Search Results

Search found 13177 results on 528 pages for 'jboss tools'.

Page 447/528 | < Previous Page | 443 444 445 446 447 448 449 450 451 452 453 454  | Next Page >

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • JPA/Hibernate Embedded id

    - by RoD
    I would like to do something like that: An object ReportingFile that can be a LogRequest or a LogReport file. ( both got the same structure) An object Reporting containing for one logRequest, a list of logReport with a date. I tryed to set an EmbededId, that would be an attribute of the logRequest. And that's the problem i got. I don't arrive to mannage embedded id. ( http://docs.jboss.org/hibernate/stable/annotations/reference/en/html_single/#entity-mapping-identifier ) If you have a clue on how i should do it :) An example (not working) would be: @Entity @AssociationOverride( name="logRequest.fileName", joinColumns = { @JoinColumn(name="log_request_file_name") } ) public class Reporting { @EmbeddedId private ReportingFile logRequest; @CollectionOfElements(fetch = FetchType.EAGER) @JoinTable(name = "t_reports", schema="", joinColumns = {@JoinColumn(name = "log_report")}) @Fetch(FetchMode.SELECT) private List<ReportingFile> reports; @Column(name="generated_date",nullable=true) private Date generatedDate; [...] } @Embeddable public class ReportingFile { @Column(name="file_name",length=255) private String fileName; @Column(name="xml_content") private Clob xmlContent; [...] } In this sample, i have a the following error: 15.03.2010 16:37:59 [ERROR] org.springframework.web.context.ContextLoader Context initialization failed org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor#0' defined in class path resource [config/persistenceContext.xml]: Initialization of bean failed; nested exception is org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'entityManagerFactory' defined in class path resource [config/persistenceContext.xml]: Invocation of init method failed; nested exception is javax.persistence.PersistenceException: [PersistenceUnit: test] Unable to configure EntityManagerFactory at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:480) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) at java.security.AccessController.doPrivileged(Native Method) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:221) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:164) at org.springframework.context.support.AbstractApplicationContext.getBean(AbstractApplicationContext.java:881) at org.springframework.context.support.AbstractApplicationContext.registerBeanPostProcessors(AbstractApplicationContext.java:597) at org.springframework.context.support.AbstractApplicationContext.refresh(AbstractApplicationContext.java:366) at org.springframework.web.context.ContextLoader.createWebApplicationContext(ContextLoader.java:255) at org.springframework.web.context.ContextLoader.initWebApplicationContext(ContextLoader.java:199) at org.springframework.web.context.ContextLoaderListener.contextInitialized(ContextLoaderListener.java:45) at org.apache.catalina.core.StandardContext.listenerStart(StandardContext.java:3843) at org.apache.catalina.core.StandardContext.start(StandardContext.java:4350) at org.apache.catalina.core.ContainerBase.start(ContainerBase.java:1045) at org.apache.catalina.core.StandardHost.start(StandardHost.java:719) at org.apache.catalina.core.ContainerBase.start(ContainerBase.java:1045) at org.apache.catalina.core.StandardEngine.start(StandardEngine.java:443) at org.apache.catalina.core.StandardService.start(StandardService.java:516) at org.apache.catalina.core.StandardServer.start(StandardServer.java:710) at org.apache.catalina.startup.Catalina.start(Catalina.java:578) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.catalina.startup.Bootstrap.start(Bootstrap.java:288) at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:413) Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'entityManagerFactory' defined in class path resource [config/persistenceContext.xml]: Invocation of init method failed; nested exception is javax.persistence.PersistenceException: [PersistenceUnit: test] Unable to configure EntityManagerFactory at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1337) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:473) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) at java.security.AccessController.doPrivileged(Native Method) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:221) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:164) at org.springframework.beans.factory.support.DefaultListableBeanFactory.getBeansOfType(DefaultListableBeanFactory.java:308) at org.springframework.beans.factory.BeanFactoryUtils.beansOfTypeIncludingAncestors(BeanFactoryUtils.java:270) at org.springframework.dao.support.PersistenceExceptionTranslationInterceptor.detectPersistenceExceptionTranslators(PersistenceExceptionTranslationInterceptor.java:122) at org.springframework.dao.support.PersistenceExceptionTranslationInterceptor.<init>(PersistenceExceptionTranslationInterceptor.java:78) at org.springframework.dao.annotation.PersistenceExceptionTranslationAdvisor.<init>(PersistenceExceptionTranslationAdvisor.java:70) at org.springframework.dao.annotation.PersistenceExceptionTranslationPostProcessor.setBeanFactory(PersistenceExceptionTranslationPostProcessor.java:97) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1325) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:473) ... 29 more Caused by: javax.persistence.PersistenceException: [PersistenceUnit: test] Unable to configure EntityManagerFactory at org.hibernate.ejb.Ejb3Configuration.configure(Ejb3Configuration.java:265) at org.hibernate.ejb.HibernatePersistence.createEntityManagerFactory(HibernatePersistence.java:125) at javax.persistence.Persistence.createEntityManagerFactory(Persistence.java:83) at org.springframework.orm.jpa.LocalEntityManagerFactoryBean.createNativeEntityManagerFactory(LocalEntityManagerFactoryBean.java:91) at org.springframework.orm.jpa.AbstractEntityManagerFactoryBean.afterPropertiesSet(AbstractEntityManagerFactoryBean.java:291) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.invokeInitMethods(AbstractAutowireCapableBeanFactory.java:1368) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.initializeBean(AbstractAutowireCapableBeanFactory.java:1334) ... 46 more Caused by: org.hibernate.AnnotationException: A Foreign key refering Reporting from Reporting has the wrong number of column. should be 2 at org.hibernate.cfg.annotations.TableBinder.bindFk(TableBinder.java:272) at org.hibernate.cfg.annotations.CollectionBinder.bindCollectionSecondPass(CollectionBinder.java:1319) at org.hibernate.cfg.annotations.CollectionBinder.bindManyToManySecondPass(CollectionBinder.java:1158) at org.hibernate.cfg.annotations.CollectionBinder.bindStarToManySecondPass(CollectionBinder.java:600) at org.hibernate.cfg.annotations.CollectionBinder$1.secondPass(CollectionBinder.java:541) at org.hibernate.cfg.CollectionSecondPass.doSecondPass(CollectionSecondPass.java:43) at org.hibernate.cfg.Configuration.secondPassCompile(Configuration.java:1140) at org.hibernate.cfg.AnnotationConfiguration.secondPassCompile(AnnotationConfiguration.java:319) at org.hibernate.cfg.Configuration.buildMappings(Configuration.java:1125) at org.hibernate.ejb.Ejb3Configuration.buildMappings(Ejb3Configuration.java:1226) at org.hibernate.ejb.EventListenerConfigurator.configure(EventListenerConfigurator.java:159) at org.hibernate.ejb.Ejb3Configuration.configure(Ejb3Configuration.java:854) at org.hibernate.ejb.Ejb3Configuration.configure(Ejb3Configuration.java:191) at org.hibernate.ejb.Ejb3Configuration.configure(Ejb3Configuration.java:253) ... 52 more

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • What&rsquo;s New in ASP.NET 4.0 Part Two: WebForms and Visual Studio Enhancements

