Search Results

Search found 5666 results on 227 pages for 'cost analysis'.

Page 45/227 | < Previous Page | 41 42 43 44 45 46 47 48 49 50 51 52  | Next Page >

  • SQL SERVER – Microsoft SQL Server Migration Assistant V6.0 Released

    - by Pinal Dave
    Every company makes a different decision about the database when they start, but as they move forward they mature and make the decision which is based on their experience and best interest of the organization. Similarly, quite a many organizations make different decisions on database, like Sybase, MySQL, Oracle or Access and as time passes by they learn that now they want to move to a different platform. Microsoft makes it easy for SQL Server professional by releasing various Migration Assistant tools. Last week, Microsoft released Microsoft SQL Server Migration Assistant v6.0. Here are different tools released earlier last week to migrate various product to SQL Server. Microsoft SQL Server Migration Assistant v6.0 for Sybase SQL Server Migration Assistant (SSMA) is a free supported tool from Microsoft that simplifies database migration process from Sybase Adaptive Server Enterprise (ASE) to SQL Server and Azure SQL DB. SSMA automates all aspects of migration including migration assessment analysis, schema and SQL statement conversion, data migration as well as migration testing. Microsoft SQL Server Migration Assistant v6.0 for MySQL SQL Server Migration Assistant (SSMA) is a free supported tool from Microsoft that simplifies database migration process from MySQL to SQL Server and Azure SQL DB. SSMA automates all aspects of migration including migration assessment analysis, schema and SQL statement conversion, data migration as well as migration testing. Microsoft SQL Server Migration Assistant v6.0 for Oracle SQL Server Migration Assistant (SSMA) is a free supported tool from Microsoft that simplifies database migration process from Oracle to SQL Server and Azure SQL DB. SSMA automates all aspects of migration including migration assessment analysis, schema and SQL statement conversion, data migration as well as migration testing. Microsoft SQL Server Migration Assistant v6.0 for Access SQL Server Migration Assistant (SSMA) is a free supported tool from Microsoft that simplifies database migration process from Access to SQL Server. SSMA for Access automates conversion of Microsoft Access database objects to SQL Server database objects, loads the objects into SQL Server and Azure SQL DB, and then migrates data from Microsoft Access to SQL Server and Azure SQL DB. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: SQL Migration

    Read the article

  • Take Control of Workflow with Workflow Analyzer!

    - by user793553
    Take Control of Workflow with Workflow Analyzer! Immediate Analysis and Output of your EBS Workflow Environment The EBS Workflow Analyzer is a script that reviews the current Workflow Footprint, analyzes the configurations, environment, providing feedback, and recommendations on Best Practices and areas of concern. Go to Doc ID 1369938.1  for more details and script download with a short overview video on it. Proactive Benefits: Immediate Analysis and Output of Workflow Environment Identifies Aged Records Identifies Workflow Errors & Volumes Identifies looping Workflow items and stuck activities Identifies Workflow System Setup and configurations Identifies and Recommends Workflow Best Practices Easy To Add Tool for regular Workflow Maintenance Execute Analysis anytime to compare trending from past outputs The Workflow Analyzer presents key details in an easy to review graphical manner.   See the examples below. Workflow Runtime Data Table Gauge The Workflow Runtime Data Table Gauge will show critical (red), bad (yellow) and good (green) depending on the number of workflow items (WF_ITEMS).   Workflow Error Notifications Pie Chart A pie chart shows the workflow error notification types.   Workflow Runtime Table Footprint Bar Chart A pie chart shows the workflow error notification types and a bar chart shows the workflow runtime table footprint.   The analyzer also gives detailed listings of setups and configurations. As an example the workflow services are listed along with their status for review:   The analyzer draws attention to key details with yellow and red boxes highlighting areas of review:   You can extend on any query by reviewing the SQL Script and then running it on your own or making modifications for your own needs:     Find more details in these notes: Doc ID 1369938.1 Workflow Analyzer script for E-Business Suite Worklfow Monitoring and Maintenance Doc ID 1425053.1 How to run EBS Workflow Analyzer Tool as a Concurrent Request Or visit the My Oracle Support EBS - Core Workflow Community  

