Search Results

Search found 5463 results on 219 pages for 'runtime'.

Page 44/219 | < Previous Page | 40 41 42 43 44 45 46 47 48 49 50 51  | Next Page >

  • Parallelism in .NET – Part 3, Imperative Data Parallelism: Early Termination

    - by Reed
    Although simple data parallelism allows us to easily parallelize many of our iteration statements, there are cases that it does not handle well.  In my previous discussion, I focused on data parallelism with no shared state, and where every element is being processed exactly the same. Unfortunately, there are many common cases where this does not happen.  If we are dealing with a loop that requires early termination, extra care is required when parallelizing. Often, while processing in a loop, once a certain condition is met, it is no longer necessary to continue processing.  This may be a matter of finding a specific element within the collection, or reaching some error case.  The important distinction here is that, it is often impossible to know until runtime, what set of elements needs to be processed. In my initial discussion of data parallelism, I mentioned that this technique is a candidate when you can decompose the problem based on the data involved, and you wish to apply a single operation concurrently on all of the elements of a collection.  This covers many of the potential cases, but sometimes, after processing some of the elements, we need to stop processing. As an example, lets go back to our previous Parallel.ForEach example with contacting a customer.  However, this time, we’ll change the requirements slightly.  In this case, we’ll add an extra condition – if the store is unable to email the customer, we will exit gracefully.  The thinking here, of course, is that if the store is currently unable to email, the next time this operation runs, it will handle the same situation, so we can just skip our processing entirely.  The original, serial case, with this extra condition, might look something like the following: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) break; customer.LastEmailContact = DateTime.Now; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re processing our loop, but at any point, if we fail to send our email successfully, we just abandon this process, and assume that it will get handled correctly the next time our routine is run.  If we try to parallelize this using Parallel.ForEach, as we did previously, we’ll run into an error almost immediately: the break statement we’re using is only valid when enclosed within an iteration statement, such as foreach.  When we switch to Parallel.ForEach, we’re no longer within an iteration statement – we’re a delegate running in a method. This needs to be handled slightly differently when parallelized.  Instead of using the break statement, we need to utilize a new class in the Task Parallel Library: ParallelLoopState.  The ParallelLoopState class is intended to allow concurrently running loop bodies a way to interact with each other, and provides us with a way to break out of a loop.  In order to use this, we will use a different overload of Parallel.ForEach which takes an IEnumerable<T> and an Action<T, ParallelLoopState> instead of an Action<T>.  Using this, we can parallelize the above operation by doing: Parallel.ForEach(customers, (customer, parallelLoopState) => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) parallelLoopState.Break(); else customer.LastEmailContact = DateTime.Now; } }); There are a couple of important points here.  First, we didn’t actually instantiate the ParallelLoopState instance.  It was provided directly to us via the Parallel class.  All we needed to do was change our lambda expression to reflect that we want to use the loop state, and the Parallel class creates an instance for our use.  We also needed to change our logic slightly when we call Break().  Since Break() doesn’t stop the program flow within our block, we needed to add an else case to only set the property in customer when we succeeded.  This same technique can be used to break out of a Parallel.For loop. That being said, there is a huge difference between using ParallelLoopState to cause early termination and to use break in a standard iteration statement.  When dealing with a loop serially, break will immediately terminate the processing within the closest enclosing loop statement.  Calling ParallelLoopState.Break(), however, has a very different behavior. The issue is that, now, we’re no longer processing one element at a time.  If we break in one of our threads, there are other threads that will likely still be executing.  This leads to an important observation about termination of parallel code: Early termination in parallel routines is not immediate.  Code will continue to run after you request a termination. This may seem problematic at first, but it is something you just need to keep in mind while designing your routine.  ParallelLoopState.Break() should be thought of as a request.  We are telling the runtime that no elements that were in the collection past the element we’re currently processing need to be processed, and leaving it up to the runtime to decide how to handle this as gracefully as possible.  Although this may seem problematic at first, it is a good thing.  If the runtime tried to immediately stop processing, many of our elements would be partially processed.  It would be like putting a return statement in a random location throughout our loop body – which could have horrific consequences to our code’s maintainability. In order to understand and effectively write parallel routines, we, as developers, need a subtle, but profound shift in our thinking.  We can no longer think in terms of sequential processes, but rather need to think in terms of requests to the system that may be handled differently than we’d first expect.  This is more natural to developers who have dealt with asynchronous models previously, but is an important distinction when moving to concurrent programming models. As an example, I’ll discuss the Break() method.  ParallelLoopState.Break() functions in a way that may be unexpected at first.  When you call Break() from a loop body, the runtime will continue to process all elements of the collection that were found prior to the element that was being processed when the Break() method was called.  This is done to keep the behavior of the Break() method as close to the behavior of the break statement as possible. We can see the behavior in this simple code: var collection = Enumerable.Range(0, 20); var pResult = Parallel.ForEach(collection, (element, state) => { if (element > 10) { Console.WriteLine("Breaking on {0}", element); state.Break(); } Console.WriteLine(element); }); If we run this, we get a result that may seem unexpected at first: 0 2 1 5 6 3 4 10 Breaking on 11 11 Breaking on 12 12 9 Breaking on 13 13 7 8 Breaking on 15 15 What is occurring here is that we loop until we find the first element where the element is greater than 10.  In this case, this was found, the first time, when one of our threads reached element 11.  It requested that the loop stop by calling Break() at this point.  However, the loop continued processing until all of the elements less than 11 were completed, then terminated.  This means that it will guarantee that elements 9, 7, and 8 are completed before it stops processing.  You can see our other threads that were running each tried to break as well, but since Break() was called on the element with a value of 11, it decides which elements (0-10) must be processed. If this behavior is not desirable, there is another option.  Instead of calling ParallelLoopState.Break(), you can call ParallelLoopState.Stop().  The Stop() method requests that the runtime terminate as soon as possible , without guaranteeing that any other elements are processed.  Stop() will not stop the processing within an element, so elements already being processed will continue to be processed.  It will prevent new elements, even ones found earlier in the collection, from being processed.  Also, when Stop() is called, the ParallelLoopState’s IsStopped property will return true.  This lets longer running processes poll for this value, and return after performing any necessary cleanup. The basic rule of thumb for choosing between Break() and Stop() is the following. Use ParallelLoopState.Stop() when possible, since it terminates more quickly.  This is particularly useful in situations where you are searching for an element or a condition in the collection.  Once you’ve found it, you do not need to do any other processing, so Stop() is more appropriate. Use ParallelLoopState.Break() if you need to more closely match the behavior of the C# break statement. Both methods behave differently than our C# break statement.  Unfortunately, when parallelizing a routine, more thought and care needs to be put into every aspect of your routine than you may otherwise expect.  This is due to my second observation: Parallelizing a routine will almost always change its behavior. This sounds crazy at first, but it’s a concept that’s so simple its easy to forget.  We’re purposely telling the system to process more than one thing at the same time, which means that the sequence in which things get processed is no longer deterministic.  It is easy to change the behavior of your routine in very subtle ways by introducing parallelism.  Often, the changes are not avoidable, even if they don’t have any adverse side effects.  This leads to my final observation for this post: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Ubuntu 12.04 + Eclipse 64 bits key binding error