    - by Rick Strahl
    In the last installment I talked about the core changes in the ASP.NET runtime that I’ve been taking advantage of. In this column, I’ll cover the changes to the Web Forms engine and some of the cool improvements in Visual Studio that make Web and general development easier. WebForms The WebForms engine is the area that has received most significant changes in ASP.NET 4.0. Probably the most widely anticipated features are related to managing page client ids and of ViewState on WebForm pages. Take Control of Your ClientIDs Unique ClientID generation in ASP.NET has been one of the most complained about “features” in ASP.NET. Although there’s a very good technical reason for these unique generated ids - they guarantee unique ids for each and every server control on a page - these unique and generated ids often get in the way of client-side JavaScript development and CSS styling as it’s often inconvenient and fragile to work with the long, generated ClientIDs. In ASP.NET 4.0 you can now specify an explicit client id mode on each control or each naming container parent control to control how client ids are generated. By default, ASP.NET generates mangled client ids for any control contained in a naming container (like a Master Page, or a User Control for example). The key to ClientID management in ASP.NET 4.0 are the new ClientIDMode and ClientIDRowSuffix properties. ClientIDMode supports four different ClientID generation settings shown below. For the following examples, imagine that you have a Textbox control named txtName inside of a master page control container on a WebForms page. <%@Page Language="C#"      MasterPageFile="~/Site.Master"     CodeBehind="WebForm2.aspx.cs"     Inherits="WebApplication1.WebForm2"  %> <asp:Content ID="content"  ContentPlaceHolderID="content"               runat="server"               ClientIDMode="Static" >       <asp:TextBox runat="server" ID="txtName" /> </asp:Content> The four available ClientIDMode values are: AutoID This is the existing behavior in ASP.NET 1.x-3.x where full naming container munging takes place. <input name="ctl00$content$txtName" type="text"        id="ctl00_content_txtName" /> This should be familiar to any ASP.NET developer and results in fairly unpredictable client ids that can easily change if the containership hierarchy changes. For example, removing the master page changes the name in this case, so if you were to move a block of script code that works against the control to a non-Master page, the script code immediately breaks. Static This option is the most deterministic setting that forces the control’s ClientID to use its ID value directly. No naming container naming at all is applied and you end up with clean client ids: <input name="ctl00$content$txtName"         type="text" id="txtName" /> Note that the name property which is used for postback variables to the server still is munged, but the ClientID property is displayed simply as the ID value that you have assigned to the control. This option is what most of us want to use, but you have to be clear on that because it can potentially cause conflicts with other controls on the page. If there are several instances of the same naming container (several instances of the same user control for example) there can easily be a client id naming conflict. Note that if you assign Static to a data-bound control, like a list child control in templates, you do not get unique ids either, so for list controls where you rely on unique id for child controls, you’ll probably want to use Predictable rather than Static. I’ll write more on this a little later when I discuss ClientIDRowSuffix. Predictable The previous two values are pretty self-explanatory. Predictable however, requires some explanation. To me at least it’s not in the least bit predictable. MSDN defines this value as follows: This algorithm is used for controls that are in data-bound controls. The ClientID value is generated by concatenating the ClientID value of the parent naming container with the ID value of the control. If the control is a data-bound control that generates multiple rows, the value of the data field specified in the ClientIDRowSuffix property is added at the end. For the GridView control, multiple data fields can be specified. If the ClientIDRowSuffix property is blank, a sequential number is added at the end instead of a data-field value. Each segment is separated by an underscore character (_). The key that makes this value a bit confusing is that it relies on the parent NamingContainer’s ClientID to build its own ClientID value. This effectively means that the value is not predictable at all but rather very tightly coupled to the parent naming container’s ClientIDMode setting. For my simple textbox example, if the ClientIDMode property of the parent naming container (Page in this case) is set to “Predictable” you’ll get this: <input name="ctl00$content$txtName" type="text"         id="content_txtName" /> which gives an id that based on walking up to the currently active naming container (the MasterPage content container) and starting the id formatting from there downward. Think of this as a semi unique name that’s guaranteed unique only for the naming container. If, on the other hand, the Page is set to “AutoID” you get the following with Predictable on txtName: <input name="ctl00$content$txtName" type="text"         id="ctl00_content_txtName" /> The latter is effectively the same as if you specified AutoID because it inherits the AutoID naming from the Page and Content Master Page control of the page. But again - predictable behavior always depends on the parent naming container and how it generates its id, so the id may not always be exactly the same as the AutoID generated value because somewhere in the NamingContainer chain the ClientIDMode setting may be set to a different value. For example, if you had another naming container in the middle that was set to Static you’d end up effectively with an id that starts with the NamingContainers id rather than the whole ctl000_content munging. The most common use for Predictable is likely to be for data-bound controls, which results in each data bound item getting a unique ClientID. Unfortunately, even here the behavior can be very unpredictable depending on which data-bound control you use - I found significant differences in how template controls in a GridView behave from those that are used in a ListView control. For example, GridView creates clean child ClientIDs, while ListView still has a naming container in the ClientID, presumably because of the template container on which you can’t set ClientIDMode. Predictable is useful, but only if all naming containers down the chain use this setting. Otherwise you’re right back to the munged ids that are pretty unpredictable. Another property, ClientIDRowSuffix, can be used in combination with ClientIDMode of Predictable to force a suffix onto list client controls. For example: <asp:GridView runat="server" ID="gvItems"              AutoGenerateColumns="false"             ClientIDMode="Static"              ClientIDRowSuffix="Id">     <Columns>     <asp:TemplateField>         <ItemTemplate>             <asp:Label runat="server" id="txtName"                        Text='<%# Eval("Name") %>'                   ClientIDMode="Predictable"/>         </ItemTemplate>     </asp:TemplateField>     <asp:TemplateField>         <ItemTemplate>         <asp:Label runat="server" id="txtId"                     Text='<%# Eval("Id") %>'                     ClientIDMode="Predictable" />         </ItemTemplate>     </asp:TemplateField>     </Columns>  </asp:GridView> generates client Ids inside of a column in the master page described earlier: <td>     <span id="txtName_0">Rick</span> </td> where the value after the underscore is the ClientIDRowSuffix field - in this case “Id” of the item data bound to the control. Note that all of the child controls require ClientIDMode=”Predictable” in order for the ClientIDRowSuffix to be applied, and the parent GridView controls need to be set to Static either explicitly or via Naming Container inheritance to give these simple names. It’s a bummer that ClientIDRowSuffix doesn’t work with Static to produce this automatically. Another real problem is that other controls process the ClientIDMode differently. For example, a ListView control processes the Predictable ClientIDMode differently and produces the following with the Static ListView and Predictable child controls: <span id="ctrl0_txtName_0">Rick</span> I couldn’t even figure out a way using ClientIDMode to get a simple ID that also uses a suffix short of falling back to manually generated ids using <%= %> expressions instead. Given the inconsistencies inside of list controls using <%= %>, ids for the ListView might not be a bad idea anyway. Inherit The final setting is Inherit, which is the default for all controls except Page. This means that controls by default inherit the parent naming container’s ClientIDMode setting. For more detailed information on ClientID behavior and different scenarios you can check out a blog post of mine on this subject: http://www.west-wind.com/weblog/posts/54760.aspx. ClientID Enhancements Summary The ClientIDMode property is a welcome addition to ASP.NET 4.0. To me this is probably the most useful WebForms feature as it allows me to generate clean IDs simply by setting ClientIDMode="Static" on either the page or inside of Web.config (in the Pages section) which applies the setting down to the entire page which is my 95% scenario. For the few cases when it matters - for list controls and inside of multi-use user controls or custom server controls) - I can use Predictable or even AutoID to force controls to unique names. For application-level page development, this is easy to accomplish and provides maximum usability for working with client script code against page controls. ViewStateMode Another area of large criticism for WebForms is ViewState. ViewState is used internally by ASP.NET to persist page-level changes to non-postback properties on controls as pages post back to the server. It’s a useful mechanism that works great for the overall mechanics of WebForms, but it can also cause all sorts of overhead for page operation as ViewState can very quickly get out of control and consume huge amounts of bandwidth in your page content. ViewState can also wreak havoc with client-side scripting applications that modify control properties that are tracked by ViewState, which can produce very unpredictable results on a Postback after client-side updates. Over the years in my own development, I’ve often turned off ViewState on pages to reduce overhead. Yes, you lose some functionality, but you can easily implement most of the common functionality in non-ViewState workarounds. Relying less on heavy ViewState controls and sticking with simpler controls or raw HTML constructs avoids getting around ViewState problems. In ASP.NET 3.x and prior, it wasn’t easy to control ViewState - you could turn it on or off and if you turned it off at the page or web.config level, you couldn’t turn it back on for specific controls. In short, it was an all or nothing approach. With ASP.NET 4.0, the new ViewStateMode property gives you more control. It allows you to disable ViewState globally either on the page or web.config level and then turn it back on for specific controls that might need it. ViewStateMode only works when EnableViewState="true" on the page or web.config level (which is the default). You can then use ViewStateMode of Disabled, Enabled or Inherit to control the ViewState settings on the page. If you’re shooting for minimal ViewState usage, the ideal situation is to set ViewStateMode to disabled on the Page or web.config level and only turn it back on particular controls: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"        ClientIDMode="Static"                ViewStateMode="Disabled"     EnableViewState="true"  %> <!-- this control has viewstate  --> <asp:TextBox runat="server" ID="txtName"  ViewStateMode="Enabled" />       <!-- this control has no viewstate - it inherits  from parent container --> <asp:TextBox runat="server" ID="txtAddress" /> Note that the EnableViewState="true" at the Page level isn’t required since it’s the default, but it’s important that the value is true. ViewStateMode has no effect if EnableViewState="false" at the page level. The main benefit of ViewStateMode is that it allows you to more easily turn off ViewState for most of the page and enable only a few key controls that might need it. For me personally, this is a perfect combination as most of my WebForm apps can get away without any ViewState at all. But some controls - especially third party controls - often don’t work well without ViewState enabled, and now it’s much easier to selectively enable controls rather than the old way, which required you to pretty much turn off ViewState for all controls that you didn’t want ViewState on. Inline HTML Encoding HTML encoding is an important feature to prevent cross-site scripting attacks in data entered by users on your site. In order to make it easier to create HTML encoded content, ASP.NET 4.0 introduces a new Expression syntax using <%: %> to encode string values. The encoding expression syntax looks like this: <%: "<script type='text/javascript'>" +     "alert('Really?');</script>" %> which produces properly encoded HTML: &lt;script type=&#39;text/javascript&#39; &gt;alert(&#39;Really?&#39;);&lt;/script&gt; Effectively this is a shortcut to: <%= HttpUtility.HtmlEncode( "<script type='text/javascript'>" + "alert('Really?');</script>") %> Of course the <%: %> syntax can also evaluate expressions just like <%= %> so the more common scenario applies this expression syntax against data your application is displaying. Here’s an example displaying some data model values: <%: Model.Address.Street %> This snippet shows displaying data from your application’s data store or more importantly, from data entered by users. Anything that makes it easier and less verbose to HtmlEncode text is a welcome addition to avoid potential cross-site scripting attacks. Although I listed Inline HTML Encoding here under WebForms, anything that uses the WebForms rendering engine including ASP.NET MVC, benefits from this feature. ScriptManager Enhancements The ASP.NET ScriptManager control in the past has introduced some nice ways to take programmatic and markup control over script loading, but there were a number of shortcomings in this control. The ASP.NET 4.0 ScriptManager has a number of improvements that make it easier to control script loading and addresses a few of the shortcomings that have often kept me from using the control in favor of manual script loading. The first is the AjaxFrameworkMode property which finally lets you suppress loading the ASP.NET AJAX runtime. Disabled doesn’t load any ASP.NET AJAX libraries, but there’s also an Explicit mode that lets you pick and choose the library pieces individually and reduce the footprint of ASP.NET AJAX script included if you are using the library. There’s also a new EnableCdn property that forces any script that has a new WebResource attribute CdnPath property set to a CDN supplied URL. If the script has this Attribute property set to a non-null/empty value and EnableCdn is enabled on the ScriptManager, that script will be served from the specified CdnPath. [assembly: WebResource(    "Westwind.Web.Resources.ww.jquery.js",    "application/x-javascript",    CdnPath =  "http://mysite.com/scripts/ww.jquery.min.js")] Cool, but a little too static for my taste since this value can’t be changed at runtime to point at a debug script as needed, for example. Assembly names for loading scripts from resources can now be simple names rather than fully qualified assembly names, which make it less verbose to reference scripts from assemblies loaded from your bin folder or the assembly reference area in web.config: <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <Scripts>         <asp:ScriptReference          Name="Westwind.Web.Resources.ww.jquery.js"         Assembly="Westwind.Web" />     </Scripts>        </asp:ScriptManager> The ScriptManager in 4.0 also supports script combining via the CompositeScript tag, which allows you to very easily combine scripts into a single script resource served via ASP.NET. Even nicer: You can specify the URL that the combined script is served with. Check out the following script manager markup that combines several static file scripts and a script resource into a single ASP.NET served resource from a static URL (allscripts.js): <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <CompositeScript          Path="~/scripts/allscripts.js">         <Scripts>             <asp:ScriptReference                    Path="~/scripts/jquery.js" />             <asp:ScriptReference                    Path="~/scripts/ww.jquery.js" />             <asp:ScriptReference            Name="Westwind.Web.Resources.editors.js"                 Assembly="Westwind.Web" />         </Scripts>     </CompositeScript> </asp:ScriptManager> When you render this into HTML, you’ll see a single script reference in the page: <script src="scripts/allscripts.debug.js"          type="text/javascript"></script> All you need to do to make this work is ensure that allscripts.js and allscripts.debug.js exist in the scripts folder of your application - they can be empty but the file has to be there. This is pretty cool, but you want to be real careful that you use unique URLs for each combination of scripts you combine or else browser and server caching will easily screw you up royally. The script manager also allows you to override native ASP.NET AJAX scripts now as any script references defined in the Scripts section of the ScriptManager trump internal references. So if you want custom behavior or you want to fix a possible bug in the core libraries that normally are loaded from resources, you can now do this simply by referencing the script resource name in the Name property and pointing at System.Web for the assembly. Not a common scenario, but when you need it, it can come in real handy. Still, there are a number of shortcomings in this control. For one, the ScriptManager and ClientScript APIs still have no common entry point so control developers are still faced with having to check and support both APIs to load scripts so that controls can work on pages that do or don’t have a ScriptManager on the page. The CdnUrl is static and compiled in, which is very restrictive. And finally, there’s still no control over where scripts get loaded on the page - ScriptManager still injects scripts into the middle of the HTML markup rather than in the header or optionally the footer. This, in turn, means there is little control over script loading order, which can be problematic for control developers. MetaDescription, MetaKeywords Page Properties There are also a number of additional Page properties that correspond to some of the other features discussed in this column: ClientIDMode, ClientTarget and ViewStateMode. Another minor but useful feature is that you can now directly access the MetaDescription and MetaKeywords properties on the Page object to set the corresponding meta tags programmatically. Updating these values programmatically previously required either <%= %> expressions in the page markup or dynamic insertion of literal controls into the page. You can now just set these properties programmatically on the Page object in any Control derived class on the page or the Page itself: Page.MetaKeywords = "ASP.NET,4.0,New Features"; Page.MetaDescription = "This article discusses the new features in ASP.NET 4.0"; Note, that there’s no corresponding ASP.NET tag for the HTML Meta element, so the only way to specify these values in markup and access them is via the @Page tag: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"      ClientIDMode="Static"                MetaDescription="Article that discusses what's                      new in ASP.NET 4.0"     MetaKeywords="ASP.NET,4.0,New Features" %> Nothing earth shattering but quite convenient. Visual Studio 2010 Enhancements for Web Development For Web development there are also a host of editor enhancements in Visual Studio 2010. Some of these are not Web specific but they are useful for Web developers in general. Text Editors Throughout Visual Studio 2010, the text editors have all been updated to a new core engine based on WPF which provides some interesting new features for various code editors including the nice ability to zoom in and out with Ctrl-MouseWheel to quickly change the size of text. There are many more API options to control the editor and although Visual Studio 2010 doesn’t yet use many of these features, we can look forward to enhancements in add-ins and future editor updates from the various language teams that take advantage of the visual richness that WPF provides to editing. On the negative side, I’ve noticed that occasionally the code editor and especially the HTML and JavaScript editors will lose the ability to use various navigation keys like arrows, back and delete keys, which requires closing and reopening the documents at times. This issue seems to be well documented so I suspect this will be addressed soon with a hotfix or within the first service pack. Overall though, the code editors work very well, especially given that they were re-written completely using WPF, which was one of my big worries when I first heard about the complete redesign of the editors. Multi-Targeting Visual Studio now targets all versions of the .NET framework from 2.0 forward. You can use Visual Studio 2010 to work on your ASP.NET 2, 3.0 and 3.5 applications which is a nice way to get your feet wet with the new development environment without having to make changes to existing applications. It’s nice to have one tool to work in for all the different versions. Multi-Monitor Support One cool feature of Visual Studio 2010 is the ability to drag windows out of the Visual Studio environment and out onto the desktop including onto another monitor easily. Since Web development often involves working with a host of designers at the same time - visual designer, HTML markup window, code behind and JavaScript editor - it’s really nice to be able to have a little more screen real estate to work on each of these editors. Microsoft made a welcome change in the environment. IntelliSense Snippets for HTML and JavaScript Editors The HTML and JavaScript editors now finally support IntelliSense scripts to create macro-based template expansions that have been in the core C# and Visual Basic code editors since Visual Studio 2005. Snippets allow you to create short XML-based template definitions that can act as static macros or real templates that can have replaceable values that can be embedded into the expanded text. The XML syntax for these snippets is straight forward and it’s pretty easy to create custom snippets manually. You can easily create snippets using XML and store them in your custom snippets folder (C:\Users\rstrahl\Documents\Visual Studio 2010\Code Snippets\Visual Web Developer\My HTML Snippets and My JScript Snippets), but it helps to use one of the third-party tools that exist to simplify the process for you. I use SnippetEditor, by Bill McCarthy, which makes short work of creating snippets interactively (http://snippeteditor.codeplex.com/). Note: You may have to manually add the Visual Studio 2010 User specific Snippet folders to this tool to see existing ones you’ve created. Code snippets are some of the biggest time savers and HTML editing more than anything deals with lots of repetitive tasks that lend themselves to text expansion. Visual Studio 2010 includes a slew of built-in snippets (that you can also customize!) and you can create your own very easily. If you haven’t done so already, I encourage you to spend a little time examining your coding patterns and find the repetitive code that you write and convert it into snippets. I’ve been using CodeRush for this for years, but now you can do much of the basic expansion natively for HTML and JavaScript snippets. jQuery Integration Is Now Native jQuery is a popular JavaScript library and recently Microsoft has recently stated that it will become the primary client-side scripting technology to drive higher level script functionality in various ASP.NET Web projects that Microsoft provides. In Visual Studio 2010, the default full project template includes jQuery as part of a new project including the support files that provide IntelliSense (-vsdoc files). IntelliSense support for jQuery is now also baked into Visual Studio 2010, so unlike Visual Studio 2008 which required a separate download, no further installs are required for a rich IntelliSense experience with jQuery. Summary ASP.NET 4.0 brings many useful improvements to the platform, but thankfully most of the changes are incremental changes that don’t compromise backwards compatibility and they allow developers to ease into the new features one feature at a time. None of the changes in ASP.NET 4.0 or Visual Studio 2010 are monumental or game changers. The bigger features are language and .NET Framework changes that are also optional. This ASP.NET and tools release feels more like fine tuning and getting some long-standing kinks worked out of the platform. It shows that the ASP.NET team is dedicated to paying attention to community feedback and responding with changes to the platform and development environment based on this feedback. If you haven’t gotten your feet wet with ASP.NET 4.0 and Visual Studio 2010, there’s no reason not to give it a shot now - the ASP.NET 4.0 platform is solid and Visual Studio 2010 works very well for a brand new release. Check it out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Maven struts2 modular archetype failing to generate !

