD http://scripttd.codeplex.com/Universal Autosave: Universal Autosave (UA) is extension for DNN Platform. It allows easy and fast to configure autosave functionality for any form/control without any coding.WeatherView: A universal Windows app written in C# demonstrating geolocation and webservices.

    Read the article

  • Does it make sense to write tests for legacy code when there is no time for a complete refactoring?

    - by is4
    I usually try to follow the advice of the book Working Effectively with Legacy Code. I break dependencies, move parts of the code to @VisibleForTesting public static methods and to new classes to make the code (or at least some part of it) testable. And I write tests to make sure that I don't break anything when I'm modifying or adding new functions. A colleague says that I shouldn't do this. His reasoning: The original code might not work properly in the first place. And writing tests for it makes future fixes and modifications harder since devs have to understand and modify the tests too. If it's GUI code with some logic (~12 lines, 2-3 if/else block, for example), a test isn't worth the trouble since the code is too trivial to begin with. Similar bad patterns could exist in other parts of the codebase, too (which I haven't seen yet, I'm rather new); it will be easier to clean them all up in one big refactoring. Extracting out logic could undermine this future possibility. Should I avoid extracting out testable parts and writing tests if we don't have time for complete refactoring? Is there any disadvantage to this that I should consider?

    Read the article

  • What's the right/standard way of achieving separation of concerns?

    - by Ghanima
    Some background: I want to start developing games, and taking some of the advice given in this site, I've started with something simple and familiar, such as pong, tetris, etc. I want to take as much time as needed to make sure that I have the basics right before moving on to something bigger. I have medium programming experience but I realize making games is a different thing. I find myself wondering many things like should this be in a separate class? Should this module handle this stuff or is it better to let other modules have that kind of functionality? For example, the bouncing of a ball in pong, right now is handled in the ball module, but maybe it's better that some other module did it. Right now I have different modules: one for the graphics, one for the game logic, and others for the objects (depending on the kind of movement required, not all the objects are alike). I know I am asking a lot, any tips you have will be very much appreciated. Short question: What's the right or standard way of separating the modules? What have you found most effective? Is it enough to just keep the drawing (graphics) and the logic separate? Is it necessary to have a lot of classes? (for example for the objects in the game, to handle the movement, etc)

    Read the article

  • Do we ethically have the right to use the MAC Address for verification purposes?

    - by Matt Ridge
    I am writing a program, or starting at the very beginning of it, and I am thinking of purchase verification systems as a final step. I will be catering to Macs, PCs, and possibly Linux if all is said and done. I will also be programming this for smartphones as well using C++ and Objective-C. (I am writing a blueprint before going head first into it) That being said, I am not asking for help on doing it yet, but what I’m looking for is a realistic measurement for what could be expected as a viable and ethical option for purchase verification systems. Apple through the Apple Store, and some other stores out there have their own "You bought it" check. I am looking to use a three prong verification system. Email/password 16 to 32 character serial number using alpha/numeric and symbols with Upper and lowercase variants. MAC Address. The first two are in my mind ok, but I have to ask on an ethical standpoint, is a MAC Address to lock the software to said hardware unethical, or is it smart? I understand if an Ethernet card changes if not part of the logic board, or if the logic board changes so does the MAC address, so if that changes it will have to be re-verified, but I have to ask with how everything is today... Is it ethical to actually use the MAC address as a validation key or no? Should I be forward with this kind of verification system or should I keep it hidden as a secret? Yes I know hackers and others will find ways of knowing what I am doing, but in reality this is why I am asking. I know no verification is foolproof, but making it so that its harder to break is something I've always been interested in, and learning how to program is bringing up these questions, because I don't want to assume one thing and find out it's not really accepted in the programming world as a "you shouldn't do that" maneuver... Thanks in advance... I know this is my first programming question, but I am just learning how to program, and I am just making sure I'm not breaking some ethical programmer credo I shouldn't...

    Read the article

  • Cocos-2D asteroids style movement (iOS)

    - by bwheeler96
    So I have a CCSprite subclass, well call this Spaceship. Spaceship needs to move on a loop, until I say othersise by calling a method. The method should look something like - (void)moveForeverAtVelocity { // method logic } The class Spaceship has two relevant iVars, resetPosition and targetPosition, the target is where we are headed, the reset is where we set to when we've hit our target. If they are both off-screen this creates a permanent looping effect. So for the logic, I have tried several things, such as CCMoveTo *move = [CCMoveTo actionWithDuration:2 position:ccp(100, 100)]; CCCallBlockN *repeat = [CCCallBlockN actionWithBlock: ^(CCNode *node) { [self moveForeverAtVelocity]; }]; [self runAction:[CCSequence actions: move, repeat, nil]]; self.position = self.resetPosition; recursively calling the moveForeverAtVelocity method. This is psuedo-code, so its not perfect. I have hard-coded some of the values for the sake of simplicity. Enough garble: The problem I am having, how can I make a method that loops forever, but can be called and reset at will. I'm running into issues with creating multiple instances of this method. If you can offer any assistance with creating this effect, that would be appreciated.

    Read the article

  • Interface (contract), Generics (universality), and extension methods (ease of use). Is it a right design?

    - by Saeed Neamati
    I'm trying to design a simple conversion framework based on these requirements: All developers should follow a predefined set of rules to convert from the source entity to the target entity Some overall policies should be able to be applied in a central place, without interference with developers' code Both the creation of converters and usage of converter classes should be easy To solve these problems in C# language, A thought came to my mind. I'm writing it here, though it doesn't compile at all. But let's assume that C# compiles this code: I'll create a generic interface called IConverter public interface IConverter<TSource, TTarget> where TSource : class, new() where TTarget : class, new() { TTarget Convert(TSource source); List<TTarget> Convert(List<TSource> sourceItems); } Developers would implement this interface to create converters. For example: public class PhoneToCommunicationChannelConverter : IConverter<Phone, CommunicationChannle> { public CommunicationChannel Convert(Phone phone) { // conversion logic } public List<CommunicationChannel> Convert(List<Phone> phones) { // conversion logic } } And to make the usage of this conversion class easier, imagine that we add static and this keywords to methods to turn them into Extension Methods, and use them this way: List<Phone> phones = GetPhones(); List<CommunicationChannel> channels = phones.Convert(); However, this doesn't even compile. With those requirements, I can think of some other designs, but they each lack an aspect. Either the implementation would become more difficult or chaotic and out of control, or the usage would become truly hard. Is this design right at all? What alternatives I might have to achieve those requirements?

