Search Results

Search found 7672 results on 307 pages for 'compiler optimization'.

Page 45/307 | < Previous Page | 41 42 43 44 45 46 47 48 49 50 51 52  | Next Page >

  • Python2.7: How can I speed up this bit of code (loop/lists/tuple optimization)?

    - by user89
    I repeat the following idiom again and again. I read from a large file (sometimes, up to 1.2 million records!) and store the output into an SQLite databse. Putting stuff into the SQLite DB seems to be fairly fast. def readerFunction(recordSize, recordFormat, connection, outputDirectory, outputFile, numObjects): insertString = "insert into NODE_DISP_INFO(node, analysis, timeStep, H1_translation, H2_translation, V_translation, H1_rotation, H2_rotation, V_rotation) values (?, ?, ?, ?, ?, ?, ?, ?, ?)" analysisNumber = int(outputPath[-3:]) outputFileObject = open(os.path.join(outputDirectory, outputFile), "rb") outputFileObject, numberOfRecordsInFileObject = determineNumberOfRecordsInFileObjectGivenRecordSize(recordSize, outputFileObject) numberOfRecordsPerObject = (numberOfRecordsInFileObject//numberOfObjects) loop1StartTime = time.time() for i in range(numberOfRecordsPerObject ): processedRecords = [] loop2StartTime = time.time() for j in range(numberOfObjects): fout = outputFileObject .read(recordSize) processedRecords.append(tuple([j+1, analysisNumber, i] + [x for x in list(struct.unpack(recordFormat, fout))])) loop2EndTime = time.time() print "Time taken to finish loop2: {}".format(loop2EndTime-loop2StartTime) dbInsertStartTime = time.time() connection.executemany(insertString, processedRecords) dbInsertEndTime = time.time() loop1EndTime = time.time() print "Time taken to finish loop1: {}".format(loop1EndTime-loop1StartTime) outputFileObject.close() print "Finished reading output file for analysis {}...".format(analysisNumber) When I run the code, it seems that "loop 2" and "inserting into the database" is where most execution time is spent. Average "loop 2" time is 0.003s, but it is run up to 50,000 times, in some analyses. The time spent putting stuff into the database is about the same: 0.004s. Currently, I am inserting into the database every time after loop2 finishes so that I don't have to deal with running out RAM. What could I do to speed up "loop 2"?

    Read the article

  • SQL SERVER – Out of the Box – Activty and Performance Reports from SSSMS

    - by pinaldave
    SQL Server management Studio 2008 is wonderful tool and has many different features. Many times, an average user does not use them as they are not aware about these features. Today, we will learn one such feature. SSMS comes with many inbuilt performance and activity reports, but we do not use it to the full potential. Let us see how we can access these standard reports. Connect to SQL Server Node >> Right Click on it >> Go to Reports >> Click on Standard Reports >> Pick Any Report. Click to Enlarge You can see there are many reports, which an average users needs right away, are available there. Let me list all the reports available. Server Dashboard Configuration Changes History Schema Changes History Scheduler Health Memory Consumption Activity – All Blocking Transactions Activity – All Cursors Activity – All Sessions Activity – Top Sessions Activity – Dormant Sessions Activity -  Top Connections Top Transactions by Age Top Transactions by Blocked Transactions Count Top Transactions by Locks Count Performance – Batch Execution Statistics Performance – Object Execution Statistics Performance – Top Queries by Average CPU Time Performance – Top Queries by Average IO Performance – Top Queries by Total CPU Time Performance – Top Queries by Total IO Service Broker Statistics Transactions Log Shipping Status In fact, when you look at the above list, it is fairly clear that they are very thought out and commonly needed reports that are available in SQL Server 2008. Let us run a couple of reports and observe their result. Performance – Top Queries by Total CPU Time Click to Enlarge Memory Consumption Click to Enlarge There are options for custom reports as well, which we can configure. We will learn about them in some other post. Additionally, you can right click on the reports and export in Excel or PDF. I think this tool can really help those who are just looking for some quick details. Does any of you use this feature, or this feature has some limitations and You would like to see more features? Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Summary of Month – Wait Type – Day 28 of 28

    - by pinaldave
    I am glad to announce that the month of Wait Types and Queues very successful. I am glad that it was very well received and there was great amount of participation from community. I am fortunate to have some of the excellent comments throughout the series. I want to dedicate this series to all the guest blogger – Jonathan, Jacob, Glenn, and Feodor for their kindness to take a participation in this series. Here is the complete list of the blog posts in this series. I enjoyed writing the series and I plan to continue writing similar series. Please offer your opinion. SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28 SQL SERVER – Signal Wait Time Introduction with Simple Example – Wait Type – Day 2 of 28 SQL SERVER – DMV – sys.dm_os_wait_stats Explanation – Wait Type – Day 3 of 28 SQL SERVER – DMV – sys.dm_os_waiting_tasks and sys.dm_exec_requests – Wait Type – Day 4 of 28 SQL SERVER – Capturing Wait Types and Wait Stats Information at Interval – Wait Type – Day 5 of 28 SQL SERVER – CXPACKET – Parallelism – Usual Solution – Wait Type – Day 6 of 28 SQL SERVER – CXPACKET – Parallelism – Advanced Solution – Wait Type – Day 7 of 28 SQL SERVER – SOS_SCHEDULER_YIELD – Wait Type – Day 8 of 28 SQL SERVER – PAGEIOLATCH_DT, PAGEIOLATCH_EX, PAGEIOLATCH_KP, PAGEIOLATCH_SH, PAGEIOLATCH_UP – Wait Type – Day 9 of 28 SQL SERVER – IO_COMPLETION – Wait Type – Day 10 of 28 SQL SERVER – ASYNC_IO_COMPLETION – Wait Type – Day 11 of 28 SQL SERVER – PAGELATCH_DT, PAGELATCH_EX, PAGELATCH_KP, PAGELATCH_SH, PAGELATCH_UP – Wait Type – Day 12 of 28 SQL SERVER – FT_IFTS_SCHEDULER_IDLE_WAIT – Full Text – Wait Type – Day 13 of 28 SQL SERVER – BACKUPIO, BACKUPBUFFER – Wait Type – Day 14 of 28 SQL SERVER – LCK_M_XXX – Wait Type – Day 15 of 28 SQL SERVER – Guest Post – Jonathan Kehayias – Wait Type – Day 16 of 28 SQL SERVER – WRITELOG – Wait Type – Day 17 of 28 SQL SERVER – LOGBUFFER – Wait Type – Day 18 of 28 SQL SERVER – PREEMPTIVE and Non-PREEMPTIVE – Wait Type – Day 19 of 28 SQL SERVER – MSQL_XP – Wait Type – Day 20 of 28 SQL SERVER – Guest Posts – Feodor Georgiev – The Context of Our Database Environment – Going Beyond the Internal SQL Server Waits – Wait Type – Day 21 of 28 SQL SERVER – Guest Post – Jacob Sebastian – Filestream – Wait Types – Wait Queues – Day 22 of 28 SQL SERVER – OLEDB – Link Server – Wait Type – Day 23 of 28 SQL SERVER – 2000 – DBCC SQLPERF(waitstats) – Wait Type – Day 24 of 28 SQL SERVER – 2011 – Wait Type – Day 25 of 28 SQL SERVER – Guest Post – Glenn Berry – Wait Type – Day 26 of 28 SQL SERVER – Best Reference – Wait Type – Day 27 of 28 SQL SERVER – Summary of Month – Wait Type – Day 28 of 28 Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, SQLServer, T SQL, Technology