    Read the article

  • Linux to Solaris @ Morgan Stanley

    - by mgerdts
    I came across this blog entry and the accompanying presentation by Robert Milkoski about his experience switching from Linux to Oracle Solaris 11 for a distributed OpenAFS file serving environment at Morgan Stanley. If you are an IT manager, the presentation will show you: Running Solaris with a support contract can cost less than running Linux (even without a support contract) because of technical advantages of Solaris. IT departments can benefit from hiring computer scientists into Systems Programmer or similar roles.  Their computer science background should be nurtured so that they can continue to deliver value (savings and opportunity) to the business as technology advances. If you are a sysadmin, developer, or somewhere in between, the presentation will show you: A presentation that explains your technical analysis can be very influential. Learning and using the non-default options of an OS can make all the difference as to whether one OS is better suited than another.  For example, see the graphs on slides 3 - 5.  The ZFS default is to not use compression. When trying to convince those that hold the purse strings that your technical direction should be taken, the financial impact can be the part that closes the deal.  See slides 6, 9, and 10.  Sometimes reducing rack space requirements can be the biggest impact because it may stave off or completely eliminate the need for facilities growth. DTrace can be used to shine light on performance problems that may be suspected but not diagnosed.  It is quite likely that these problems have existed in OpenAFS for a decade or more.  DTrace made diagnosis possible. DTrace can be used to create performance analysis tools without modifying the source of software that is under analysis.  See slides 29 - 32. Microstate accounting, visible in the prstat output on slide 37 can be used to quickly draw focus to problem areas that affect CPU saturation.  Note that prstat without -m gives a time-decayed moving average that is not nearly as useful. Instruction level probes (slides 33 - 34) are a super-easy way to identify which part of a function is hot.

    Read the article

  • ASP.NET website deployment [on hold]

    - by Rei Brazilva
    I am getting my hands wet with ASP and I have been following the tutorials. I deployed the site and in Azure and it worked great. Today I started actually designing the site. And when I published, it looks as if it doesn't read any of the files I just updated, added, and modified. It works on my localhost, but not in the Azure. I thought when you publish, everything goes up, including the new files. I don't have enough reputation to add a picture so, you'll forgive me. SO, basically, how do I get my entire site uploaded? In case anyone does stop by, I was able to pull this out just recently: CA0058 Error Running Code Analysis CA0058 : The referenced assembly 'DotNetOpenAuth.AspNet, Version=4.0.0.0, Culture=neutral, PublicKeyToken=2780ccd10d57b246' could not be found. This assembly is required for analysis and was referenced by: C:\Users\lotusms\Desktop\LOTUS MARKETING\ASP.NET\WebsiteManager\WebsiteManager\bin\WebsiteManager.dll, C:\Users\lotusms\Desktop\LOTUS MARKETING\ASP.NET\WebsiteManager\packages\Microsoft.AspNet.WebPages.OAuth.2.0.20710.0\lib\net40\Microsoft.Web.WebPages.OAuth.dll. [Errors and Warnings] (Global) CA0001 Error Running Code Analysis CA0001 : The following error was encountered while reading module 'Microsoft.Web.WebPages.OAuth': Assembly reference cannot be resolved: DotNetOpenAuth.AspNet, Version=4.0.0.0, Culture=neutral, PublicKeyToken=2780ccd10d57b246. [Errors and Warnings] (Global) Could this have something to do with the problem?

    Read the article

  • JUnit Testing in Multithread Application

    - by e2bady
    This is a problem me and my team faces in almost all of the projects. Testing certain parts of the application with JUnit is not easy and you need to start early and to stick to it, but that's not the question I'm asking. The actual problem is that with n-Threads, locking, possible exceptions within the threads and shared objects the task of testing is not as simple as testing the class, but testing them under endless possible situations within threading. To be more precise, let me tell you about the design of one of our applications: When a user makes a request several threads are started that each analyse a part of the data to complete the analysis, these threads run a certain time depending on the size of the chunk of data (which are endless and of uncertain quality) to analyse, or they may fail if the data was insufficient/lacking quality. After each completed its analysis they call upon a handler which decides after each thread terminates if the collected analysis-data is sufficient to deliver an answer to the request. All of these analysers share certain parts of the applications (some parts because the instances are very big and only a certain number can be loaded into memory and those instances are reusable, some parts because they have a standing connection, where connecting takes time, ex.gr. sql connections) so locking is very common (done with reentrant-locks). While the applications runs very efficient and fast, it's not very easy to test it under real-world conditions. What we do right now is test each class and it's predefined conditions, but there are no automated tests for interlocking and synchronization, which in my opionion is not very good for quality insurances. Given this example how would you handle testing the threading, interlocking and synchronization?

    Read the article

  • C++ Numerical Recipes &ndash; A New Adventure!