    - by Xinus
    I am trying to generate struts 2 modular archetype using maven but always getting error as archetype not present here is a full output : C:\Users\Administrator>mvn archetype:generate [INFO] Scanning for projects... [INFO] Searching repository for plugin with prefix: 'archetype'. [INFO] ------------------------------------------------------------------------ [INFO] Building Maven Default Project [INFO] task-segment: [archetype:generate] (aggregator-style) [INFO] ------------------------------------------------------------------------ [INFO] Preparing archetype:generate [INFO] No goals needed for project - skipping [INFO] Setting property: classpath.resource.loader.class => 'org.codehaus.plexus .velocity.ContextClassLoaderResourceLoader'. [INFO] Setting property: velocimacro.messages.on => 'false'. [INFO] Setting property: resource.loader => 'classpath'. [INFO] Setting property: resource.manager.logwhenfound => 'false'. [INFO] [archetype:generate {execution: default-cli}] [INFO] Generating project in Interactive mode [INFO] No archetype defined. Using maven-archetype-quickstart (org.apache.maven. archetypes:maven-archetype-quickstart:1.0) Choose archetype: 1: internal -> appfuse-basic-jsf (AppFuse archetype for creating a web applicati on with Hibernate, Spring and JSF) 2: internal -> appfuse-basic-spring (AppFuse archetype for creating a web applic ation with Hibernate, Spring and Spring MVC) 3: internal -> appfuse-basic-struts (AppFuse archetype for creating a web applic ation with Hibernate, Spring and Struts 2) 4: internal -> appfuse-basic-tapestry (AppFuse archetype for creating a web appl ication with Hibernate, Spring and Tapestry 4) 5: internal -> appfuse-core (AppFuse archetype for creating a jar application wi th Hibernate and Spring and XFire) 6: internal -> appfuse-modular-jsf (AppFuse archetype for creating a modular app lication with Hibernate, Spring and JSF) 7: internal -> appfuse-modular-spring (AppFuse archetype for creating a modular application with Hibernate, Spring and Spring MVC) 8: internal -> appfuse-modular-struts (AppFuse archetype for creating a modular application with Hibernate, Spring and Struts 2) 9: internal -> appfuse-modular-tapestry (AppFuse archetype for creating a modula r application with Hibernate, Spring and Tapestry 4) 10: internal -> maven-archetype-j2ee-simple (A simple J2EE Java application) 11: internal -> maven-archetype-marmalade-mojo (A Maven plugin development proje ct using marmalade) 12: internal -> maven-archetype-mojo (A Maven Java plugin development project) 13: internal -> maven-archetype-portlet (A simple portlet application) 14: internal -> maven-archetype-profiles () 15: internal -> maven-archetype-quickstart () 16: internal -> maven-archetype-site-simple (A simple site generation project) 17: internal -> maven-archetype-site (A more complex site project) 18: internal -> maven-archetype-webapp (A simple Java web application) 19: internal -> jini-service-archetype (Archetype for Jini service project creat ion) 20: internal -> softeu-archetype-seam (JSF+Facelets+Seam Archetype) 21: internal -> softeu-archetype-seam-simple (JSF+Facelets+Seam (no persistence) Archetype) 22: internal -> softeu-archetype-jsf (JSF+Facelets Archetype) 23: internal -> jpa-maven-archetype (JPA application) 24: internal -> spring-osgi-bundle-archetype (Spring-OSGi archetype) 25: internal -> confluence-plugin-archetype (Atlassian Confluence plugin archety pe) 26: internal -> jira-plugin-archetype (Atlassian JIRA plugin archetype) 27: internal -> maven-archetype-har (Hibernate Archive) 28: internal -> maven-archetype-sar (JBoss Service Archive) 29: internal -> wicket-archetype-quickstart (A simple Apache Wicket project) 30: internal -> scala-archetype-simple (A simple scala project) 31: internal -> lift-archetype-blank (A blank/empty liftweb project) 32: internal -> lift-archetype-basic (The basic (liftweb) project) 33: internal -> cocoon-22-archetype-block-plain ([http://cocoon.apache.org/2.2/m aven-plugins/]) 34: internal -> cocoon-22-archetype-block ([http://cocoon.apache.org/2.2/maven-p lugins/]) 35: internal -> cocoon-22-archetype-webapp ([http://cocoon.apache.org/2.2/maven- plugins/]) 36: internal -> myfaces-archetype-helloworld (A simple archetype using MyFaces) 37: internal -> myfaces-archetype-helloworld-facelets (A simple archetype using MyFaces and facelets) 38: internal -> myfaces-archetype-trinidad (A simple archetype using Myfaces and Trinidad) 39: internal -> myfaces-archetype-jsfcomponents (A simple archetype for create c ustom JSF components using MyFaces) 40: internal -> gmaven-archetype-basic (Groovy basic archetype) 41: internal -> gmaven-archetype-mojo (Groovy mojo archetype) Choose a number: (1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16/17/18/19/20/21/22/23/2 4/25/26/27/28/29/30/31/32/33/34/35/36/37/38/39/40/41) 15: : 8 [INFO] ------------------------------------------------------------------------ [ERROR] BUILD FAILURE [INFO] ------------------------------------------------------------------------ [INFO] The defined artifact is not an archetype [INFO] ------------------------------------------------------------------------ [INFO] For more information, run Maven with the -e switch [INFO] ------------------------------------------------------------------------ [INFO] Total time: 3 seconds [INFO] Finished at: Sat Mar 27 08:22:38 IST 2010 [INFO] Final Memory: 8M/21M [INFO] ------------------------------------------------------------------------ C:\Users\Administrator> What can be the problem ?