    Read the article

  • SQL SERVER – Difference Between DATETIME and DATETIME2

    - by pinaldave
    Yesterday I have written a very quick blog post on SQL SERVER – Difference Between GETDATE and SYSDATETIME and I got tremendous response for the same. I suggest you read that blog post before continuing this blog post today. I had asked people to honestly take part and share their view about above two system function. There are few emails as well few comments on the blog post asking question how did I come to know the difference between the same. The answer is real world issues. I was called in for performance tuning consultancy where I was asked very strange question by one developer. Here is the situation he was facing. System had a single table with two different column of datetime. One column was datelastmodified and second column was datefirstmodified. One of the column was DATETIME and another was DATETIME2. Developer was populating them with SYSDATETIME respectively. He was always thinking that the value inserted in the table will be the same. This table was only accessed by INSERT statement and there was no updates done over it in application.One fine day he ran distinct on both of this column and was in for surprise. He always thought that both of the table will have same data, but in fact they had very different data. He presented this scenario to me. I said this can not be possible but when looked at the resultset, I had to agree with him. Here is the simple script generated to demonstrate the problem he was facing. This is just a sample of original table. DECLARE @Intveral INT SET @Intveral = 10000 CREATE TABLE #TimeTable (FirstDate DATETIME, LastDate DATETIME2) WHILE (@Intveral > 0) BEGIN INSERT #TimeTable (FirstDate, LastDate) VALUES (SYSDATETIME(), SYSDATETIME()) SET @Intveral = @Intveral - 1 END GO SELECT COUNT(DISTINCT FirstDate) D_GETDATE, COUNT(DISTINCT LastDate) D_SYSGETDATE FROM #TimeTable GO SELECT DISTINCT a.FirstDate, b.LastDate FROM #TimeTable a INNER JOIN #TimeTable b ON a.FirstDate = b.LastDate GO SELECT * FROM #TimeTable GO DROP TABLE #TimeTable GO Let us see the resultset. You can clearly see from result that SYSDATETIME() does not populate the same value in the both of the field. In fact the value is either rounded down or rounded up in the field which is DATETIME. Event though we are populating the same value, the values are totally different in both the column resulting the SELF JOIN fail and display different DISTINCT values. The best policy is if you are using DATETIME use GETDATE() and if you are suing DATETIME2 use SYSDATETIME() to populate them with current date and time to accurately address the precision. As DATETIME2 is introduced in SQL Server 2008, above script will only work with SQL SErver 2008 and later versions. I hope I have answered few questions asked yesterday. Reference: Pinal Dave (http://www.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL DateTime, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Index Created on View not Used Often – Observation of the View – Part 2

    - by pinaldave
    Earlier, I have written an article about SQL SERVER – Index Created on View not Used Often – Observation of the View. I received an email from one of the readers, asking if there would no problems when we create the Index on the base table. Well, we need to discuss this situation in two different cases. Before proceeding to the discussion, I strongly suggest you read my earlier articles. To avoid the duplication, I am not going to repeat the code and explanation over here. In all the earlier cases, I have explained in detail how Index created on the View is not utilized. SQL SERVER – Index Created on View not Used Often – Limitation of the View 12 SQL SERVER – Index Created on View not Used Often – Observation of the View SQL SERVER – Indexed View always Use Index on Table As per earlier blog posts, so far we have done the following: Create a Table Create a View Create Index On View Write SELECT with ORDER BY on View However, the blog reader who emailed me suggests the extension of the said logic, which is as follows: Create a Table Create a View Create Index On View Write SELECT with ORDER BY on View Create Index on the Base Table Write SELECT with ORDER BY on View After doing the last two steps, the question is “Will the query on the View utilize the Index on the View, or will it still use the Index of the base table?“ Let us first run the Create example. USE tempdb GO IF EXISTS (SELECT * FROM sys.views WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[SampleView]')) DROP VIEW [dbo].[SampleView] GO IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[mySampleTable]') AND TYPE IN (N'U')) DROP TABLE [dbo].[mySampleTable] GO -- Create SampleTable CREATE TABLE mySampleTable (ID1 INT, ID2 INT, SomeData VARCHAR(100)) INSERT INTO mySampleTable (ID1,ID2,SomeData) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY o1.name), ROW_NUMBER() OVER (ORDER BY o2.name), o2.name FROM sys.all_objects o1 CROSS JOIN sys.all_objects o2 GO -- Create View CREATE VIEW SampleView WITH SCHEMABINDING AS SELECT ID1,ID2,SomeData FROM dbo.mySampleTable GO -- Create Index on View CREATE UNIQUE CLUSTERED INDEX [IX_ViewSample] ON [dbo].[SampleView] ( ID2 ASC ) GO -- Select from view SELECT ID1,ID2,SomeData FROM SampleView ORDER BY ID2 GO -- Create Index on Original Table -- On Column ID1 CREATE UNIQUE CLUSTERED INDEX [IX_OriginalTable] ON mySampleTable ( ID1 ASC ) GO -- On Column ID2 CREATE UNIQUE NONCLUSTERED INDEX [IX_OriginalTable_ID2] ON mySampleTable ( ID2 ) GO -- Select from view SELECT ID1,ID2,SomeData FROM SampleView ORDER BY ID2 GO Now let us see the execution plans for both of the SELECT statement. Before Index on Base Table (with Index on View): After Index on Base Table (with Index on View): Looking at both executions, it is very clear that with or without, the View is using Indexes. Alright, I have written 11 disadvantages of the Views. Now I have written one case where the View is using Indexes. Anybody who says that I am being harsh on Views can say now that I found one place where Index on View can be helpful. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL View, SQLServer, T SQL, Technology

