Search Results

Search found 20904 results on 837 pages for 'disk performance'.

Page 45/837 | < Previous Page | 41 42 43 44 45 46 47 48 49 50 51 52  | Next Page >

  • Multi device BTRFS filesystem with disk of different size

    - by fokenrute
    I have an existing BTRFS filesystem composed of one 500GB disk and I just bought a 2TB disk to increase the storage capacity of my home server and I want add the new disk to the existing filesystem. From what I read, it seems like no BTRFS setup can handle disk of different sizes without wasting the difference in size between the larger and the smaller disk, but I'm new to BTRFS and I might have missed something, so is there a setup that can allow me to combine two disks in a filesystem without wasting space ?

    Read the article

  • C#, wmi get disk manufacturer

    - by gloris
    Hi, how get USB flash(key) manufacturer name with C#? for example WD, Hama, Kingston... Now i with: "disk["Manufacturer"]", get: "Standard disk driver" string drive = "h"; ManagementObject disk = new ManagementObject("Win32_LogicalDisk.DeviceID=\"" + drive + ":\""); disk.Get(); Console.WriteLine(disk["VolumeSerialNumber"].ToString()); Console.WriteLine(disk["VolumeName"].ToString()); Console.WriteLine(disk["Manufacturer"].ToString());

    Read the article

  • Is Linq Faster, Slower or the same?

    - by Vaccano
    Is this: Box boxToFind = AllBoxes.Where(box => box.BoxNumber == boxToMatchTo.BagNumber); Faster or slower than this: Box boxToFind ; foreach (Box box in AllBoxes) { if (box.BoxNumber == boxToMatchTo.BoxNumber) { boxToFind = box; } } Both give me the result I am looking for (boxToFind). This is going to run on a mobile device that I need to be performance conscientious of.

    Read the article

  • High accuracy cpu timers

    - by John Robertson
    An expert in highly optimized code once told me that an important part of his strategy was the availability of extremely high performance timers on the CPU. Does anyone know what those are and how one can access them to test various code optimizations? While I am interested regardless, I also wanted to ask whether it is possible to access them from something higher than assembly (or with only a little assembly) via visual studio C++?

    Read the article

  • SQL SERVER – Faster SQL Server Databases and Applications – Power and Control with SafePeak Caching Options