    - by JoshReuben
    I am about to embark on a great journey – over the next 6 weeks I plan to read through C++ Numerical Recipes 3rd edition http://amzn.to/YtdpkS I'll be reading this with an eye to C++ AMP, thinking about implementing the suitable subset (non-recursive, additive, commutative) to run on the GPU. APIs supporting HPC, GPGPU or MapReduce are all useful – providing you have the ability to choose the correct algorithm to leverage on them. I really think this is the most fascinating area of programming – a lot more exciting than LOB CRUD !!! When you think about it , everything is a function – we categorize & we extrapolate. As abstractions get higher & less leaky, sooner or later information systems programming will become a non-programmer task – you will be using WYSIWYG designers to build: GUIs MVVM service mapping & virtualization workflows ORM Entity relations In the data source SharePoint / LightSwitch are not there yet, but every iteration gets closer. For information workers, managed code is a race to the bottom. As MS futures are a bit shaky right now, the provider agnostic nature & higher barriers of entry of both C++ & Numerical Analysis seem like a rational choice to me. Its also fascinating – stepping outside the box. This is not the first time I've delved into numerical analysis. 6 months ago I read Numerical methods with Applications, which can be found for free online: http://nm.mathforcollege.com/ 2 years ago I learned the .NET Extreme Optimization library www.extremeoptimization.com – not bad 2.5 years ago I read Schaums Numerical Analysis book http://amzn.to/V5yuLI - not an easy read, as topics jump back & forth across chapters: 3 years ago I read Practical Numerical Methods with C# http://amzn.to/V5yCL9 (which is a toy learning language for this kind of stuff) I also read through AI a Modern Approach 3rd edition END to END http://amzn.to/V5yQSp - this took me a few years but was the most rewarding experience. I'll post progress updates – see you on the other side !

    Read the article

  • HTML Tidy in NetBeans IDE (Part 2)

    - by Geertjan
    This is what I was aiming for in the previous blog entry: What you can see above (especially if you click to enlarge it) is that I have HTML Tidy integrated into the NetBeans analyzer functionality, which is pluggable from 7.2 onwards. Well, if you set an implementation dependency on "Static Analysis Core", since it's not an official API yet. Also, the scopes of the analyzer functionality are not pluggable. That means you can 'only' set the analyzer's scope to one or more projects, one or more packages, or one or more files. Not one or more folders, which means you can't have a bunch off HTML files in a folder that you access via the Favorites window and then run the analyzer on that folder (or on multiple folders). Thus, to try out my new code, I had to put some HTML files into a package inside a Java application. Then I chose that package as the scope of the analyzer. Then I ran all the analyzers (i.e., standard NetBeans Java hints, FindBugs, as well as my HTML Tidy extension) on that package. The screenshot above is the result. Here's all the code for the above, which is a port of the Action code from the previous blog entry into a new Analyzer implementation: import java.io.IOException; import java.io.PrintWriter; import java.io.StringWriter; import java.util.ArrayList; import java.util.Collections; import java.util.List; import javax.swing.JComponent; import javax.swing.text.Document; import org.netbeans.api.fileinfo.NonRecursiveFolder; import org.netbeans.modules.analysis.spi.Analyzer; import org.netbeans.modules.analysis.spi.Analyzer.AnalyzerFactory; import org.netbeans.modules.analysis.spi.Analyzer.Context; import org.netbeans.modules.analysis.spi.Analyzer.CustomizerProvider; import org.netbeans.modules.analysis.spi.Analyzer.WarningDescription; import org.netbeans.spi.editor.hints.ErrorDescription; import org.netbeans.spi.editor.hints.ErrorDescriptionFactory; import org.netbeans.spi.editor.hints.Severity; import org.openide.cookies.EditorCookie; import org.openide.filesystems.FileObject; import org.openide.loaders.DataObject; import org.openide.util.Exceptions; import org.openide.util.lookup.ServiceProvider; import org.w3c.tidy.Tidy; public class TidyAnalyzer implements Analyzer {     private final Context ctx;     private TidyAnalyzer(Context cntxt) {         this.ctx = cntxt;     }     @Override     public Iterable<? extends ErrorDescription> analyze() {         List<ErrorDescription> result = new ArrayList<ErrorDescription>();         for (NonRecursiveFolder sr : ctx.getScope().getFolders()) {             FileObject folder = sr.getFolder();             for (FileObject fo : folder.getChildren()) {                 for (ErrorDescription ed : doRunHTMLTidy(fo)) {                     if (fo.getMIMEType().equals("text/html")) {                         result.add(ed);                     }                 }             }         }         return result;     }     private List<ErrorDescription> doRunHTMLTidy(FileObject sr) {         final List<ErrorDescription> result = new ArrayList<ErrorDescription>();         Tidy tidy = new Tidy();         StringWriter stringWriter = new StringWriter();         PrintWriter errorWriter = new PrintWriter(stringWriter);         tidy.setErrout(errorWriter);         try {             Document doc = DataObject.find(sr).getLookup().lookup(EditorCookie.class).openDocument();             tidy.parse(sr.getInputStream(), System.out);             String[] split = stringWriter.toString().split("\n");             for (String string : split) {                 //Bit of ugly string parsing coming up:                 if (string.startsWith("line")) {                     final int end = string.indexOf(" c");                     int lineNumber = Integer.parseInt(string.substring(0, end).replace("line ", ""));                     string = string.substring(string.indexOf(": ")).replace(":", "");                     result.add(ErrorDescriptionFactory.createErrorDescription(                             Severity.WARNING,                             string,                             doc,                             lineNumber));                 }             }         } catch (IOException ex) {             Exceptions.printStackTrace(ex);         }         return result;     }     @Override     public boolean cancel() {         return true;     }     @ServiceProvider(service = AnalyzerFactory.class)     public static final class MyAnalyzerFactory extends AnalyzerFactory {         public MyAnalyzerFactory() {             super("htmltidy", "HTML Tidy", "org/jtidy/format_misc.gif");         }         public Iterable<? extends WarningDescription> getWarnings() {             return Collections.EMPTY_LIST;         }         @Override         public <D, C extends JComponent> CustomizerProvider<D, C> getCustomizerProvider() {             return null;         }         @Override         public Analyzer createAnalyzer(Context cntxt) {             return new TidyAnalyzer(cntxt);         }     } } The above only works on packages, not on projects and not on individual files.