    Read the article

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • JSF : How to refresh required field in ajax request

    - by Tama
    Ok, here you are the core problem. The page. I have two required "input text". A command button that changes the bean value and reRenderes the "job" object. <a4j:form id="pervForm"> SURNAME:<h:inputText id="surname" label="Surname" value="#{prevManager.surname}" required="true" /> <br/> JOB:<h:inputText value="#{prevManager.job}" id="job" maxlength="10" size="10" label="#{msg.common_label_job}" required="true" /> <br/> <a4j:commandButton value="Set job to Programmer" ajaxSingle="true" reRender="job"> <a4j:actionparam name="jVal" value="Programmer" assignTo="#{prevManager.job}"/> </a4j:commandButton> <h:commandButton id="save" value="save" action="save" class="HATSBUTTON"/> </a4j:form> Here the simple manager: public class PrevManager { private String surname; private String job; public String getSurname() { return surname; } public void setSurname(String surname) { this.surname = surname; } public String getJob() { return job; } public void setJob(String job) { this.job = job; } public String save() { //do something } } Let's do this: Write something on the Job input text (such as "teacher"). Leave empty the surname. Save. Validation error appears (surname is mandatory). Press "Set job to Programmer": nothing happens. Checking the bean value, I discovered that it is correctly updated, indeed the component on the page is not updated! Well, according to the JBoss Docs I found: Ajax region is a key ajax component. It limits the part of the component tree to be processed on the server side when ajax request comes. Processing means invocation during Decode, Validation and Model Update phase. Most common reasons to use a region are: -avoiding the aborting of the JSF lifecycle processing during the validation of other form input unnecessary for given ajax request; -defining the different strategies when events will be delivered (immediate="true/false") -showing an individual indicator of an ajax status -increasing the performance of the rendering processing (selfRendered="true/false", renderRegionOnly="true/false") The following two examples show the situation when a validation error does not allow to process an ajax input. Type the name. The outputText component should reappear after you. However, in the first case, this activity will be aborted because of the other field with required="true". You will see only the error message while the "Job" field is empty. Here you are the example: <ui:composition xmlns="http://www.w3.org/1999/xhtml" xmlns:ui="http://java.sun.com/jsf/facelets" xmlns:h="http://java.sun.com/jsf/html" xmlns:f="http://java.sun.com/jsf/core" xmlns:a4j="http://richfaces.org/a4j" xmlns:rich="http://richfaces.org/rich"> <style> .outergridvalidationcolumn { padding: 0px 30px 10px 0px; } </style> <a4j:outputPanel ajaxRendered="true"> <h:messages style="color:red" /> </a4j:outputPanel> <h:panelGrid columns="2" columnClasses="outergridvalidationcolumn"> <h:form id="form1"> <h:panelGrid columns="2"> <h:outputText value="Name" /> <h:inputText value="#{userBean.name}"> <a4j:support event="onkeyup" reRender="outname" /> </h:inputText> <h:outputText value="Job" /> <h:inputText required="true" id="job2" value="#{userBean.job}" /> </h:panelGrid> </h:form> <h:form id="form2"> <h:panelGrid columns="2"> <h:outputText value="Name" /> <a4j:region> <h:inputText value="#{userBean.name}"> <a4j:support event="onkeyup" reRender="outname" /> </h:inputText> </a4j:region> <h:outputText value="Job" /> <h:inputText required="true" id="job1" value="#{userBean.job}" /> </h:panelGrid> </h:form> </h:panelGrid> <h:outputText id="outname" style="font-weight:bold" value="Typed Name: #{userBean.name}" /> <br /> </ui:composition> Form1: the behaviour is incorrect. I need to fill the job and then the name. Form2: the behaviour is correct. I do not need to fill the job to see the correct value. Unfortunately using Ajax region does not help (indeed I used it in a bad way ...) because my fields are both REQUIRED. That's the main different. Any idea? Many thanks.