    Read the article

  • How to run around another football player

    - by Lumis
    I have finished a simple 2D one-on-one indoor football Android game. The thing that it seemed so simple to me, a human being, turned out to be difficult for a computer: how to go around the opponent … At the moment the game logic of the computer player is that if it hits into the human player will step back few points on the pixel greed and then try again to go towards the ball. The problem is if the human player is in-between then the computer player will oscillate in one place, which does not look very nice and the human opponent can use this weakness to control the game. You can see this in the photo – at the moment the computer will go along the red line indefinitely. I tried few ideas but it proved not easy to do it when both the human player and the ball are constantly moving so at each step computer would change directions and “oscillate” again. Once when the computer player reaches the ball it will kick it with certain amount of random strength and direction towards the human’s goal. The question here is how to formulate the logic of going around the ever moving human opponent and how to translate it into the co-ordinate system and frame by frame animation… any suggestions welcome.

    Read the article

  • Making efficeint voxel engines using "chunks"

    - by Wardy
    Concept I'm currently looking in to how voxel engines work with a view to possibly making one myself. I see a lot of stuff like this ... https://sites.google.com/site/letsmakeavoxelengine/home/chunks ... which talks about how to go about reducing the draw calls. What I can't seem to understand is how it actually saves draw call counts on the basis of the logic being something like this ... Without chunks foreach voxel in myvoxels DrawIfVisible() With Chunks foreach chunk in mychunks DrawIfVisible() which then does ... foreach voxel in myvoxels DrawIfVisible() So surely you saved nothing ?!?! You still make a draw call for each visible voxel do you not? A visible voxel needs a draw call in either scenario. The only real saving I can see is that the logic that evaluates a chunk will be able to determine if a large number of voxels are visible or not effectively saving a bit of "is this chunk visible" cpu time. But it's the draw calls that interest me ... The fewer of those, the faster the application. EDIT: In case it makes any difference I will probably be using XNA (DX not OpenGL) for my engine so don't consider my choice of example in the link above my choice of technology. But this question is such that I doubt it would matter.

    Read the article

  • Need some critique on .NET/WCF SOA architecture plan

    - by user998101
    I am working on a refactoring of some services and would appreciate some critique on my general approach. I am working with three back-end data systems and need to expose an authenticated front-end API over http binding, JSON, and REST for internal apps as well as 3rd party integration. I've got a rough idea below that's a hybrid of what I have and where I intend to wind up. I intend to build guidance extensions to support this architecture so that devs can build this out quickly. Here's the current idea for our structure: Front-end WCF routing service (spread across multiple IIS servers via hardware load balancer) Load balancing of services behind routing is handled within routing service, probably round-robin One of the services will be a token Multiple bindings per-service exposed to address JSON, REST, and whatever else comes up later All in/out is handled via POCO DTOs Use unity to scan for what services are available and expose them The front-end services behind the routing service do nothing more than expose the API and do conversion of DTO<-Entity Unity inject service implementation to allow mocking automapper for DTO/Entity conversion Invoke WF services where response required immediately Queue to ESB for async WF -- ESB will invoke WF later Business logic WF layer Expose same api as front-end services Implement business logic Wrap transaction context where needed Call out to composite/atomic services Composite/Atomic Services Exposed as WCF One service per back-end system Standard atomic CRUD operations plus composite operations Supports transaction context The questions I have are: Are the separation of concerns outlined above beneficial? Current thought is each layer below is its own project, except the backend stuff, where each system gets one project. The project has a servicehost and all the services are under a services folder. Interfaces live in a separate project at each layer. DTO and Entities are in two separate projects under a shared folder. I am currently planning to build dedicated services for shared functionality such as logging and overload things like tracelistener to call those services. Is this a valid approach? Any other suggestions/comments?

    Read the article

  • How to correct a junior, but encourage him to think for himself? [closed]

    - by Phil
    I am the lead of a small team where everyone has less than a year of software development experience. I wouldn't by any means call myself a software guru, but I have learned a few things in the few years that I've been writing software. When we do code reviews I do a fair bit of teaching and correcting mistakes. I will say things like "This is overly complex and convoluted, and here's why," or "What do you think about moving this method into a separate class?" I am extra careful to communicate that if they have questions or dissenting opinions, that's ok and we need to discuss. Every time I correct someone, I ask "What do you think?" or something similar. However they rarely if ever disagree or ask why. And lately I've been noticing more blatant signs that they are blindly agreeing with my statements and not forming opinions of their own. I need a team who can learn to do things right autonomously, not just follow instructions. How does one correct a junior developer, but still encourage him to think for himself? Edit: Here's an example of one of these obvious signs that they're not forming their own opinions: Me: I like your idea of creating an extension method, but I don't like how you passed a large complex lambda as a parameter. The lambda forces others to know too much about the method's implementation. Junior (after misunderstanding me): Yes, I totally agree. We should not use extension methods here because they force other developers to know too much about the implementation. There was a misunderstanding, and that has been dealt with. But there was not even an OUNCE of logic in his statement! He thought he was regurgitating my logic back to me, thinking it would make sense when really he had no clue why he was saying it.

    Read the article

  • Architecture for dashboard showing aggregated stats [on hold]

    - by soulnafein
    I'd like to know what are common architectural pattern for the following problem. Web application A has information on sales, users, responsiveness score, etc. Some of this information are computationally intensive and or have a complex business logic (e.g. responsiveness score). I'm building a separate application (B) for internal admin tasks that modifies data in web application A and report on data from web application A. For writing I'm planning to use a restful api. E.g. create a new entity, update entity, etc. In application B I'd like to show some graphs and other aggregate data for the previous 12 months. I'm planning to store the aggregate data for each month in redis. Some data should update more often, e.g every 10 minutes. I can think of 3 ways of doing this. A scheduled task in app B that connects to an api of app A that provides some aggregated data. Then app B stores it in Redis and use that to visualise pages. Cons: it makes complex calculation within a web request, requires lot's of work e.g. api server and client, storing, etc., pros: business logic still lives in app A. A scheduled task in app A that aggregates data in an non-web process and stores it directly in Redis to be accessed by app B. A scheduled task in app A that aggregates data in a non-web process and uses an api in app B to save it. I'd like to know if there is a well known architectural solution to this type of problems and if not what are other pros/cons for the solution I've suggested?