    Read the article

  • SQL SERVER – Index Created on View not Used Often – Observation of the View

    - by pinaldave
    I always enjoy writing about concepts on Views. Views are frequently used concepts, and so it’s not surprising that I have seen so many misconceptions about this subject. To clear such misconceptions, I have previously written the article SQL SERVER – The Limitations of the Views – Eleven and more…. I also wrote a follow up article wherein I demonstrated that without even creating index on the basic table, the query on the View will not use the View. You can read about this demonstration over here: SQL SERVER – Index Created on View not Used Often – Limitation of the View 12. I promised in that post that I would also write an article where I would demonstrate the condition where the Index will be used. I got many responses suggesting that I can do that with using NOEXPAND; I agree. I have already written about this in my original summary article. Here is a way for you to see how Index created on View can be utilized. We will do the following steps on this exercise: Create a Table Create a View Create Index On View Write SELECT with ORDER BY on View USE tempdb GO IF EXISTS (SELECT * FROM sys.views WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[SampleView]')) DROP VIEW [dbo].[SampleView] GO IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[mySampleTable]') AND TYPE IN (N'U')) DROP TABLE [dbo].[mySampleTable] GO -- Create SampleTable CREATE TABLE mySampleTable (ID1 INT, ID2 INT, SomeData VARCHAR(100)) INSERT INTO mySampleTable (ID1,ID2,SomeData) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY o1.name), ROW_NUMBER() OVER (ORDER BY o2.name), o2.name FROM sys.all_objects o1 CROSS JOIN sys.all_objects o2 GO -- Create View CREATE VIEW SampleView WITH SCHEMABINDING AS SELECT ID1,ID2,SomeData FROM dbo.mySampleTable GO -- Create Index on View CREATE UNIQUE CLUSTERED INDEX [IX_ViewSample] ON [dbo].[SampleView] ( ID2 ASC ) GO -- Select from view SELECT ID1,ID2,SomeData FROM SampleView ORDER BY ID2 GO When we check the execution plan for this , we find it clearly that the Index created on the View is utilized. ORDER BY clause uses the Index created on the View. I hope this makes the puzzle simpler on how the Index is used on the View. Again, I strongly recommend reading my earlier series about the limitations of the Views found here: SQL SERVER – The Limitations of the Views – Eleven and more…. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL View, T SQL, Technology

    Read the article

  • SQL SERVER – DMV – sys.dm_exec_query_optimizer_info – Statistics of Optimizer

    - by pinaldave
    Incredibly, SQL Server has so much information to share with us. Every single day, I am amazed with this SQL Server technology. Sometimes I find several interesting information by just querying few of the DMV. And when I present this info in front of my client during performance tuning consultancy, they are surprised with my findings. Today, I am going to share one of the hidden gems of DMV with you, the one which I frequently use to understand what’s going on under the hood of SQL Server. SQL Server keeps the record of most of the operations of the Query Optimizer. We can learn many interesting details about the optimizer which can be utilized to improve the performance of server. SELECT * FROM sys.dm_exec_query_optimizer_info WHERE counter IN ('optimizations', 'elapsed time','final cost', 'insert stmt','delete stmt','update stmt', 'merge stmt','contains subquery','tables', 'hints','order hint','join hint', 'view reference','remote query','maximum DOP', 'maximum recursion level','indexed views loaded', 'indexed views matched','indexed views used', 'indexed views updated','dynamic cursor request', 'fast forward cursor request') All occurrence values are cumulative and are set to 0 at system restart. All values for value fields are set to NULL at system restart. I have removed a few of the internal counters from the script above, and kept only documented details. Let us check the result of the above query. As you can see, there is so much vital information that is revealed in above query. I can easily say so many things about how many times Optimizer was triggered and what the average time taken by it to optimize my queries was. Additionally, I can also determine how many times update, insert or delete statements were optimized. I was able to quickly figure out that my client was overusing the Query Hints using this dynamic management view. If you have been reading my blog, I am sure you are aware of my series related to SQL Server Views SQL SERVER – The Limitations of the Views – Eleven and more…. With this, I can take a quick look and figure out how many times Views were used in various solutions within the query. Moreover, you can easily know what fraction of the optimizations has been involved in tuning server. For example, the following query would tell me, in total optimizations, what the fraction of time View was “reference“. As this View also includes system Views and DMVs, the number is a bit higher on my machine. SELECT (SELECT CAST (occurrence AS FLOAT) FROM sys.dm_exec_query_optimizer_info WHERE counter = 'view reference') / (SELECT CAST (occurrence AS FLOAT) FROM sys.dm_exec_query_optimizer_info WHERE counter = 'optimizations') AS ViewReferencedFraction Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL DMV, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • SQL SERVER – Public Training and Private Training – Differences and Similarities

    - by pinaldave
    Earlier this year, I was on Road SQL Server Seminars. I did many SQL Server Performance Trainings and SQL Server Performance Consultations throughout the year but I feel the most rewarding exercise is always the one when instructor learns something from students, too. I was just talking to my wife, Nupur – she manages my logistics and administration related activities – and she pointed out that this year I have done 62% consultations and 38% trainings. I was bit surprised as I thought the numbers would be reversed. Every time I review the year, I think of training done at organizations. Well, I cannot argue with reality, I have done more consultations (some would call them projects) than training. I told my wife that I enjoy consultations more than training. She promptly asked me a question which was not directly related but made me think for long time, and in the end resulted in this blog post. Nupur asked me: what do I enjoy the most, public training or private training? I had a long conversation with her on this subject. I am not going to write long blog post which can change your life here. This is rather a small post condensing my one hour discussion into 200 words. Public Training is fun because… There are lots of different kinds of attendees There are always vivid questions Lots of questions on questions Less interest in theory and more interest in demos Good opportunity of future business Private Training is fun because… There is a focused interest One question is discussed deeply because of existing company issues More interest in “how it happened” concepts – under the hood operations Good connection with attendees This is also a good opportunity of future business Here I will stop my monologue and I want to open up this question to all of you: Question to Attendees - Which one do you enjoy the most – Public Training or Private Training? Question to Trainers - What do you enjoy the most – Public Training or Private Training? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Training, SQLAuthority News, T SQL, Technology

