Search Results

Search found 89214 results on 3569 pages for 'code statistics'.

Page 449/3569 | < Previous Page | 445 446 447 448 449 450 451 452 453 454 455 456  | Next Page >

  • Google I/O 2010 - What's the hubbub about Google Buzz APIs?

    Google I/O 2010 - What's the hubbub about Google Buzz APIs? Google I/O 2010 - What's the hubbub about Google Buzz APIs? Social Web 101 Chris Chabot, Marco Kaiser (Seesmic), Ming Yong (Socialwok) Google Buzz is a new way to share updates, photos, videos and more, and start conversations about the things you find interesting. In this session, we'll take a deep dive into building with the Buzz APIs and the open standards it uses, such as ActivityStrea.ms, PubSubHubbub, OAuth, Salmon and WebFinger. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 3 0 ratings Time: 50:37 More in Science & Technology

    Read the article

  • Google I/O 2010 - Making smart & scalable Wave robots

    Google I/O 2010 - Making smart & scalable Wave robots Google I/O 2010 - Making smart & scalable Wave robots Wave 201 David Byttow, Marcel Prasetya A smart robot must be able to store persistent data. Wave robots can store data in wave structures, like wavelets, datadocs, and annotations, instead of traditional datastores. A scalable robot must perform operations with minimal bandwidth. Wave robots can optimize by selecting the appropriate amount of context, the optimal events, and narrow filters for events. In this talk, we'll share best practices on data storage and scaling. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 9 0 ratings Time: 58:25 More in Science & Technology

    Read the article

  • Google I/O 2010 - OpenSocial in the Enterprise

    Google I/O 2010 - OpenSocial in the Enterprise Google I/O 2010 - Best practices for implementing OpenSocial in the Enterprise Social Web, Enterprise 201 Mark Weitzel, Matt Tucker, Mark Halvorson, Helen Chen, Chris Schalk Enterprise deployments of OpenSocial technologies brings an additional set of considerations that may not be apparent in a traditional social network implementation. In this session, several enterprise vendors will demonstrate how they've been working together to address these issues in a collection of "Best Practices". This session will also provide a review of existing challenges for enterprise implementations of OpenSocial. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 5 0 ratings Time: 38:23 More in Science & Technology

    Read the article

  • Google I/O 2010 - Writing zippy Android apps

    Google I/O 2010 - Writing zippy Android apps Google I/O 2010 - Writing zippy Android apps Android 201 Brad Fitzpatrick Come hear tips & war stories on making fast, responsive (aka "non-janky") Android apps. No more ANRs! Eliminate event loop stalls! Fast start-ups! Optimized database queries with minimal I/O! Also, learn about the tools and techniques we use to find performance problems across the system and hear what's coming in the future. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 3 0 ratings Time: 57:38 More in Science & Technology

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Google I/O 2010 - Measure in milliseconds: Meet Speed Tracer

    Google I/O 2010 - Measure in milliseconds: Meet Speed Tracer Google I/O 2010 - Measure in milliseconds redux: Meet Speed Tracer GWT 201 Kelly Norton It turns out that web apps can be slow for all sorts of opaque and unintuitive reasons. Don't be fooled into thinking that bloated, slow JavaScript is the only culprit. This session introduces you to Speed Tracer, a new GWT tool that can tell you exactly where time is going within the browser. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 7 0 ratings Time: 01:00:53 More in Science & Technology

    Read the article

  • Google I/O Sandbox Case Study: The Bay Citizen

    Google I/O Sandbox Case Study: The Bay Citizen We interviewed The Bay Citizen at the Google I/O Sandbox on May 11, 2011. They explained to us the benefits of using fusion tables on Google Maps to build infographics for their online newspaper. The Bay Citizen built the Bike Tracker Infographic to display the prevalence of bike accidents at points across San Francisco. View the bike tracker here: www.baycitizen.org For more information about developing with Google Maps and fusion tables, visit: code.google.com For more information on The Bay Citizan, visit: www.baycitizen.org From: GoogleDevelopers Views: 21 0 ratings Time: 02:21 More in Science & Technology

    Read the article

  • Google I/O 2010 - Architecting for performance with GWT

    Google I/O 2010 - Architecting for performance with GWT Google I/O 2010 - Architecting for performance with GWT GWT 201 Joel Webber, Adam Schuck Modern web applications are quickly evolving to an architecture that has to account for the performance characteristics of the client, the server, and the global network connecting them. Should you render HTML on the server or build DOM structures with JS in the browser, or both? This session discusses this, as well as several other key architectural considerations to keep in mind when building your Next Big Thing. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 9 1 ratings Time: 01:01:09 More in Science & Technology

    Read the article

  • Google I/O 2010 - Casting a wide net for all Android devices

    Google I/O 2010 - Casting a wide net for all Android devices Google I/O 2010 - Casting a wide net: How to target all Android devices Android 201 Justin Mattson One of Android's strengths is its flexibility to run on a wide variety of devices. In this session, we will explore the facilities the Android resource system provides to developers to make supporting many devices from one application binary easier, as well as common pitfalls. In addition to hardware heterogeneity, more than one version of Android may exist in the wild at any given time. We will go over strategies for providing cross-version compatibility. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 4 0 ratings Time: 01:02:15 More in Science & Technology

    Read the article

  • Google I/O 2010 - The open & social web

    Google I/O 2010 - The open & social web Google I/O 2010 - The open & social web Social Web 101 Chris Messina This session will cover the latest and most important trends of the Social Web and dive deep into where this is all going, at both technical and conceptual levels. From the concepts of digital identity, relationships, and social objects, this session will cover emerging technologies like WebFinger, Salmon, ActivityStrea.ms, OpenID, OAuth and OpenSocial. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 4 0 ratings Time: 47:12 More in Science & Technology

    Read the article

  • Google I/O 2012 - Android WebView

    Google I/O 2012 - Android WebView Nicolas Roard Hundred of thousands of Android applications use WebView to display HTML content. In Android 4.0 it's hardware-accelerated, which allows support for HTML5 features such as inline video, CSS 3d, CSS animations, and overflow elements. This talk will give an overview of the underlying implementation in ICS, explain how to best take advantage of WebView in your application, and cover best practices for high-performance HTML code. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 83 3 ratings Time: 52:04 More in Science & Technology