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • AngularJS on top of ASP.NET: Moving the MVC framework out to the browser

    - by Varun Chatterji
    Heavily drawing inspiration from Ruby on Rails, MVC4’s convention over configuration model of development soon became the Holy Grail of .NET web development. The MVC model brought with it the goodness of proper separation of concerns between business logic, data, and the presentation logic. However, the MVC paradigm, was still one in which server side .NET code could be mixed with presentation code. The Razor templating engine, though cleaner than its predecessors, still encouraged and allowed you to mix .NET server side code with presentation logic. Thus, for example, if the developer required a certain <div> tag to be shown if a particular variable ShowDiv was true in the View’s model, the code could look like the following: Fig 1: To show a div or not. Server side .NET code is used in the View Mixing .NET code with HTML in views can soon get very messy. Wouldn’t it be nice if the presentation layer (HTML) could be pure HTML? Also, in the ASP.NET MVC model, some of the business logic invariably resides in the controller. It is tempting to use an anti­pattern like the one shown above to control whether a div should be shown or not. However, best practice would indicate that the Controller should not be aware of the div. The ShowDiv variable in the model should not exist. A controller should ideally, only be used to do the plumbing of getting the data populated in the model and nothing else. The view (ideally pure HTML) should render the presentation layer based on the model. In this article we will see how Angular JS, a new JavaScript framework by Google can be used effectively to build web applications where: 1. Views are pure HTML 2. Controllers (in the server sense) are pure REST based API calls 3. The presentation layer is loaded as needed from partial HTML only files. What is MVVM? MVVM short for Model View View Model is a new paradigm in web development. In this paradigm, the Model and View stuff exists on the client side through javascript instead of being processed on the server through postbacks. These frameworks are JavaScript frameworks that facilitate the clear separation of the “frontend” or the data rendering logic from the “backend” which is typically just a REST based API that loads and processes data through a resource model. The frameworks are called MVVM as a change to the Model (through javascript) gets reflected in the view immediately i.e. Model > View. Also, a change on the view (through manual input) gets reflected in the model immediately i.e. View > Model. The following figure shows this conceptually (comments are shown in red): Fig 2: Demonstration of MVVM in action In Fig 2, two text boxes are bound to the same variable model.myInt. Thus, changing the view manually (changing one text box through keyboard input) also changes the other textbox in real time demonstrating V > M property of a MVVM framework. Furthermore, clicking the button adds 1 to the value of model.myInt thus changing the model through JavaScript. This immediately updates the view (the value in the two textboxes) thus demonstrating the M > V property of a MVVM framework. Thus we see that the model in a MVVM JavaScript framework can be regarded as “the single source of truth“. This is an important concept. Angular is one such MVVM framework. We shall use it to build a simple app that sends SMS messages to a particular number. Application, Routes, Views, Controllers, Scope and Models Angular can be used in many ways to construct web applications. For this article, we shall only focus on building Single Page Applications (SPAs). Many of the approaches we will follow in this article have alternatives. It is beyond the scope of this article to explain every nuance in detail but we shall try to touch upon the basic concepts and end up with a working application that can be used to send SMS messages using Sent.ly Plus (a service that is itself built using Angular). Before you read on, we would like to urge you to forget what you know about Models, Views, Controllers and Routes in the ASP.NET MVC4 framework. All these words have different meanings in the Angular world. Whenever these words are used in this article, they will refer to Angular concepts and not ASP.NET MVC4 concepts. The following figure shows the skeleton of the root page of an SPA: Fig 3: The skeleton of a SPA The skeleton of the application is based on the Bootstrap starter template which can be found at: http://getbootstrap.com/examples/starter­template/ Apart from loading the Angular, jQuery and Bootstrap JavaScript libraries, it also loads our custom scripts /app/js/controllers.js /app/js/app.js These scripts define the routes, views and controllers which we shall come to in a moment. Application Notice that the body tag (Fig. 3) has an extra attribute: ng­app=”smsApp” Providing this tag “bootstraps” our single page application. It tells Angular to load a “module” called smsApp. This “module” is defined /app/js/app.js angular.module('smsApp', ['smsApp.controllers', function () {}]) Fig 4: The definition of our application module The line shows above, declares a module called smsApp. It also declares that this module “depends” on another module called “smsApp.controllers”. The smsApp.controllers module will contain all the controllers for our SPA. Routing and Views Notice that in the Navbar (in Fig 3) we have included two hyperlinks to: “#/app” “#/help” This is how Angular handles routing. Since the URLs start with “#”, they are actually just bookmarks (and not server side resources). However, our route definition (in /app/js/app.js) gives these URLs a special meaning within the Angular framework. angular.module('smsApp', ['smsApp.controllers', function () { }]) //Configure the routes .config(['$routeProvider', function ($routeProvider) { $routeProvider.when('/binding', { templateUrl: '/app/partials/bindingexample.html', controller: 'BindingController' }); }]); Fig 5: The definition of a route with an associated partial view and controller As we can see from the previous code sample, we are using the $routeProvider object in the configuration of our smsApp module. Notice how the code “asks for” the $routeProvider object by specifying it as a dependency in the [] braces and then defining a function that accepts it as a parameter. This is known as dependency injection. Please refer to the following link if you want to delve into this topic: http://docs.angularjs.org/guide/di What the above code snippet is doing is that it is telling Angular that when the URL is “#/binding”, then it should load the HTML snippet (“partial view”) found at /app/partials/bindingexample.html. Also, for this URL, Angular should load the controller called “BindingController”. We have also marked the div with the class “container” (in Fig 3) with the ng­view attribute. This attribute tells Angular that views (partial HTML pages) defined in the routes will be loaded within this div. You can see that the Angular JavaScript framework, unlike many other frameworks, works purely by extending HTML tags and attributes. It also allows you to extend HTML with your own tags and attributes (through directives) if you so desire, you can find out more about directives at the following URL: http://www.codeproject.com/Articles/607873/Extending­HTML­with­AngularJS­Directives Controllers and Models We have seen how we define what views and controllers should be loaded for a particular route. Let us now consider how controllers are defined. Our controllers are defined in the file /app/js/controllers.js. The following snippet shows the definition of the “BindingController” which is loaded when