    - by user110933
    The text is quite extense so, this is just a part of it: !SESSION 2012-11-23 10:15:52.442 ----------------------------------------------- eclipse.buildId=I20120608-1200 java.version=1.7.0_09 java.vendor=Oracle Corporation BootLoader constants: OS=linux, ARCH=x86_64, WS=gtk, NL=en_US Command-line arguments: -os linux -ws gtk -arch x86_64 !ENTRY org.eclipse.jface 2 0 2012-11-23 10:16:06.408 !MESSAGE Keybinding conflicts occurred. They may interfere with normal accelerator operation. !SUBENTRY 1 org.eclipse.jface 2 0 2012-11-23 10:16:06.408 !MESSAGE A conflict occurred for ALT+SHIFT+R: Binding(ALT+SHIFT+R, ParameterizedCommand(Command(oracle.eclipse.tools.common.services.ui.refactor.rename.command,Rename, Rename the selected text., Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), oracle.eclipse.tools.common.services.ui.refactor.internal.ArtifactRefactoringCommandHandler, ,,true),null), org.eclipse.ui.defaultAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,system) Binding(ALT+SHIFT+R, ParameterizedCommand(Command(org.eclipse.jdt.ui.edit.text.java.rename.element,Rename - Refactoring , Rename the selected element, Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), , ,,true),null), org.eclipse.ui.defaultAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,system) !ENTRY org.eclipse.ui.workbench 4 0 2012-11-23 10:16:10.409 !MESSAGE An unexpected exception was thrown. !STACK 0 java.lang.NullPointerException at org.eclipse.ui.internal.WorkbenchWindow.putToolbarLabel(WorkbenchWindow.java:1697) at org.eclipse.ui.internal.menus.MenuAdditionCacheEntry.createToolBarAdditionContribution(MenuAdditionCacheEntry.java:208) at org.eclipse.ui.internal.menus.MenuAdditionCacheEntry.createContributionItems(MenuAdditionCacheEntry.java:177) at org.eclipse.ui.internal.menus.TrimContributionManager.update(TrimContributionManager.java:224) at org.eclipse.ui.internal.WorkbenchWindow.updateLayoutDataForContents(WorkbenchWindow.java:3874) at org.eclipse.ui.internal.WorkbenchWindow.setCoolBarVisible(WorkbenchWindow.java:3675) at org.eclipse.ui.internal.ViewIntroAdapterPart.setBarVisibility(ViewIntroAdapterPart.java:203) at org.eclipse.ui.internal.ViewIntroAdapterPart.dispose(ViewIntroAdapterPart.java:106) at org.eclipse.ui.internal.WorkbenchPartReference.doDisposePart(WorkbenchPartReference.java:737) at org.eclipse.ui.internal.ViewReference.doDisposePart(ViewReference.java:107) at org.eclipse.ui.internal.WorkbenchPartReference.dispose(WorkbenchPartReference.java:684) at org.eclipse.ui.internal.WorkbenchPage.disposePart(WorkbenchPage.java:1801) at org.eclipse.ui.internal.WorkbenchPage.partRemoved(WorkbenchPage.java:1793) at org.eclipse.ui.internal.ViewFactory.releaseView(ViewFactory.java:257) at org.eclipse.ui.internal.Perspective.dispose(Perspective.java:292) at org.eclipse.ui.internal.WorkbenchPage.dispose(WorkbenchPage.java:1872) at org.eclipse.ui.internal.WorkbenchWindow.closeAllPages(WorkbenchWindow.java:894) at org.eclipse.ui.internal.WorkbenchWindow.hardClose(WorkbenchWindow.java:1729) at org.eclipse.ui.internal.WorkbenchWindow.busyClose(WorkbenchWindow.java:730) at org.eclipse.ui.internal.WorkbenchWindow.access$0(WorkbenchWindow.java:715) at org.eclipse.ui.internal.WorkbenchWindow$6.run(WorkbenchWindow.java:867) at org.eclipse.swt.custom.BusyIndicator.showWhile(BusyIndicator.java:70) at org.eclipse.ui.internal.WorkbenchWindow.close(WorkbenchWindow.java:865) at org.eclipse.jface.window.WindowManager.close(WindowManager.java:109) at org.eclipse.ui.internal.Workbench$18.run(Workbench.java:1114) at org.eclipse.core.runtime.SafeRunner.run(SafeRunner.java:42) at org.eclipse.ui.internal.Workbench.busyClose(Workbench.java:1111) at org.eclipse.ui.internal.Workbench.access$15(Workbench.java:1040) at org.eclipse.ui.internal.Workbench$25.run(Workbench.java:1284) at org.eclipse.swt.custom.BusyIndicator.showWhile(BusyIndicator.java:70) at org.eclipse.ui.internal.Workbench.close(Workbench.java:1282) at org.eclipse.ui.internal.Workbench.close(Workbench.java:1254) at org.eclipse.ui.internal.WorkbenchWindow.busyClose(WorkbenchWindow.java:727) at org.eclipse.ui.internal.WorkbenchWindow.access$0(WorkbenchWindow.java:715) at org.eclipse.ui.internal.WorkbenchWindow$6.run(WorkbenchWindow.java:867) at org.eclipse.swt.custom.BusyIndicator.showWhile(BusyIndicator.java:70) at org.eclipse.ui.internal.WorkbenchWindow.close(WorkbenchWindow.java:865) at org.eclipse.jface.window.Window.handleShellCloseEvent(Window.java:741) at org.eclipse.jface.window.Window$3.shellClosed(Window.java:687) at org.eclipse.swt.widgets.TypedListener.handleEvent(TypedListener.java:98) at org.eclipse.swt.widgets.EventTable.sendEvent(EventTable.java:84) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1276) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1300) at org.eclipse.swt.widgets.Widget.sendEvent(Widget.java:1285) at org.eclipse.swt.widgets.Shell.closeWidget(Shell.java:617) at org.eclipse.swt.widgets.Shell.gtk_delete_event(Shell.java:1191) at org.eclipse.swt.widgets.Widget.windowProc(Widget.java:1750) at org.eclipse.swt.widgets.Control.windowProc(Control.java:5116) at org.eclipse.swt.widgets.Display.windowProc(Display.java:4369) at org.eclipse.swt.internal.gtk.OS._gtk_main_do_event(Native Method) at org.eclipse.swt.internal.gtk.OS.gtk_main_do_event(OS.java:8295) at org.eclipse.swt.widgets.Display.eventProc(Display.java:1192) at org.eclipse.swt.internal.gtk.OS._g_main_context_iteration(Native Method) at org.eclipse.swt.internal.gtk.OS.g_main_context_iteration(OS.java:2332) at org.eclipse.swt.widgets.Display.readAndDispatch(Display.java:3177) at org.eclipse.ui.internal.Workbench.runEventLoop(Workbench.java:2701) at org.eclipse.ui.internal.Workbench.runUI(Workbench.java:2665) at org.eclipse.ui.internal.Workbench.access$4(Workbench.java:2499) at org.eclipse.ui.internal.Workbench$7.run(Workbench.java:679) at org.eclipse.core.databinding.observable.Realm.runWithDefault(Realm.java:332) at org.eclipse.ui.internal.Workbench.createAndRunWorkbench(Workbench.java:668) at org.eclipse.ui.PlatformUI.createAndRunWorkbench(PlatformUI.java:149) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:124) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:353) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:180) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:601) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:629) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:584) at org.eclipse.equinox.launcher.Main.run(Main.java:1438) at org.eclipse.equinox.launcher.Main.main(Main.java:1414) !SESSION 2012-11-23 10:36:07.863 ----------------------------------------------- eclipse.buildId=I20120608-1200 java.version=1.7.0_09 java.vendor=Oracle Corporation BootLoader constants: OS=linux, ARCH=x86_64, WS=gtk, NL=en_US Command-line arguments: -os linux -ws gtk -arch x86_64 !ENTRY org.eclipse.jface 2 0 2012-11-23 10:36:13.181 !MESSAGE Keybinding conflicts occurred. They may interfere with normal accelerator operation. !SUBENTRY 1 org.eclipse.jface 2 0 2012-11-23 10:36:13.181 !MESSAGE A conflict occurred for ALT+SHIFT+R: Binding(ALT+SHIFT+R, ParameterizedCommand(Command(oracle.eclipse.tools.common.services.ui.refactor.rename.command,Rename, Rename the selected text., Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), oracle.eclipse.tools.common.services.ui.refactor.internal.ArtifactRefactoringCommandHandler, ,,true),null), org.eclipse.ui.defaultAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,system) Binding(ALT+SHIFT+R, ParameterizedCommand(Command(org.eclipse.jdt.ui.edit.text.java.rename.element,Rename - Refactoring , Rename the selected element, Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), , ,,true),null), org.eclipse.ui.defaultAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,system) !ENTRY org.eclipse.osgi 2 1 2012-11-23 10:39:04.681 !MESSAGE NLS unused message: CacheManager_CannotLoadNonUrlLocation in: org.eclipse.equinox.internal.p2.repository.messages !SESSION 2012-11-23 15:14:12.933 ----------------------------------------------- eclipse.buildId=I20120608-1200 java.version=1.7.0_09 java.vendor=Oracle Corporation BootLoader constants: OS=linux, ARCH=x86_64, WS=gtk, NL=en_US Command-line arguments: -os linux -ws gtk -arch x86_64 !ENTRY org.eclipse.jface 2 0 2012-11-23 15:14:23.380 !MESSAGE Keybinding conflicts occurred. They may interfere with normal accelerator operation. !SUBENTRY 1 org.eclipse.jface 2 0 2012-11-23 15:14:23.380 !MESSAGE A conflict occurred for ALT+SHIFT+R: Binding(ALT+SHIFT+R, ParameterizedCommand(Command(oracle.eclipse.tools.common.services.ui.refactor.rename.command,Rename, Rename the selected text., Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), oracle.eclipse.tools.common.services.ui.refactor.internal.ArtifactRefactoringCommandHandler, ,,true),null), org.eclipse.ui.defaultAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,system) Binding(ALT+SHIFT+R, ParameterizedCommand(Command(org.eclipse.jdt.ui.edit.text.java.rename.element,Rename - Refactoring , Rename the selected element, Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), , ,,true),null), org.eclipse.ui.defaultAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,system) !ENTRY org.springframework.ide.eclipse.uaa 4 2 2012-11-23 15:14:32.800 !MESSAGE Problems occurred when invoking code from plug-in: "org.springframework.ide.eclipse.uaa". !STACK 0 java.lang.NullPointerException at org.springframework.ide.eclipse.internal.uaa.monitor.CommandUsageMonitor.startMonitoring(CommandUsageMonitor.java:61) at org.springframework.ide.eclipse.uaa.UaaPlugin$1$1.run(UaaPlugin.java:91) at org.eclipse.core.runtime.SafeRunner.run(SafeRunner.java:42) at org.springframework.ide.eclipse.uaa.UaaPlugin$1.run(UaaPlugin.java:85) at org.eclipse.core.internal.jobs.Worker.run(Worker.java:54) !SESSION 2012-11-23 15:15:21.833 ----------------------------------------------- eclipse.buildId=I20120608-1200 java.version=1.7.0_09 java.vendor=Oracle Corporation BootLoader constants: OS=linux, ARCH=x86_64, WS=gtk, NL=en_US Command-line arguments: -os linux -ws gtk -arch x86_64 !ENTRY org.eclipse.jface 2 0 2012-11-23 15:15:27.283 !MESSAGE Keybinding conflicts occurred. They may interfere with normal accelerator operation. !SUBENTRY 1 org.eclipse.jface 2 0 2012-11-23 15:15:27.283 !MESSAGE A conflict occurred for ALT+SHIFT+R: Binding(ALT+SHIFT+R, ParameterizedCommand(Command(oracle.eclipse.tools.common.services.ui.refactor.rename.command,Rename, Rename the selected text., Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), oracle.eclipse.tools.common.services.ui.refactor.internal.ArtifactRefactoringCommandHandler, ,,true),null), org.eclipse.ui.defaultAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,system) Binding(ALT+SHIFT+R, ParameterizedCommand(Command(org.eclipse.jdt.ui.edit.text.java.rename.element,Rename - Refactoring , Rename the selected element, Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), , ,,true),null), org.eclipse.ui.defaultAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,system) !ENTRY org.eclipse.jface 2 0 2012-11-23 15:18:41.265 !MESSAGE Keybinding conflicts occurred. They may interfere with normal accelerator operation. !SUBENTRY 1 org.eclipse.jface 2 0 2012-11-23 15:18:41.265 !MESSAGE A conflict occurred for ALT+SHIFT+E: Binding(ALT+SHIFT+E, ParameterizedCommand(Command(oracle.eclipse.tools.common.services.ui.refactor.rename.command,Rename, Rename the selected text., Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), oracle.eclipse.tools.common.services.ui.refactor.internal.ArtifactRefactoringCommandHandler, ,,true),null), org.eclipse.ui.emacsAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,user) Binding(ALT+SHIFT+E, ParameterizedCommand(Command(org.eclipse.jdt.ui.edit.text.java.rename.element,Rename - Refactoring , Rename the selected element, Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), , ,,true),null), org.eclipse.ui.emacsAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,user) Binding(ALT+SHIFT+E, ParameterizedCommand(Command(org.eclipse.wst.jsdt.ui.edit.text.java.rename.element,Rename - Refactoring , Rename the selected element, Category(org.eclipse.wst.jsdt.ui.category.refactoring,Refactor - JavaScript,JavaScript Refactoring Actions,true), , ,,true),null), org.eclipse.ui.emacsAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,user) !SESSION 2012-11-23 15:18:56.267 ----------------------------------------------- eclipse.buildId=I20120608-1200 java.version=1.7.0_09 java.vendor=Oracle Corporation BootLoader constants: OS=linux, ARCH=x86_64, WS=gtk, NL=en_US Command-line arguments: -os linux -ws gtk -arch x86_64 !ENTRY org.eclipse.jface 2 0 2012-11-23 15:19:01.605 !MESSAGE Keybinding conflicts occurred. They may interfere with normal accelerator operation. !SUBENTRY 1 org.eclipse.jface 2 0 2012-11-23 15:19:01.605 !MESSAGE A conflict occurred for ALT+SHIFT+E: Binding(ALT+SHIFT+E, ParameterizedCommand(Command(org.eclipse.wst.jsdt.ui.edit.text.java.rename.element,Rename - Refactoring , Rename the selected element, Category(org.eclipse.wst.jsdt.ui.category.refactoring,Refactor - JavaScript,JavaScript Refactoring Actions,true), , ,,true),null), org.eclipse.ui.emacsAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,user) Binding(ALT+SHIFT+E, ParameterizedCommand(Command(org.eclipse.jdt.ui.edit.text.java.rename.element,Rename - Refactoring , Rename the selected element, Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), , ,,true),null), org.eclipse.ui.emacsAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,user) Binding(ALT+SHIFT+E, ParameterizedCommand(Command(oracle.eclipse.tools.common.services.ui.refactor.rename.command,Rename, Rename the selected text., Category(org.eclipse.jdt.ui.category.refactoring,Refactor - Java,Java Refactoring Actions,true), oracle.eclipse.tools.common.services.ui.refactor.internal.ArtifactRefactoringCommandHandler, ,,true),null), org.eclipse.ui.emacsAcceleratorConfiguration, org.eclipse.ui.contexts.window,,,user)