    Read the article

  • Google I/O 2010 - How Maps API v3 came to be

    Google I/O 2010 - How Maps API v3 came to be Google I/O 2010 - How Maps API v3 came to be: Tips, tricks, and lessons learned in developing a cross platform desktop and mobile API Geo, Tech Talks Susannah Raub, Marc Ridey The Google JavaScript Maps API v3 celebrates its one year anniversary at this year's Google I/O. In this session, we reveal the reasons for embarking on a new API, the challenges we faced in developing a truly cross platform and cross device framework, and the lessons learned on the way. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 5 0 ratings Time: 48:08 More in Science & Technology

    Read the article

  • Google I/O 2010 - Analyzing and monetizing your mobile apps

    Google I/O 2010 - Analyzing and monetizing your mobile apps Google I/O 2010 - Analyzing and monetizing your Android & iPhone apps Google APIs, Android 201 Chrix Finne, Jim Kelm In this session you'll learn how you can drive awareness and earn revenue for your app using AdSense for Mobile Apps. We'll also discuss how using Google Analytics can help with your app development by providing insights into where your app users are coming from and how they're engaging with your app. We'll share tips, tricks, and examples of real-world mobile apps that have found success. For all I/O 2010 sessions, please go to code.google.com/events/io/2010/sessions.html From: GoogleDevelopers Views: 5 0 ratings Time: 38:52 More in Science & Technology

    Read the article

  • Google I/O 2010 - GWT + HTML5 can do what?!

    Google I/O 2010 - GWT + HTML5 can do what?! Google I/O 2010 - GWT + HTML5 can do what?! GWT 201 Joel Webber, Ray Cromwell, Stefan Haustein How can you take advantage of new HTML5 features in your GWT applications? In this session, we answer that question in the form of demos -- lots and lots of demos. We'll cover examples of how to use Canvas for advanced graphics, CSS3 features, Web Workers, and more within your GWT applications. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 8 1 ratings Time: 57:59 More in Science & Technology

    Read the article

  • Google I/O 2010 - Architecting GWT apps

    Google I/O 2010 - Architecting GWT apps Google I/O 2010 - Architecting GWT applications for production at Google GWT 301 Ray Ryan For large GWT applications, there's a lot you should think about early in the design of your project. GWT has a variety of technologies to help you, but putting it all together can be daunting. This session walks you through how teams at Google architect production-grade apps, from design to deployment, using GWT. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 8 1 ratings Time: 01:00:05 More in Science & Technology

    Read the article

  • Google I/O 2010 - Waving across the web

    Google I/O 2010 - Waving across the web Google I/O 2010 - Waving across the web Wave 101 Dhanji Prasanna, Douwe Osinga This talk focuses on using the Google Wave APIs outside of the Google Wave product. We'll talk about how to take advantage of embedded waves to allow for commenting and discussions on your website, how to integrate your website with WaveThis using gadgets and robots for continued interactivity and how to use the wave data APIs to get access to wave content from your website. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 5 0 ratings Time: 01:00:24 More in Science & Technology

    Read the article

  • Google I/O Sandbox Case Study: CNBC

    Google I/O Sandbox Case Study: CNBC We interviewed CNBC at the Google I/O Sandbox on May 11, 2011. They explained to us the benefits of building apps for the Google TV platform. CNBC's Real-Time Finance App is now available on Google TV, in addition to Android. Now consumers can access the same real-time stock information about the companies they are interested in from their living room. For more information about developing on Google TV, visit: code.google.com For more information on CNBC, visit: www.cnbc.com From: GoogleDevelopers Views: 22 0 ratings Time: 02:06 More in Science & Technology

    Read the article

  • Google I/O 2010 - Make your app real-time with PubSubHubbub

    Google I/O 2010 - Make your app real-time with PubSubHubbub Google I/O 2010 - Make your application real-time with PubSubHubbub Social Web 201 Brett Slatkin This session will go over how to add support for the PubSubHubbub protocol to your website. You'll learn how to turn Atom and RSS feeds into real-time streams. We'll go over how to consume real-time data streams and how to make your website reactive to what's happening on the web right now. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 5 0 ratings Time: 55:46 More in Science & Technology

    Read the article

  • Join the CodePlex community on Geeklist

    Community is very important to us at CodePlex. And we love partnering with other like-minded organizations. Geeklist is one of the new kids on the block, building a great place for geeks to share what they've done, who they did it with and connect with great companies and communities.     There are some exciting new experiences coming on-line soon that you won’t want to miss out on. Geeklist is currently in private beta, so if you don't already have an account, use the CodePlex invite code to create your own account. Then, join the CodePlex community and follow the CodePlex team on Geeklist. Once you’ve joined, be proud, tell the world what you have worked on, and who you did it with. And don’t be shy to give out a few high fives to the amazing work others in the community have created.

    Read the article

  • Google I/O 2010 - GWT Linkers target HTML5 WebWorkers & more

    Google I/O 2010 - GWT Linkers target HTML5 WebWorkers & more Google I/O 2010 - GWT Linkers target HTML5 Web Workers, Chrome Extensions, and more GWT 301 Matt Mastracci At its core GWT has a well-defined and customizable mechanism -- called Linkers -- that controls exactly how GWT's compiled JavaScript should be packaged, served, and run. This session will describe how to create linkers and explains some of the linkers we've created, including a linker that turns a GWT module into an HTML5 Web Worker and one that generates an HTML App Cache manifest automatically. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 6 1 ratings Time: 59:59 More in Science & Technology

    Read the article

  • GDD-BR 2010 [1B] What's New in Google App Engine and GAE for Business

    GDD-BR 2010 [1B] What's New in Google App Engine and GAE for Business Speaker: Patrick Chanezon Track: Cloud Computing Time: B[11:15 - 12:00] Room: 1 Level: 151 Learn what's new with Java on App Engine. We'll take a whirlwind tour through the changes since last year, walk through a code sample for task queues and the new blobstore service, and demonstrate techniques for improving your application's performance. We'll top it off with a glimpse into some new features that we've planned for the year ahead. This session will include an overview of Google App Engine for Business. From: GoogleDevelopers Views: 0 0 ratings Time: 49:20 More in Science & Technology

    Read the article

  • Release Notes for 4/6/2012

    Here are the notes for this week’s release: Fixed an issue where authenticating against Mercurial using capital letters would fail. Fixed an issue where comments in pull requests were not word wrapping correctly. Fixed an issue where usernames would overflow their allotted space in discussions. Fixed an issue that would cause unexpected errors on the source code pages if you created a Git and Mercurial fork with the same name. Have ideas on how to improve CodePlex? Visit our ideas page! Vote for your favorite ideas or submit a new one. Got Twitter? Follow us and keep apprised of the latest releases and service status at @codeplex.