we hit the URL http://localhost:port/index.html#/binding (as we have defined in the route earlier as shown in Fig 5). Remember that we had defined that our application module “smsApp” depends on the “smsApp.controllers” module (see Fig 4). The code snippet below shows how the “BindingController” defined in the route shown in Fig 5 is defined in the module smsApp.controllers: angular.module('smsApp.controllers', [function () { }]) .controller('BindingController', ['$scope', function ($scope) { $scope.model = {}; $scope.model.myInt = 6; $scope.addOne = function () { $scope.model.myInt++; } }]); Fig 6: The definition of a controller in the “smsApp.controllers” module. The pieces are falling in place! Remember Fig.2? That was the code of a partial view that was loaded within the container div of the skeleton SPA shown in Fig 3. The route definition shown in Fig 5 also defined that the controller called “BindingController” (shown in Fig 6.) was loaded when we loaded the URL: http://localhost:22544/index.html#/binding The button in Fig 2 was marked with the attribute ng­click=”addOne()” which added 1 to the value of model.myInt. In Fig 6, we can see that this function is actually defined in the “BindingController”. Scope We can see from Fig 6, that in the definition of “BindingController”, we defined a dependency on $scope and then, as usual, defined a function which “asks for” $scope as per the dependency injection pattern. So what is $scope? Any guesses? As you might have guessed a scope is a particular “address space” where variables and functions may be defined. This has a similar meaning to scope in a programming language like C#. Model: The Scope is not the Model It is tempting to assign variables in the scope directly. For example, we could have defined myInt as $scope.myInt = 6 in Fig 6 instead of $scope.model.myInt = 6. The reason why this is a bad idea is that scope in hierarchical in Angular. Thus if we were to define a controller which was defined within the another controller (nested controllers), then the inner controller would inherit the scope of the parent controller. This inheritance would follow JavaScript prototypal inheritance. Let’s say the parent controller defined a variable through $scope.myInt = 6. The child controller would inherit the scope through java prototypical inheritance. This basically means that the child scope has a variable myInt that points to the parent scopes myInt variable. Now if we assigned the value of myInt in the parent, the child scope would be updated with the same value as the child scope’s myInt variable points to the parent scope’s myInt variable. However, if we were to assign the value of the myInt variable in the child scope, then the link of that variable to the parent scope would be broken as the variable myInt in the child scope now points to the value 6 and not to the parent scope’s myInt variable. But, if we defined a variable model in the parent scope, then the child scope will also have a variable model that points to the model variable in the parent scope. Updating the value of $scope.model.myInt in the parent scope would change the model variable in the child scope too as the variable is pointed to the model variable in the parent scope. Now changing the value of $scope.model.myInt in the child scope would ALSO change the value in the parent scope. This is because the model reference in the child scope is pointed to the scope variable in the parent. We did no new assignment to the model variable in the child scope. We only changed an attribute of the model variable. Since the model variable (in the child scope) points to the model variable in the parent scope, we have successfully changed the value of myInt in the parent scope. Thus the value of $scope.model.myInt in the parent scope becomes the “single source of truth“. This is a tricky concept, thus it is considered good practice to NOT use scope inheritance. More info on prototypal inheritance in Angular can be found in the “JavaScript Prototypal Inheritance” section at the following URL: https://github.com/angular/angular.js/wiki/Understanding­Scopes. Building It: An Angular JS application using a .NET Web API Backend Now that we have a perspective on the basic components of an MVVM application built using Angular, let’s build something useful. We will build an application that can be used to send out SMS messages to a given phone number. The following diagram describes the architecture of the application we are going to build: Fig 7: Broad application architecture We are going to add an HTML Partial to our project. This partial will contain the form fields that will accept the phone number and message that needs to be sent as an SMS. It will also display all the messages that have previously been sent. All the executable code that is run on the occurrence of events (button clicks etc.) in the view resides in the controller. The controller interacts with the ASP.NET WebAPI to get a history of SMS messages, add a message etc. through a REST based API. For the purposes of simplicity, we will use an in memory data structure for the purposes of creating this application. Thus, the tasks ahead of us are: Creating the REST WebApi with GET, PUT, POST, DELETE methods. Creating the SmsView.html partial Creating the SmsController controller with methods that are called from the SmsView.html partial Add a new route that loads the controller and the partial. 1. Creating the REST WebAPI This is a simple task that should be quite straightforward to any .NET developer. The following listing shows our ApiController: public class SmsMessage { public string to { get; set; } public string message { get; set; } } public class SmsResource : SmsMessage { public int smsId { get; set; } } public class SmsResourceController : ApiController { public static Dictionary<int, SmsResource> messages = new Dictionary<int, SmsResource>(); public static int currentId = 0; // GET api/<controller> public List<SmsResource> Get() { List<SmsResource> result = new List<SmsResource>(); foreach (int key in messages.Keys) { result.Add(messages[key]); } return result; } // GET api/<controller>/5 public SmsResource Get(int id) { if (messages.ContainsKey(id)) return messages[id]; return null; } // POST api/<controller> public List<SmsResource> Post([FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { SmsResource res = (SmsResource) value; res.smsId = currentId++; messages.Add(res.smsId, res); //SentlyPlusSmsSender.SendMessage(value.to, value.message); return Get(); } } // PUT api/<controller>/5 public List<SmsResource> Put(int id, [FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { if (messages.ContainsKey(id)) { //Update the message messages[id].message = value.message; messages[id].to = value.message; } return Get(); } } // DELETE api/<controller>/5 public List<SmsResource> Delete(int id) { if (messages.ContainsKey(id)) { messages.Remove(id); } return Get(); } } Once this class is defined, we should be able to access the WebAPI by a simple GET request using the browser: http://localhost:port/api/SmsResource Notice the commented line: //SentlyPlusSmsSender.SendMessage The SentlyPlusSmsSender class is defined in the attached solution. We have shown this line as commented as we want to explain the core Angular concepts. If you load the attached solution, this line is uncommented in the source and an actual SMS will be sent! By default, the API returns XML. For consumption of the API in Angular, we would like it to return JSON. To change the default to JSON, we make the following change to WebApiConfig.cs file located in the App_Start folder. public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); var appXmlType = config.Formatters.XmlFormatter. SupportedMediaTypes. FirstOrDefault( t => t.MediaType == "application/xml"); config.Formatters.XmlFormatter.SupportedMediaTypes.Remove(appXmlType); } } We now have our backend REST Api which we can consume from Angular! 