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • So i ran sudo apt-get install kubuntu-full on my Ubuntu... and saw all the apps...now I want it off...help?

    - by Alex Poulos
    I'm running 12.04 - I installed kubuntu to try it out and realized that with all the bloatware applications that I didn't want it anymore - I was able to uninstall the kubuntu-desktop but there are still packages left over... How can I make sure I get rid of EVERYTHING Kubuntu installed - even the kde leftovers? Here's some of what's left when I ran sudo apt-get autoremove kde then "tab" it displayed this: kdeaccessibility kdepim-runtime kdeadmin kde-runtime kde-baseapps kde-runtime-data kde-baseapps-bin kdesdk-dolphin-plugins kde-baseapps-data kde-style-oxygen kde-config-cron kdesudo kde-config-gtk kdeutils kde-config-touchpad kde-wallpapers kdegames-card-data kde-wallpapers-default kdegames-card-data-extra kde-window-manager kde-icons-mono kde-window-manager-common kdelibs5-data kde-workspace kdelibs5-plugins kde-workspace-bin kdelibs-bin kde-workspace-data kdemultimedia-kio-plugins kde-workspace-data-extras kdenetwork kde-workspace-kgreet-plugins kdenetwork-filesharing kde-zeroconf kdepasswd kdf kdepim-kresources kdm kdepimlibs-kio-plugins kdoctools Those are all installed by kubuntu... correct? I just want to go back to my Ubuntu 12.04LTS with Gnome2-classic and without all the kubuntu extras. I started it off by just removing unnecessary apps that came with kubuntu-full - then realized I didnt want the whole thing at all and uninstalled kubuntu-full but it still says I have these as well: alex@griever:~$ sudo apt-get --purge remove kubuntu- kubuntu-debug-installer kubuntu-netbook-default-settings kubuntu-default-settings kubuntu-notification-helper kubuntu-firefox-installer kubuntu-web-shortcuts

    Read the article

  • Nice take on Open Source

    - by EmbeddedInsider
    I just revisited the “Micro Framework”- Microsoft’s bootable runtime, essentially an OS that allows managed code to run on small 32bit CPUs, even without Memory Management.  Things are happening http://msdn.microsoft.com/en-us/netframework/bb267253.aspx Abstract The Microsoft .NET Micro Framework is a bootable runtime module that brings the advantages of .NET programming to devices too resource-constrained to run other Microsoft embedded platforms. The benefits of developing with the .NET Micro Framework include the C# programming language, a managed execution environment, a substantial subset of the .NET libraries, and Visual Studio™ deployment and debugging. In this white paper we explain why the .NET Micro Framework is an ideal choice for embedded development and provide technical details of the platform’s Hardware Abstraction Layer (HAL) and Common Language Runtime (CLR). “Micro Framework” is an interesting product, it is very low cost, like zero. And it is largely community controlled under the Apache License.  A partner network is building, and the application environment is .NET. I have been following this for some time, and the community open source approach seems to be working.  There are new features/packages emerging, for example an F# programming language (ARGH! I am still wresting with VB and C#). Anyway, what I found most interesting was a port to Tron.  Tron is a very popular Japanese open source intuitive.  It is a very real time, very compact kernel, and is, like the Micro Framework, ‘free as beer’.  One limit on MF was it was not real time.  But the merger with Tron may eliminate that problem.  Certainly, if I were dealing with a consumer product with quantities in the millions (like a SmartGrid device, or a toy) I would seriously consider something out of this technology pool.

    Read the article

  • Extension Methods in Dot Net 2.0

    - by Tom Hines
    Not that anyone would still need this, but in case you have a situation where the code MUST be .NET 2.0 compliant and you want to use a cool feature like Extension methods, there is a way.  I saw this article when looking for ways to create extension methods in C++, C# and VB:  http://msdn.microsoft.com/en-us/magazine/cc163317.aspx The author shows a simple  way to declare/define the ExtensionAttribute so it's available to 2.0 .NET code. Please read the article to learn about the when and why and use the content below to learn HOW. In the next post, I'll demonstrate cross-language calling of extension methods. Here is a version of it in C# First, here's the project showing there's no VOODOO included: using System; namespace System.Runtime.CompilerServices {    [       AttributeUsage(          AttributeTargets.Assembly          | AttributeTargets.Class          | AttributeTargets.Method,       AllowMultiple = false, Inherited = false)    ]    class ExtensionAttribute : Attribute{} } namespace TestTwoDotExtensions {    public static class Program    {       public static void DoThingCS(this string str)       {          Console.WriteLine("2.0\t{0:G}\t2.0", str);       }       static void Main(string[] args)       {          "asdf".DoThingCS();       }    } }   Here is the C++ version: // TestTwoDotExtensions_CPP.h #pragma once using namespace System; namespace System {        namespace Runtime {               namespace CompilerServices {               [                      AttributeUsage(                            AttributeTargets::Assembly                             | AttributeTargets::Class                            | AttributeTargets::Method,                      AllowMultiple = false, Inherited = false)               ]               public ref class ExtensionAttribute : Attribute{};               }        } } using namespace System::Runtime::CompilerServices; namespace TestTwoDotExtensions_CPP { public ref class CTestTwoDotExtensions_CPP {    public:            [ExtensionAttribute] // or [Extension]            static void DoThingCPP(String^ str)    {       Console::WriteLine("2.0\t{0:G}\t2.0", str);    } }; }