    Read the article

  • Release Notes for 4/12/2012

    Here are the notes for this week’s release: Fixed an issue where users could not expand a particular subfolder in the ASP.NET source code tree. Fixed an issue where incorrect Git branches would appear in the branch selection dropdown on the source control page. Fixed an issue where colons would appear HTML encoded in users’ activity feed.. Have ideas on how to improve CodePlex? Visit our ideas page! Vote for your favorite ideas or submit a new one. Got Twitter? Follow us and keep apprised of the latest releases and service status at @codeplex.

    Read the article

  • where is this function getting its values from

    - by user295189
    I have the JS file below that I am working on and I have a need to know this specific function pg.getRecord_Response = function(){ } within the file. I need to know where are the values are coming from in this function for example arguments[0].responseText? I am new to javascript so any help will be much appreciated. Thanks var pg = new Object(); var da = document.body.all; // ===== - EXPRESS BUILD [REQUEST] - ===== // pg.expressBuild_Request = function(){ var n = new Object(); n.patientID = request.patientID; n.encounterID = request.encounterID; n.flowSheetID = request.flowSheetID; n.encounterPlan = request.encounterPlan; n.action = "/location/diagnosis/dsp_expressBuild.php"; n.target = popWinCenterScreen("/common/html/empty.htm", 619, 757, ""); myLocationDB.PostRequest(n); } // ===== - EXPRESS BUILD [RESPONSE] - ===== // pg.expressBuild_Response = function(){ pg.records.showHiddenRecords = 0; pg.loadRecords_Request(arguments.length ? arguments[0] : 0); } // ===== - GET RECORD [REQUEST] - ===== // pg.getRecord_Request = function(){ if(pg.records.lastSelected){ pg.workin(true); pg.record.recordID = pg.records.lastSelected.i; var n = new Object(); n.noheaders = 1; n.recordID = pg.record.recordID; myLocationDB.Ajax.Post("/location/diagnosis/get_record.php", n, pg.getRecord_Response); } else { pg.buttons.btnOpen.disable(true); } } // ===== - GET RECORD [RESPONSE] - ===== // pg.getRecord_Response = function(){ //alert(arguments[0].responseText); if(arguments.length && arguments[0].responseText){ alert(arguments[0].responseText); // Refresh PQRI grid when encounter context if(request.encounterID && window.parent.frames['main']){ window.parent.frames['main'].pg.loadQualityMeasureRequest(); } var rec = arguments[0].responseText.split(pg.delim + pg.delim); if(rec.length == 20){ // validate record values rec[0] = parseInt(rec[0]); rec[3] = parseInt(rec[3]); rec[5] = parseInt(rec[5]); rec[6] = parseInt(rec[6]); rec[7] = parseInt(rec[7]); rec[8] = parseInt(rec[8]); rec[9] = parseInt(rec[9]); rec[10] = parseInt(rec[10]); rec[11] = parseInt(rec[11]); rec[12] = parseInt(rec[12]); rec[15] = parseInt(rec[15]); // set record state pg.recordState = { recordID: pg.record.recordID, codeID: rec[0], description: rec[2], assessmentTypeID: rec[3], type: rec[4], onsetDateYear: rec[5], onsetDateMonth: rec[6], onsetDateDay: rec[7], onsetDateIsApproximate: rec[8], resolveDateYear: rec[9], resolveDateMonth: rec[10], resolveDateDay: rec[11], resolveDateIsApproximate: rec[12], commentsCount: rec[15], comments: rec[16] } // set record view pg.record.code.codeID = pg.recordState.codeID; pg.record.code.value = rec[1]; pg.record.description.value = rec[2]; for(var i=0; i<pg.record.type.options.length; i++){ if(pg.record.type.options[i].value == rec[4]){ pg.record.type.selectedIndex = i; break; } } for(var i=0; i<pg.record.assessmentType.options.length; i++){ if(pg.record.assessmentType.options[i].value == rec[3]){ pg.record.assessmentType.selectedIndex = i; break; } } if(rec[5]){ if(rec[6] && rec[7]){ pg.record.onsetDateType.selectedIndex = 0; pg.record.onsetDate.value = rec[6] + "/" + rec[7] + "/" + rec[5]; pg.record.onsetDate.format(); } else { pg.record.onsetDateType.selectedIndex = 1; pg.record.onsetDateMonth.selectedIndex = rec[6]; for(var i=0; i<pg.record.onsetDateYear.options.length; i++){ if(pg.record.onsetDateYear.options[i].value == rec[5]){ pg.record.onsetDateYear.selectedIndex = i; break; } } if(rec[8]) pg.record.chkOnsetDateIsApproximate.checked = true; } } else { pg.record.onsetDateType.selectedIndex = 2; } if(rec[9]){ if(rec[10] && rec[11]){ pg.record.resolveDateType.selectedIndex = 0; pg.record.resolveDate.value = rec[10] + "/" + rec[11] + "/" + rec[9]; pg.record.resolveDate.format(); } else { pg.record.resolveDateType.selectedIndex = 1; pg.record.resolveDateMonth.selectedIndex = rec[10]; for(var i=0; i<pg.record.resolveDateYear.options[i].length; i++){ if(pg.record.resolveDateYear.options.value == rec[9]){ pg.record.resolveDateYear.selectedIndex = i; break; } } if(rec[12]) pg.record.chkResolveDateIsApproximate.checked = true; } } else { pg.record.resolveDateType.selectedIndex = 2; } pg.record.lblCommentCount.innerHTML = rec[15]; pg.record.comments.value = rec[16]; pg.record.lblUpdatedBy.innerHTML = "* Last updated by " + rec[13] + " on " + rec[14]; pg.record.lblUpdatedBy.title = "Updated by: " + rec[13] + "\nUpdated on: " + rec[14]; pg.record.linkedNotes.setData(rec[18]); pg.record.linkedOrders.setData(rec[19]); pg.record.updates.setData(rec[17]); return; } } alert("An error occured while attempting to retrieve\ndetails for record #" + pg.record.recordID + ".