    Read the article

  • Correct way to handle path-finding collision matrix

    - by Xander Lamkins
    Here is an example of me utilizing path finding. The red grid represents the grid utilized by my A* library to locate a distance. This picture is only an example, currently it is all calculated on the 1x1 pixel level (pretty darn laggy). I want to make it so that the farther I click, the less accurate it will be (split the map into larger grid pieces). Edit: as mentioned by Eric, this is not a required game mechanic. I am perfectly fine with any method that allows me to make this accurate while still fast. This isn't the really the topic of this question though. The problem I have is, my current library uses a two dimensional grid of integers. The higher the number in a cell, the more resistance for that grid tile. Currently I'm setting all unwalkable spots to Integer Max. Here is an example of what I want: I'm just not sure how I should set up the arrays of integers of the grid. Every time an element is added/removed to/from the game, it's collision details are updated in the table. Here is a picture of what the map looks like on my collision layer: I probably shouldn't be creating new arrays every time I have to do a path find because my game needs to support tons of PF at the same time. Should I have multiple arrays that are all updated when the dynamic elements are updated (a building is built/a building is destroyed). The problem I see with this is that it will probably make the creation and destruction of buildings a little more laggy than I would want because it would be setting the collision grid for each built in accuracy level. I would also have to add more/remove some arrays if I ever in the future changed the map size. Should I generate the new array based on an accuracy value every time I need to PF? The problem I see with this is that it will probably make any form of PF just as laggy because it will have to search through a MapWidth x MapHeight number of cells to shrink it all down. Or is there a better way? I'm certainly not the best at optimizing really anything. I've just started dealing with XNA so I'm not used to having optimization code really doing much of an affect until now... :( If you need code examples, please ask. I'll add it as an edit. EDIT: While this doesn't directly relate to the question, I figure the more information I provide, the better. To keep your units from moving as accurately to the players desired position, I've decided that once the unit PFs over to the less accurate grid piece, it will then PF on a more accurate level to the exact position requested.

    Read the article

  • Does OO, TDD, and Refactoring to Smaller Functions affect Speed of Code?

    - by Dennis
    In Computer Science field, I have noticed a notable shift in thinking when it comes to programming. The advice as it stands now is write smaller, more testable code refactor existing code into smaller and smaller chunks of code until most of your methods/functions are just a few lines long write functions that only do one thing (which makes them smaller again) This is a change compared to the "old" or "bad" code practices where you have methods spanning 2500 lines, and big classes doing everything. My question is this: when it call comes down to machine code, to 1s and 0s, to assembly instructions, should I be at all concerned that my class-separated code with variety of small-to-tiny functions generates too much extra overhead? While I am not exactly familiar with how OO code and function calls are handled in ASM in the end, I do have some idea. I assume that each extra function call, object call, or include call (in some languages), generate an extra set of instructions, thereby increasing code's volume and adding various overhead, without adding actual "useful" code. I also imagine that good optimizations can be done to ASM before it is actually ran on the hardware, but that optimization can only do so much too. Hence, my question -- how much overhead (in space and speed) does well-separated code (split up across hundreds of files, classes, and methods) actually introduce compared to having "one big method that contains everything", due to this overhead? UPDATE for clarity: I am assuming that adding more and more functions and more and more objects and classes in a code will result in more and more parameter passing between smaller code pieces. It was said somewhere (quote TBD) that up to 70% of all code is made up of ASM's MOV instruction - loading CPU registers with proper variables, not the actual computation being done. In my case, you load up CPU's time with PUSH/POP instructions to provide linkage and parameter passing between various pieces of code. The smaller you make your pieces of code, the more overhead "linkage" is required. I am concerned that this linkage adds to software bloat and slow-down and I am wondering if I should be concerned about this, and how much, if any at all, because current and future generations of programmers who are building software for the next century, will have to live with and consume software built using these practices. UPDATE: Multiple files I am writing new code now that is slowly replacing old code. In particular I've noted that one of the old classes was a ~3000 line file (as mentioned earlier). Now it is becoming a set of 15-20 files located across various directories, including test files and not including PHP framework I am using to bind some things together. More files are coming as well. When it comes to disk I/O, loading multiple files is slower than loading one large file. Of course not all files are loaded, they are loaded as needed, and disk caching and memory caching options exist, and yet still I believe that loading multiple files takes more processing than loading a single file into memory. I am adding that to my concern.

    Read the article

  • C compiler selection in cabal package

    - by ony
    Today I've tried C compiler (Clang) for C code I use in my haskell library and found that I can gain speed increase in comparsing with my system compiler (GCC 4.4.3) from 426.404 Gbit/s to 0.823 Tbit/s So I decided to add some flags to control the way that C source file is compiled (i.e. something like use-clang, use-intel etc.). Snippet of cabal package description file: C-Sources: c_lib/tiger.c Include-Dirs: c_lib Install-Includes: tiger.h if flag(debug) GHC-Options: -debug -Wall -fno-warn-orphans CPP-Options: -DDEBUG CC-Options: -DDEBUG -g else GHC-Options: -Wall -fno-warn-orphans Question is: which options in descritpion file need to be modified to change C compiler used to compile "c_lib/tiger.c"? I did found only CC-Options.

    Read the article

  • Add a custom compiler to XCode 3.2

    - by racha
    I have a working gcc 4.3.3 toolchain for an ARM Cortex-m3 and would like to integrate it into XCode. Is there a way to set up XCode (3.2) to use this gcc toolchain instead of the built-in GCC 4.2? What I've tried so far: I've added a modified copy of the GCC 4.2.xcplugin and changed the name, version and executable path. It shows up in XCode but whenever I set the "C/C++ Compiler Version" to the custom compiler it fails with Invalid value '4.3.3' for GCC_VERSION It seems like the valid version numbers are hardcoded somewhere else because even when I remove the original GCC 4.2.xcplugin, the value 4.2 remains valid (but is not visible in the "C/C++ Compiler Version" drop down anymore).