    - by Pinal Dave
    Update: This blog post is written based on the SafePeak, which is available for free download. Today, I’d like to examine more closely one of my preferred technologies for accelerating SQL Server databases, SafePeak. Safepeak’s software provides a variety of advanced data caching options, techniques and tools to accelerate the performance and scalability of SQL Server databases and applications. I’d like to look more closely at some of these options, as some of these capabilities could help you address lagging database and performance on your systems. To better understand the available options, it is best to start by understanding the difference between the usual “Basic Caching” vs. SafePeak’s “Dynamic Caching”. Basic Caching Basic Caching (or the stale and static cache) is an ability to put the results from a query into cache for a certain period of time. It is based on TTL, or Time-to-live, and is designed to stay in cache no matter what happens to the data. For example, although the actual data can be modified due to DML commands (update/insert/delete), the cache will still hold the same obsolete query data. Meaning that with the Basic Caching is really static / stale cache.  As you can tell, this approach has its limitations. Dynamic Caching Dynamic Caching (or the non-stale cache) is an ability to put the results from a query into cache while maintaining the cache transaction awareness looking for possible data modifications. The modifications can come as a result of: DML commands (update/insert/delete), indirect modifications due to triggers on other tables, executions of stored procedures with internal DML commands complex cases of stored procedures with multiple levels of internal stored procedures logic. When data modification commands arrive, the caching system identifies the related cache items and evicts them from cache immediately. In the dynamic caching option the TTL setting still exists, although its importance is reduced, since the main factor for cache invalidation (or cache eviction) become the actual data updates commands. Now that we have a basic understanding of the differences between “basic” and “dynamic” caching, let’s dive in deeper. SafePeak: A comprehensive and versatile caching platform SafePeak comes with a wide range of caching options. Some of SafePeak’s caching options are automated, while others require manual configuration. Together they provide a complete solution for IT and Data managers to reach excellent performance acceleration and application scalability for  a wide range of business cases and applications. Automated caching of SQL Queries: Fully/semi-automated caching of all “read” SQL queries, containing any types of data, including Blobs, XMLs, Texts as well as all other standard data types. SafePeak automatically analyzes the incoming queries, categorizes them into SQL Patterns, identifying directly and indirectly accessed tables, views, functions and stored procedures; Automated caching of Stored Procedures: Fully or semi-automated caching of all read” stored procedures, including procedures with complex sub-procedure logic as well as procedures with complex dynamic SQL code. All procedures are analyzed in advance by SafePeak’s  Metadata-Learning process, their SQL schemas are parsed – resulting with a full understanding of the underlying code, objects dependencies (tables, views, functions, sub-procedures) enabling automated or semi-automated (manually review and activate by a mouse-click) cache activation, with full understanding of the transaction logic for cache real-time invalidation; Transaction aware cache: Automated cache awareness for SQL transactions (SQL and in-procs); Dynamic SQL Caching: Procedures with dynamic SQL are pre-parsed, enabling easy cache configuration, eliminating SQL Server load for parsing time and delivering high response time value even in most complicated use-cases; Fully Automated Caching: SQL Patterns (including SQL queries and stored procedures) that are categorized by SafePeak as “read and deterministic” are automatically activated for caching; Semi-Automated Caching: SQL Patterns categorized as “Read and Non deterministic” are patterns of SQL queries and stored procedures that contain reference to non-deterministic functions, like getdate(). Such SQL Patterns are reviewed by the SafePeak administrator and in usually most of them are activated manually for caching (point and click activation); Fully Dynamic Caching: Automated detection of all dependent tables in each SQL Pattern, with automated real-time eviction of the relevant cache items in the event of “write” commands (a DML or a stored procedure) to one of relevant tables. A default setting; Semi Dynamic Caching: A manual cache configuration option enabling reducing the sensitivity of specific SQL Patterns to “write” commands to certain tables/views. An optimization technique relevant for cases when the query data is either known to be static (like archive order details), or when the application sensitivity to fresh data is not critical and can be stale for short period of time (gaining better performance and reduced load); Scheduled Cache Eviction: A manual cache configuration option enabling scheduling SQL Pattern cache eviction based on certain time(s) during a day. A very useful optimization technique when (for example) certain SQL Patterns can be cached but are time sensitive. Example: “select customers that today is their birthday”, an SQL with getdate() function, which can and should be cached, but the data stays relevant only until 00:00 (midnight); Parsing Exceptions Management: Stored procedures that were not fully parsed by SafePeak (due to too complex dynamic SQL or unfamiliar syntax), are signed as “Dynamic Objects” with highest transaction safety settings (such as: Full global cache eviction, DDL Check = lock cache and check for schema changes, and more). The SafePeak solution points the user to the Dynamic Objects that are important for cache effectiveness, provides easy configuration interface, allowing you to improve cache hits and reduce cache global evictions. Usually this is the first configuration in a deployment; Overriding Settings of Stored Procedures: Override the settings of stored procedures (or other object types) for cache optimization. For example, in case a stored procedure SP1 has an “insert” into table T1, it will not be allowed to be cached. However, it is possible that T1 is just a “logging or instrumentation” table left by developers. By overriding the settings a user can allow caching of the problematic stored procedure; Advanced Cache Warm-Up: Creating an XML-based list of queries and stored procedure (with lists of parameters) for periodically automated pre-fetching and caching. An advanced tool allowing you to handle more rare but very performance sensitive queries pre-fetch them into cache allowing high performance for users’ data access; Configuration Driven by Deep SQL Analytics: All SQL queries are continuously logged and analyzed, providing users with deep SQL Analytics and Performance Monitoring. Reduce troubleshooting from days to minutes with database objects and SQL Patterns heat-map. The performance driven configuration helps you to focus on the most important settings that bring you the highest performance gains. Use of SafePeak SQL Analytics allows continuous performance monitoring and analysis, easy identification of bottlenecks of both real-time and historical data; Cloud Ready: Available for instant deployment on Amazon Web Services (AWS). As you can see, there are many options to configure SafePeak’s SQL Server database and application acceleration caching technology to best fit a lot of situations. If you’re not familiar with their technology, they offer free-trial software you can download that comes with a free “help session” to help get you started. You can access the free trial here. Also, SafePeak is available to use on Amazon Cloud. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Loading PNGs into OpenGL performance issues - Java & JOGL much slower than C# & Tao.OpenGL