\n\nPlease contact support if this problem persists.\nWe apologize for the inconvenience."); pg.hideRecordView(); } // ===== - HIDE COMMENTS VIEW - ===== // pg.hideCommentsView = function(){ pg.recordComments.style.left = ""; pg.recordComments.disabled = true; pg.recordComments.comments.value = ""; pg.record.disabled = false; pg.record.style.zIndex = 5500; } // ===== - HIDE code SEARCH - ===== // pg.hidecodeSearch = function(){ pg.codeSearch.style.left = ""; pg.codeSearch.disabled = true; pg.record.disabled = false; pg.record.style.zIndex = 5500; } // ===== - HIDE RECORD - ===== // pg.hideRecord = function(){ if(arguments.length){ pg.loadRecords_Request(); } else if(pg.records.lastSelected){ var n = new Object(); n.recordTypeID = 11; n.patientID = request.patientID; n.recordID = pg.records.lastSelected.i; n.action = "/location/hideRecord/dsp_hideRecord.php"; n.target = popWinCenterScreen("/common/html/empty.htm", 164, 476); myLocationDB.PostRequest(n); } } // ===== - HIDE RECORD VIEW - ===== // pg.hideRecordView = function(){ pg.record.style.left = ""; pg.record.disabled = true; // reset record grids pg.record.updates.state = "NO_RECORDS"; pg.record.linkedNotes.state = "NO_RECORDS"; pg.record.linkedOrders.state = "NO_RECORDS"; // reset linked record tabs pg.record.tabs[0].click(); pg.record.tabs[1].disable(true); pg.record.tabs[2].disable(true); pg.record.tabs[1].all[1].innerHTML = "Notes"; pg.record.tabs[2].all[1].innerHTML = "Orders"; // reset record state pg.recordState = null; // reset record view pg.record.recordID = 0; pg.record.code.value = ""; pg.record.code.codeID = 0; pg.record.description.value = ""; pg.record.type.selectedIndex = 0; pg.record.assessmentType.selectedIndex = 0; pg.record.onsetDateType.selectedIndex = 0; pg.record.chkOnsetDateIsApproximate.checked = false; pg.record.resolveDateType.selectedIndex = 0; pg.record.chkResolveDateIsApproximate.checked = false; pg.record.lblCommentCount.innerHTML = 0; pg.record.comments.value = ""; pg.record.lblUpdatedBy.innerHTML = ""; pg.record.lblUpdatedBy.title = ""; pg.record.updateComment = ""; pg.recordComments.comments.value = ""; pg.record.active = false; pg.codeSearch.newRecord = true; pg.blocker.className = ""; pg.workin(false); } // ===== - HIDE UPDATE VIEW - ===== // pg.hideUpdateView = function(){ pg.recordUpdate.style.left = ""; pg.recordUpdate.disabled = true; pg.recordUpdate.type.value = ""; pg.recordUpdate.onsetDate.value = ""; pg.recordUpdate.description.value = ""; pg.recordUpdate.resolveDate.value = ""; pg.recordUpdate.assessmentType.value = ""; pg.record.disabled = false; pg.record.btnViewUpdate.setState(); pg.record.style.zIndex = 5500; } // ===== - INIT - ===== // pg.init = function(){ var tab = 1; pg.delim = String.fromCharCode(127); pg.subDelim = String.fromCharCode(1); pg.blocker = da.blocker; pg.hourglass = da.hourglass; pg.pageContent = da.pageContent; pg.blocker.shim = da.blocker_shim; pg.activeTip = da.activeTip; pg.activeTip.anchor = null; pg.activeTip.shim = da.activeTip_shim; // PAGE TITLE pg.pageTitle = da.pageTitle; // TOTAL RECORDS pg.totalRecords = da.totalRecords[0]; // START RECORD pg.startRecord = da.startRecord[0]; pg.startRecord.onchange = function(){ pg.records.startRecord = this.value; pg.loadRecords_Request(); } // RECORD PANEL pg.recordPanel = myLocationDB.RecordPanel(pg.pageContent.all.recordPanel); for(var i=0; i<pg.recordPanel.buttons.length; i++){ if(pg.recordPanel.buttons[i].orderBy){ pg.recordPanel.buttons[i].onclick = pg.sortRecords; } } // RECORDS GRIDVIEW pg.records = pg.recordPanel.all.grid; alert(pg.recordPanel.all.grid); pg.records.sortOrder = "DESC"; pg.records.lastExpanded = null; pg.records.attachEvent("onrowclick", pg.record_click); pg.records.orderBy = pg.recordPanel.buttons[0].orderBy; pg.records.attachEvent("onrowmouseout", pg.record_mouseOut); pg.records.attachEvent("onrowdblclick", pg.getRecord_Request); pg.records.attachEvent("onrowmouseover", pg.record_mouseOver); pg.records.attachEvent("onstateready", pg.loadRecords_Response); // BUTTON - TOGGLE HIDDEN RECORDS pg.btnHiddenRecords = myLocationDB.Custom.ImageButton(3, 751, 19, 19, "/common/images/hide.gif", 1, 1, "", "", da.pageContent); pg.btnHiddenRecords.setTitle("Show hidden records"); pg.btnHiddenRecords.onclick = pg.toggleHiddenRecords; pg.btnHiddenRecords.setState = function(){ this.disable(!pg.records.totalHiddenRecords); } // code SEARCH SUBWIN pg.codeSearch = da.subWin_codeSearch; pg.codeSearch.newRecord = true; pg.codeSearch.searchType = "code"; pg.codeSearch.searchFavorites = true; pg.codeSearch.onkeydown = function(){ if(window.event && window.event.keyCode && window.event.keyCode == 113){ if(pg.codeSearch.searchType == "DESCRIPTION"){ pg.codeSearch.searchType = "code"; pg.codeSearch.lblSearchType.innerHTML = "ICD-9 Code"; } else { pg.codeSearch.searchType = "DESCRIPTION"; pg.codeSearch.lblSearchType.innerHTML = "Description"; } pg.searchcodes_Request(); } } // SEARCH TYPE pg.codeSearch.lblSearchType = pg.codeSearch.all.lblSearchType; // SEARCH STRING pg.codeSearch.searchString = pg.codeSearch.all.searchString; pg.codeSearch.searchString.tabIndex = 1; pg.codeSearch.searchString.onfocus = function(){ this.select(); } pg.codeSearch.searchString.onblur = function(){ this.value = this.value.trim(); } pg.codeSearch.searchString.onkeydown = function(){ if(window.event && window.event.keyCode && window.event.keyCode == 13){ pg.searchcodes_Request(); } } // -- "SEARCH" pg.codeSearch.btnSearch = pg.codeSearch.all.btnSearch; pg.codeSearch.btnSearch.tabIndex = 2; pg.codeSearch.btnSearch.disable = myLocationDB.Disable; pg.codeSearch.btnSearch.onclick = pg.searchcodes_Request; pg.codeSearch.btnSearch.baseTitle = "Search diagnosis codes"; pg.codeSearch.btnSearch.setState = function(){ pg.codeSearch.btnSearch.disable(pg.codeSearch.searchString.value.trim().length < 2); } pg.codeSearch.searchString.onkeyup = pg.codeSearch.btnSearch.setState; // START RECORD / TOTAL RECORDS pg.codeSearch.startRecord = pg.codeSearch.all.startRecord; pg.codeSearch.totalRecords = pg.codeSearch.all.totalRecords; pg.codeSearch.startRecord.onchange = function(){ pg.codeSearch.records.startRecord = this.value; pg.searchcodes_Request(); } // RECORD PANEL pg.codeSearch.recordPanel = myLocationDB.RecordPanel(pg.codeSearch.all.recordPanel); pg.codeSearch.recordPanel.buttons[0].onclick = pg.sortcodeResults; pg.codeSearch.recordPanel.buttons[1].onclick = pg.sortcodeResults; // DATA GRIDVIEW pg.codeSearch.records = pg.codeSearch.all.grid; pg.codeSearch.records.orderBy = "code"; pg.codeSearch.records.attachEvent("onrowdblclick", pg.updatecode); pg.codeSearch.records.attachEvent("onstateready", pg.searchcodes_Response); // BUTTON - "CANCEL" pg.codeSearch.btnCancel = pg.codeSearch.all.btnCancel; pg.codeSearch.btnCancel.tabIndex = 4; pg.codeSearch.btnCancel.onclick = pg.hidecodeSearch; pg.codeSearch.btnCancel.title = "Close this search area"; // SEARCH FAVORITES / ALL pg.codeSearch.optSearch = myLocationDB.InputButton(pg.codeSearch.all.optSearch); pg.codeSearch.optSearch[0].onclick = function(){ if(pg.codeSearch.searchFavorites){ pg.codeSearch.searchString.focus(); } else { pg.codeSearch.searchFavorites = true; pg.searchcodes_Request(); } } pg.codeSearch.optSearch[1].onclick = function(){ if(pg.codeSearch.searchFavorites){ pg.codeSearch.searchFavorites = false; pg.searchcodes_Request(); } else { pg.codeSearch.searchString.focus(); } } // -- "USE SELECTED" pg.codeSearch.btnUseSelected = pg.codeSearch.all.btnUseSelected; pg.codeSearch.btnUseSelected.tabIndex = 3; pg.codeSearch.btnUseSelected.onclick = pg.updatecode; pg.codeSearch.btnUseSelected.disable = myLocationDB.Disable; pg.codeSearch.btnUseSelected.baseTitle = "Use the selected diagnosis code"; pg.codeSearch.btnUseSelected.setState = function(){ pg.codeSearch.btnUseSelected.disable(!pg.codeSearch.records.lastSelected); } pg.codeSearch.records.attachEvent("onrowclick", pg.codeSearch.btnUseSelected.setState); // RECORD STATE pg.recordState = null; // RECORD SUBWIN pg.record = da.subWin_record; pg.record.recordID = 0; pg.record.active = false; pg.record.updateComment = ""; // -- TABS pg.record.tabs = myLocationDB.TabCollection( pg.record.all.tab, function(){ if(pg.record.tabs[0].all[0].checked){ pg.record.btnOpen.style.display = "none"; pg.record.chkSelectAll.hitArea.style.display = "none"; pg.record.btnSave.style.display = "block"; pg.record.lblUpdatedBy.style.display = "block"; pg.record.pnlRecord_shim.style.display = "none"; } else { pg.record.pnlRecord_shim.style.display = "block"; pg.record.btnSave.style.display = "none"; pg.record.lblUpdatedBy.style.display = "none"; pg.record.btnOpen.setState(); pg.record.btnOpen.style.display = "block"; if(pg.record.tabs[2].all[0].checked){ pg.record.chkSelectAll.hitArea.style.display = "none"; //pg.record.btnViewLabs.setState(); //pg.record.btnViewLabs.style.display = "block"; } else { pg.record.chkSelectAll.setState(); pg.record.chkSelectAll.hitArea.style.display = "block"; //pg.record.btnViewLabs.style.display = "none"; } } } ); pg.record.tabs[1].disable(true); pg.record.tabs[2].disable(true); pg.record.pnlRecord_shim = pg.record.all.pnlRecord_shim; pg.record.code = pg.record.all.code; pg.record.code.codeID = 0; pg.record.code.tabIndex = -1; // -- CHANGE code pg.record.btnChangecode = myLocationDB.Custom.ImageButton(6, 107, 22, 22, "/common/images/edit.gif", 2, 2, "", "", pg.record.all.pnlRecord); pg.record.btnChangecode.tabIndex = 1; pg.record.btnChangecode.onclick = pg.showcodeSearch; pg.record.btnChangecode.title = "Change the diagnosis code for this problem"; pg.record.description = pg.record.all.description; pg.record.description.tabIndex = 2; pg.record.type = pg.record.all.type; pg.record.type.tabIndex = 3; pg.record.assessmentType = pg.record.all.assessmentType; pg.record.assessmentType.tabIndex = 9; // ONSET DATE pg.record.onsetDateType = pg.record.all.onsetDateType; pg.record.onsetDateType.tabIndex = 4; pg.record.onsetDateType.onchange = pg.record.onsetDateType.setState = function(){ switch(this.selectedIndex){ case 1: // PARTIAL pg.record.chkOnsetDateIsApproximate.disable(false); pg.record.onsetDate.style.visibility = "hidden"; pg.record.onsetDateUnknown.style.visibility = "hidden"; pg.record.onsetDate.datePicker.style.visibility = "hidden"; pg.record.onsetDateMonth.style.visibility = "visible"; pg.record.onsetDateYear.style.visibility = "visible"; break; case 2: // UNKNOWN pg.record.chkOnsetDateIsApproximate.disable(true); pg.record.onsetDate.style.visibility = "hidden"; pg.record.onsetDateYear.style.visibility = "hidden"; pg.record.onsetDateMonth.style.visibility = "hidden"; pg.record.onsetDate.datePicker.style.visibility = "hidden"; pg.record.onsetDateUnknown.style.visibility = "visible"; break; default: // "WHOLE" pg.record.chkOnsetDateIsApproximate.disable(true); pg.record.onsetDateMonth.style.visibility = "hidden"; pg.record.onsetDateYear.style.visibility = "hidden"; pg.record.onsetDateUnknown.style.visibility = "hidden"; pg.record.onsetDate.style.visibility = "visible"; pg.record.onsetDate.datePicker.style.visibility = "visible"; break; } } pg.record.onsetDate = myLocationDB.Custom.DateInput(30, 364, 80, pg.record.all.pnlRecord, 1, 1, 0, params.todayDate, 1); pg.record.onsetDate.tabIndex = 5; pg.record.onsetDate.style.textAlign = "LEFT"; pg.record.onsetDate.calendar.style.zIndex = 6000; pg.record.onsetDate.datePicker.style.left = "448px"; pg.record.onsetDate.setDateRange(params.birthDate, params.todayDate); pg.record.onsetDateYear = pg.record.all.onsetDateYear; pg.record.onsetDateYear.tabIndex = 6; pg.record.onsetDateMonth = pg.record.all.onsetDateMonth pg.record.onsetDateMonth.tabIndex = 7; pg.record.onsetDateUnknown = pg.record.all.onsetDateUnknown; pg.record.onsetDateUnknown.tabIndex = 8; pg.record.chkOnsetDateIsApproximate = myLocationDB.InputButton(pg.record.all.chkOnsetDateIsApproximate); pg.record.chkOnsetDateIsApproximate.setTitle("Onset date is approximate"); pg.record.chkOnsetDateIsApproximate.disable(true); // RESOLVE DATE pg.record.lblResolveDate = pg.record.all.lblResolveDate; pg.record.resolveDateType = pg.record.all.resolveDateType; pg.record.resolveDateType.tabIndex = 10; pg.record.resolveDateType.lastSelectedIndex = 0; pg.record.resolveDateType.setState = function(){ switch(this.selectedIndex){ case 1: // PARTIAL pg.record.chkResolveDateIsApproximate.disable(false); pg.record.resolveDate.style.visibility = "hidden"; pg.record.resolveDateUnknown.style.visibility = "hidden"; pg.record.resolveDate.datePicker.style.visibility = "hidden"; pg.record.resolveDateMonth.style.visibility = "visible"; pg.record.resolveDateYear.style.visibility = "visible"; break; case 2: // UNKNOWN pg.record.chkResolveDateIsApproximate.disable(true); pg.record.resolveDate.style.visibility = "hidden"; pg.record.resolveDateYear.style.visibility = "hidden"; pg.record.resolveDateMonth.style.visibility = "hidden"; pg.record.resolveDate.datePicker.style.visibility = "hidden"; pg.record.resolveDateUnknown.style.visibility = "visible"; break; default: // "WHOLE" pg.record.chkResolveDateIsApproximate.disable(true); pg.record.resolveDateMonth.style.visibility = "hidden"; pg.record.resolveDateYear.style.visibility = "hidden"; pg.record.resolveDateUnknown.style.visibility = "hidden"; pg.record.resolveDate.style.visibility = "visible"; pg.record.resolveDate.datePicker.style.visibility = "visible"; break; } } pg.record.resolveDateType.onchange = function(){ this.lastSelectedIndex = this.selectedIndex; this.setState(); } pg.record.resolveDate = myLocationDB.Custom.DateInput(55, 364, 80, pg.record.all.pnlRecord, 1, 1, 0, params.todayDate, 1); pg.record.resolveDate.tabIndex = 11; pg.record.resolveDate.style.textAlign = "LEFT"; pg.record.resolveDate.calendar.style.zIndex = 6000; pg.record.resolveDate.datePicker.style.left = "448px"; pg.record.resolveDate.setDateRange(params.birthDate, params.todayDate); pg.record.resolveDate.setState = function(){ if(pg.record.assessmentType.value == 15){ pg.record.chkResolveDateIsApproximate.disable(pg.record.resolveDateType.value != "PARTIAL"); pg.record.resolveDate.disabled = false; pg.record.lblResolveDate.disabled = false; pg.record.resolveDateType.selectedIndex = pg.record.resolveDateType.lastSelectedIndex; pg.record.resolveDateType.setState(); pg.record.resolveDate.datePicker.disable(false); pg.record.resolveDateType.disabled = false; pg.record.resolveDateYear.disabled = false; pg.record.resolveDateMonth.disabled = false; pg.record.resolveDateUnknown.disabled = false; } else { pg.record.resolveDate.datePicker.disable(true); pg.record.chkResolveDateIsApproximate.disable(true); pg.record.resolveDateType.selectedIndex = 2; pg.record.resolveDateType.setState(); pg.record.resolveDate.disabled = true; pg.record.lblResolveDate.disabled = true; pg.record.resolveDateType.disabled = true; pg.record.resolveDateYear.disabled = true; pg.record.resolveDateMonth.disabled = true; pg.record.resolveDateUnknown.disabled = true; } } pg.record.assessmentType.onchange = pg.record.resolveDate.setState; pg.record.resolveDateYear = pg.record.all.resolveDateYear; pg.record.resolveDateYear.tabIndex = 11; pg.record.resolveDateMonth = pg.record.all.resolveDateMonth pg.record.resolveDateMonth.tabIndex = 12; pg.record.resolveDateUnknown = pg.record.all.resolveDateUnknown; pg.record.resolveDateUnknown.tabIndex = 13; pg.record.chkResolveDateIsApproximate = myLocationDB.InputButton(pg.record.all.chkResolveDateIsApproximate); pg.record.chkResolveDateIsApproximate.setTitle("Resolve date is approximate"); pg.record.chkResolveDateIsApproximate.disable(true); // -- UPDATES pg.record.updates = pg.record.all.pnlUpdates.all.grid; pg.record.lblUpdateCount = pg.record.all.lblUpdateCount; pg.record.updates.attachEvent("onstateready", pg.showRecordView); pg.record.updates.attachEvent("onrowdblclick", pg.showUpdateView); // -- "VIEW SELECTED" pg.record.btnViewUpdate = myLocationDB.PanelButton(pg.record.all.btnViewUpdate); pg.record.btnViewUpdate.setTitle("View details for the selected problem update"); pg.record.btnViewUpdate.onclick = pg.showUpdateView; pg.record.btnViewUpdate.setState = function(){ pg.record.btnViewUpdate.disable(!pg.record.updates.lastSelected); } pg.record.updates.attachEvent("onrowclick", pg.record.btnViewUpdate.setState); // -- COMMENTS pg.record.comments = pg.record.all.comments; pg.record.pnlComments = pg.record.all.pnlComments; pg.record.lblCommentCount = pg.record.all.lblCommentCount; // -- UPDATE COMMENTS pg.record.btnUpdateComments = myLocationDB.PanelButton(pg.record.all.btnUpdateComments); pg.record.btnUpdateComments.onclick = pg.showCommentView; pg.record.btnUpdateComments.title = "Update this record's comments"; // -- LINKED NOTES pg.record.linkedNotes = pg.record.all.linkedNotes.all.grid; pg.record.linkedNotes.attachEvent("onrowclick", pg.linkedRecordClick); pg.record.linkedNotes.attachEvent("onrowdblclick", pg.openLinkedNote); pg.record.linkedNotes.attachEvent("onstateready", pg.setLinkedNotes_Count); // -- LINKED ORDERS pg.record.linkedOrders = pg.record.all.linkedOrders.all.grid; pg.record.linkedOrders.attachEvent("onrowclick", pg.linkedRecordClick); pg.record.linkedOrders.attachEvent("onrowdblclick", pg.openLinkedOrder); pg.record.linkedOrders.attachEvent("onstateready", pg.setLinkedOrders_Count); // -- "CLOSE" pg.record.btnClose = pg.record.all.btnClose; pg.record.btnClose.tabIndex = 15; pg.record.btnClose.onclick = pg.hideRecordView; pg.record.btnClose.title = "Close this record panel"; // -- LAST UPDATED BY pg.record.lblUpdatedBy = pg.record.all.lblUpdatedBy; // -- "SELECT ALL" pg.record.chkSelectAll = myLocationDB.InputButton(pg.record.all.chkSelectAll); pg.record.chkSelectAll.onclick = function(){ if(pg.record.tabs[1].all[0].checked){ if(pg.record.chkSelectAll.checked){ pg.record.linkedNotes.selectAll(); } else { pg.record.linkedNotes.deselectAll(); } } else { if(pg.record.chkSelectAll.checked){ pg.record.linkedOrders.selectAll(); } else { pg.record.linkedOrders.deselectAll(); } } pg.record.btnOpen.setState(); //pg.record.btnViewLabs.setState(); } pg.record.chkSelectAll.setState = function(){ if(pg.record.tabs[1].all[0].checked){ pg.record.chkSelectAll.checked = pg.record.linkedNotes.selectedRows.length == pg.record.linkedNotes.rows.length; } else { pg.record.chkSelectAll.checked = pg.record.linkedOrders.selectedRows.length == pg.record.linkedOrders.rows.length; } } // -- "OPEN SELECTED" pg.record.btnOpen = pg.record.all.btnOpenSelected; pg.record.btnOpen.tabIndex = 14; pg.record.btnOpen.disable = myLocationDB.Disable; pg.record.btnOpen.title = "Open the selected record"; pg.record.btnOpen.onclick = function(){ if(pg.record.tabs[1].all[0].checked){ pg.openLinkedNote(); } else if(pg.record.tabs[2].all[0].checked){ pg.openLinkedOrder(); } else { pg.record.btnOpen.disable(true); } } pg.record.btnOpen.setState = function(){ if(pg.record.tabs[1].all[0].checked){ pg.record.btnOpen.disable(!pg.record.linkedNotes.lastSelected); } else if(pg.record.tabs[2].all[0].checked){ pg.record.btnOpen.disable(pg.record.linkedOrders.selectedRows.length != 1); } else { pg.record.btnOpen.disable(true); } } // -- "SAVE" pg.record.btnSave = pg.record.all.btnSave; pg.record.btnSave.tabIndex = 14; pg.record.btnSave.onclick = pg.updateRecord_Request; pg.record.btnSave.title = "Save changes to this record"; // RECORD UPDATE SUBWIN pg.recordUpdate = da.subWin_update; pg.recordUpdate.lblUpdatedBy = pg.recordUpdate.all.lblUpdatedBy; pg.recordUpdate.lblUpdateDTS = pg.recordUpdate.all.lblUpdateDTS; pg.recordUpdate.type = pg.recordUpdate.all.type; pg.recordUpdate.onsetDate = pg.recordUpdate.all.onsetDate; pg.recordUpdate.description = pg.recordUpdate.all.description; pg.recordUpdate.resolveDate = pg.recordUpdate.all.resolveDate; pg.recordUpdate.assessmentType = pg.recordUpdate.all.assessmentType; // -- "CLOSE" pg.recordUpdate.btnClose = pg.recordUpdate.all.btnClose; pg.recordUpdate.btnClose.tabIndex = 1; pg.recordUpdate.btnClose.onclick = pg.hideUpdateView; pg.recordUpdate.btnClose.title = "Close this sub-window"; // COMMENTS SUBWIN pg.recordComments = da.subWin_comments; pg.recordComments.comments = pg.recordComments.all.updateComments; pg.recordComments.comment