    Read the article

  • Project Showcase: SaaS Web Apps Hits a Home Run with New SCMS Database

    - by Webgui
    We love seeing projects from start to finish, and we’re happy to share the latest example with you. Who: SaaS Web Apps – they use Software as a Service to create web applications that look and feel like desktop applications. What: SaaS Web Apps needed to build a Sports Contract Management System (SCMS) for one of its customers, Premier Stinson Sports. Why: The SCMS database is used for collecting, analyzing and recording college coach and athletic directors’ employment and contract data. The Challenge: Premier Stinson Sports works with a number of partners, each with its own needs and unique requirements. For example, USA Today uses the system to provide cutting edge news analysis while The National Sports Law Institute of Marquette University Law School uses it to for the latest sports contract data and student analysis. In addition, the system needed to be secure due to the sensitivity of the data; it was essential that the user security and permissions be easily configurable. As always, performance was a key factor, especially with the intense reporting and analytical capabilities for this project. Because of this, most of the processing had to be done on a dedicated server but the project called for the richness and responsiveness of a desktop application. The Solution: To execute the project, SaaS Web Apps used APS.Net-based Visual WebGui from Gizmox, combined with SQL Server 2008 and SQL Reporting Services. This combination resulted in a quick deployment for SaaS Web Apps’ customers. The Result: The completed project gave each partner the scalability and availability of a web application with the performance and security of a desktop application. As an example, USA Today pulls data from this database to give readers the latest sports stats – Salary analysis of 2010 Football Bowl Subdivision Coaches. And here’s a screenshot of the database itself. Great work, SaaS Web Apps!

    Read the article

  • Personal Project - Next practical language/tech to learn

    - by Paul Nathan
    I'm working on a personal project doing some finance analysis. It's a totally new field for me, and I'm really having fun with it so far, plus working in the high-level language arena is a great break from my embedded systems daytime work. I have a MySQL backend on a non-local server with a pile of stock data. My task now is to do some analysis of the stocks and produce something approximating a useful result. There are a couple technical difficulties. (1) I have a lot of records. To be precise, I believe I'm near 100K records right now, and this number grows by 6.1K each weekday. I need to create a way to rummage through these fields and do data analysis - based on a given computation, go look at this other set. Fine and dandy, nothing too outre. But this means I could really use a straightforward API for talking to MySQL. (2) Ideally, it runs on OS X 10.4.11. No Windows/Linux machine at home. (3) I can use PHP, C++, Perl, etc. I even have an R installation. I'm pretty flexible with stuff, so long as it runs on OS X. (Lots of options here, pick water, H20, or dihydrogen monoxide ;-) ) (4)Lack of hassle. While I like clever and fun ways of doing things, I'm trying to get some analysis done, not spend ten hours doing installation work and scratching my head figuring out a theoretical syntax question needed to spout out "hello world". What's the question? I'd like to dig into something different than my usual PHP/C++/C toolset. I'm looking for recommendations for languages/technologies that will assist me and meet the above requirements. In particular, I've heard a lot of buzz about F# and Python on SO. I've used CLISP for small problems before, and kinda liked it. I'm seeking opinions about those in particular. edit:since I rent the DB server and have a limited amount of CPU time online, I'm trying to do the analysis on a local machine.