    Read the article

  • Problem in generation of custom classes at web service client

    - by user443324
    I have a web service which receives an custom object and returns another custom object. It can be deployed successfully on GlassFish or JBoss. @WebMethod(operationName = "providerRQ") @WebResult(name = "BookingInfoResponse" , targetNamespace = "http://tlonewayresprovidrs.jaxbutil.rakes.nhst.com/") public com.nhst.rakes.jaxbutil.tlonewayresprovidrs.BookingInfoResponse providerRQ(@WebParam(name = "BookingInfoRequest" , targetNamespace = "http://tlonewayresprovidrq.jaxbutil.rakes.nhst.com/") com.nhst.rakes.jaxbutil.tlonewayresprovidrq.BookingInfoRequest BookingInfoRequest) { com.nhst.rakes.jaxbutil.tlonewayresprovidrs.BookingInfoResponse BookingInfoResponse = new com.nhst.rakes.jaxbutil.tlonewayresprovidrs.BookingInfoResponse(); return BookingInfoResponse; } But when I create a client for this web service, two instances of BookingInfoRequest and BookingInfoResponse generated even I need only one instance. This time an error is returned that says multiple classes with same name are can not be possible....... Here is wsdl..... <?xml version='1.0' encoding='UTF-8'?><!-- Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI 2.2.1-hudson-28-. --><!-- Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI 2.2.1-hudson-28-. --><definitions xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" xmlns:wsp="http://www.w3.org/ns/ws-policy" xmlns:wsp1_2="http://schemas.xmlsoap.org/ws/2004/09/policy" xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://demo/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns="http://schemas.xmlsoap.org/wsdl/" targetNamespace="http://demo/" name="DemoJAXBParamService"> <wsp:Policy wsu:Id="DemoJAXBParamPortBindingPolicy"> <ns1:OptimizedMimeSerialization xmlns:ns1="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserialization" /> </wsp:Policy> <types> <xsd:schema> <xsd:import namespace="http://tlonewayresprovidrs.jaxbutil.rakes.nhst.com/" schemaLocation="http://localhost:31133/DemoJAXBParamService/DemoJAXBParamService?xsd=1" /> </xsd:schema> <xsd:schema> <xsd:import namespace="http://tlonewayresprovidrs.jaxbutil.rakes.nhst.com" schemaLocation="http://localhost:31133/DemoJAXBParamService/DemoJAXBParamService?xsd=2" /> </xsd:schema> <xsd:schema> <xsd:import namespace="http://tlonewayresprovidrq.jaxbutil.rakes.nhst.com/" schemaLocation="http://localhost:31133/DemoJAXBParamService/DemoJAXBParamService?xsd=3" /> </xsd:schema> <xsd:schema> <xsd:import namespace="http://tlonewayresprovidrq.jaxbutil.rakes.nhst.com" schemaLocation="http://localhost:31133/DemoJAXBParamService/DemoJAXBParamService?xsd=4" /> </xsd:schema> <xsd:schema> <xsd:import namespace="http://demo/" schemaLocation="http://localhost:31133/DemoJAXBParamService/DemoJAXBParamService?xsd=5" /> </xsd:schema> </types> <message name="providerRQ"> <part name="parameters" element="tns:providerRQ" /> </message> <message name="providerRQResponse"> <part name="parameters" element="tns:providerRQResponse" /> </message> <portType name="DemoJAXBParam"> <operation name="providerRQ"> <input wsam:Action="http://demo/DemoJAXBParam/providerRQRequest" message="tns:providerRQ" /> <output wsam:Action="http://demo/DemoJAXBParam/providerRQResponse" message="tns:providerRQResponse" /> </operation> </portType> <binding name="DemoJAXBParamPortBinding" type="tns:DemoJAXBParam"> <wsp:PolicyReference URI="#DemoJAXBParamPortBindingPolicy" /> <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" /> <operation name="providerRQ"> <soap:operation soapAction="" /> <input> <soap:body use="literal" /> </input> <output> <soap:body use="literal" /> </output> </operation> </binding> <service name="DemoJAXBParamService"> <port name="DemoJAXBParamPort" binding="tns:DemoJAXBParamPortBinding"> <soap:address location="http://localhost:31133/DemoJAXBParamService/DemoJAXBParamService" /> </port> </service> </definitions> So, I want to know that how to generate only one instance(I don't know why two instances are generated at client side?). Please help me to move in right direction.

    Read the article

  • spring mvc forward to jsp

    - by jerluc
    I currently have my web.xml configured to catch 404s and send them to my spring controller which will perform a search given the original URL request. The functionality is all there as far as the catch and search go, however the trouble begins to arise when I try to return a view. <bean class="org.springframework.web.servlet.view.ContentNegotiatingViewResolver" p:order="1"> <property name="mediaTypes"> <map> <entry key="json" value="application/json" /> <entry key="jsp" value="text/html" /> </map> </property> <property name="defaultContentType" value="application/json" /> <property name="favorPathExtension" value="true" /> <property name="viewResolvers"> <list> <bean class="org.springframework.web.servlet.view.BeanNameViewResolver" /> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="prefix" value="/WEB-INF/jsp/" /> <property name="suffix" value="" /> </bean> </list> </property> <property name="defaultViews"> <list> <bean class="org.springframework.web.servlet.view.json.MappingJacksonJsonView" /> </list> </property> <property name="ignoreAcceptHeader" value="true" /> </bean> This is a snippet from my MVC config file. The problem lies in resolving the view's path to the /WEB-INF/jsp/ directory. Using a logger in my JBoss setup, I can see that when I test this search controller by going to a non-existent page, the following occurs: Server can't find the request Request is sent to 404 error page (in this case my search controller) Search controller performs search Search controller returns view name (for this illustration, we'll assume test.jsp is returned) Based off of server logger, I can see that org.springframework.web.servlet.view.JstlView is initialized once my search controller returns the view name (so I can assume it is being picked up correctly by the InternalResourceViewResolver) Server attempts to return content to browser resulting in a 404! A couple things confuse me about this: I'm not 100% sure why this isn't resolving when test.jsp clearly exists under the /WEB-INF/jsp/ directory. Even if there was some other problem, why would this result in a 404? Shouldn't a 404 error page that results in another 404 theoretically create an infinite loop? Thanks for any help or pointers! Controller class [incomplete]: @Controller public class SiteMapController { //-------------------------------------------------------------------------------------- @Autowired(required=true) private SearchService search; @Autowired(required=true) private CatalogService catalog; //-------------------------------------------------------------------------------------- @RequestMapping(value = "/sitemap", method = RequestMethod.GET) public String sitemap (HttpServletRequest request, HttpServletResponse response) { String forwardPath = ""; try { long startTime = System.nanoTime() / 1000000; String pathQuery = (String) request.getAttribute("javax.servlet.error.request_uri"); Scanner pathScanner = new Scanner(pathQuery).useDelimiter("\\/"); String context = pathScanner.next(); List<ProductLightDTO> results = new ArrayList<ProductLightDTO>(); StringBuilder query = new StringBuilder(); String currentValue; while (pathScanner.hasNext()) { currentValue = pathScanner.next().toLowerCase(); System.out.println(currentValue); if (query.length() > 0) query.append(" AND "); if (currentValue.contains("-")) { query.append("\""); query.append(currentValue.replace("-", " ")); query.append("\""); } else { query.append(currentValue + "*"); } } //results.addAll(this.doSearch(query.toString())); System.out.println("Request: " + pathQuery); System.out.println("Built Query:" + query.toString()); //System.out.println("Result size: " + results.size()); long totalTime = (System.nanoTime() / 1000000) - startTime; System.out.println("Total TTP: " + totalTime + "ms"); if (results == null || results.size() == 0) { forwardPath = "home.jsp"; } else if (results.size() == 1) { forwardPath = "product.jsp"; } else { forwardPath = "category.jsp"; } } catch (Exception ex) { System.err.println(ex); } System.out.println("Returning view: " + forwardPath); return forwardPath; } }