    Read the article

  • How to start dovecot?

    - by chudapati09
    I'm building a web server to host multiple websites. I got everything working except the mail server. I'm using linode to host my vps and I've been following their tutorials. FYI, I'm using Ubuntu 11.10. Here is the link I've been following, http://library.linode.com/email/postfix/dovecot-mysql-ubuntu-10.04-lucid. I got up to the part where it tells me to restart dovecot, so I tried "service dovecot restart". But then I get this "restart: Unknown instance:". I'm logged in as root, so I'm not using sudo. Since that didn't work I tried "/etc/init.d/dovecot restart" and I get "dovecot start/running, process 4760". So I try "/etc/init.d/dovecot status" and I get "dovecot stop/waiting". So I tried "service dovecot start" and I get "dovecot start/running, process 4781". So I tried to get the status, so I tired "service dovecot status" and got "dovecot stop/waiting" Then I tired "/etc/init.d/dovecot start" and I get "dovecot start/running, process 4794". So I tired to get the status, so I tired "/etc/init.d/dovecot status" and got "dovecot stop/waiting" Just for kicks and giggles I tired to kill the process, I used the PID that I got when I did "service dovecot start", this was the command "kill -9 4444" and I get this "bash: kill: (4805) - No such process" Am I doing something wrong? --EDIT 1-- The following are logs that were found in /var/log/syslog that involved dovecot dovecot: master: Dovecot v2.0.13 starting up (core dumps disabled) dovecot: ssl-params: Generating SSL parameters dovecot: ssl-params: SSL parameters regeneration completed dovecot: master: Warning: Killed with signal 15 (by pid=1 uid=0 code=kill) dovecot: config: Warning: Killed with signal 15 (by pid=1 uid=0 code=kill) dovecot: anvil: Warning: Killed with signal 15 (by pid=1 uid=0 code=kill) dovecot: log: Warning: Killed with signal 15 (by pid=1 uid=0 code=kill) kernel: init: dovecot main process (10276) terminated with status 89 kernel: init: dovecot main process (10289) terminated with status 89 kernel: init: dovecot main process (10452) terminated with status 89 kernel: init: dovecot main process (2275) terminated with status 89 kernel: init: dovecot main process (3028) terminated with status 89 kernel: init: dovecot main process (3216) terminated with status 89 kernel: init: dovecot main process (3230) terminated with status 89 kernel: init: dovecot main process (3254) terminated with status 89 kernel: init: dovecot main process (3813) terminated with status 89 kernel: init: dovecot main process (3845) terminated with status 89 kernel: init: dovecot main process (4664) terminated with status 89 kernel: init: dovecot main process (4760) terminated with status 89 kernel: init: dovecot main process (4781) terminated with status 89 kernel: init: dovecot main process (4794) terminated with status 89 kernel: init: dovecot main process (4805) terminated with status 89 --Edit 2 (/etc/dovecot/dovecot.conf)-- The following is the dovecot.conf file protocols = imap imaps pop3 pop3s log_timestamp = "%Y-%m-%d %H:%M:%S " mail_location = maildir:/home/vmail/%d/%n/Maildir ssl_cert_file = /etc/ssl/certs/dovecot.pem ssl_key_file = /etc/ssl/private/dovecot.pem namespace private { separator = . prefix = INBOX. inbox = yes } protocol lda { log_path = /home/vmail/dovecot-deliver.log auth_socket_path = /var/run/dovecot/auth-master postmaster_address = postmaster@[mydomainname.com] mail_plugins = sieve global_script_path = /home/vmail/globalsieverc } protocol pop3 { pop3_uidl_format = %08Xu%08Xv } auth default { user = root passdb sql { args = /etc/dovecot/dovecot-sql.conf } userdb static { args = uid=5000 gid=5000 home=/home/vmail/%d/%n allow_all_users=yes } socket listen { master { path = /var/run/dovecot/auth-master mode = 0600 user = vmail } client { path = /var/spool/postfix/private/auth mode = 0660 user = postfix group = postfix } } } -- Edit 3 (/var/log/mail.log) -- The following is what is in /var/log/mail.log dovecot: master: Dovecot v2.0.13 starting up (core dumps disabled) dovecot: ssl-params: Generating SSL parameters postfix/master[9917]: daemon started -- version 2.8.5, configuration /etc/postfix dovecot: ssl-params: SSL parameters regeneration completed postfix/master[9917]: terminating on signal 15 postfix/master[10196]: daemon started -- version 2.8.5, configuration /etc/postfix dovecot: master: Warning: Killed with signal 15 (by pid=1 uid=0 code=kill) dovecot: config: Warning: Killed with signal 15 (by pid=1 uid=0 code=kill) dovecot: anvil: Warning: Killed with signal 15 (by pid=1 uid=0 code=kill) dovecot: log: Warning: Killed with signal 15 (by pid=1 uid=0 code=kill) postfix/master[2435]: daemon started -- version 2.8.5, configuration /etc/postfix postfix/master[2435]: terminating on signal 15 postfix/master[2965]: daemon started -- version 2.8.5, configuration /etc/postfix

    Read the article

< Previous Page | 445 446 447 448 449 450 451 452 453 454 455 456  | Next Page >