    - by Edward Cresswell
    I am noticing a large performance difference between Java & JOGL and C# & Tao.OpenGL when both loading PNGs from storage into memory, and when loading that BufferedImage (java) or Bitmap (C# - both are PNGs on hard drive) 'into' OpenGL. This difference is quite large, so I assumed I was doing something wrong, however after quite a lot of searching and trying different loading techniques I've been unable to reduce this difference. With Java I get an image loaded in 248ms and loaded into OpenGL in 728ms The same on C# takes 54ms to load the image, and 34ms to load/create texture. The image in question above is a PNG containing transparency, sized 7200x255, used for a 2D animated sprite. I realise the size is really quite ridiculous and am considering cutting up the sprite, however the large difference is still there (and confusing). On the Java side the code looks like this: BufferedImage image = ImageIO.read(new File(fileName)); texture = TextureIO.newTexture(image, false); texture.setTexParameteri(GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR); texture.setTexParameteri(GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR); The C# code uses: Bitmap t = new Bitmap(fileName); t.RotateFlip(RotateFlipType.RotateNoneFlipY); Rectangle r = new Rectangle(0, 0, t.Width, t.Height); BitmapData bd = t.LockBits(r, ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb); Gl.glBindTexture(Gl.GL_TEXTURE_2D, tID); Gl.glTexImage2D(Gl.GL_TEXTURE_2D, 0, Gl.GL_RGBA, t.Width, t.Height, 0, Gl.GL_BGRA, Gl.GL_UNSIGNED_BYTE, bd.Scan0); Gl.glTexParameteri(Gl.GL_TEXTURE_2D, Gl.GL_TEXTURE_MIN_FILTER, Gl.GL_LINEAR); Gl.glTexParameteri(Gl.GL_TEXTURE_2D, Gl.GL_TEXTURE_MAG_FILTER, Gl.GL_LINEAR); t.UnlockBits(bd); t.Dispose(); After quite a lot of testing I can only come to the conclusion that Java/JOGL is just slower here - PNG reading might not be as quick, or that I'm still doing something wrong. Thanks. Edit2: I have found that creating a new BufferedImage with format TYPE_INT_ARGB_PRE decreases OpenGL texture load time by almost half - this includes having to create the new BufferedImage, getting the Graphics2D from it and then rendering the previously loaded image to it. Edit3: Benchmark results for 5 variations. I wrote a small benchmarking tool, the following results come from loading a set of 33 pngs, most are very wide, 5 times. testStart: ImageIO.read(file) -> TextureIO.newTexture(image) result: avg = 10250ms, total = 51251 testStart: ImageIO.read(bis) -> TextureIO.newTexture(image) result: avg = 10029ms, total = 50147 testStart: ImageIO.read(file) -> TextureIO.newTexture(argbImage) result: avg = 5343ms, total = 26717 testStart: ImageIO.read(bis) -> TextureIO.newTexture(argbImage) result: avg = 5534ms, total = 27673 testStart: TextureIO.newTexture(file) result: avg = 10395ms, total = 51979 ImageIO.read(bis) refers to the technique described in James Branigan's answer below. argbImage refers to the technique described in my previous edit: img = ImageIO.read(file); argbImg = new BufferedImage(img.getWidth(), img.getHeight(), TYPE_INT_ARGB_PRE); g = argbImg.createGraphics(); g.drawImage(img, 0, 0, null); texture = TextureIO.newTexture(argbImg, false); Any more methods of loading (either images from file, or images to OpenGL) would be appreciated, I will update these benchmarks.