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • links for 2010-03-15

    - by Bob Rhubart
    ComputerworldUK: Morrison boosts IT investment by £200 million "[I]mproving efficiencies in areas such as manufacturing and distribution...helped the company make total savings of £526 million, surpassing its expected cost savings of £460 million. A total £43 million in cost savings was due to the IT investment." -- Anh Nguyen, ComputerworldUK (h/t to Brian Dayton for the link) (tags: oracle investment informationtechnology soasuite fusionmiddleware)

    Read the article

  • HP ProLiant DL980-Oracle TPC-C Benchmark spat

    - by jchang
    The Register reported a spat between HP and Oracle on the TPC-C benchmark. Per above, HP submitted a TPC-C result of 3,388,535 tpm-C for their ProLiant DL980 G7 (8 Xeon X7560 processors), with a cost of $0.63 per tpm-C. Oracle has refused permission to publish. Late last year (2010) Oracle published a result of 30M tpm-C for a 108 processors (sockets) SPARC cluster ($30M complete system cost). Oracle is now comparing this to the HP Superdome result from 2007 of 4M tpm-C at $2.93 per tpm-C, calling...(read more)

    Read the article

  • Is Financial Inclusion an Obligation or an Opportunity for Banks?

    - by tushar.chitra
    Why should banks care about financial inclusion? First, the statistics, I think this will set the tone for this blog post. There are close to 2.5 billion people who are excluded from the banking stream and out of this, 2.2 billion people are from the continents of Africa, Latin America and Asia (McKinsey on Society: Global Financial Inclusion). However, this is not just a third-world phenomenon. According to Federal Deposit Insurance Corp (FDIC), in the US, post 2008 financial crisis, one family out of five has either opted out of the banking system or has been moved out (American Banker). Moving this huge unbanked population into mainstream banking is both an opportunity and a challenge for banks. An obvious opportunity is the significant untapped customer base that banks can target, so is the positive brand equity a bank can build by fulfilling its social responsibilities. Also, as banks target the cost-conscious unbanked customer, they will be forced to look at ways to offer cost-effective products and services, necessitating technology upgrades and innovations. However, cost is not the only hurdle in increasing the adoption of banking services. The potential users need to be convinced of the benefits of banking and banks will also face stiff competition from unorganized players. Finally, the banks will have to believe in the viability of this business opportunity, and not treat financial inclusion as an obligation. In what ways can banks target the unbanked For financial inclusion to be a success, banks should adopt innovative business models to develop products that address the stated and unstated needs of the unbanked population and also design delivery channels that are cost effective and viable in the long run. Through business correspondents and facilitators In rural and remote areas, one of the major hurdles in increasing banking penetration is connectivity and accessibility to banking services, which makes last mile inclusion a daunting challenge. To address this, banks can avail the services of business correspondents or facilitators. This model allows banks to establish greater connectivity through a trusted and reliable intermediary. In India, for instance, banks can leverage the local Kirana stores (the mom & pop stores) to service rural and remote areas. With a supportive nudge from the central bank, the commercial banks can enlist these shop owners as business correspondents to increase their reach. Since these neighborhood stores are acquainted with the local population, they can help banks manage the KYC norms, besides serving as a conduit for remittance. Banks also have an opportunity over a period of time to cross-sell other financial products such as micro insurance, mutual funds and pension products through these correspondents. To exercise greater operational control over the business correspondents, banks can also adopt a combination of branch and business correspondent models to deliver financial inclusion. Through mobile devices According to a 2012 world bank report on financial inclusion, out of a world population of 7 billion, over 5 billion or 70% have mobile phones and only 2 billion or 30% have a bank account. What this means for banks is that there is scope for them to leverage this phenomenal growth in mobile usage to serve the unbanked population. Banks can use mobile technology to service the basic banking requirements of their customers with no frills accounts, effectively bringing down the cost per transaction. As I had discussed in my earlier post on mobile payments, though non-traditional players have taken the lead in P2P mobile payments, banks still hold an edge in terms of infrastructure and reliability. Through crowd-funding According to the Crowdfunding Industry Report by Massolution, the global crowdfunding industry raised $2.7 billion in 2012, and is projected to grow to $5.1 billion in 2013. With credit policies becoming tighter and banks becoming more circumspect in terms of loan disbursals, crowdfunding has emerged as an alternative channel for lending. Typically, these initiatives target the unbanked population by offering small loans that are unviable for larger banks. Though a significant proportion of crowdfunding initiatives globally are run by non-banking institutions, banks are also venturing into this space. The next step towards inclusive finance Banks by themselves cannot make financial inclusion a success. There is a need for a whole ecosystem that is supportive of this mission. The policy makers, that include the regulators and government bodies, must be in sync, the IT solution providers must put on their thinking caps to come out with innovative products and solutions, communication channels such as internet and mobile need to expand their reach, and the media and the public need to play an active part. The other challenge for financial inclusion is from the banks themselves. While it is true that financial inclusion will unleash a hitherto hugely untapped market, the normal banking model may be found wanting because of issues such as flexibility, convenience and reliability. The business will be viable only when there is a focus on increasing the usage of existing infrastructure and that is possible when the banks can offer the entire range of products and services to the large number of users of essential banking services. Apart from these challenges, banks will also have to quickly master and replicate the business model to extend their reach to the remotest regions in their respective geographies. They will need to ensure that the transactions deliver a viable business benefit to the bank. For tapping cross-sell opportunities, banks will have to quickly roll-out customized and segment-specific products. The bank staff should be brought in sync with the business plan by convincing them of the viability of the business model and the need for a business correspondent delivery model. Banks, in collaboration with the government and NGOs, will have to run an extensive financial literacy program to educate the unbanked about the benefits of banking. Finally, with the growing importance of retail banking and with many unconventional players eyeing the opportunity in payments and other lucrative areas of banking, banks need to understand the importance of micro and small branches. These micro and small branches can help banks increase their presence without a huge cost burden, provide bankers an opportunity to cross sell micro products and offer a window of opportunity for the large non-banked population to transact without any interference from intermediaries. These branches can also help diminish the role of the unorganized financial sector, such as local moneylenders and unregistered credit societies. This will also help banks build a brand awareness and loyalty among the users, which by itself has a cascading effect on the business operations, especially among the rural and un-banked centers. In conclusion, with the increasingly competitive banking sector facing frequent slowdowns and downturns, the unbanked population presents a huge opportunity for banks to enhance their customer base and fulfill their social responsibility.