    Read the article

  • Unsuccessful error detection of improperly declared method in GCC 4.2 compiler

    - by sam
    I am using C++ compiler GCC 4.2 in XCode 3.2.2. I have noted that the compiler will successfully compile a method foo even though there are no ellipses. The header and method are properly declared as foo(), but when I do a find and replace either by file or by program-wide it will miss approximately 2-3% of the changes [foo to foo(). This would not be critical if the compiler did not give an erroneous successful build. I have not found that this to occur with: foo(any parameter). Does anyone have any solution? Thank you.

    Read the article

  • Java bytecode compiler benchmarks

    - by Dave Jarvis
    Q.1. What free compiler produces the fastest executable Java bytecode? Q.2. What free virtual machine executes Java bytecode the fastest (on 64-bit multi-core CPUs)? Q.3. What other (currently active) compiler projects are missing from this list: http://www.ibm.com/developerworks/java/jdk/ http://gcc.gnu.org/java/ http://openjdk.java.net/groups/compiler/ http://java.sun.com/javase/downloads/ http://download.eclipse.org/eclipse/downloads/ Q.4. What performance improvements can compilers do that JITs cannot (or do not)? Q.5. Where are some recent benchmarks, comparisons, or shoot-outs (for Q1 or Q2)? Thank you!

    Read the article

  • Java Compiler - Load Method

    - by Brian
    So I have been working on a java project where the goal is to create a virtual computer. So I am basically done but with one problem. I have created a compiler which translates a txt document with assembly code in it and my compiler has created a new-file with this code written as machine executable ints. But now I need to write a load method that reads these ints and runs the program but I am having difficulty doing this. Any help is much appreciated....also this is not homework if you are thinking this. The project was simply to make a compiler and now I am trying to complete it for my own interest. Thanks. Here is what I have so far for load: public void load(String filename) { FileInputStream fs = new FileInputStream(filename); DataInputStream dos = new DataInputStream(fs); dos.readInt();

    Read the article

  • Compiler error when casting to function pointer

    - by detly
    I'm writing a bootloader for the PIC32MX, using HiTech's PICC32 compiler (similar to C90). At some point I need to jump to the real main routine, so somewhere in the bootloader I have void (*user_main) (void); user_main = (void (*) (void)) 0x9D003000; user_main(); (Note that in the actual code, the function signature is typedef'd and the address is a macro.) I would rather calculate that (virtual) address from the physical address, and have something like: void (*user_main) (void); user_main = (void (*) (void)) (0x1D003000 | 0x80000000); user_main(); ...but when I try that I get a compiler error: Error #474: ; 0: no psect specified for function variable/argument allocation Have I tripped over some vagarity of C syntax here? This error doesn't reference any particular line, but if I comment out the user_main() call, it goes away. (This might be the compiler removing a redundant code branch, but the HiTech PICC32 isn't particularly smart in Lite mode, so maybe not.)

    Read the article

  • compiler warning on (ambiguous) method resolution with named parameters

    - by FireSnake
    One question regarding whether the following code should yield a compiler warning or not (it doesn't). It declares two methods of the same name/return type, one has an additional named/optional parameter with default value. NOTE: technically the resolution isn't ambiguous, because the rules clearly state that the first method will get called. See here, Overload resolution, third bullet point. This behavior is also intuitive to me, no question. public void Foo(int arg) { ... } public void Foo(int arg, bool bar = true) { ...} Foo(42); // shouldn't this give a compiler warning? I think a compiler warning would be kind of intuitive here. Though the code technically is clean (whether it is a sound design is a different question:)).

    Read the article

  • Compiler #defines for g++ and cl

    - by DHamrick
    I am writing a program that is cross platform. There are a few spots where I have to specify an operating system dependent call. #ifdef WINDOWS ..do windows only stuff #endif #ifdef LINUX ..do linux only stuff #endif Are there any preprocesser directives that get defined by the compiler so I don't have to explicitly define them when I use the command line compiler. ie. cl -DWINDOWS program.cpp or g++ -DLINUX program.cpp I realize I could easily write a makefile or have a shell/batch script that will do this automatically. But I would prefer to use the same ones as the compiler (if they exist) by default.

    Read the article

  • Choosing the right and learning assembler for compiler-writing

    - by X A
    I'm writing a compiler and I have gone through all the steps (tokenizing, parsing, syntax tree structures, etc.) that they show you in all the compiler books. (Please don't comment with the link to the "Resources for writing a compiler" question!). I have chosen to use NASM together with alink as my backend. Now my problem is: I just can't find any good resources for learning NASM and assembly in general. The wikibook (german) on x86 assembly is horrible. They don't even explain the code they write there, I currently can't even get simple things like adding 1 to 2 and outputting the result working. Where can I learn NASM x86 assembly?