    Read the article

  • Performance issues with repeatable loops as control part

    - by djerry
    Hey guys, In my application, i need to show made calls to the user. The user can arrange some filters, according to what they want to see. The problem is that i find it quite hard to filter the calls without losing performance. This is what i am using now : private void ProcessFilterChoice() { _filteredCalls = ServiceConnector.ServiceConnector.SingletonServiceConnector.Proxy.GetAllCalls().ToList(); if (cboOutgoingIncoming.SelectedIndex > -1) GetFilterPartOutgoingIncoming(); if (cboInternExtern.SelectedIndex > -1) GetFilterPartInternExtern(); if (cboDateFilter.SelectedIndex > -1) GetFilteredCallsByDate(); wbPdf.Source = null; btnPrint.Content = "Pdf preview"; } private void GetFilterPartOutgoingIncoming() { if (cboOutgoingIncoming.SelectedItem.ToString().Equals("Outgoing")) for (int i = _filteredCalls.Count - 1; i > -1; i--) { if (_filteredCalls[i].Caller.E164.Length > 4 || _filteredCalls[i].Caller.E164.Equals("0")) _filteredCalls.RemoveAt(i); } else if (cboOutgoingIncoming.SelectedItem.ToString().Equals("Incoming")) for (int i = _filteredCalls.Count - 1; i > -1; i--) { if (_filteredCalls[i].Called.E164.Length > 4 || _filteredCalls[i].Called.E164.Equals("0")) _filteredCalls.RemoveAt(i); } } private void GetFilterPartInternExtern() { if (cboInternExtern.SelectedItem.ToString().Equals("Intern")) for (int i = _filteredCalls.Count - 1; i > -1; i--) { if (_filteredCalls[i].Called.E164.Length > 4 || _filteredCalls[i].Caller.E164.Length > 4 || _filteredCalls[i].Caller.E164.Equals("0")) _filteredCalls.RemoveAt(i); } else if (cboInternExtern.SelectedItem.ToString().Equals("Extern")) for (int i = _filteredCalls.Count - 1; i > -1; i--) { if ((_filteredCalls[i].Called.E164.Length < 5 && _filteredCalls[i].Caller.E164.Length < 5) || _filteredCalls[i].Called.E164.Equals("0")) _filteredCalls.RemoveAt(i); } } private void GetFilteredCallsByDate() { DateTime period = DateTime.Now; switch (cboDateFilter.SelectedItem.ToString()) { case "Today": period = DateTime.Today; break; case "Last week": period = DateTime.Today.Subtract(new TimeSpan(7, 0, 0, 0)); break; case "Last month": period = DateTime.Today.AddMonths(-1); break; case "Last year": period = DateTime.Today.AddYears(-1); break; default: return; } for (int i = _filteredCalls.Count - 1; i > -1; i--) { if (_filteredCalls[i].Start < period) _filteredCalls.RemoveAt(i); } } _filtered calls is a list of "calls". Calls is a class that looks like this : [DataContract] public class Call { private User caller, called; private DateTime start, end; private string conferenceId; private int id; private bool isNew = false; [DataMember] public bool IsNew { get { return isNew; } set { isNew = value; } } [DataMember] public int Id { get { return id; } set { id = value; } } [DataMember] public string ConferenceId { get { return conferenceId; } set { conferenceId = value; } } [DataMember] public DateTime End { get { return end; } set { end = value; } } [DataMember] public DateTime Start { get { return start; } set { start = value; } } [DataMember] public User Called { get { return called; } set { called = value; } } [DataMember] public User Caller { get { return caller; } set { caller = value; } } Can anyone direct me to a better solution or make some suggestions.

    Read the article

  • SQL query performance optimization (TimesTen)

    - by Sergey Mikhanov
    Hi community, I need some help with TimesTen DB query optimization. I made some measures with Java profiler and found the code section that takes most of the time (this code section executes the SQL query). What is strange that this query becomes expensive only for some specific input data. Here’s the example. We have two tables that we are querying, one represents the objects we want to fetch (T_PROFILEGROUP), another represents the many-to-many link from some other table (T_PROFILECONTEXT_PROFILEGROUPS). We are not querying linked table. These are the queries that I executed with DB profiler running (they are the same except for the ID): Command> select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; < 1169655247309537280 > < 1169655249792565248 > < 1464837997699399681 > 3 rows found. Command> select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928; < 1169655247309537280 > 1 row found. This is what I have in the profiler: 12:14:31.147 1 SQL 2L 6C 10825P Preparing: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272 12:14:31.147 2 SQL 4L 6C 10825P sbSqlCmdCompile ()(E): (Found already compiled version: refCount:01, bucket:47) cmdType:100, cmdNum:1146695. 12:14:31.147 3 SQL 4L 6C 10825P Opening: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:31.147 4 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:31.148 5 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:31.148 6 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:31.228 7 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:31.228 8 SQL 4L 6C 10825P Closing: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1464837998949302272; 12:14:35.243 9 SQL 2L 6C 10825P Preparing: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928 12:14:35.243 10 SQL 4L 6C 10825P sbSqlCmdCompile ()(E): (Found already compiled version: refCount:01, bucket:44) cmdType:100, cmdNum:1146697. 12:14:35.243 11 SQL 4L 6C 10825P Opening: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928; 12:14:35.243 12 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928; 12:14:35.243 13 SQL 4L 6C 10825P Fetching: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928; 12:14:35.243 14 SQL 4L 6C 10825P Closing: select G.M_ID from T_PROFILECONTEXT_PROFILEGROUPS CG, T_PROFILEGROUP G where CG.M_ID_EID = G.M_ID and CG.M_ID_OID = 1466585677823868928; It’s clear that the first query took almost 100ms, while the second was executed instantly. It’s not about queries precompilation (the first one is precompiled too, as same queries happened earlier). We have DB indices for all columns used here: T_PROFILEGROUP.M_ID, T_PROFILECONTEXT_PROFILEGROUPS.M_ID_OID and T_PROFILECONTEXT_PROFILEGROUPS.M_ID_EID. My questions are: Why querying the same set of tables yields such a different performance for different parameters? Which indices are involved here? Is there any way to improve this simple query and/or the DB to make it faster? UPDATE: to give the feeling of size: Command> select count(*) from T_PROFILEGROUP; < 183840 > 1 row found. Command> select count(*) from T_PROFILECONTEXT_PROFILEGROUPS; < 2279104 > 1 row found.