    Read the article

  • Spring boot JAR as windows service

    - by roblovelock
    I am trying to wrap a spring boot "uber JAR" with procrun. Running the following works as expected: java -jar my.jar I need my spring boot jar to automatically start on windows boot. The nicest solution for this would be to run the jar as a service (same as a standalone tomcat). When I try to run this I am getting "Commons Daemon procrun failed with exit value: 3" Looking at the spring-boot source it looks as if it uses a custom classloader: https://github.com/spring-projects/spring-boot/blob/master/spring-boot-tools/spring-boot-loader/src/main/java/org/springframework/boot/loader/JarLauncher.java I also get a "ClassNotFoundException" when trying to run my main method directly. java -cp my.jar my.MainClass Is there a method I can use to run my main method in a spring boot jar (not via JarLauncher)? Has anyone successfully integrated spring-boot with procrun? I am aware of http://wrapper.tanukisoftware.com/. However due to their licence I can't use it. UPDATE I have now managed to start the service using procrun. set SERVICE_NAME=MyService set BASE_DIR=C:\MyService\Path set PR_INSTALL=%BASE_DIR%prunsrv.exe REM Service log configuration set PR_LOGPREFIX=%SERVICE_NAME% set PR_LOGPATH=%BASE_DIR% set PR_STDOUTPUT=%BASE_DIR%stdout.txt set PR_STDERROR=%BASE_DIR%stderr.txt set PR_LOGLEVEL=Error REM Path to java installation set PR_JVM=auto set PR_CLASSPATH=%BASE_DIR%%SERVICE_NAME%.jar REM Startup configuration set PR_STARTUP=auto set PR_STARTIMAGE=c:\Program Files\Java\jre7\bin\java.exe set PR_STARTMODE=exe set PR_STARTPARAMS=-jar#%PR_CLASSPATH% REM Shutdown configuration set PR_STOPMODE=java set PR_STOPCLASS=TODO set PR_STOPMETHOD=stop REM JVM configuration set PR_JVMMS=64 set PR_JVMMX=256 REM Install service %PR_INSTALL% //IS//%SERVICE_NAME% I now just need to workout how to stop the service. I am thinking of doing someting with the spring-boot actuator shutdown JMX Bean. What happens when I stop the service at the moment is; windows fails to stop the service (but marks it as stopped), the service is still running (I can browse to localhost), There is no mention of the process in task manager (Not very good! unless I am being blind).

    Read the article

  • iphone - direct link to iPhone review form from inside iphone

    - by Mike
    I am trying to link directly to the review link of one of my Apps. I know that it is possible because Appirater did it in the past, but some change in iTunes turned the API down. Appirater uses this URL NSString *templateReviewURL = @"itms-apps://itunes.apple.com/WebObjects/MZStore.woa/wa/viewContentsUserReviews?id=APP_ID&onlyLatestVersion=true&pageNumber=0&sortOrdering=1&type=Purple+Software"; where APP_ID is the ID of an application. running this from inside the APP gives me the message Cannot Connect to iTunes Store. This Page talks about another kind of link https://userpub.itunes.apple.com/WebObjects/MZUserPublishing.woa/wa/addUserReview?id=APP_ID&type=Purple+Software and also itms-apps://ax.itunes.apple.com/WebObjects/MZStore.woa/wa/viewContentsUserReviews?type=Purple+Software&id=APP_ID The first one works, but just from the desktop mac. The second gives me the same error as the first... Cannot Connect to iTunes Store. iTunes link maker is not helping too, because it has no tools for iPad links... Do you guys know how to link to an app's review form from inside an app? In case you don't know, what kind of package should I use to dig this? a package sniffer? thanks for any help.

    Read the article

  • Running MSBuild fails to read SDKToolsPath

    - by Scott Mayfield
    Howdy, I'm having a bit of an issue runnning a NAnt script that used to properly build my .Net 2.0 based website, when compiling with VS2008 and it's associated tools. I've recently upgraded all the project/solution files to VS2010, and now my build fails with the following error: [exec] C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Microsoft.Common.targets(2249,9): error MSB3086: Task could not find "sgen.exe" using the S dkToolsPath "" or the registry key "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SDKs\Windows\v7.0A". Make sure the SdkToolsPath is set and the tool exists in the correct processor specific location under the SdkToolsPath and that the Microsoft Windows SDK is installed Now, I DO have prior versions (.Net 3.5) of the Windows SDK installed on the build server, and the full .Net 4.0 framework is installed, but I've not run across a .Net 4.0 specific version of the Windows SDK. After a bit of experimentation and research, I finally just setup a new environmental variable "SDKToolsPath" and pointed it to the copy of sgen.exe in my windows 6.0 sdk folder. This generated the same error, but it got me to notice that even though the SDKToolsPath environmental variable IS set (confirmed that I can "echo" it at the command line and it has the expected value), the error message seems to indicated that it's not being read (note the empty quotes). Most of the information I've found is .Net 3.5 (or earlier) specific. Not much 4.0 related out there yet. Searching for error code MSB3086 generated nothing useful either. Any idea what this might be? Scott

    Read the article

  • com.jcraft.jsch.JSchException: Auth cancel

    - by Dan Fabulich
    I'm trying to write an Ant script to retrieve an URL via port tunnelling. It works great when I use a password (the names xxxx'd out for privacy): <project default="main"> <target name="main"> <sshsession host="xxxx" username="xxxx" password="xxxx"> <LocalTunnel lport="1080" rhost="xxxx" rport="80"/> <sequential> <get src="http://localhost:1080/xxxx" dest="/tmp/xxxx"/> </sequential> </sshsession> </target> </project> But it doesn't work when I use a keyfile, like this: <sshsession host="xxxx" username="xxxx" keyfile="/Users/xxxx/.ssh/id_dsa" passphrase="xxxx"> <LocalTunnel lport="1080" rhost="xxxx" rport="80"/> <sequential> <get src="http://localhost:1080/xxxx" dest="/tmp/xxxx"/> </sequential> </sshsession> I get this exception: /tmp/build.xml:8: com.jcraft.jsch.JSchException: Auth cancel at com.jcraft.jsch.Session.connect(Session.java:451) at com.jcraft.jsch.Session.connect(Session.java:150) at org.apache.tools.ant.taskdefs.optional.ssh.SSHBase.openSession(SSHBase.java:223) I'm sure I'm using the correct keyfile (I've tried using the wrong name, which gives a legitimate FileNotFoundException). I can successfully ssh from the command line without being prompted for a password. I'm sure I'm using the correct passphrase for the keyfile. What's the cause of this error and what can I do about it?

    Read the article

  • Android ADT Eclipse plugin, parseSDKContent failed

    - by Sebastian Ganslandt
    I've just set up my first Android development environment consisting of Eclipse 3.5 Mac OSX 10.5 Android SDK for x86 macs ADT Eclipse plugin 0.9.6 I've set set $PATH to my SDK/tools directory (which shouldn't matter if I only use Eclipse right?) and started Eclipse, but when I try to set the path to the SDK in Eclipse, i get the error "parseSdkContent failed". The stack trace of from the thrown exception is java.lang.IllegalArgumentException: http://www.w3.org/2001/XMLSchema at javax.xml.validation.SchemaFactory.newInstance(SchemaFactory.java:181) at com.android.ide.eclipse.adt.internal.sdk.LayoutDevicesXsd.getValidator(Unknown Source) at com.android.ide.eclipse.adt.internal.sdk.LayoutDeviceManager.parseLayoutDevices(Unknown Source) at com.android.ide.eclipse.adt.internal.sdk.LayoutDeviceManager.loadDefaultLayoutDevices(Unknown Source) at com.android.ide.eclipse.adt.internal.sdk.LayoutDeviceManager.loadDefaultAndUserDevices(Unknown Source) at com.android.ide.eclipse.adt.internal.sdk.Sdk.<init>(Unknown Source) at com.android.ide.eclipse.adt.internal.sdk.Sdk.loadSdk(Unknown Source) at com.android.ide.eclipse.adt.AdtPlugin$13.run(Unknown Source) at org.eclipse.core.internal.jobs.Worker.run(Worker.java:55) I can't see that I've missed anything in the setup process, according to the instructions it should basically just work out of the box. Any ideas as to why this might fail?