    Read the article

  • Building Dynamic Websites With XML, XSLT, and ASP

    While online businesses are expanding rapidly in this day and age and searching for a way to reduce website cost, it is imperative for the internet business executive to understand and utilize the technical tools available on the internet to build a dynamic website. XML, XSLT, and ASP are internet website building tools that operate effectively to help sites survive in the booming online business market as well as reduce website cost.

    Read the article

  • Has anyone bought Market Samurai and had a good experience?

    - by ZakGottlieb
    It's hard when a piece of marketing software offers an affiliate program to ever find an objective review of it, so I thought I might try on Quora. It just boggles my mind that it can only cost $97 flat, when other SEO or keyword research tools like Wordtracker cost almost the same PER MONTH, and don't seem to offer much, if anything, more... Can anyone explain this, and would anyone recommend Market Samurai WITHOUT posting a link to it in their review? :)

    Read the article

  • Basic Information For Lead Generation

    Online Lead Generation has a very transparent cost structure. It is straightforward to see each lead's origins and quality - and companies can then pay only for data on interested consumers that meet their criteria. This makes the service highly cost-effective and gives each lead higher value.

    Read the article

  • Working out costs to implement WCAG 2.0 (AA) site

    - by Sixfoot Studio
    Hi, I've run our client's site through a WCAG 2.0 validator which has returned 415 tasks that need to be worked through in order to get it WCAG 2.0 compliant. For the most part, I can get a rough estimation of how long a task will take but there are tasks I have never had to do before which I am not sure how to cost. I would like to know if someone has a rough guide on what to cost a client to convert their site to a compliant WCAG 2.0 (AA) site. Many thanks

    Read the article

  • The Benefits of Using Professional SEO Services

    Professional SEO services are offered by individuals and companies that specialize in internet marketing and search engine optimization. They are a cost effective solution, catering for any online company's marketing needs. If you choose a good SEO company, the chances are the cost of the services will far outweigh the increased business to your website.

    Read the article

  • Offshore Development - 3 Challenges and 3 Solutions

    Offshore development has become synonymous with cost saving for software and web development companies situated in North America, Europe and various other eastern countries. It saves the cost for sure but it there are challenges that needed to be addressed. If those challenges are addressed well, there are millions of small and medium businesses eager to try these offshore software and web development services. I am trying to list few of those challenges and their solutions in this article.

    Read the article

  • Exadata X3 launch webcast - Available on-demand

    - by Javier Puerta
    Available on-demand, this webcast covers everything partners need to know about Oracle’s next-generation database machine. You will learn how to improve performance by storing multiple databases in memory, lower power and cooling costs by 30%, and easily deploy a cloud based database service. Exadata X3 combines massive memory and low-cost disks to deliver the highest performance at the lowest cost. View here!

    Read the article

  • Which Do You Prefer? A Traditional Website Or a WordPress Website?

    Just recently, we have had a coach on the New Coach Connection group share their story of having a WordPress site built, but it took the designer a long time to get the site up and running, plus the cost was unjustified for the work that was completed. Her question to the group was what is a standard cost and did it make sense to have the site designed in WordPress or another platform? It seemed that all WordPress sites have this "bloggy" look.

    Read the article

  • SEO Or Search Engine Optimization For Free Traffic

    SEO or Search Engine Optimization is a vital part of Internet marketing and many people don't have a thorough grasp of it. Not understanding the basics of SEO means that you will struggle to get your websites ranking well and generating traffic. Ultimately, having no knowledge of SEO will cost you money and could cost you your online business. In its simplest form, SEO is all about improving the ranking of your website and its pages in the search engines using specific techniques.