    Read the article

  • Performance experiences for running Windows 7 on a Thin-Client?

    - by Peter Bernier
    Has anyone else tried installing Windows 7 on thin-client hardware? I'd be very interested to hear about other people's experiences and what sort of hardware tweaks they had to do to get it to work. (Yes, I realize this is completely unsupported.. half the fun of playing with machines and beta/RC versions is trying out unsupported scenarios. :) ) I managed to get Windows 7 installed on a modified Wyse 9450 Thin-Client and while the performance isn't great, it is usable, particularly as an RDP workstation. Before installing 7, I added another 256Mb of ram (512 total), a 60G laptop hard-drive and a PCI videocard to the 9450 (this was in order to increase the supported screen resolution). I basically did this in order to see whether or not it was possible to get 7 installed on such minimal hardware, and see what the performance would be. For a 550Mhz processor, I was reasonably impressed. I've been using the machine for RDP for the last couple of days and it actually seems slightly snappier than the default Windows XP embedded install (although this is more likely the result of the extra hardware). I'll be running some more tests later on as I'm curious to see particularl whether the streaming video performance will improve. I'd love to hear about anyone's experiences getting 7 to work on extremely low-powered hardware. Particularly any sort of tweaks that you've discovered in order to increase performance..

    Read the article

  • Performance experiences for running Windows 7 on a Thin-Client?

    - by Peter Bernier
    Has anyone else tried installing Windows 7 on thin-client hardware? I'd be very interested to hear about other people's experiences and what sort of hardware tweaks they had to do to get it to work. (Yes, I realize this is completely unsupported.. half the fun of playing with machines and beta/RC versions is trying out unsupported scenarios. :) ) I managed to get Windows 7 installed on a modified Wyse 9450 Thin-Client and while the performance isn't great, it is usable, particularly as an RDP workstation. Before installing 7, I added another 256Mb of ram (512 total), a 60G laptop hard-drive and a PCI videocard to the 9450 (this was in order to increase the supported screen resolution). I basically did this in order to see whether or not it was possible to get 7 installed on such minimal hardware, and see what the performance would be. For a 550Mhz processor, I was reasonably impressed. I've been using the machine for RDP for the last couple of days and it actually seems slightly snappier than the default Windows XP embedded install (although this is more likely the result of the extra hardware). I'll be running some more tests later on as I'm curious to see particularl whether the streaming video performance will improve. I'd love to hear about anyone's experiences getting 7 to work on extremely low-powered hardware. Particularly any sort of tweaks that you've discovered in order to increase performance..

    Read the article

  • To what extent is size a factor in SSD performance?

    - by artif
    To what extent is the size of an SSD a factor in its performance? In my mind, correct me if I'm wrong, a bigger SSD should be, everything else being equal, faster than a smaller one. A bigger SSD would have more erase blocks and thus more leeway for the FTL (flash translation layer) to do garbage collection optimization. Also there would be more time before TRIM became necessary. I see on Wikipedia that it remarks that "The performance of the SSD can scale with the number of parallel NAND flash chips used in the device" so it seems throughput also increases significantly. Also many SSDs contain internal caches of some sort and presumably those caches are larger for correspondingly large SSDs. But supposing this effect exists, I would like a quantitative analysis. Does throughput increase linearly? How much is garbage collection impacted, if at all? Does latency stay the same? And so on. Would the performance of a 8 GB SSD be significantly different from, for example, an 80 GB SSD assuming both used high quality chips, controllers, etc? Are there any resources (webpages, research papers, presentations, books, etc) that discuss correlations between SSD performance (4 KB random write speed, latency, maximum sequential throughput, etc) and size? I realize this does not really sound like a programming question but it is relevant for what I'm working on (using flash for caching hard drive data) which does involve programming. If there is a better place to ask this question, eg a more hardware oriented site, what would that be? Something like the equivalent of stack overflow (or perhaps a forum) for in-depth questions on hardware interfaces, internals, etc would be appreciated.