    Read the article

  • What good technology podcasts are out there?

    - by Michael Stum
    Yes, Podcasts, those nice little Audiobooks I can listen to on the way to work. With the current amount of Podcasts, it's like searching a needle in a haystack, except that the haystack happens to be the Internet and is filled with too many of these "Hot new Gadgets" stuff :( Now, even though I am mainly a .NET developer nowadays, maybe anyone knows some good Podcasts from people regarding the whole software lifecycle? Unit Testing, Continous Integration, Documentation, Deployment... So - what are you guys and gals listening to? Please note that the categorizations are somewhat subjective and may not be 100% accurate as many podcasts cover several areas. Categorization is made against what is considered the "main" area. General Software Engineering / Productivity Stack Overflow TekPub (Requires Paid Subscription) SE Radio 43 Folders Perspectives Dr. Dobb's (now a video feed) The Pragmatic Podcast (Inactive) IT Matters Agile Toolkit Podcast The Stack Trace (Inactive) Parleys Techzing The Startup Success Podcast Berkeley CS class lectures FOSS Weekly .NET / Visual Studio / Microsoft Herding Code Hanselminutes .NET Rocks! Deep Fried Bytes Alt.Net Podcast Polymorphic Podcast Sparkling Client (The Silverlight Podcast) dnrTV! Spaghetti Code ASP.NET Podcast Channel 9 Radio TFS PowerScripting Podcast The Thirsty Developer Elegant Code ConnectedShow Crafty Coders Coding QA jQuery yayQuery The official jQuery podcast Java / Groovy The Java Posse Grails Podcast Java Technology Insider Ruby / Rails Railscasts Rails Envy The Ruby on Rails Podcast Rubiverse Web Design / JavaScript / Ajax WebDevRadio Boagworld The Rissington podcast Ajaxian YUI Theater Unix / Linux / Mac / iPhone Mac Developer Network Hacker Public Radio Linux Outlaws Mac OS Ken LugRadio Linux radio show (Inactive) The Linux Action Show! Linux Kernel Mailing List (LKML) Summary Podcast Stanford's iPhone programming class SysAdmin, Security or Infrastructure RunAs Radio Security Now! Crypto-Gram Security Podcast Hak5 VMWare VMTN Windows Weekly PaulDotCom Security The Register - Semi-Coherent Computing FeatherCast General Tech / Business Tekzilla This Week in Tech The Guardian Tech Weekly PCMag Radio Podcast Entrepreneurship Corner Manager Tools Other / Misc. / Podcast Networks IT Conversations Retrobits Podcast No Agenda Netcast Cranky Geeks The Command Line Freelance Radio IBM developerWorks The Register - Open Season Drunk and Retired Technometria Sod This Radio4Nerds Hacker Medley

    Read the article

  • fatal error C1034: windows.h: no include path set

    - by nathan
    OS Windows Vista Ultimate trying to run a program called minimal.c when i type at command line C:\Users\nathan\Desktopcl minimal.c Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 14.00.50727.762 for 80x86 Copyright (C) Microsoft Corporation. All rights reserved. minimal.c minimal.c(5) : fatal error C1034: windows.h: no include path set i have set all the paths: C:\Users\nathan\Desktoppath PATH=C:\Program Files (x86)\Microsoft Visual Studio 8\VC\bin;C:\Windows\system3 ;C:\Windows;C:\Windows\System32\Wbem;C:\Program Files (x86)\ATI Technologies\AT .ACE\Core-Static;C:\Program Files\Intel\DMIX;c:\Program Files (x86)\Microsoft S L Server\100\Tools\Binn\;c:\Program Files (x86)\Microsoft SQL Server\100\DTS\Bi n\;C:\Program Files (x86)\QuickTime\QTSystem\;C:\Program Files (x86)\Java\jdk1. .0_13\bin;C:\Program Files (x86)\Autodesk\Backburner\;C:\Program Files (x86)\Co mon Files\Autodesk Shared\;C:\Program Files (x86)\Microsoft DirectX SDK (March 009)\Include;C:\Users\nathan\Desktop\glut-3.7.6-bin\glut-3.7.6-bin;C:\Program F les (x86)\Microsoft Visual Studio 8\Common7\IDE;C:\Program Files (x86)\Microsof Visual Studio 8\VC\PlatformSDK\Include;C:\Program Files (x86)\Microsoft Visual Studio 8\VC\PlatformSDK\Include\gl i have gone and made sure windows.h is in the directory im setting the path too. its in C:\Program Files (x86)\Microsoft Visual Studio 8\VC\PlatformSDK\Include. i have visual studio 2005 i have exhausted all possiblies any ideas

    Read the article

  • How do I set up TFS PowerShell Snapin

    - by TheSean
    I have installed TFS Power Tools and I am trying to use the powershell snapin, but I can't figure out how to set it up. When I look in the install folder, I only see the following 5 dlls. Microsoft.TeamFoundation.PowerToys.Client.dll Microsoft.TeamFoundation.PowerToys.Common.dll Microsoft.TeamFoundation.PowerToys.Controls.dll Microsoft.VisualStudio.TeamFoundation.PowerToys.Common.dll Microsoft.VisualStudio.TeamFoundation.PowerToys.dll I used instalutil to install each one, and then I used the folowing ps code to see what cmdlets where installed so I could add the snapin but it looks like only a handfull exist in those dlls and these commands are not useful to me right now. PS H:\> get-pssnapin -registered Name : TfsBPAPowerShellSnapIn PSVersion : 1.0 Description : This is a PowerShell snap-in that includes Team Foundation Server cmdlets. PS H:\> get-command -pssnapin TfsBPAPowerShellSnapIn CommandType Name Definition ----------- ---- ---------- Cmdlet Get-MsiProductId Get-MsiProductId [[-ProductIndex] <Int32>] [[-Mo... Cmdlet Get-TfsDBServer Get-TfsDBServer [[-DBPath] <String>] [-Verbose] ... Cmdlet Get-TfsHealthPing Get-TfsHealthPing [-Verbose] [-Debug] [-ErrorAct... Cmdlet Get-TfsSqlData Get-TfsSqlData [[-ConnectionBuilder] <SqlConnect... thanks.

    Read the article

  • android.intent.action.SCREEN_ON doesn't work as a receiver intent filter

    - by Jim Blackler
    I'm trying to get a BroadcastReceiver invoked when the screen is turned on. In my AndroidManifest.xml I have specified : <receiver android:name="IntentReceiver"> <intent-filter> <action android:name="android.intent.action.SCREEN_ON"></action> </intent-filter> </receiver> However it seems the receiver is never invoked (breakpoints don't fire, log statements ignored). I've swapped out SCREEN_ON for BOOT_COMPLETED for a test, and this does get invoked. This is in a 1.6 (SDK level 4) project. A Google Code Search revealed this, I downloaded the project and synced it, converted it to work with latest tools, but it too is not able to intercept that event. http://www.google.com/codesearch/p?hl=en#_8L9bayv7qE/trunk/phxandroid-intent-query/AndroidManifest.xml&q=android.intent.action.SCREEN_ON Is this perhaps no longer supported? Previously I have been able to intercept this event successfully with a call to Context.registerReceiver() like so registerReceiver(new BroadcastReceiver() { @Override public void onReceive(Context context, Intent intent) { // ... } }, new IntentFilter(Intent.ACTION_SCREEN_ON)); However this was performed by a long-living Service. Following sage advice from CommonsWare I have elected to try to remove the long-living Service and use different techniques. But I still need to detect the screen off and on events.

    Read the article

  • Windows server 2003 default administrator password

    - by Jason Baker
    Sorry if this is an overly simplistic question, but I'm a bit stuck here. :) I need a windows machine for me to do some programming for class. Since I have my Macbook with me everywhere I go, I figured that it would be easiest to install a vm. And since I can get a copy of Windows server 2k3 for free via dreamspark, I thought I'd try to do that. Here's what happened though: I installed windows server (disk one). When the system booted up, vmware automatically installed VMWare tools and prompted me to restart. There was also a prompt to start the installation of disc 2, but I figured it would be better to restart before doing that. When the machine came back up, I was prompted to log in as the administrator. The problem is that I wasn't prompted to make an administrator account or password. Is there a default password I can use? I've tried all the obvious ones (blank, password, etc) and googling, but I didn't come up with anything.