2. Creating the SmsView.html partial This simple partial will define two fields: the destination phone number (international format starting with a +) and the message. These fields will be bound to model.phoneNumber and model.message. We will also add a button that we shall hook up to sendMessage() in the controller. A list of all previously sent messages (bound to model.allMessages) will also be displayed below the form input. The following code shows the code for the partial: <!--­­ If model.errorMessage is defined, then render the error div -­­> <div class="alert alert-­danger alert-­dismissable" style="margin­-top: 30px;" ng­-show="model.errorMessage != undefined"> <button type="button" class="close" data­dismiss="alert" aria­hidden="true">&times;</button> <strong>Error!</strong> <br /> {{ model.errorMessage }} </div> <!--­­ The input fields bound to the model --­­> <div class="well" style="margin-­top: 30px;"> <table style="width: 100%;"> <tr> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Phone number (eg; +44 7778 609466)" ng­-model="model.phoneNumber" class="form-­control" style="width: 90%" onkeypress="return checkPhoneInput();" /> </td> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Message" ng­-model="model.message" class="form-­control" style="width: 90%" /> </td> <td style="text-­align: center;"> <button class="btn btn-­danger" ng-­click="sendMessage();" ng-­disabled="model.isAjaxInProgress" style="margin­right: 5px;">Send</button> <img src="/Content/ajax-­loader.gif" ng­-show="model.isAjaxInProgress" /> </td> </tr> </table> </div> <!--­­ The past messages ­­--> <div style="margin-­top: 30px;"> <!­­-- The following div is shown if there are no past messages --­­> <div ng­-show="model.allMessages.length == 0"> No messages have been sent yet! </div> <!--­­ The following div is shown if there are some past messages --­­> <div ng-­show="model.allMessages.length == 0"> <table style="width: 100%;" class="table table-­striped"> <tr> <td>Phone Number</td> <td>Message</td> <td></td> </tr> <!--­­ The ng-­repeat directive is line the repeater control in .NET, but as you can see this partial is pure HTML which is much cleaner --> <tr ng-­repeat="message in model.allMessages"> <td>{{ message.to }}</td> <td>{{ message.message }}</td> <td> <button class="btn btn-­danger" ng-­click="delete(message.smsId);" ng­-disabled="model.isAjaxInProgress">Delete</button> </td> </tr> </table> </div> </div> The above code is commented and should be self explanatory. Conditional rendering is achieved through using the ng-­show=”condition” attribute on various div tags. Input fields are bound to the model and the send button is bound to the sendMessage() function in the controller as through the ng­click=”sendMessage()” attribute defined on the button tag. While AJAX calls are taking place, the controller sets model.isAjaxInProgress to true. Based on this variable, buttons are disabled through the ng-­disabled directive which is added as an attribute to the buttons. The ng-­repeat directive added as an attribute to the tr tag causes the table row to be rendered multiple times much like an ASP.NET repeater. 3. Creating the SmsController controller The penultimate piece of our application is the controller which responds to events from our view and interacts with our MVC4 REST WebAPI. The following listing shows the code we need to add to /app/js/controllers.js. Note that controller definitions can be chained. Also note that this controller “asks for” the $http service. The $http service is a simple way in Angular to do AJAX. So far we have only encountered modules, controllers, views and directives in Angular. The $http is new entity in Angular called a service. More information on Angular services can be found at the following URL: http://docs.angularjs.org/guide/dev_guide.services.understanding_services. .controller('SmsController', ['$scope', '$http', function ($scope, $http) { //We define the model $scope.model = {}; //We define the allMessages array in the model //that will contain all the messages sent so far $scope.model.allMessages = []; //The error if any $scope.model.errorMessage = undefined; //We initially load data so set the isAjaxInProgress = true; $scope.model.isAjaxInProgress = true; //Load all the messages $http({ url: '/api/smsresource', method: "GET" }). success(function (data, status, headers, config) { this callback will be called asynchronously //when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { //called asynchronously if an error occurs //or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); $scope.delete = function (id) { //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource/' + id, method: "DELETE" }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } $scope.sendMessage = function () { $scope.model.errorMessage = undefined; var message = ''; if($scope.model.message != undefined) message = $scope.model.message.trim(); if ($scope.model.phoneNumber == undefined || $scope.model.phoneNumber == '' || $scope.model.phoneNumber.length < 10 || $scope.model.phoneNumber[0] != '+') { $scope.model.errorMessage = "You must enter a valid phone number in international format. Eg: +44 7778 609466"; return; } if (message.length == 0) { $scope.model.errorMessage = "You must specify a message!"; return; } //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource', method: "POST", data: { to: $scope.model.phoneNumber, message: $scope.model.message } }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status // We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } }]); We can see from the previous listing how the functions that are called from the view are defined in the controller. It should also be evident how easy it is to make AJAX calls to consume our MVC4 REST WebAPI. Now we are left with the final piece. We need to define a route that associates a particular path with the view we have defined and the controller we have defined. 4. Add a new route that loads the controller and the partial This is the easiest part of the puzzle. We simply define another route in the /app/js/app.js file: $routeProvider.when('/sms', { templateUrl: '/app/partials/smsview.html', controller: 'SmsController' }); Conclusion In this article we have seen how much of the server side functionality in the MVC4 framework can be moved to the browser thus delivering a snappy and fast user interface. We have seen how we can build client side HTML only views that avoid the messy syntax offered by server side Razor views. We have built a functioning app from the ground up. The significant advantage of this approach to building web apps is that the front end can be completely platform independent. Even though we used ASP.NET to create our REST API, we could just easily have used any other language such as Node.js, Ruby etc without changing a single line of our front end code. Angular is a rich framework and we have only touched on basic functionality required to create a SPA. For readers who wish to delve further into the Angular framework, we would recommend the following URL as a starting point: http://docs.angularjs.org/misc/started. To get started with the code for this project: Sign up for an account at http://plus.sent.ly (free) Add your phone number Go to the “My Identies Page” Note Down your Sender ID, Consumer Key and Consumer Secret Download the code for this article at: https://docs.google.com/file/d/0BzjEWqSE31yoZjZlV0d0R2Y3eW8/edit?usp=sharing Change the values of Sender Id, Consumer Key and Consumer Secret in the web.config file Run the project through Visual Studio!