    Read the article

  • Why would Linux VM in vSphere ESXi 5.5 show dramatically increased disk i/o latency?

    - by mhucka
    I'm stumped and I hope someone else will recognize the symptoms of this problem. Hardware: new Dell T110 II, dual-core Pentium G860 2.9 GHz, onboard SATA controller, one new 500 GB 7200 RPM cabled hard drive inside the box, other drives inside but not mounted yet. No RAID. Software: fresh CentOS 6.5 virtual machine under VMware ESXi 5.5.0 (build 174 + vSphere Client). 2.5 GB RAM allocated. The disk is how CentOS offered to set it up, namely as a volume inside an LVM Volume Group, except that I skipped having a separate /home and simply have / and /boot. CentOS is patched up, ESXi patched up, latest VMware tools installed in the VM. No users on the system, no services running, no files on the disk but the OS installation. I'm interacting with the VM via the VM virtual console in vSphere Client. Before going further, I wanted to check that I configured things more or less reasonably. I ran the following command as root in a shell on the VM: for i in 1 2 3 4 5 6 7 8 9 10; do dd if=/dev/zero of=/test.img bs=8k count=256k conv=fdatasync done I.e., just repeat the dd command 10 times, which results in printing the transfer rate each time. The results are disturbing. It starts off well: 262144+0 records in 262144+0 records out 2147483648 bytes (2.1 GB) copied, 20.451 s, 105 MB/s 262144+0 records in 262144+0 records out 2147483648 bytes (2.1 GB) copied, 20.4202 s, 105 MB/s ... but after 7-8 of these, it then prints 262144+0 records in 262144+0 records out 2147483648 bytes (2.1 GG) copied, 82.9779 s, 25.9 MB/s 262144+0 records in 262144+0 records out 2147483648 bytes (2.1 GB) copied, 84.0396 s, 25.6 MB/s 262144+0 records in 262144+0 records out 2147483648 bytes (2.1 GB) copied, 103.42 s, 20.8 MB/s If I wait a significant amount of time, say 30-45 minutes, and run it again, it again goes back to 105 MB/s, and after several rounds (sometimes a few, sometimes 10+), it drops to ~20-25 MB/s again. Plotting the disk latency in vSphere's interface, it shows periods of high disk latency hitting 1.2-1.5 seconds during the times that dd reports the low throughput. (And yes, things get pretty unresponsive while that's happening.) What could be causing this? I'm comfortable that it is not due to the disk failing, because I also had configured two other disks as an additional volume in the same system. At first I thought I did something wrong with that volume, but after commenting the volume out from /etc/fstab and rebooting, and trying the tests on / as shown above, it became clear that the problem is elsewhere. It is probably an ESXi configuration problem, but I'm not very experienced with ESXi. It's probably something stupid, but after trying to figure this out for many hours over multiple days, I can't find the problem, so I hope someone can point me in the right direction. (P.S.: yes, I know this hardware combo won't win any speed awards as a server, and I have reasons for using this low-end hardware and running a single VM, but I think that's besides the point for this question [unless it's actually a hardware problem].) ADDENDUM #1: Reading other answers such as this one made me try adding oflag=direct to dd. However, it makes no difference in the pattern of results: initially the numbers are higher for many rounds, then they drop to 20-25 MB/s. (The initial absolute numbers are in the 50 MB/s range.) ADDENDUM #2: Adding sync ; echo 3 > /proc/sys/vm/drop_caches into the loop does not make a difference at all. ADDENDUM #3: To take out further variables, I now run dd such that the file it creates is larger than the amount of RAM on the system. The new command is dd if=/dev/zero of=/test.img bs=16k count=256k conv=fdatasync oflag=direct. Initial throughput numbers with this version of the command are ~50 MB/s. They drop to 20-25 MB/s when things go south. ADDENDUM #4: Here is the output of iostat -d -m -x 1 running in another terminal window while performance is "good" and then again when it's "bad". (While this is going on, I'm running dd if=/dev/zero of=/test.img bs=16k count=256k conv=fdatasync oflag=direct.) First, when things are "good", it shows this: When things go "bad", iostat -d -m -x 1 shows this:

    Read the article

  • How to diagnose disk errors when disk appears to be ok?