    Read the article

  • SSL certificate on IIS 7

    - by comii
    I am trying to install a SSL certificate on IIS 7. I have download a free trial certificate. After that, this is the steps what I do: Click the Start menu and select Administrative Tools. Start Internet Services Manager and click the Server Name. In the center section, double click on the Server Certificates button in the Security section. From the Actions menu click Complete Certificate Request. Enter the location for the certificate file. Enter a Friendly name. Click OK. Under Sites select the site to be secured with the SSL certificate. From the Actions menu, click Bindings.This will open the Site Bindings window. In the Site Bindings window, click Add. This opens the Add Site Binding window. Select https from the Type menu. Set the port to 443. Select the SSL Certificate you just installed from the SSL Certificate menu. Click OK. This is the step where I get the message: One or more intermediate certificates in the certificate chain are missing. To resolve this issue, make sure that all of intermediate certificates are installed. For more information, see http://support.microsoft.com/kb/954755 After this, when I access the web site on its first page, I get this message: There is a problem with this website's security certificate. What am I doing wrong?

    Read the article

  • Location of Java dump heap file?

    - by Jim Ferrans
    Well this is embarrassing ... I'm starting to play with the Eclipse Memory Analyzer to look for Java memory leaks on a Windows box. Step 1 is to obtain a heap dump file. To do this< I start my Java (javaw.exe) process from within Eclipse and connect to it with jconsole. Then on the jconsole MBeans tab I click the dumpHeap button. The first time I did this, I saw a pop-up saying it had created the heap dump file, but not giving its name or location. Now whenever I do a dumpHeap again while connected to a different javaw.exe process, jconsole says: Problem invoking dumpHeap : java.io.IOException: File exists and of course doesn't give its name or path. Where could it be? I've searched my C: drive (using cygwin command line tools) for files containing "hprof" or "java_pid" or "heapdump" and didn't find anything plausible. I've even used the Windows search to look for all files in my Eclipse workspace that have changed in the last day. I'm using the Sun Java 1.6 JVM, and don't have -XX:HeapDumpPath set.

    Read the article

  • Gacutil.exe successfully adds assembly, but assembly not viewable in explorer. Why?

    - by Ben McCormack
    I'm running GacUtil.exe from within Visual Studio Command Prompt 2010 to register a dll (CatalogPromotion.dll) to the GAC. After running the utility, it says Assembly Successfully added to the cache, and running gacutil /l CatalogPromotionDll shows that the GAC contains the assembly, but I can't see the assembly when I navigate to C:\WINDOWS\assembly from Windows Explorer. Why can't I see the assembly in WINDOWS\assembly from Windows Explorer but I can see it using gacutil.exe? Background: Here's what I typed into the command prompt for VS Tools: C:\_Dev Projects\VS Projects\bmccormack\CatalogPromotion\CatalogPromotionDll\bin \Debuggacutil /i CatalogPromotionDll.dll Microsoft (R) .NET Global Assembly Cache Utility. Version 4.0.30319.1 Copyright (c) Microsoft Corporation. All rights reserved. Assembly successfully added to the cache C:\_Dev Projects\VS Projects\bmccormack\CatalogPromotion\CatalogPromotionDll\bin \Debuggacutil /l CatalogPromotionDll Microsoft (R) .NET Global Assembly Cache Utility. Version 4.0.30319.1 Copyright (c) Microsoft Corporation. All rights reserved. The Global Assembly Cache contains the following assemblies: CatalogPromotionDll, Version=1.0.0.0, Culture=neutral, PublicKeyToken=9188a175 f199de4a, processorArchitecture=MSIL Number of items = 1 However, the assembly doesn't show up in C:\WINDOWS\assembly.

    Read the article

  • Unable to launch Eclipse 4.1.2 after installing the Eclipse e4 tooling

    - by Kuldeep Jain
    After installing Eclipse e4 Tools in my Eclipse 4.1.2 from update site. I am getting error when launching the eclipse.exe "An error has occurred. See the log file <my_workspace_path>\.metadata\.log". And the content of .log file are: !SESSION 2012-04-06 16:00:01.609 ----------------------------------------------- eclipse.buildId=M20120223-0900 java.fullversion=J2RE 1.6.0 IBM J9 2.4 Windows XP x86-32 jvmwi3260sr5-20090519_35743 (JIT enabled, AOT enabled) J9VM - 20090519_035743_lHdSMr JIT - r9_20090518_2017 GC - 20090417_AA BootLoader constants: OS=win32, ARCH=x86, WS=win32, NL=en_US Command-line arguments: -os win32 -ws win32 -arch x86 -clean -console !ENTRY org.eclipse.osgi 4 0 2012-04-06 16:00:17.343 !MESSAGE Application error !STACK 1 java.lang.ArrayIndexOutOfBoundsException: Array index out of range: 1 at org.eclipse.emf.common.util.URI.segment(URI.java:1731) at org.eclipse.e4.ui.internal.workbench.ReflectionContributionFactory.getBundle(ReflectionContributionFactory.java:135) at org.eclipse.e4.ui.internal.workbench.ReflectionContributionFactory.doCreate(ReflectionContributionFactory.java:61) at org.eclipse.e4.ui.internal.workbench.ReflectionContributionFactory.create(ReflectionContributionFactory.java:53) at org.eclipse.e4.ui.internal.workbench.E4Workbench.processHierarchy(E4Workbench.java:196) at org.eclipse.e4.ui.internal.workbench.E4Workbench.init(E4Workbench.java:122) at org.eclipse.e4.ui.internal.workbench.E4Workbench.<init>(E4Workbench.java:73) at org.eclipse.e4.ui.internal.workbench.swt.E4Application.createE4Workbench(E4Application.java:293) at org.eclipse.ui.internal.Workbench$3.run(Workbench.java:534) at org.eclipse.core.databinding.observable.Realm.runWithDefault(Realm.java:332) at org.eclipse.ui.internal.Workbench.createAndRunWorkbench(Workbench.java:520) at org.eclipse.ui.PlatformUI.createAndRunWorkbench(PlatformUI.java:149) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:123) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:344) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:37) at java.lang.reflect.Method.invoke(Method.java:599) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:622) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:577) at org.eclipse.equinox.launcher.Main.run(Main.java:1410) I also tried the eclipse.exe -clean to launch it but getting same error.

    Read the article

  • How to use Application Verifier to find memory leaks

    - by Patrick
    I want to find memory leaks in my application using standard utilities. Previously I used my own memory allocator, but other people (yes, you Neil) suggested to use Microsoft's Application Verifier, but I can't seem to get it to report my leaks. I have the following simple application: #include <iostream> #include <conio.h> class X { public: X::X() : m_value(123) {} private: int m_value; }; void main() { X *p1 = 0; X *p2 = 0; X *p3 = 0; p1 = new X(); p2 = new X(); p3 = new X(); delete p1; delete p3; } This test clearly contains a memory leak: p2 is new'd but not deleted. I build the executable using the following command lines: cl /c /EHsc /Zi /Od /MDd test.cpp link /debug test.obj I downloaded Application Verifier (4.0.0665) and enabled all checks. If I now run my test application I can see a log of it in Application Verifier, but I don't see the memory leak. Questions: Why doesn't Application Verifier report a leak? Or isn't Application Verifier really intended to find leaks? If it isn't which other tools are available to clearly report leaks at the end of the application (i.e. not by taking regular snapshots and comparing them since this is not possible in an application taking 1GB or more), including the call stack of the place of allocation (so not the simple leak reporting at the end of the CRT) If I don't find a decent utility, I still have to rely on my own memory manager (which does it perfectly).

    Read the article

  • grep --exclude/--include syntax (do not grep through certain files)

    - by Piskvor
    I'm looking for the string "foo=" (without quotes) in text files in a directory tree. It's on a common Linux machine, I have bash shell: grep -ircl "foo=" * In the directories are also many binary files which match "foo=". As these results are not relevant and slow down the search, I want grep to skip searching these files (mostly JPEG and PNG images): how would I do that? I know there are the --exclude=PATTERN and --include=PATTERN options, but what is the pattern format? manpage of grep says: --include=PATTERN Recurse in directories only searching file matching PATTERN. --exclude=PATTERN Recurse in directories skip file matching PATTERN. Searching on grep include, grep include exclude, grep exclude and variants did not find anything relevant If there's a better way of grepping only in certain files, I'm all for it; moving the offending files is not an option, I can't search only certain directories (the directory structure is a big mess, with everything everywhere). Also, I can't install anything, so I have to do with common tools (like grep or the suggested find). UPDATES: @Adam Rosenfield's answer is just what I was looking for: grep -ircl --exclude=*.{png,jpg} "foo=" * @rmeador's answer is also a good solution: grep -Ir --exclude="*\.svn*" "pattern" * It searches recursively, ignores binary files, and doesn't look inside Subversion hidden folders.(...)

    Read the article

< Previous Page | 443 444 445 446 447 448 449 450 451 452 453 454  | Next Page >