    Read the article

  • techniques for an AI for a highly cramped turn-based tactics game

    - by Adam M.
    I'm trying to write an AI for a tactics game in the vein of Final Fantasy Tactics or Vandal Hearts. I can't change the game rules in any way, only upgrade the AI. I have experience programming AI for classic board games (basically minimax and its variants), but I think the branching factor is too great for the approach to be reasonable here. I'll describe the game and some current AI flaws that I'd like to fix. I'd like to hear ideas for applicable techniques. I'm a decent enough programmer, so I only need the ideas, not an implementation (though that's always appreciated). I'd rather not expend effort chasing (too many) dead ends, so although speculation and brainstorming are good and probably helpful, I'd prefer to hear from somebody with actual experience solving this kind of problem. For those who know it, the game is the land battle mini-game in Sid Meier's Pirates! (2004) and you can skim/skip the next two paragraphs. For those who don't, here's briefly how it works. The battle is turn-based and takes place on a 16x16 grid. There are three terrain types: clear (no hindrance), forest (hinders movement, ranged attacks, and sight), and rock (impassible, but does not hinder attacks or sight). The map is randomly generated with roughly equal amounts of each type of terrain. Because there are many rock and forest tiles, movement is typically very cramped. This is tactically important. The terrain is not flat; higher terrain gives minor bonuses. The terrain is known to both sides. The player is always the attacker and the AI is always the defender, so it's perfectly valid for the AI to set up a defensive position and just wait. The player wins by killing all defenders or by getting a unit to the city gates (a tile on the other side of the map). There are very few units on each side, usually 4-8. Because of this, it's crucial not to take damage without gaining some advantage from it. Units can take multiple actions per turn. All units on one side move before any units on the other side. Order of execution is important, and interleaving of actions between units is often useful. Units have melee and ranged attacks. Melee attacks vary widely in strength; ranged attacks have the same strength but vary in range. The main challenges I face are these: Lots of useful move combinations start with a "useless" move that gains no immediate advantage, or even loses advantage, in order to set up a powerful flank attack in the future. And, since the player units are stronger and have longer range, the AI pretty much always has to take some losses before they can start to gain kills. The AI must be able to look ahead to distinguish between sacrificial actions that provide a future benefit and those that don't. Because the terrain is so cramped, most of the tactics come down to achieving good positioning with multiple units that work together to defend an area. For instance, two defenders can often dominate a narrow pass by positioning themselves so an enemy unit attempting to pass must expose itself to a flank attack. But one defender in the same pass would be useless, and three units can defend a slightly larger pass. Etc. The AI should be able to figure out where the player must go to reach the city gates and how to best position its few units to cover the approaches, shifting, splitting, or combining them appropriately as the player moves. Because flank attacks are extremely deadly (and engineering flank attacks is key to the player strategy), the AI should be competent at moving its units so that they cover each other's flanks unless the sacrifice of a unit would give a substantial benefit. They should also be able to force flank attacks on players, for instance by threatening a unit from two different directions such that responding to one threat exposes the flank to the other. The AI should attack if possible, but sometimes there are no good ways to approach the player's position. In that case, the AI should be able to recognize this and set up a defensive position of its own. But the AI shouldn't be vulnerable to a trivial exploit where the player repeatedly opens and closes a hole in his defense and shoots at the AI as it approaches and retreats. That is, the AI should ideally be able to recognize that the player is capable of establishing a solid defense of an area, even if the defense is not currently in place. (I suppose if a good unit allocation algorithm existed, as needed for the second bullet point, the AI could run it on the player units to see where they could defend.) Because it's important to choose a good order of action and interleave actions between units, it's not as simple as just finding the best move for each unit in turn. All of these can be accomplished with a minimax search in theory, but the search space is too large, so specialized techniques are needed. I thought about techniques such as influence mapping, but I don't see how to use the technique to great effect. I thought about assigning goals to the units. This can help them work together in some limited way, and the problem of "how do I accomplish this goal?" is easier to solve than "how do I win this battle?", but assigning good goals is a hard problem in itself, because it requires knowing whether the goal is achievable and whether it's a good use of resources. So, does anyone have specific ideas for techniques that can help cleverize this AI? Update: I found a related question on Stackoverflow: http://stackoverflow.com/questions/3133273/ai-for-a-final-fantasy-tactics-like-game The selected answer gives a decent approach to choosing between alternative actions, but it doesn't seem to have much ability to look into the future and discern beneficial sacrifices from wasteful ones. It also focuses on a single unit at a time and it's not clear how it could be extended to support cooperation between units in defending or attacking.