    - by Kylotan
    I have a six-month-old 1TB Seagate drive formatted into 2 NTFS partitions, and the disk appeared to be failing with Windows dropping down from UDMA to PIO mode, reporting Delayed Write Errors, and hanging Explorer when browsing directories. My initial suspicion was that the disk was dying. However, on further examination it appears that Ubuntu, which doesn't write to the volume frequently like Windows does, was able to read the disk properly and retrieve all the data intact, saving me from having to use an older backup. Finally, running the Seatools DOS diagnostic reported that the disk has no problems, ie. SMART errors and no bad sectors, apparently. This, in combination with the relative youth of the disk, suggests that something else is broken. The cable? The PSU? The integrated disk controller? But what would be a good way to diagnose the problem without risking damaging the data? I intend to extract the disk and try it in an external eSATA enclosure and see if the write errors cease, but in the event of the disk appearing to be fine, I would like to be able to confirm what part of the hardware is actually broken here in order to know just what needs replacing. Are there any good ways to go about this?

    Read the article

  • How to diagnose disk errors when disk appears to be ok?

    - by Kylotan
    I have a six-month-old 1TB Seagate drive formatted into 2 NTFS partitions, and the disk appeared to be failing with Windows dropping down from UDMA to PIO mode, reporting Delayed Write Errors, and hanging Explorer when browsing directories. My initial suspicion was that the disk was dying. However, on further examination it appears that Ubuntu, which doesn't write to the volume frequently like Windows does, was able to read the disk properly and retrieve all the data intact, saving me from having to use an older backup. Finally, running the Seatools DOS diagnostic reported that the disk has no problems, ie. SMART errors and no bad sectors, apparently. This, in combination with the relative youth of the disk, suggests that something else is broken. The cable? The PSU? The integrated disk controller? But what would be a good way to diagnose the problem without risking damaging the data? I intend to extract the disk and try it in an external eSATA enclosure and see if the write errors cease, but in the event of the disk appearing to be fine, I would like to be able to confirm what part of the hardware is actually broken here in order to know just what needs replacing. Are there any good ways to go about this?

    Read the article

  • Is there a way to know what the Windows Disk Cleanup utility will delete?

    - by Cam Jackson
    When I run the Disk Cleanup utility that's built into Windows 8, it tells me that it can free up 53GB by deleting 'Temporary Files'. However, a CCleaner analysis on default settings only finds about 300MB worth of space to free up, so I'm wondering what Disk Cleanup has found that CCleaner does not. Note that this question appears to be similar to what I'm asking, but the accepted answer says that 'Temporary Files' refers to %TEMP%. I've already cleared out most of C:\Users\Cam\AppData\Local\Temp, and it now has only 230MB of stuff in it, even with system files showing. So where is this 53GB located? Is there a way to find out what it is? Edit: I should note that this is on a 110GB SSD, so it's almost half the drive. And in fact I'm only using 86GB, so if it's really going to clear out 53GB, that would be more than 60% of the stuff on my C drive. I'm starting to think that Disk Cleanup caches its analysis, and hasn't updated since I started cleaning up the drive earlier today. Although when I run it it says that it's 'Calculating' how much space can be saved, and it takes about 5-10 seconds to do so. Hmmm... Edit2: Here is what my hard drive looks like, according to SpaceMonger (Right click-Open image in new tab, so you can see it properly): You can see why I was starting to think that the 53GB figure is actually wrong. Even if 'Temporary Files' includes my hiberfil and everything in WinSxS (about 13GB total), that would be 26GB, which is only halfway there. Hard to see where there's 53GB of stuff to delete.

    Read the article

  • Migrate Windows Server 2008 to a new hard disk 2

    - by MainMa
    Hi, A few weeks ago, I already asked how to move a Windows Server 2008 to a new hard disk. Despite the previous answers and two weeks lost trying to do it, I am always unable to move the OS to the new drive. What I tried: A backup/restore using Windows Backup. This never helped. First, I tried to backup, then copy the backup to a new drive, then restore. This results in "The parameter is incorrect. (0x80070057)" error caused by a bug in Windows Backup. Recently, I attempted to backup to a network share, but I can't restore from it, because of a "*The network path was not found. (0x80070035)" error. Trying the netsh interface ipv4 set address [...] does not work neither (saw at least three different errors, mostly "The interface is unknown.") A previously suggested solution using imagex from Windows AIK results in a non-bootable disk after writing an image to it. When booting from Windows 2008 installation disk (from USB), it finds that the HDD is not bootable and proposes to fix this, but then crashes, resulting in an unbootable USB flash disk (and HDD stays unbootable). As I said in my previous question, doing a clone of a hard disk drive gives an (of course) bootable disk, but Windows complain about hardware changes and cannot start. Now can somebody suggest me another way to move Windows Server 2008 to a new hard disk? Is it at least possible to do, or any hard disk failure/change implements necessarily to reinstall the whole OS?