    Read the article

  • SQL SERVER – Update Statistics are Sampled By Default

    - by pinaldave
    After reading my earlier post SQL SERVER – Create Primary Key with Specific Name when Creating Table on Statistics, I have received another question by a blog reader. The question is as follows: Question: Are the statistics sampled by default? Answer: Yes. The sampling rate can be specified by the user and it can be anywhere between a very low value to 100%. Let us do a small experiment to verify if the auto update on statistics is left on. Also, let’s examine a very large table that is created and statistics by default- whether the statistics are sampled or not. USE [AdventureWorks] GO -- Create Table CREATE TABLE [dbo].[StatsTest]( [ID] [int] IDENTITY(1,1) NOT NULL, [FirstName] [varchar](100) NULL, [LastName] [varchar](100) NULL, [City] [varchar](100) NULL, CONSTRAINT [PK_StatsTest] PRIMARY KEY CLUSTERED ([ID] ASC) ) ON [PRIMARY] GO -- Insert 1 Million Rows INSERT INTO [dbo].[StatsTest] (FirstName,LastName,City) SELECT TOP 1000000 'Bob', CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 1 THEN 'New York' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 5 THEN 'San Marino' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 3 THEN 'Los Angeles' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Update the statistics UPDATE STATISTICS [dbo].[StatsTest] GO -- Shows the statistics DBCC SHOW_STATISTICS ("StatsTest"PK_StatsTest) GO -- Clean up DROP TABLE [dbo].[StatsTest] GO Now let us observe the result of the DBCC SHOW_STATISTICS. The result shows that Resultset is for sure sampling for a large dataset. The percentage of sampling is based on data distribution as well as the kind of data in the table. Before dropping the table, let us check first the size of the table. The size of the table is 35 MB. Now, let us run the above code with lesser number of the rows. USE [AdventureWorks] GO -- Create Table CREATE TABLE [dbo].[StatsTest]( [ID] [int] IDENTITY(1,1) NOT NULL, [FirstName] [varchar](100) NULL, [LastName] [varchar](100) NULL, [City] [varchar](100) NULL, CONSTRAINT [PK_StatsTest] PRIMARY KEY CLUSTERED ([ID] ASC) ) ON [PRIMARY] GO -- Insert 1 Hundred Thousand Rows INSERT INTO [dbo].[StatsTest] (FirstName,LastName,City) SELECT TOP 100000 'Bob', CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 1 THEN 'New York' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 5 THEN 'San Marino' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 3 THEN 'Los Angeles' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Update the statistics UPDATE STATISTICS [dbo].[StatsTest] GO -- Shows the statistics DBCC SHOW_STATISTICS ("StatsTest"PK_StatsTest) GO -- Clean up DROP TABLE [dbo].[StatsTest] GO You can see that Rows Sampled is just the same as Rows of the table. In this case, the sample rate is 100%. Before dropping the table, let us also check the size of the table. The size of the table is less than 4 MB. Let us compare the Result set just for a valid reference. Test 1: Total Rows: 1000000, Rows Sampled: 255420, Size of the Table: 35.516 MB Test 2: Total Rows: 100000, Rows Sampled: 100000, Size of the Table: 3.555 MB The reason behind the sample in the Test1 is that the data space is larger than 8 MB, and therefore it uses more than 1024 data pages. If the data space is smaller than 8 MB and uses less than 1024 data pages, then the sampling does not happen. Sampling aids in reducing excessive data scan; however, sometimes it reduces the accuracy of the data as well. Please note that this is just a sample test and there is no way it can be claimed as a benchmark test. The result can be dissimilar on different machines. There are lots of other information can be included when talking about this subject. I will write detail post covering all the subject very soon. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Statistics

    Read the article

  • SQL SERVER – Server Side Paging in SQL Server 2011 Performance Comparison

    - by pinaldave
    Earlier, I have written about SQL SERVER – Server Side Paging in SQL Server 2011 – A Better Alternative. I got many emails asking for performance analysis of paging. Here is the quick analysis of it. The real challenge of paging is all the unnecessary IO reads from the database. Network traffic was one of the reasons why paging has become a very expensive operation. I have seen many legacy applications where a complete resultset is brought back to the application and paging has been done. As what you have read earlier, SQL Server 2011 offers a better alternative to an age-old solution. This article has been divided into two parts: Test 1: Performance Comparison of the Two Different Pages on SQL Server 2011 Method In this test, we will analyze the performance of the two different pages where one is at the beginning of the table and the other one is at its end. Test 2: Performance Comparison of the Two Different Pages Using CTE (Earlier Solution from SQL Server 2005/2008) and the New Method of SQL Server 2011 We will explore this in the next article. This article will tackle test 1 first. Test 1: Retrieving Page from two different locations of the table. Run the following T-SQL Script and compare the performance. SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO You will notice that when we are reading the page from the beginning of the table, the database pages read are much lower than when the page is read from the end of the table. This is very interesting as when the the OFFSET changes, PAGE IO is increased or decreased. In the normal case of the search engine, people usually read it from the first few pages, which means that IO will be increased as we go further in the higher parts of navigation. I am really impressed because using the new method of SQL Server 2011,  PAGE IO will be much lower when the first few pages are searched in the navigation. Test 2: Retrieving Page from two different locations of the table and comparing to earlier versions. In this test, we will compare the queries of the Test 1 with the earlier solution via Common Table Expression (CTE) which we utilized in SQL Server 2005 and SQL Server 2008. Test 2 A : Page early in the table -- Test with pages early in table USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 ;WITH CTE_SalesOrderDetail AS ( SELECT *, ROW_NUMBER() OVER( ORDER BY SalesOrderDetailID) AS RowNumber FROM Sales.SalesOrderDetail PC) SELECT * FROM CTE_SalesOrderDetail WHERE RowNumber >= @PageNumber*@RowsPerPage+1 AND RowNumber <= (@PageNumber+1)*@RowsPerPage ORDER BY SalesOrderDetailID GO SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 5 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO Test 2 B : Page later in the table -- Test with pages later in table USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 ;WITH CTE_SalesOrderDetail AS ( SELECT *, ROW_NUMBER() OVER( ORDER BY SalesOrderDetailID) AS RowNumber FROM Sales.SalesOrderDetail PC) SELECT * FROM CTE_SalesOrderDetail WHERE RowNumber >= @PageNumber*@RowsPerPage+1 AND RowNumber <= (@PageNumber+1)*@RowsPerPage ORDER BY SalesOrderDetailID GO SET STATISTICS IO ON; USE AdventureWorks2008R2 GO DECLARE @RowsPerPage INT = 10, @PageNumber INT = 12100 SELECT * FROM Sales.SalesOrderDetail ORDER BY SalesOrderDetailID OFFSET @PageNumber*@RowsPerPage ROWS FETCH NEXT 10 ROWS ONLY GO From the resultset, it is very clear that in the earlier case, the pages read in the solution are always much higher than the new technique introduced in SQL Server 2011 even if we don’t retrieve all the data to the screen. If you carefully look at both the comparisons, the PAGE IO is much lesser in the case of the new technique introduced in SQL Server 2011 when we read the page from the beginning of the table and when we read it from the end. I consider this as a big improvement as paging is one of the most used features for the most part of the application. The solution introduced in SQL Server 2011 is very elegant because it also improves the performance of the query and, at large, the database. Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Introduction to Wait Stats and Wait Types – Wait Type – Day 1 of 28