    Read the article

  • Demystified - BI in SharePoint 2010

    - by Sahil Malik
    Ad:: SharePoint 2007 Training in .NET 3.5 technologies (more information). Frequently, my clients ask me if there is a good guide on deciphering the seemingly daunting choice of products from Microsoft when it comes to business intelligence offerings in a SharePoint 2010 world. These are all described in detail in my book, but here is a one (well maybe two) page executive overview. Microsoft Excel: Yes, Microsoft Excel! Your favorite and most commonly used in the world database. No it isn’t a database in technical pure definitions, but this is the most commonly used ‘database’ in the world. You will find many business users craft up very compelling excel sheets with tonnes of logic inside them. Good for: Quick Ad-Hoc reports. Excel 64 bit allows the possibility of very large datasheets (Also see 32 bit vs 64 bit Office, and PowerPivot Add-In below). Audience: End business user can build such solutions. Related technologies: PowerPivot, Excel Services Microsoft Excel with PowerPivot Add-In: The powerpivot add-in is an extension to Excel that adds support for large-scale data. Think of this as Excel with the ability to deal with very large amounts of data. It has an in-memory data store as an option for Analysis services. Good for: Ad-hoc reporting and logic with very large amounts of data. Audience: End business user can build such solutions. Related technologies: Excel, and Excel Services Excel Services: Excel Services is a Microsoft SharePoint Server 2010 shared service that brings the power of Excel to SharePoint Server by providing server-side calculation and browser-based rendering of Excel workbooks. Thus, excel sheets can be created by end users, and published to SharePoint server – which are then rendered right through the browser in read-only or parameterized-read-only modes. They can also be accessed by other software via SOAP or REST based APIs. Good for: Sharing excel sheets with a larger number of people, while maintaining control/version control etc. Sharing logic embedded in excel sheets with other software across the organization via REST/SOAP interfaces Audience: End business users can build such solutions once your tech staff has setup excel services on a SharePoint server instance. Programmers can write software consuming functionality/complex formulae contained in your sheets. Related technologies: PerformancePoint Services, Excel, and PowerPivot. Visio Services: Visio Services is a shared service on the Microsoft SharePoint Server 2010 platform that allows users to share and view Visio diagrams that may or may not have data connected to them. Connected data can update these diagrams allowing a visual/graphical view into the data. The diagrams are viewable through the browser. They are rendered in silverlight, but will automatically down-convert to .png formats. Good for: Showing data as diagrams, live updating. Comes with a developer story. Audience: End business users can build such solutions once your tech staff has setup visio services on a SharePoint server instance. Developers can enhance the visualizations Related Technologies: Visio Services can be used to render workflow visualizations in SP2010 Reporting Services: SQL Server reporting services can integrate with SharePoint, allowing you to store reports and data sources in SharePoint document libraries, and render these reports and associated functionality such as subscriptions through a SharePoint site. In SharePoint 2010, you can also write reports against SharePoint lists (access services uses this technique). Good for: Showing complex reports running in a industry standard data store, such as SQL server. Audience: This is definitely developer land. Don’t expect end users to craft up reports, unless a report model has previously been published. Related Technologies: PerformancePoint Services PerformancePoint Services: PerformancePoint Services in SharePoint 2010 is now fully integrated with SharePoint, and comes with features that can either be used in the BI center site definition, or on their own as activated features in existing site collections. PerformancePoint services allows you to build reports and dashboards that target a variety of back-end datasources including: SQL Server reporting services, SQL Server analysis services, SharePoint lists, excel services, simple tables, etc. Using these you have the ability to create dashboards, scorecards/kpis, and simple reports. You can also create reports targeting hierarchical multidimensional data sources. The visual decomposition tree is a new report type that lets you quickly breakdown multi-dimensional data. Good for: Mostly everything :), except your wallet – it’s not free! But this is the most comprehensive offering. If you have SharePoint server, forget everything and go with performance point. Audience: Developers need to setup the back-end sources, manageability story. DBAs need to setup datawarehouses with cubes. Moderately sophisticated business users, or developers can craft up reports using dashboard designer which is a click-once App that deploys with PerformancePoint Related Technologies: Excel services, reporting services, etc.   Other relevant technologies to know about: Business Connectivity Services: Allows for consumption of external data in SharePoint as columns or external lists. This can be paired with one or more of the above BI offerings allowing insight into such data. Access Services: Allows the representation/publishing of an access database as a SharePoint 2010 site, leveraging many SharePoint features. Reporting services is used by Access services. Secure Store Service: The SP2010 Secure store service is a replacement for the SP2007 single sign on feature. This acts as a credential policeman providing credentials to various applications running with SharePoint. BCS, PerformancePoint Services, Excel Services, and many other apps use the SSS (Secure Store Service) for credential control. Comment on the article ....