    Read the article

  • Ubuntu 10.04 - unable to install Arduino

    - by Newbie
    Hello! At the moment, I try to install Arduino on my Ubuntu 10.04 (32 Bit) computer. I downloaded the latest release at http://arduino.cc/en/Main/Software, cd'ed to the directory and unziped the package. When I try to run ./arduino , I get following error: Exception in thread "main" java.lang.ExceptionInInitializerError at processing.app.Base.main(Base.java:112) Caused by: java.awt.HeadlessException at sun.awt.HeadlessToolkit.getMenuShortcutKeyMask(HeadlessToolkit.java:231) at processing.core.PApplet.<clinit>(Unknown Source) ... 1 more Here is my java -version output: java version "1.6.0_20" OpenJDK Runtime Environment (IcedTea6 1.9.5) (6b20-1.9.5-0ubuntu1~10.04.1) OpenJDK Server VM (build 19.0-b09, mixed mode) Any suggestions on this? I try to install arduino without the 'arduino' package. I tried to install it with apt-get (sudo apt-get install arduino). When I try to start arduino (using arduino command) will cause following error: Exception in thread "main" java.lang.ExceptionInInitializerError at processing.app.Preferences.load(Preferences.java:553) at processing.app.Preferences.load(Preferences.java:549) at processing.app.Preferences.init(Preferences.java:142) at processing.app.Base.main(Base.java:188) Caused by: java.awt.HeadlessException at sun.awt.HeadlessToolkit.getMenuShortcutKeyMask(HeadlessToolkit.java:231) at processing.core.PApplet.<clinit>(PApplet.java:224) ... 4 more Update: I saw that I installed several versions of jre (sun and open). So I uninstalled the open jre. Now, when calling arduino I get a new error: java.lang.UnsatisfiedLinkError: no rxtxSerial in java.library.path thrown while loading gnu.io.RXTXCommDriver Exception in thread "main" java.lang.UnsatisfiedLinkError: no rxtxSerial in java.library.path at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1734) at java.lang.Runtime.loadLibrary0(Runtime.java:823) at java.lang.System.loadLibrary(System.java:1028) at gnu.io.CommPortIdentifier.<clinit>(CommPortIdentifier.java:123) at processing.app.Editor.populateSerialMenu(Editor.java:965) at processing.app.Editor.buildToolsMenu(Editor.java:717) at processing.app.Editor.buildMenuBar(Editor.java:502) at processing.app.Editor.<init>(Editor.java:194) at processing.app.Base.handleOpen(Base.java:698) at processing.app.Base.handleOpen(Base.java:663) at processing.app.Base.handleNew(Base.java:578) at processing.app.Base.<init>(Base.java:318) at processing.app.Base.main(Base.java:207)

    Read the article

  • Unit testing internal methods in a strongly named assembly/project

    - by Rohit Gupta
    If you need create Unit tests for internal methods within a assembly in Visual Studio 2005 or greater, then we need to add an entry in the AssemblyInfo.cs file of the assembly for which you are creating the units tests for. For e.g. if you need to create tests for a assembly named FincadFunctions.dll & this assembly contains internal/friend methods within which need to write unit tests for then we add a entry in the FincadFunctions.dll’s AssemblyInfo.cs file like so : 1: [assembly: System.Runtime.CompilerServices.InternalsVisibleTo("FincadFunctionsTests")] where FincadFunctionsTests is the name of the Unit Test project which contains the Unit Tests. However if the FincadFunctions.dll is a strongly named assembly then you will the following error when compiling the FincadFunctions.dll assembly :      Friend assembly reference “FincadFunctionsTests” is invalid. Strong-name assemblies must specify a public key in their InternalsVisibleTo declarations. Thus to add a public key token to InternalsVisibleTo Declarations do the following: You need the .snk file that was used to strong-name the FincadFunctions.dll assembly. You can extract the public key from this .snk with the sn.exe tool from the .NET SDK. First we extract just the public key from the key pair (.snk) file into another .snk file. sn -p test.snk test.pub Then we ask for the value of that public key (note we need the long hex key not the short public key token): sn -tp test.pub We end up getting a super LONG string of hex, but that's just what we want, the public key value of this key pair. We add it to the strongly named project "FincadFunctions.dll" that we want to expose our internals from. Before what looked like: 1: [assembly: System.Runtime.CompilerServices.InternalsVisibleTo("FincadFunctionsTests")] Now looks like. 1: [assembly: System.Runtime.CompilerServices.InternalsVisibleTo("FincadFunctionsTests, 2: PublicKey=002400000480000094000000060200000024000052534131000400000100010011fdf2e48bb")] And we're done. hope this helps

    Read the article

  • How can I get the palette of an 8-bit surface in SDL.NET/Tao.SDL?

    - by lolmaster
    I'm looking to get the palette of an 8-bit surface in SDL.NET if possible, or (more than likely) using Tao.SDL. This is because I want to do palette swapping with the palette directly, instead of blitting surfaces together to replace colours like how you would do it with a 32-bit surface. I've gotten the SDL_Surface and the SDL_PixelFormat, however when I go to get the palette in the same way, I get a System.ExecutionEngineException: private Tao.Sdl.Sdl.SDL_Palette GetPalette(Surface surf) { // Get surface. Tao.Sdl.Sdl.SDL_Surface sdlSurface = (Tao.Sdl.Sdl.SDL_Surface)System.Runtime.InteropServices.Marshal.PtrToStructure(surf.Handle, typeof(Tao.Sdl.Sdl.SDL_Surface)); // Get pixel format. Tao.Sdl.Sdl.SDL_PixelFormat pixelFormat = (Tao.Sdl.Sdl.SDL_PixelFormat)System.Runtime.InteropServices.Marshal.PtrToStructure(sdlSurface.format, typeof(Tao.Sdl.Sdl.SDL_PixelFormat)); // Execution exception here. Tao.Sdl.Sdl.SDL_Palette palette = (Tao.Sdl.Sdl.SDL_Palette)System.Runtime.InteropServices.Marshal.PtrToStructure(pixelFormat.palette, typeof(Tao.Sdl.Sdl.SDL_Palette)); return palette; } When I used unsafe code to get the palette, I got a compile time error: "Cannot take the address of, get the size of, or declare a pointer to a managed type ('Tao.Sdl.Sdl.SDL_Palette')". My unsafe code to get the palette was this: unsafe { Tao.Sdl.Sdl.SDL_Palette* pal = (Tao.Sdl.Sdl.SDL_Palette*)pixelFormat.palette; } From what I've read, a managed type in this case is when a structure has some sort of reference inside it as a field. The SDL_Palette structure happens to have an array of SDL_Color's, so I'm assuming that's the reference type that is causing issues. However I'm still not sure how to work around that to get the underlying palette. So if anyone knows how to get the palette from an 8-bit surface, whether it's through safe or unsafe code, the help would be greatly appreciated.

    Read the article

  • Oracle SOA Suite for healthcare integration Dashboard By Nitesh Jain

    - by JuergenKress
    Oracle SOA Suite Healthcare came up with a new way of monitoring where user can configure a dashboard and follow the dynamic runtime changes. Oracle SOA Suite for healthcare integration dashboards display information about the current health of the endpoints in a healthcare integration application. You can create and configure multiple dashboards as needed to monitor the status and volume metrics for the endpoints you have defined. The Dashboards reflects changes that occur in the runtime repository, such as purging runtime instance data, new messages processed, and new error messages. You can display data for various time periods, and you can manually refresh the data in real time or set the dashboard to automatically refresh at set intervals. Dashboard shows the following information: Status: The current status of the endpoint, such as Running, Idle, Disabled, or Errors. Messages Sent: The number of messages sent by the endpoint in the specified time period. Messages Received: The number of messages received by the endpoint in the specified time period. Errors: The number of messages with errors for the endpoint in the given time period. Last Sent: The date and time the last message was sent from the endpoint. Last Received: The date and time the last message was received from the endpoint. Last Error: The date and time of the last error for the endpoint. It also shows the detailed view of a specific Endpoint. The document type. The number of messages received per second. The total number of message processed in the specified time period. The average size of each message. For more information please visit Nitesh Jain blog SOA & BPM Partner Community For regular information on Oracle SOA Suite become a member in the SOA & BPM Partner Community for registration please visit  www.oracle.com/goto/emea/soa (OPN account required) If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Technorati Tags: SOA Suite,SOA heathcare,soa health,SOA Community,Oracle SOA,Oracle BPM,Community,OPN,Jürgen Kress

    Read the article

  • What is "Open" anyway?