    - by pinaldave
    I have been working a lot on Wait Stats and Wait Types recently. Last Year, I requested blog readers to send me their respective server’s wait stats. I appreciate their kind response as I have received  Wait stats from my readers. I took each of the results and carefully analyzed them. I provided necessary feedback to the person who sent me his wait stats and wait types. Based on the feedbacks I got, many of the readers have tuned their server. After a while I got further feedbacks on my recommendations and again, I collected wait stats. I recorded the wait stats and my recommendations and did further research. At some point at time, there were more than 10 different round trips of the recommendations and suggestions. Finally, after six month of working my hands on performance tuning, I have collected some real world wisdom because of this. Now I plan to share my findings with all of you over here. Before anything else, please note that all of these are based on my personal observations and opinions. They may or may not match the theory available at other places. Some of the suggestions may not match your situation. Remember, every server is different and consequently, there is more than one solution to a particular problem. However, this series is written with kept wait stats in mind. While I was working on various performance tuning consultations, I did many more things than just tuning wait stats. Today we will discuss how to capture the wait stats. I use the script diagnostic script created by my friend and SQL Server Expert Glenn Berry to collect wait stats. Here is the script to collect the wait stats: -- Isolate top waits for server instance since last restart or statistics clear WITH Waits AS (SELECT wait_type, wait_time_ms / 1000. AS wait_time_s, 100. * wait_time_ms / SUM(wait_time_ms) OVER() AS pct, ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS rn FROM sys.dm_os_wait_stats WHERE wait_type NOT IN ('CLR_SEMAPHORE','LAZYWRITER_SLEEP','RESOURCE_QUEUE','SLEEP_TASK' ,'SLEEP_SYSTEMTASK','SQLTRACE_BUFFER_FLUSH','WAITFOR', 'LOGMGR_QUEUE','CHECKPOINT_QUEUE' ,'REQUEST_FOR_DEADLOCK_SEARCH','XE_TIMER_EVENT','BROKER_TO_FLUSH','BROKER_TASK_STOP','CLR_MANUAL_EVENT' ,'CLR_AUTO_EVENT','DISPATCHER_QUEUE_SEMAPHORE', 'FT_IFTS_SCHEDULER_IDLE_WAIT' ,'XE_DISPATCHER_WAIT', 'XE_DISPATCHER_JOIN', 'SQLTRACE_INCREMENTAL_FLUSH_SLEEP')) SELECT W1.wait_type, CAST(W1.wait_time_s AS DECIMAL(12, 2)) AS wait_time_s, CAST(W1.pct AS DECIMAL(12, 2)) AS pct, CAST(SUM(W2.pct) AS DECIMAL(12, 2)) AS running_pct FROM Waits AS W1 INNER JOIN Waits AS W2 ON W2.rn <= W1.rn GROUP BY W1.rn, W1.wait_type, W1.wait_time_s, W1.pct HAVING SUM(W2.pct) - W1.pct < 99 OPTION (RECOMPILE); -- percentage threshold GO This script uses Dynamic Management View sys.dm_os_wait_stats to collect the wait stats. It omits the system-related wait stats which are not useful to diagnose performance-related bottleneck. Additionally, not OPTION (RECOMPILE) at the end of the DMV will ensure that every time the query runs, it retrieves new data and not the cached data. This dynamic management view collects all the information since the time when the SQL Server services have been restarted. You can also manually clear the wait stats using the following command: DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR); Once the wait stats are collected, we can start analysis them and try to see what is causing any particular wait stats to achieve higher percentages than the others. Many waits stats are related to one another. When the CPU pressure is high, all the CPU-related wait stats show up on top. But when that is fixed, all the wait stats related to the CPU start showing reasonable percentages. It is difficult to have a sure solution, but there are good indications and good suggestions on how to solve this. I will keep this blog post updated as I will post more details about wait stats and how I reduce them. The reference to Book On Line is over here. Of course, I have selected February to run this Wait Stats series. I am already cheating by having the smallest month to run this series. :) Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • SQL SERVER – Video – Beginning Performance Tuning with SQL Server Execution Plan

    - by pinaldave
    Traveling can be most interesting or most exhausting experience. However, traveling is always the most enlightening experience one can have. While going to long journey one has to prepare a lot of things. Pack necessary travel gears, clothes and medicines. However, the most essential part of travel is the journey to the destination. There are many variations one prefer but the ultimate goal is to have a delightful experience during the journey. Here is the video available which explains how to begin with SQL Server Execution plans. Performance Tuning is a Journey Performance tuning is just like a long journey. The goal of performance tuning is efficient and least resources consuming query execution with accurate results. Just as maps are the most essential aspect of performance tuning the same way, execution plans are essentially maps for SQL Server to reach to the resultset. The goal of the execution plan is to find the most efficient path which translates the least usage of the resources (CPU, memory, IO etc). Execution Plans are like Maps When online maps were invented (e.g. Bing, Google, Mapquests etc) initially it was not possible to customize them. They were given a single route to reach to the destination. As time evolved now it is possible to give various hints to the maps, for example ‘via public transport’, ‘walking’, ‘fastest route’, ‘shortest route’, ‘avoid highway’. There are places where we manually drag the route and make it appropriate to our needs. The same situation is with SQL Server Execution Plans, if we want to tune the queries, we need to understand the execution plans and execution plans internals. We need to understand the smallest details which relate to execution plan when we our destination is optimal queries. Understanding Execution Plans The biggest challenge with maps are figuring out the optimal path. The same way the  most common challenge with execution plans is where to start from and which precise route to take. Here is a quick list of the frequently asked questions related to execution plans: Should I read the execution plans from bottoms up or top down? Is execution plans are left to right or right to left? What is the relational between actual execution plan and estimated execution plan? When I mouse over operator I see CPU and IO but not memory, why? Sometime I ran the query multiple times and I get different execution plan, why? How to cache the query execution plan and data? I created an optimal index but the query is not using it. What should I change – query, index or provide hints? What are the tools available which helps quickly to debug performance problems? Etc… Honestly the list is quite a big and humanly impossible to write everything in the words. SQL Server Performance:  Introduction to Query Tuning My friend Vinod Kumar and I have created for the same a video learning course for beginning performance tuning. We have covered plethora of the subject in the course. Here is the quick list of the same: Execution Plan Basics Essential Indexing Techniques Query Design for Performance Performance Tuning Tools Tips and Tricks Checklist: Performance Tuning We believe we have covered a lot in this four hour course and we encourage you to go over the video course if you are interested in Beginning SQL Server Performance Tuning and Query Tuning. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology, Video Tagged: Execution Plan