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 5

    - by MarkPearl
    Learning Outcomes Describe the operation of a memory cell Explain the difference between DRAM and SRAM Discuss the different types of ROM Explain the concepts of a hard failure and a soft error respectively Describe SDRAM organization Semiconductor Main Memory The two traditional forms of RAM used in computers are DRAM and SRAM DRAM (Dynamic RAM) Divided into two technologies… Dynamic Static Dynamic RAM is made with cells that store data as charge on capacitors. The presence or absence of charge in a capacitor is interpreted as a binary 1 or 0. Because capacitors have natural tendency to discharge, dynamic RAM requires periodic charge refreshing to maintain data storage. The term dynamic refers to the tendency of the stored charge to leak away, even with power continuously applied. Although the DRAM cell is used to store a single bit (0 or 1), it is essentially an analogue device. The capacitor can store any charge value within a range, a threshold value determines whether the charge is interpreted as a 1 or 0. SRAM (Static RAM) SRAM is a digital device that uses the same logic elements used in the processor. In SRAM, binary values are stored using traditional flip flop logic configurations. SRAM will hold its data as along as power is supplied to it. Unlike DRAM, no refresh is required to retain data. SRAM vs. DRAM DRAM is simpler and smaller than SRAM. Thus it is more dense and less expensive than SRAM. The cost of the refreshing circuitry for DRAM needs to be considered, but if the machine requires a large amount of memory, DRAM turns out to be cheaper than SRAM. SRAMS are somewhat faster than DRAM, thus SRAM is generally used for cache memory and DRAM is used for main memory. Types of ROM Read Only Memory (ROM) contains a permanent pattern of data that cannot be changed. ROM is non volatile meaning no power source is required to maintain the bit values in memory. While it is possible to read a ROM, it is not possible to write new data into it. An important application of ROM is microprogramming, other applications include library subroutines for frequently wanted functions, System programs, Function tables. A ROM is created like any other integrated circuit chip, with the data actually wired into the chip as part of the fabrication process. To reduce costs of fabrication, we have PROMS. PROMS are… Written only once Non-volatile Written after fabrication Another variation of ROM is the read-mostly memory, which is useful for applications in which read operations are far more frequent than write operations, but for which non volatile storage is required. There are three common forms of read-mostly memory, namely… EPROM EEPROM Flash memory Error Correction Semiconductor memory is subject to errors, which can be classed into two categories… Hard failure – Permanent physical defect so that the memory cell or cells cannot reliably store data Soft failure – Random error that alters the contents of one or more memory cells without damaging the memory (common cause includes power supply issues, etc.) Most modern main memory systems include logic for both detecting and correcting errors. Error detection works as follows… When data is to be read into memory, a calculation is performed on the data to produce a code Both the code and the data are stored When the previously stored word is read out, the code is used to detect and possibly correct errors The error checking provides one of 3 possible results… No errors are detected – the fetched data bits are sent out An error is detected, and it is possible to correct the error. The data bits plus error correction bits are fed into a corrector, which produces a corrected set of bits to be sent out An error is detected, but it is not possible to correct it. This condition is reported Hamming Code See wiki for detailed explanation. We will probably need to know how to do a hemming code – refer to the textbook (pg. 188 – 189) Advanced DRAM organization One of the most critical system bottlenecks when using high-performance processors is the interface to main memory. This interface is the most important pathway in the entire computer system. The basic building block of main memory remains the DRAM chip. In recent years a number of enhancements to the basic DRAM architecture have been explored, and some of these are now on the market including… SDRAM (Synchronous DRAM) DDR-DRAM RDRAM SDRAM (Synchronous DRAM) SDRAM exchanges data with the processor synchronized to an external clock signal and running at the full speed of the processor/memory bus without imposing wait states. SDRAM employs a burst mode to eliminate the address setup time and row and column line precharge time after the first access In burst mode a series of data bits can be clocked out rapidly after the first bit has been accessed SDRAM has a multiple bank internal architecture that improves opportunities for on chip parallelism SDRAM performs best when it is transferring large blocks of data serially There is now an enhanced version of SDRAM known as double data rate SDRAM or DDR-SDRAM that overcomes the once-per-cycle limitation of SDRAM

    Read the article

  • How to draw textures on a model

    - by marc wellman
    The following code is a complete XNA 3.1 program almost unaltered to that code skeleton Visual Studio is creating when creating a new project. The only things I have changed are imported a .x model to the content folder of the VS solution. (the model is a simple square with a texture spanning over it - made in Google Sketchup and exported with several .x exporters) in the Load() method I am loading the .x model into the game. The Draw() method uses a BasicEffect to render the model. Except these three things I haven't added any code. Why does the model does not show the texture ? What can I do to make the texture visible ? This is the texture file (a standard SketchUp texture from the palette): And this is what my program looks like - as you can see: No texture! Find below the complete source code of the program AND the complete .x file: namespace WindowsGame1 { /// <summary> /// This is the main type for your game /// </summary> public class Game1 : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; public Game1() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { // TODO: Add your initialization logic here base.Initialize(); } Model newModel; /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { // Create a new SpriteBatch, which can be used to draw textures. spriteBatch = new SpriteBatch(GraphicsDevice); // TODO: usse this.Content to load your game content here newModel = Content.Load<Model>(@"aau3d"); foreach (ModelMesh mesh in newModel.Meshes) { foreach (ModelMeshPart meshPart in mesh.MeshParts) { meshPart.Effect = new BasicEffect(this.GraphicsDevice, null); } } } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { // TODO: Unload any non ContentManager content here } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Update(GameTime gameTime) { // Allows the game to exit if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed) this.Exit(); // TODO: Add your update logic here base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { if (newModel != null) { GraphicsDevice.Clear(Color.CornflowerBlue); Matrix[] transforms = new Matrix[newModel.Bones.Count]; newModel.CopyAbsoluteBoneTransformsTo(transforms); foreach (ModelMesh mesh in newModel.Meshes) { foreach (BasicEffect effect in mesh.Effects) { effect.EnableDefaultLighting(); effect.TextureEnabled = true; effect.World = transforms[mesh.ParentBone.Index] * Matrix.CreateRotationY(0) * Matrix.CreateTranslation(new Vector3(0, 0, 0)); effect.View = Matrix.CreateLookAt(new Vector3(200, 1000, 200), Vector3.Zero, Vector3.Up); effect.Projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.ToRadians(45.0f), 0.75f, 1.0f, 10000.0f); } mesh.Draw(); } } base.Draw(gameTime); } } } This is the model I am using (.x): xof 0303txt 0032 // SketchUp 6 -> DirectX (c)2008 edecadoudal, supports: faces, normals and textures Material Default_Material{ 1.0;1.0;1.0;1.0;; 3.2; 0.000000;0.000000;0.000000;; 0.000000;0.000000;0.000000;; } Material _Groundcover_RiverRock_4inch_{ 0.568627450980392;0.494117647058824;0.427450980392157;1.0;; 3.2; 0.000000;0.000000;0.000000;; 0.000000;0.000000;0.000000;; TextureFilename { "aau3d.xGroundcover_RiverRock_4inch.jpg"; } } Mesh mesh_0{ 4; -81.6535;0.0000;74.8031;, -0.0000;0.0000;0.0000;, -81.6535;0.0000;0.0000;, -0.0000;0.0000;74.8031;; 2; 3;0,1,2, 3;1,0,3;; MeshMaterialList { 2; 2; 1, 1; { Default_Material } { _Groundcover_RiverRock_4inch_ } } MeshTextureCoords { 4; -2.1168,-3.4022; 1.0000,-0.0000; 1.0000,-3.4022; -2.1168,-0.0000;; } MeshNormals { 4; 0.0000;1.0000;-0.0000; 0.0000;1.0000;-0.0000; 0.0000;1.0000;-0.0000; 0.0000;1.0000;-0.0000;; 2; 3;0,1,2; 3;1,0,3;; } }

    Read the article

< Previous Page | 40 41 42 43 44 45 46 47 48 49 50 51  | Next Page >