    - by EmbeddedInsider
    This terms is often used with many meanings.  For example, some people consider Flash 'open' and 'multi-platform' .  But Flash is a product of Adobe systems, locked down, copy protected and distribution restricted.  And versions for other than standard PC, home use, may carry licence fees. Check it out: 3.1 Adobe Runtime Restrictions. You will not use any Adobe Runtime on any non-PC device or with any embedded or device version of any operating system. For the avoidance of doubt, and by example only, you may not use an Adobe Runtime on any (a) mobile device, set top box (STB), handheld, phone, web pad, tablet and Tablet PC (other than with Windows XP Tablet PC Edition and its successors), game console, TV, DVD player, media center (other than with Windows XP Media Center Edition and its successors), electronic billboard or other digital signage, Internet appliance or other Internet-connected device, PDA, medical device, ATM, telematic device, gaming machine, home automation system, kiosk, remote control device, or any other consumer electronics device, (b) operator-based mobile, cable, satellite, or television system or (c) other closed system device. For information on licensing Adobe Runtimes for use on such systems please visit http://www.adobe.com/go/licensing. You will notice, for its embedded operating systems, Microsoft buys and includes a fully paid license for Adobe.   Do you get this with Linux?  Unix?  QNX? So, what is 'open'? Lawrence Ricci www.EmbeddedInsider.com

    Read the article

  • E-Business Suite Proactive Support - Workflow Analyzer

    - by Alejandro Sosa
    Overview The Workflow Analyzer is a standalone, easy to run tool created to read, validate and troubleshoot Workflow components configuration as well as runtime. It identifies areas where potential problems may arise and based on set of best practices suggests the Workflow System Administrator what to do when such potential problems are found. This tool represents a proactive way to verify Workflow configuration and runtime data to prevent issues ahead of time before they may become of more considerable impact on a production environment. Installation Since it is standalone there are no pre-requisites and runs on Oracle E-Business applications from 11.5.10 onwards. It is installed in the back-end server and can be run directly from SQL*Plus. The output of this tool is written in a HTML file friendly formatted containing the following on both workflow Components configuration and Workflow Runtime data: Workflow-related database initialization parameters Relevant Oracle E-Business profile option values Workflow-owned concurrent programs schedule and Workflow components status Workflow notification mailer configuration and throughput via related queues and table Workflow-relevant recommended and critical one-off patches as well as current code level Workflow database footprint by reading Workflow run-time tables to identify aged processes not being purged. It also checks for large open and closed processes or unhealthy looping conditions in a workflow process, among other checks. See a sample of Workflow Analyzer's output here.  Besides performing the validations listed above, the Workflow Analyzer provides clarification on the issues it finds and refers the reader to specific Oracle MOS documents to address the findings or explains the condition for the reader to take proper action. How to get it? The Workflow Analyzer can be obtained from Oracle MOS Workflow Analyzer script for E-Business Suite Workflow Monitoring and Maintenance (Doc ID 1369938.1) and the supplemental note How to run EBS Workflow Analyzer Tool as a Concurrent Request (Doc ID 1425053.1) explains how to register and run this tool as a concurrent program. This way the report from the Workflow Analyzer can be submitted from the Application and its output can be seen from the application as well.

    Read the article

  • [Kubuntu 14.04][Eclipse] (ADT) crashes at button OK from Project properties

    - by nouseforname
    Since i upgraded to kubuntu 14.04, my Eclipse crashes at different situations. Mostly i can "simulate" it when going to project properties and press ok. Then it always crashes. My system: DISTRIB_ID=Ubuntu DISTRIB_RELEASE=14.04 DISTRIB_CODENAME=trusty DISTRIB_DESCRIPTION="Ubuntu 14.04.1 LTS" My Java: java version "1.8.0_05" Java(TM) SE Runtime Environment (build 1.8.0_05-b13) Java HotSpot(TM) 64-Bit Server VM (build 25.5-b02, mixed mode) My ADT Version: Android Development Toolkit Version: 23.0.0.1245622 I already tried to add this in adt-bundle-linux-x86_64/eclipse/configuration/configuration.ini org.eclipse.swt.browser.DefaultType=mozilla -Dorg.eclipse.swt.browser.DefaultType=mozilla Error: # # A fatal error has been detected by the Java Runtime Environment: # # SIGSEGV (0xb) at pc=0x00007fe049eb1718, pid=5964, tid=140601811232512 # # JRE version: Java(TM) SE Runtime Environment (8.0_05-b13) (build 1.8.0_05-b13) # Java VM: Java HotSpot(TM) 64-Bit Server VM (25.5-b02 mixed mode linux-amd64 compressed oops) # Problematic frame: # C [libgobject-2.0.so.0+0x19718] g_object_get_qdata+0x18 # # Core dump written. Default location: /home/maddin/core or core.5964 # # An error report file with more information is saved as: # /home/maddin/hs_err_pid5964.log Compiled method (nm) 28866 4166 n 0 org.eclipse.swt.internal.gtk.OS::_g_object_get_qdata (native) total in heap [0x00007fe051da6790,0x00007fe051da6af0] = 864 relocation [0x00007fe051da68b0,0x00007fe051da68f8] = 72 main code [0x00007fe051da6900,0x00007fe051da6ae8] = 488 oops [0x00007fe051da6ae8,0x00007fe051da6af0] = 8 # # If you would like to submit a bug report, please visit: # http://bugreport.sun.com/bugreport/crash.jsp # The crash happened outside the Java Virtual Machine in native code. # See problematic frame for where to report the bug. # Now, as soon as i change SystemSettings - Application Apperance - GTK - GTKn-Design to something else but "oxygen-gtk" this crash doesn't happen anymore. But the application appearance also is ugly. Beside that i get a lot of errors/warnings like that: (SWT:6148): GLib-GObject-CRITICAL **: g_closure_add_invalidate_notifier: assertion 'closure->n_inotifiers < CLOSURE_MAX_N_INOTIFIERS' failed or other GTK warnings from the particular design, not having theme-engine. Which actually doesn't cause any crahs it seems so far. So i have 3 options: accept crashes accept warnings (maybe the best choice) accept ugly design What can i do to solve this issue without changing the design settings?

    Read the article

  • can't run sqldeveloper on Ubuntu

    - by nazar_art
    I tried to install sqldeveloper by following way: Download SQL Developer from Oracle website (I chose Other Platforms download). Extract file to /opt: sudo unzip sqldeveloper-*-no-jre.zip -d /opt/ sudo chmod +x /opt/sqldeveloper/sqldeveloper.sh Linking over an in-path launcher for Oracle SQL Developer: sudo ln -s /opt/sqldeveloper/sqldeveloper.sh /usr/local/bin/sqldeveloper Edit /usr/local/bin/sqldeveloper.sh replace it's content to: #!/bin/bash cd /opt/sqldeveloper/sqldeveloper/bin ./sqldeveloper "$@" Run SQL Developer: sqldeveloper But it shows next output: nazar@lelyak-desktop:/opt/sqldeveloper? ./sqldeveloper.sh Oracle SQL Developer Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. LOAD TIME : 401# # A fatal error has been detected by the Java Runtime Environment: # # SIGSEGV (0xb) at pc=0x00007f3b2dcacbe0, pid=20351, tid=139892273444608 # # JRE version: Java(TM) SE Runtime Environment (7.0_65-b17) (build 1.7.0_65-b17) # Java VM: Java HotSpot(TM) 64-Bit Server VM (24.65-b04 mixed mode linux-amd64 compressed oops) # Problematic frame: # C 0x00007f3b2dcacbe0 # # Core dump written. Default location: /opt/sqldeveloper/sqldeveloper/bin/core or core.20351 # # An error report file with more information is saved as: # /tmp/hs_err_pid20351.log # # If you would like to submit a bug report, please visit: # http://bugreport.sun.com/bugreport/crash.jsp # /opt/sqldeveloper/sqldeveloper/bin/../../ide/bin/launcher.sh: line 1193: 20351 Aborted (core dumped) ${JAVA} "${APP_VM_OPTS[@]}" ${APP_ENV_VARS} -classpath ${APP_CLASSPATH} ${APP_MAIN_CLASS} "${APP_APP_OPTS[@]}" 134 nazar@lelyak-desktop:/opt/sqldeveloper? java -version java version "1.7.0_65" Java(TM) SE Runtime Environment (build 1.7.0_65-b17) Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode) Here is content of /tmp/hs_err_pid20351.log How to solve this trouble?

    Read the article

  • Oracle SOA Suite for healthcare integration Dashboard

    - by Nitesh Jain
    Oracle SOA Suite Healthcare came up with a new way of monitoring where user can configure a dashboard and follow the dynamic runtime changes.Oracle SOA Suite for healthcare integration dashboards display information about the current health of the endpoints in a healthcare integration application. You can create and configure multiple dashboards as needed to monitor the status and volume metrics for the endpoints you have defined. The Dashboards reflects changes that occur in the runtime repository, such as purging runtime instance data, new messages processed, and new error messages. You can display data for various time periods, and you can manually refresh the data in real time or set the dashboard to automatically refresh at set intervals.Dashboard shows the following information: Status: The current status of the endpoint, such as Running, Idle, Disabled, or Errors. Messages Sent: The number of messages sent by the endpoint in the specified time period. Messages Received: The number of messages received by the endpoint in the specified time period. Errors: The number of messages with errors for the endpoint in the given time period. Last Sent: The date and time the last message was sent from the endpoint. Last Received: The date and time the last message was received from the endpoint. Last Error: The date and time of the last error for the endpoint.  It also shows the detailed view of a specific Endpoint The document type. The number of messages received per second. The total number of message processed in the specified time period. The average size of each message.