    Read the article

  • SQL SERVER – Reducing CXPACKET Wait Stats for High Transactional Database

    - by pinaldave
    While engaging in a performance tuning consultation for a client, a situation occurred where they were facing a lot of CXPACKET Waits Stats. The client asked me if I could help them reduce this huge number of wait stats. I usually receive this kind of request from other client as well, but the important thing to understand is whether this question has any merits or benefits, or not. Before we continue the resolution, let us understand what CXPACKET Wait Stats are. The official definition suggests that CXPACKET Wait Stats occurs when trying to synchronize the query processor exchange iterator. You may consider lowering the degree of parallelism if a conflict concerning this wait type develops into a problem. (from BOL) In simpler words, when a parallel operation is created for SQL Query, there are multiple threads for a single query. Each query deals with a different set of the data (or rows). Due to some reasons, one or more of the threads lag behind, creating the CXPACKET Wait Stat. Threads which came first have to wait for the slower thread to finish. The Wait by a specific completed thread is called CXPACKET Wait Stat. Note that CXPACKET Wait is done by completed thread and not the one which are unfinished. “Note that not all the CXPACKET wait types are bad. You might experience a case when it totally makes sense. There might also be cases when this is also unavoidable. If you remove this particular wait type for any query, then that query may run slower because the parallel operations are disabled for the query.” Now let us see what the best practices to reduce the CXPACKET Wait Stats are. The suggestions, with which you will find that if you search online through the browser, would play a major role as and might be asked about their jobs In addition, might tell you that you should set ‘maximum degree of parallelism’ to 1. I do agree with these suggestions, too; however, I think this is not the final resolutions. As soon as you set your entire query to run on single CPU, you will get a very bad performance from the queries which are actually performing okay when using parallelism. The best suggestion to this is that you set ‘the maximum degree of parallelism’ to a lower number or 1 (be very careful with this – it can create more problems) but tune the queries which can be benefited from multiple CPU’s. You can use query hint OPTION (MAXDOP 0) to run the server to use parallelism. Here is the two-quick script which helps to resolve these issues: Change MAXDOP at Server Level EXEC sys.sp_configure N'max degree of parallelism', N'1' GO RECONFIGURE WITH OVERRIDE GO Run Query with all the CPU (using parallelism) USE AdventureWorks GO SELECT * FROM Sales.SalesOrderDetail ORDER BY ProductID OPTION (MAXDOP 0) GO Below is the blog post which will help you to find all the parallel query in your server. SQL SERVER – Find Queries using Parallelism from Cached Plan Please note running Queries in single CPU may worsen your performance and it is not recommended at all. Infect this can be very bad advise. I strongly suggest that you identify the queries which are offending and tune them instead of following any other suggestions. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • SQL SERVER – Data Pages in Buffer Pool – Data Stored in Memory Cache

    - by pinaldave
    This will drop all the clean buffers so we will be able to start again from there. Now, run the following script and check the execution plan of the query. Have you ever wondered what types of data are there in your cache? During SQL Server Trainings, I am usually asked if there is any way one can know how much data in a table is stored in the memory cache? The more detailed question I usually get is if there are multiple indexes on table (and used in a query), were the data of the single table stored multiple times in the memory cache or only for a single time? Here is a query you can run to figure out what kind of data is stored in the cache. USE AdventureWorks GO SELECT COUNT(*) AS cached_pages_count, name AS BaseTableName, IndexName, IndexTypeDesc FROM sys.dm_os_buffer_descriptors AS bd INNER JOIN ( SELECT s_obj.name, s_obj.index_id, s_obj.allocation_unit_id, s_obj.OBJECT_ID, i.name IndexName, i.type_desc IndexTypeDesc FROM ( SELECT OBJECT_NAME(OBJECT_ID) AS name, index_id ,allocation_unit_id, OBJECT_ID FROM sys.allocation_units AS au INNER JOIN sys.partitions AS p ON au.container_id = p.hobt_id AND (au.type = 1 OR au.type = 3) UNION ALL SELECT OBJECT_NAME(OBJECT_ID) AS name, index_id, allocation_unit_id, OBJECT_ID FROM sys.allocation_units AS au INNER JOIN sys.partitions AS p ON au.container_id = p.partition_id AND au.type = 2 ) AS s_obj LEFT JOIN sys.indexes i ON i.index_id = s_obj.index_id AND i.OBJECT_ID = s_obj.OBJECT_ID ) AS obj ON bd.allocation_unit_id = obj.allocation_unit_id WHERE database_id = DB_ID() GROUP BY name, index_id, IndexName, IndexTypeDesc ORDER BY cached_pages_count DESC; GO Now let us run the query above and observe the output of the same. We can see in the above query that there are four columns. Cached_Pages_Count lists the pages cached in the memory. BaseTableName lists the original base table from which data pages are cached. IndexName lists the name of the index from which pages are cached. IndexTypeDesc lists the type of index. Now, let us do one more experience here. Please note that you should not run this test on a production server as it can extremely reduce the performance of the database. DBCC DROPCLEANBUFFERS This will drop all the clean buffers and we will be able to start again from there. Now run following script and check the execution plan for the same. USE AdventureWorks GO SELECT UnitPrice, ModifiedDate FROM Sales.SalesOrderDetail WHERE SalesOrderDetailID BETWEEN 1 AND 100 GO The execution plans contain the usage of two different indexes. Now, let us run the script that checks the pages cached in SQL Server. It will give us the following output. It is clear from the Resultset that when more than one index is used, datapages related to both or all of the indexes are stored in Memory Cache separately. Let me know what you think of this article. I had a great pleasure while writing this article because I was able to write on this subject, which I like the most. In the next article, we will exactly see what data are cached and those that are not cached, using a few undocumented commands. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: DMV, Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL DMV

    Read the article

< Previous Page | 41 42 43 44 45 46 47 48 49 50 51 52  | Next Page >