    Read the article

  • SQL SERVER – List of All the Samples Database Available to Download for FREE

    - by Pinal Dave
    It is pretty much very common to have a sample database for any database product. Different companies keep on improving their product and keep on coming up with innovation in their product. To demonstrate the capability of their new enhancements they need the sample database. Microsoft have various sample database available for free download for their SQL Server Product. I have collected them here in a single blog post. Download an AdventureWorks Database The AdventureWorks OLTP database supports standard online transaction processing scenarios for a fictitious bicycle manufacturer (Adventure Works Cycles). Scenarios include Manufacturing, Sales, Purchasing, Product Management, Contact Management, and Human Resources. Coconut Dal Coconut Dal is a lightweight data access layer, for use in projects where the Entity Framework cannot be used or Microsoft’s Enterprise Library Data Block is unsuitable. Anyone who is handwriting ADO.NET should use a library instead and Coconut Dal might be the answer.  DataBooster – Extension to ADO.NET Data Provider The dbParallel DataBooster library is a high-performance extension to ADO.NET Data Provider, includes two aspects: 1) A slimmed down API encapsulation which simplified the most common data access operations (DbConnection -> DbCommand -> DbParameter -> DbDataReader) into a single class DbAccess, to help application with a clean DAL, avoid over-packing and redundant-copy of data transfer. 2) A booster for writing mass data onto database. Base on a rational utilization of database concurrency and a effective utilization of network bandwidth. Tabular AMO 2012 The sample is made of two project parts. The first part is a library of functions to manage tabular models -AMO2Tabular V2-. The second part is a sample to build a tabular model -AdventureWorks Tabular AMO 2012- using the AMO2Tabular library; the created model is similar to the ‘AdventureWorks Tabular Model 2012. SQL Server Analysis Services Product Samples SQL Server Analysis Services provides, a unified and integrated view of all your business data as the foundation for all of your traditional reporting, online analytical processing (OLAP) analysis, Key Performance Indicator (KPI) scorecards, and data mining. Analysis Services Samples for SQL Server 2008 R2 This release is dedicated to the samples that ship for Microsoft SQL Server 2008R2. For many of these samples you will also need to download the AdventureWorks family of databases. SQL Server Reporting Services Product Samples This project contains Reporting Services samples released with Microsoft SQL Server product. These samples are in the following five categories: Application Samples, Extension Samples, Model Samples, Report Samples, and Script Samples. If you are interested in contributing Reporting Services samples, please let us know by posting in the developers’ forum. Reporting Services Samples for SQL Server 2008 R2 This release is dedicated to the samples that ship for Microsoft SQL Server 2008 R2 PCU1. For many of these samples you will also need to download the AdventureWorks family of databases. SQL Server Integration Services Product Samples This project contains Integration Services samples released with Microsoft SQL Server product. These samples are in the following two categories: Package Samples and Programming Samples. If you are interested in contributing Integration Services samples, please let us know by posting in the developers’ forum. Integration Services Samples for SQL Server 2008 R2 This release is dedicated to the samples that ship for Microsoft SQL Server 2008R2. For many of these samples you will also need to download the AdventureWorks family of databases. Windows Azure SQL Reporting Admin Sample The SQLReportingAdmin sample for Windows Azure SQL Reporting demonstrates the usage of SQL Reporting APIs, and manages (add/update/delete) permissions of SQL Reporting users. Windows Azure SQL Reporting ReportViewer-SOAP API usage sample These sample projects demonstrate how to embed a Microsoft ReportViewer control that points to reports hosted on SQL Reporting report servers and how to use SQL Reporting SOAP APIs in your Windows Azure Web application. Enterprise Library 5.0 – Integration Pack for Windows Azure This NuGet package contains a zip file with the source code for the Enterprise Library Integration Pack for Windows Azure.  Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Sample Database