    Read the article

  • Dynamic Monitoring Service (DMS) Configuration Dumping and CPU Utilization

    - by ShawnBailey
    There was recently a report of CPU spikes on a system that were occuring at precise 3 hour intervals. Research revealed that the spikes were the result of the Dynamic Monitoring Service generating a metrics dump and writing it under the server 'logs' folder for every WLS server in the domain. This blog provides some information on what this is for and how to control it. The Dynamic Monitoring Service is a facility in FMw (JRF to be more precise) that collects runtime data on the components deployed to WebLogic. Each component is responsible for how much or how little they use the service and SOA collects a fair amount of information. To view what is collected on any running server you can use the following URL, http://host:port/dms/Spy and login with admin credentials. DMS is essentially always running and collecting this information in the runtime and to protect against loss of this data it also runs automatic backups, by default at the 3 hour interval mentioned above. Most of the management options for DMS are exposed through WLST but these settings are not so we must open the dms_config.xml file which can be found in DOMAIN_HOME/config/fmwconfig/servers/<server_name>/dms_config.xml. The contents are fairly short and at the bottom you will find the following entry: <dumpConfiguration>     <dump intervalSeconds="10800" maxSizeMBytes="75" enabled="true"/> </dumpConfiguration> The interval of 10800 seconds corresponds to the 3 hours and the maximum size is 75MB. The file is written as an archive to DOMAIN_HOME/servers/<server_name>/logs/metrics. This archive contains the dump in XML format. You can disable the dumps all together by simply setting the 'enabled' value to 'false' or of course you could modify the other parameters to suit your needs. Disabling the dumps will NOT impact DMS collections or display at runtime. It will only eliminate these periodic backups.

    Read the article

  • Eclipse Galileo won't start after OS X update to 10.6.3

    - by GC
    Hi All, I have just updated os x to 10.6.3 and no Eclipse won't start the logs show the following error, but I can't figure it out. Can anyone shed any light? !SESSION 2010-03-30 10:06:38.244 ----------------------------------------------- eclipse.buildId=M20090917-0800 java.version=1.6.0_17 java.vendor=Apple Inc. BootLoader constants: OS=macosx, ARCH=x86, WS=cocoa, NL=en_US Framework arguments: -product org.eclipse.epp.package.php.product -keyring /Users/gav/.eclipse_keyring -showlocation Command-line arguments: -os macosx -ws cocoa -arch x86 -product org.eclipse.epp.package.php.product -keyring /Users/gav/.eclipse_keyring -showlocation !ENTRY org.eclipse.ui.workbench 2 0 2010-03-30 10:06:40.139 !MESSAGE A handler conflict occurred. This may disable some commands. !SUBENTRY 1 org.eclipse.ui.workbench 2 0 2010-03-30 10:06:40.139 !MESSAGE Conflict for 'com.aptana.ide.editors.views.actions.actionKeyCommand': HandlerActivation(commandId=com.aptana.ide.editors.views.actions.actionKeyCommand, handler=com.aptana.ide.editors.views.actions.ActionKeyCommandHandler, expression=,sourcePriority=0) HandlerActivation(commandId=com.aptana.ide.editors.views.actions.actionKeyCommand, handler=com.aptana.ide.editors.views.actions.ActionKeyCommandHandler, expression=,sourcePriority=0) !ENTRY org.eclipse.ui 4 0 2010-03-30 10:06:40.964 !MESSAGE Unhandled event loop exception !STACK 0 java.lang.NullPointerException at org.eclipse.swt.graphics.Device.getFontList(Device.java:369) at org.eclipse.jface.resource.FontRegistry.filterData(FontRegistry.java:465) at org.eclipse.jface.resource.FontRegistry.createFont(FontRegistry.java:499) at org.eclipse.jface.resource.FontRegistry.defaultFontRecord(FontRegistry.java:563) at org.eclipse.jface.resource.FontRegistry.defaultFontData(FontRegistry.java:575) at org.eclipse.jface.resource.FontRegistry.getFontData(FontRegistry.java:591) at org.eclipse.ui.internal.themes.ThemeElementHelper.installFont(ThemeElementHelper.java:116) at org.eclipse.ui.internal.themes.ThemeElementHelper.populateRegistry(ThemeElementHelper.java:59) at org.eclipse.ui.internal.Workbench$33.runWithException(Workbench.java:1482) at org.eclipse.ui.internal.StartupThreading$StartupRunnable.run(StartupThreading.java:31) at org.eclipse.swt.widgets.RunnableLock.run(RunnableLock.java:35) at org.eclipse.swt.widgets.Synchronizer.runAsyncMessages(Synchronizer.java:134) at org.eclipse.swt.widgets.Display.runAsyncMessages(Display.java:3405) at org.eclipse.swt.widgets.Display.readAndDispatch(Display.java:3102) at org.eclipse.ui.internal.Workbench.runUI(Workbench.java:2316) at org.eclipse.ui.internal.Workbench.access$4(Workbench.java:2221) at org.eclipse.ui.internal.Workbench$5.run(Workbench.java:500) at org.eclipse.core.databinding.observable.Realm.runWithDefault(Realm.java:332) at org.eclipse.ui.internal.Workbench.createAndRunWorkbench(Workbench.java:493) at org.eclipse.ui.PlatformUI.createAndRunWorkbench(PlatformUI.java:149) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:113) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:194) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:368) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:559) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:514) at org.eclipse.equinox.launcher.Main.run(Main.java:1311) It looks like the update may have upgraded the Java version, possibly :S but I don't know if this can be rolled back even if it did update it. java version "1.6.0_17" Java(TM) SE Runtime Environment (build 1.6.0_17-b04-248-10M3025) Java HotSpot(TM) 64-Bit Server VM (build 14.3-b01-101, mixed mode) Thanks in advance!

    Read the article

  • Geb not working with chrome driver

    - by user2346867
    @Grapes([ @Grab("org.gebish:geb-core:0.9.0"), @Grab("org.gebish:geb-spock:0.9.0"), @Grab("org.seleniumhq.selenium:selenium-firefox-driver:2.33.0"), @Grab("org.seleniumhq.selenium:selenium-chrome-driver:2.33.0"), @Grab("org.seleniumhq.selenium:selenium-support:2.26.0"), @Grab( group='org.spockframework', module='spock-core', version='0.3' ), @Grab(group='org.gebish', module='geb-implicit-assertions', version='0.9.0') ]) import geb.Browser import geb.spock.GebReportingSpec import org.openqa.selenium.chrome.* import spock.lang.Specification import geb.navigator.NonEmptyNavigator import geb.navigator.factory.* System.setProperty("webdriver.chrome.driver", "C:\\chromedriver\\chromedriver.exe"); def browser = new Browser(driver: new ChromeDriver()) browser.go "http://www.google.com/" assert browser.title == "Google" browser.$("input", name: "q").value("query") When i try to run the above code i am getting the following error WARNING: Sanitizing stacktrace: java.lang.NoClassDefFoundError: Could not initialize class geb.navigator.NonEmptyNavigator at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:171) at geb.navigator.factory.DefaultInnerNavigatorFactory.class$(DefaultInnerNavigatorFactory.groovy) at geb.navigator.factory.DefaultInnerNavigatorFactory.$get$$class$geb$navigator$NonEmptyNavigator(DefaultInnerNavigatorFactory.groovy) at geb.navigator.factory.DefaultInnerNavigatorFactory.createNavigator(DefaultInnerNavigatorFactory.groovy:40) at geb.navigator.factory.InnerNavigatorFactory$createNavigator.call(Unknown Source) at geb.navigator.factory.AbstractNavigatorFactory.createFromWebElements(AbstractNavigatorFactory.groovy:44) at geb.navigator.factory.NavigatorFactory$createFromWebElements.callCurrent(Unknown Source) at geb.navigator.factory.BrowserBackedNavigatorFactory.getBase(BrowserBackedNavigatorFactory.groovy:33) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.groovy.reflection.CachedMethod.invoke(CachedMethod.java:90) at groovy.lang.MetaMethod.doMethodInvoke(MetaMethod.java:233) at groovy.lang.MetaClassImpl.getProperty(MetaClassImpl.java:1671) at groovy.lang.MetaClassImpl.getProperty(MetaClassImpl.java:3408) at geb.navigator.factory.AbstractNavigatorFactory.getProperty(AbstractNavigatorFactory.groovy) at org.codehaus.groovy.runtime.callsite.PogoGetPropertySite.getProperty(PogoGetPropertySite.java:47) at org.codehaus.groovy.runtime.callsite.AbstractCallSite.callGetProperty(AbstractCallSite.java:227) at geb.content.NavigableSupport.getNavigator(NavigableSupport.groovy:39) at geb.content.NavigableSupport.$(NavigableSupport.groovy:96) at geb.content.NavigableSupport$$.call(Unknown Source) at geb.Page.$(Page.groovy) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.groovy.reflection.CachedMethod.invoke(CachedMethod.java:90) at groovy.lang.MetaMethod.doMethodInvoke(MetaMethod.java:233) at groovy.lang.MetaClassImpl.invokeMethod(MetaClassImpl.java:1085) at groovy.lang.MetaClassImpl.invokeMethod(MetaClassImpl.java:909) at org.codehaus.groovy.runtime.InvokerHelper.invokePogoMethod(InvokerHelper.java:848) at org.codehaus.groovy.runtime.InvokerHelper.invokeMethod(InvokerHelper.java:831) at org.codehaus.groovy.runtime.ScriptBytecodeAdapter.invokeMethodN(ScriptBytecodeAdapter.java:164) at geb.Browser.methodMissing(Browser.groovy:193) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.codehaus.groovy.reflection.CachedMethod.invoke(CachedMethod.java:90) at groovy.lang.MetaClassImpl.invokeMissingMethod(MetaClassImpl.java:837) Any idea on this how to resolve it ???

    Read the article

  • WPF - Random hanging with file browser attached behaviour.

    - by Stimul8d
    Hi, I have an attached behavior defined thusly,.. public static class FileBrowserBehaviour { public static bool GetBrowsesOnClick(DependencyObject obj) { return (bool)obj.GetValue(BrowsesOnClickProperty); } public static void SetBrowsesOnClick(DependencyObject obj, bool value) { obj.SetValue(BrowsesOnClickProperty, value); } // Using a DependencyProperty as the backing store for BrowsesOnClick. This enables animation, styling, binding, etc... public static readonly DependencyProperty BrowsesOnClickProperty = DependencyProperty.RegisterAttached("BrowsesOnClick", typeof(bool), typeof(FileBrowserBehaviour), new FrameworkPropertyMetadata(false, new PropertyChangedCallback(BrowsesOnClickChanged))); public static void BrowsesOnClickChanged(DependencyObject obj, DependencyPropertyChangedEventArgs args) { FrameworkElement fe = obj as FrameworkElement; if ((bool)args.NewValue) { fe.PreviewMouseLeftButtonDown += new MouseButtonEventHandler(OpenFileBrowser); } else { fe.PreviewMouseLeftButtonDown -= new MouseButtonEventHandler(OpenFileBrowser); } } static void OpenFileBrowser(object sender, MouseButtonEventArgs e) { var tb = sender as TextBox; if (tb.Text.Length < 1 || tb.Text=="Click to browse..") { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = "Executables | *.exe"; if (ofd.ShowDialog() == true) { Debug.WriteLine("Setting textbox text-" + ofd.FileName); tb.Text = ofd.FileName; Debug.WriteLine("Set textbox text"); } } } } It's a nice simple attached behavior which pops open an OpenFileDialog when you click on a textbox and puts the filename in the box when you're done. It works maybe 40% of the time but the rest of the time the whole app hangs. The call stack at this point looks like this - [Managed to Native Transition] WindowsBase.dll!MS.Win32.UnsafeNativeMethods.GetMessageW(ref System.Windows.Interop.MSG msg, System.Runtime.InteropServices.HandleRef hWnd, int uMsgFilterMin, int uMsgFilterMax) + 0x15 bytes WindowsBase.dll!System.Windows.Threading.Dispatcher.GetMessage(ref System.Windows.Interop.MSG msg, System.IntPtr hwnd, int minMessage, int maxMessage) + 0x48 bytes WindowsBase.dll!System.Windows.Threading.Dispatcher.PushFrameImpl(System.Windows.Threading.DispatcherFrame frame = {System.Windows.Threading.DispatcherFrame}) + 0x8b bytes WindowsBase.dll!System.Windows.Threading.Dispatcher.PushFrame(System.Windows.Threading.DispatcherFrame frame) + 0x49 bytes WindowsBase.dll!System.Windows.Threading.Dispatcher.Run() + 0x4c bytes PresentationFramework.dll!System.Windows.Application.RunDispatcher(object ignore) + 0x1e bytes PresentationFramework.dll!System.Windows.Application.RunInternal(System.Windows.Window window) + 0x6f bytes PresentationFramework.dll!System.Windows.Application.Run(System.Windows.Window window) + 0x26 bytes PresentationFramework.dll!System.Windows.Application.Run() + 0x19 bytes Debugatron.exe!Debugatron.App.Main() + 0x5e bytes C# [Native to Managed Transition] [Managed to Native Transition] mscorlib.dll!System.AppDomain.nExecuteAssembly(System.Reflection.Assembly assembly, string[] args) + 0x19 bytes mscorlib.dll!System.Runtime.Hosting.ManifestRunner.Run(bool checkAptModel) + 0x6e bytes mscorlib.dll!System.Runtime.Hosting.ManifestRunner.ExecuteAsAssembly() + 0x84 bytes mscorlib.dll!System.Runtime.Hosting.ApplicationActivator.CreateInstance(System.ActivationContext activationContext, string[] activationCustomData) + 0x65 bytes mscorlib.dll!System.Runtime.Hosting.ApplicationActivator.CreateInstance(System.ActivationContext activationContext) + 0xa bytes mscorlib.dll!System.Activator.CreateInstance(System.ActivationContext activationContext) + 0x3e bytes Microsoft.VisualStudio.HostingProcess.Utilities.dll!Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssemblyDebugInZone() + 0x23 bytes mscorlib.dll!System.Threading.ThreadHelper.ThreadStart_Context(object state) + 0x66 bytes mscorlib.dll!System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext executionContext, System.Threading.ContextCallback callback, object state) + 0x6f bytes mscorlib.dll!System.Threading.ThreadHelper.ThreadStart() + 0x44 bytes Now, I've seen this kind of thing before when doing some asynchronous stuff but there's none of that going on at that point. The only thread alive is the UI thread! Also, I always get that last debug statement when it does hang. Can anyone point me in the right direction? This one's driving me crazy!

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Threading Overview

    - by ACShorten
    One of the major features of the batch framework is the ability to support multi-threading. The multi-threading support allows a site to increase throughput on an individual batch job by splitting the total workload across multiple individual threads. This means each thread has fine level control over a segment of the total data volume at any time. The idea behind the threading is based upon the notion that "many hands make light work". Each thread takes a segment of data in parallel and operates on that smaller set. The object identifier allocation algorithm built into the product randomly assigns keys to help ensure an even distribution of the numbers of records across the threads and to minimize resource and lock contention. The best way to visualize the concept of threading is to use a "pie" analogy. Imagine the total workset for a batch job is a "pie". If you split that pie into equal sized segments, each segment would represent an individual thread. The concept of threading has advantages and disadvantages: Smaller elapsed runtimes - Jobs that are multi-threaded finish earlier than jobs that are single threaded. With smaller amounts of work to do, jobs with threading will finish earlier. Note: The elapsed runtime of the threads is rarely proportional to the number of threads executed. Even though contention is minimized, some contention does exist for resources which can adversely affect runtime. Threads can be managed individually – Each thread can be started individually and can also be restarted individually in case of failure. If you need to rerun thread X then that is the only thread that needs to be resubmitted. Threading can be somewhat dynamic – The number of threads that are run on any instance can be varied as the thread number and thread limit are parameters passed to the job at runtime. They can also be configured using the configuration files outlined in this document and the relevant manuals.Note: Threading is not dynamic after the job has been submitted Failure risk due to data issues with threading is reduced – As mentioned earlier individual threads can be restarted in case of failure. This limits the risk to the total job if there is a data issue with a particular thread or a group of threads. Number of threads is not infinite – As with any resource there is a theoretical limit. While the thread limit can be up to 1000 threads, the number of threads you can physically execute will be limited by the CPU and IO resources available to the job at execution time. Theoretically with the objects identifiers evenly spread across the threads the elapsed runtime for the threads should all be the same. In other words, when executing in multiple threads theoretically all the threads should finish at the same time. Whilst this is possible, it is also possible that individual threads may take longer than other threads for the following reasons: Workloads within the threads are not always the same - Whilst each thread is operating on the roughly the same amounts of objects, the amount of processing for each object is not always the same. For example, an account may have a more complex rate which requires more processing or a meter has a complex amount of configuration to process. If a thread has a higher proportion of objects with complex processing it will take longer than a thread with simple processing. The amount of processing is dependent on the configuration of the individual data for the job. Data may be skewed – Even though the object identifier generation algorithm attempts to spread the object identifiers across threads there are some jobs that use additional factors to select records for processing. If any of those factors exhibit any data skew then certain threads may finish later. For example, if more accounts are allocated to a particular part of a schedule then threads in that schedule may finish later than other threads executed. Threading is important to the success of individual jobs. For more guidelines and techniques for optimizing threading refer to Multi-Threading Guidelines in the Batch Best Practices for Oracle Utilities Application Framework based products (Doc Id: 836362.1) whitepaper available from My Oracle Support