    Read the article

  • My Take on Hadoop World 2011

    - by Jean-Pierre Dijcks
    I’m sure some of you have read pieces about Hadoop World and I did see some headlines which were somewhat, shall we say, interesting? I thought the keynote by Larry Feinsmith of JP Morgan Chase & Co was one of the highlights of the conference for me. The reason was very simple, he addressed some real use cases outside of internet and ad platforms. The following are my notes, since the keynote was recorded I presume you can go and look at Hadoopworld.com at some point… On the use cases that were mentioned: ETL – how can I do complex data transformation at scale Doing Basel III liquidity analysis Private banking – transaction filtering to feed [relational] data marts Common Data Platform – a place to keep data that is (or will be) valuable some day, to someone, somewhere 360 Degree view of customers – become pro-active and look at events across lines of business. For example make sure the mortgage folks know about direct deposits being stopped into an account and ensure the bank is pro-active to service the customer Treasury and Security – Global Payment Hub [I think this is really consolidation of data to cross reference activity across business and geographies] Data Mining Bypass data engineering [I interpret this as running a lot of a large data set rather than on samples] Fraud prevention – work on event triggers, say a number of failed log-ins to the website. When they occur grab web logs, firewall logs and rules and start to figure out who is trying to log in. Is this me, who forget his password, or is it someone in some other country trying to guess passwords Trade quality analysis – do a batch analysis or all trades done and run them through an analysis or comparison pipeline One of the key requests – if you can say it like that – was for vendors and entrepreneurs to make sure that new tools work with existing tools. JPMC has a large footprint of BI Tools and Big Data reporting and tools should work with those tools, rather than be separate. Security and Entitlement – how to protect data within a large cluster from unwanted snooping was another topic that came up. I thought his Elephant ears graph was interesting (couldn’t actually read the points on it, but the concept certainly made some sense) and it was interesting – when asked to show hands – how the audience did not (!) think that RDBMS and Hadoop technology would overlap completely within a few years. Another interesting session was the session from Disney discussing how Disney is building a DaaS (Data as a Service) platform and how Hadoop processing capabilities are mixed with Database technologies. I thought this one of the best sessions I have seen in a long time. It discussed real use case, where problems existed, how they were solved and how Disney planned some of it. The planning focused on three things/phases: Determine the Strategy – Design a platform and evangelize this within the organization Focus on the people – Hire key people, grow and train the staff (and do not overload what you have with new things on top of their day-to-day job), leverage a partner with experience Work on Execution of the strategy – Implement the platform Hadoop next to the other technologies and work toward the DaaS platform This kind of fitted with some of the Linked-In comments, best summarized in “Think Platform – Think Hadoop”. In other words [my interpretation], step back and engineer a platform (like DaaS in the Disney example), then layer the rest of the solutions on top of this platform. One general observation, I got the impression that we have knowledge gaps left and right. On the one hand are people looking for more information and details on the Hadoop tools and languages. On the other I got the impression that the capabilities of today’s relational databases are underestimated. Mostly in terms of data volumes and parallel processing capabilities or things like commodity hardware scale-out models. All in all I liked this conference, it was great to chat with a wide range of people on Oracle big data, on big data, on use cases and all sorts of other stuff. Just hope they get a set of bigger rooms next time… and yes, I hope I’m going to be back next year!

    Read the article

  • Big Data – Data Mining with Hive – What is Hive? – What is HiveQL (HQL)? – Day 15 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the operational database in Big Data Story. In this article we will understand what is Hive and HQL in Big Data Story. Yahoo started working on PIG (we will understand that in the next blog post) for their application deployment on Hadoop. The goal of Yahoo to manage their unstructured data. Similarly Facebook started deploying their warehouse solutions on Hadoop which has resulted in HIVE. The reason for going with HIVE is because the traditional warehousing solutions are getting very expensive. What is HIVE? Hive is a datawarehouseing infrastructure for Hadoop. The primary responsibility is to provide data summarization, query and analysis. It  supports analysis of large datasets stored in Hadoop’s HDFS as well as on the Amazon S3 filesystem. The best part of HIVE is that it supports SQL-Like access to structured data which is known as HiveQL (or HQL) as well as big data analysis with the help of MapReduce. Hive is not built to get a quick response to queries but it it is built for data mining applications. Data mining applications can take from several minutes to several hours to analysis the data and HIVE is primarily used there. HIVE Organization The data are organized in three different formats in HIVE. Tables: They are very similar to RDBMS tables and contains rows and tables. Hive is just layered over the Hadoop File System (HDFS), hence tables are directly mapped to directories of the filesystems. It also supports tables stored in other native file systems. Partitions: Hive tables can have more than one partition. They are mapped to subdirectories and file systems as well. Buckets: In Hive data may be divided into buckets. Buckets are stored as files in partition in the underlying file system. Hive also has metastore which stores all the metadata. It is a relational database containing various information related to Hive Schema (column types, owners, key-value data, statistics etc.). We can use MySQL database over here. What is HiveSQL (HQL)? Hive query language provides the basic SQL like operations. Here are few of the tasks which HQL can do easily. Create and manage tables and partitions Support various Relational, Arithmetic and Logical Operators Evaluate functions Download the contents of a table to a local directory or result of queries to HDFS directory Here is the example of the HQL Query: SELECT upper(name), salesprice FROM sales; SELECT category, count(1) FROM products GROUP BY category; When you look at the above query, you can see they are very similar to SQL like queries. Tomorrow In tomorrow’s blog post we will discuss about very important components of the Big Data Ecosystem – Pig. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

< Previous Page | 41 42 43 44 45 46 47 48 49 50 51 52  | Next Page >