    Read the article

  • JavaOne 2012: Nashorn Edition

    - by $utils.escapeXML($entry.author)
    As with my JavaOne 2012: OpenJDK Edition post a while back (now updated to reflect the schedule of the talks), I find it convenient to have my JavaOne schedule ordered by subjects of interest. Beside OpenJDK in all its flavors, another subject I find very exciting is Nashorn. I blogged about the various material on Nashorn in the past, and we interviewed Jim Laskey, the Project Lead on Project Nashorn in the Java Spotlight podcast. So without further ado, here are the JavaOne 2012 talks and BOFs with Nashorn in their title, or abstract:CON5390 - Nashorn: Optimizing JavaScript and Dynamic Language Execution on the JVM - Monday, Oct 1, 8:30 AM - 9:30 AMThere are many implementations of JavaScript, meant to run either on the JVM or standalone as native code. Both approaches have their respective pros and cons. The Oracle Nashorn JavaScript project is based on the former approach. This presentation goes through the performance work that has gone on in Oracle’s Nashorn JavaScript project to date in order to make JavaScript-to-bytecode generation for execution on the JVM feasible. It shows that the new invoke dynamic bytecode gets us part of the way there but may not quite be enough. What other tricks did the Nashorn project use? The presentation also discusses future directions for increased performance for dynamic languages on the JVM, covering proposed enhancements to both the JVM itself and to the bytecode compiler.CON4082 - Nashorn: JavaScript on the JVM - Monday, Oct 1, 3:00 PM - 4:00 PMThe JavaScript programming language has been experiencing a renaissance of late, driven by the interest in HTML5. Nashorn is a JavaScript engine implemented fully in Java on the JVM. It is based on the Da Vinci Machine (JSR 292) and will be available with JDK 8. This session describes the goals of Project Nashorn, gives a top-level view of how it all works, provides the current status, and demonstrates examples of JavaScript and Java working together.BOF4763 - Meet the Nashorn JavaScript Team - Tuesday, Oct 2, 4:30 PM - 5:15 PMCome to this session to meet the Oracle JavaScript (Project Nashorn) language teamBOF6661 - Nashorn, Node, and Java Persistence - Tuesday, Oct 2, 5:30 PM - 6:15 PMWith Project Nashorn, developers will have a full and modern JavaScript engine available on the JVM. In addition, they will have support for running Node applications with Node.jar. This unique combination of capabilities opens the door for best-of-breed applications combining Node with Java SE and Java EE. In this session, you’ll learn about Node.jar and how it can be combined with Java EE components such as EclipseLink JPA for rich Java persistence. You’ll also hear about all of Node.jar’s mapping, caching, querying, performance, and scaling features.CON10657 - The Polyglot Java VM and Java Middleware - Thursday, Oct 4, 12:30 PM - 1:30 PMIn this session, Red Hat and Oracle discuss the impact of polyglot programming from their own unique perspectives, examining non-Java languages that utilize Oracle’s Java HotSpot VM. You’ll hear a discussion of topics relating to Ruby, Lisp, and Clojure and the intersection of other languages where they may touch upon individual frameworks and projects, and you’ll get perspectives on JavaScript via the Nashorn Project, an upcoming JavaScript engine, developed fully in Java.CON5251 - Putting the Metaobject Protocol to Work: Nashorn’s Java Bindings - Thursday, Oct 4, 2:00 PM - 3:00 PMProject Nashorn is Oracle’s new JavaScript runtime in Java 8. Being a JavaScript runtime running on the JVM, it provides integration with the underlying runtime by enabling JavaScript objects to manipulate Java objects, implement Java interfaces, and extend Java classes. Nashorn is invokedynamic-based, and for its Java integration, it does away with the concept of wrapper objects in favor of direct virtual machine linking to Java objects’ methods provided by a metaobject protocol, providing much higher performance than what could be expected from a scripting runtime. This session looks at the details of the integration, a topic of interest to other language implementers on the JVM and a wider audience of developers who want to understand how Nashorn works.That's 6 sessions tooting the Nashorn this year at JavaOne, up from 2 last year.

    Read the article

  • bind a WPF datagrid to a datatable

    - by Jim Thomas
    I have used the marvelous example posted at: http://www.codeproject.com/KB/WPF/WPFDataGridExamples.aspx to bind a WPF datagrid to a datatable. The source code below compiles fine; it even runs and displays the contents of the InfoWork datatable in the wpf datagrid. Hooray! But the WPF page with the datagrid will not display in the designer. I get an incomprehensible error instead on my design page which is shown at the end of this posting. I assume the designer is having some difficulty instantiating the dataview for display in the grid. How can I fix that? XAML Code: xmlns:local="clr-namespace:InfoSeeker" <Window.Resources> <ObjectDataProvider x:Key="InfoWorkData" ObjectType="{x:Type local:InfoWorkData}" /> <ObjectDataProvider x:Key="InfoWork" ObjectInstance="{StaticResource InfoWorkData}" MethodName="GetInfoWork" /> </Window.Resources> <my:DataGrid DataContext="{Binding Source={StaticResource InfoWork}}" AutoGenerateColumns="True" ItemsSource="{Binding}" Name="dataGrid1" xmlns:my="http://schemas.microsoft.com/wpf/2008/toolkit" /> C# Code: namespace InfoSeeker { public class InfoWorkData { private InfoTableAdapters.InfoWorkTableAdapter infoAdapter; private Info infoDS; public InfoWorkData() { infoDS = new Info(); infoAdapter = new InfoTableAdapters.InfoWorkTableAdapter(); infoAdapter.Fill(infoDS.InfoWork); } public DataView GetInfoWork() { return infoDS.InfoWork.DefaultView; } } } Error shown in place of the designer page which has the grid on it: An unhandled exception has occurred: Type 'MS.Internal.Permissions.UserInitiatedNavigationPermission' in Assembly 'PresentationFramework, Version=3.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' is not marked as serializable. at System.Runtime.Serialization.FormatterServices.InternalGetSerializableMembers(RuntimeType type) at System.Runtime.Serialization.FormatterServices.GetSerializableMembers(Type type, StreamingContext context) at System.Runtime.Serialization.Formatters.Binary.WriteObjectInfo.InitMemberInfo() at System.Runtime.Serialization.Formatters.Binary.WriteObjectInfo.InitSerialize(Object obj, ISurrogateSelector surrogateSelector, StreamingContext context, SerObjectInfoInit serObjectInfoInit, IFormatterConverter converter, ObjectWriter objectWriter) ...At:Ms.Internal.Designer.DesignerPane.LoadDesignerView()

    Read the article

  • Unable to launch Eclipse 4.1.2 after installing the Eclipse e4 tooling

    - by Kuldeep Jain
    After installing Eclipse e4 Tools in my Eclipse 4.1.2 from update site. I am getting error when launching the eclipse.exe "An error has occurred. See the log file <my_workspace_path>\.metadata\.log". And the content of .log file are: !SESSION 2012-04-06 16:00:01.609 ----------------------------------------------- eclipse.buildId=M20120223-0900 java.fullversion=J2RE 1.6.0 IBM J9 2.4 Windows XP x86-32 jvmwi3260sr5-20090519_35743 (JIT enabled, AOT enabled) J9VM - 20090519_035743_lHdSMr JIT - r9_20090518_2017 GC - 20090417_AA BootLoader constants: OS=win32, ARCH=x86, WS=win32, NL=en_US Command-line arguments: -os win32 -ws win32 -arch x86 -clean -console !ENTRY org.eclipse.osgi 4 0 2012-04-06 16:00:17.343 !MESSAGE Application error !STACK 1 java.lang.ArrayIndexOutOfBoundsException: Array index out of range: 1 at org.eclipse.emf.common.util.URI.segment(URI.java:1731) at org.eclipse.e4.ui.internal.workbench.ReflectionContributionFactory.getBundle(ReflectionContributionFactory.java:135) at org.eclipse.e4.ui.internal.workbench.ReflectionContributionFactory.doCreate(ReflectionContributionFactory.java:61) at org.eclipse.e4.ui.internal.workbench.ReflectionContributionFactory.create(ReflectionContributionFactory.java:53) at org.eclipse.e4.ui.internal.workbench.E4Workbench.processHierarchy(E4Workbench.java:196) at org.eclipse.e4.ui.internal.workbench.E4Workbench.init(E4Workbench.java:122) at org.eclipse.e4.ui.internal.workbench.E4Workbench.<init>(E4Workbench.java:73) at org.eclipse.e4.ui.internal.workbench.swt.E4Application.createE4Workbench(E4Application.java:293) at org.eclipse.ui.internal.Workbench$3.run(Workbench.java:534) at org.eclipse.core.databinding.observable.Realm.runWithDefault(Realm.java:332) at org.eclipse.ui.internal.Workbench.createAndRunWorkbench(Workbench.java:520) at org.eclipse.ui.PlatformUI.createAndRunWorkbench(PlatformUI.java:149) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:123) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:344) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:37) at java.lang.reflect.Method.invoke(Method.java:599) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:622) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:577) at org.eclipse.equinox.launcher.Main.run(Main.java:1410) I also tried the eclipse.exe -clean to launch it but getting same error.

    Read the article

  • VSTO Development - Key Improvements In VS2010 / .NET 4.0?

    - by dferraro
    Hi all, I am trying to make a case to my bosses on why we should use VS2010 for an upcoming Excel Workbook VSTO application. I haven't used VSTO before but have used VBA. With 2010 just around the corner, I wanted to read about the improvements made to see if it was worth using 2010 to develop this application. So far I have read 2 major improvements are ease of deployments and also debugging / com interop improvements ... I was just wondering if there was anything else I wasn't aware of, or if anyone here is actually developing in VSTO and has used 2010 and both 2008 and could help make a case / arm me with information. The main concern of my bosses is deploying .NET 4.0 runtime on the Citrix servers here... however it seems that with 3.5, we would have to deploy the VSTO runtime and PIA's, etc... So really wouldn't deployments be easier with 2010 because installing just the 4.0 runtime is better than having to install the 'VSTO Runtime' as well as PIA's, etc? Or is there something I'm missing here? Anyone here deploy VSTO app in an enterprise and can speak to this? Also - I'm trying to also fight to use C# over VB.NET for this app. Does anyone know any key reasons why (except for my bias on preference of syntax) it would be better to use C# over VB for this? Any key features lacking in VB VSTO development? I've read about the VSTO Power Tools, and one of them describes LINQ enalbment of the Excel Object Model classes - however it says 'a set of C# classes'... Does anyone know if they literally mean C# - so this would not work with VB.NET, or do they just mean the code is written in C#? Anyone ever used these power tools with VB? I am going to download & play with it now, but any help again is greatly appreciated Thanks very much for any information.

    Read the article

< Previous Page | 40 41 42 43 44 45 46 47 48 49 50 51  | Next Page >