    Read the article

  • Why does Joomla debug show 446 queries logged and 446 legacy queries logged?

    - by Darye
    I have been called in to fix the performance of a Joomla site that was already setup. I look at the debug output and it shows the same queries twice, once for queries logged and again for legacy queries logged. My guess is that it is actually running the same queries twice make for just under 900 queries per page (hope I am wrong) The Legacy plugin is disabled, so Legacy mode is not on at all. The site uses VirtueMart as well (which BTW isn't working properly if the cache in the Global Config is turned on) Besides the fact that I don't think it should be running 446 queries anyway (sometimes even up to 650 per page ), has anyone every experienced this issue, and where would I look to fix this. Thanks

    Read the article

  • Best Practise for Stopwatch in multi processors machine?

    - by Ahmed Said
    I found a good question for measuring function performance, and the answers recommend to use Stopwatch as follows Stopwatch sw = new Stopwatch(); sw.Start(); //DoWork sw.Stop(); //take sw.Elapsed But is this valid if you are running under multi processors machine? the thread can be switched to another processor, can it? Also the same thing should be in Enviroment.TickCount. If the answer is yes should I wrap my code inside BeginThreadAffinity as follows Thread.BeginThreadAffinity(); Stopwatch sw = new Stopwatch(); sw.Start(); //DoWork sw.Stop(); //take sw.Elapsed Thread.EndThreadAffinity(); P.S The switching can occur over the thread level not only the processor level, for example if the function is running in another thread so the system can switch it to another processor, if that happens, will the Stopwatch be valid after this switching? I am not using Stopwatch for perfromance measurement only but also to simulate timer function using Thread.Sleep (to prevent call overlapping)

    Read the article

  • SQL server virtual memory usage and perofrmance

    - by user365035
    Hello, I have a very large DB used mostly for analytics. The performance overall is very sluggish. I just noticed that when running the query below, the amount of virtual memory used greatly exceed the amount of physical memory available. Currently, phsycial memory is 10GB (10238 bytes) where as the virtual memory returns significantly more 8388607 bytes. That seems really wrong, but I'm at a bit of a loss on how to proceed. USE [master]; GO select cpu_count , hyperthread_ratio , physical_memory_in_bytes / 1048576 as 'mem_MB' , virtual_memory_in_bytes / 1048576 as 'virtual_mem_MB' , max_workers_count , os_error_mode , os_priority_class from sys.dm_os_sys_info

    Read the article

  • Very different I/O performance in C++ on Windows

    - by Mr.Gate
    Hi all, I'm a new user and my english is not so good so I hope to be clear. We're facing a performance problem using large files (1GB or more) expecially (as it seems) when you try to grow them in size. Anyway... to verify our sensations we tryed the following (on Win 7 64Bit, 4core, 8GB Ram, 32 bit code compiled with VC2008) a) Open an unexisting file. Write it from the beginning up to 1Gb in 1Mb slots. Now you have a 1Gb file. Now randomize 10000 positions within that file, seek to that position and write 50 bytes in each position, no matter what you write. Close the file and look at the results. Time to create the file is quite fast (about 0.3"), time to write 10000 times is fast all the same (about 0.03"). Very good, this is the beginnig. Now try something else... b) Open an unexisting file, seek to 1Gb-1byte and write just 1 byte. Now you have another 1Gb file. Follow the next steps exactly same way of case 'a', close the file and look at the results. Time to create the file is the faster you can imagine (about 0.00009") but write time is something you can't believe.... about 90"!!!!! b.1) Open an unexisting file, don't write any byte. Act as before, ramdomizing, seeking and writing, close the file and look at the result. Time to write is long all the same: about 90"!!!!! Ok... this is quite amazing. But there's more! c) Open again the file you crated in case 'a', don't truncate it... randomize again 10000 positions and act as before. You're fast as before, about 0,03" to write 10000 times. This sounds Ok... try another step. d) Now open the file you created in case 'b', don't truncate it... randomize again 10000 positions and act as before. You're slow again and again, but the time is reduced to... 45"!! Maybe, trying again, the time will reduce. I actually wonder why... Any Idea? The following is part of the code I used to test what I told in previuos cases (you'll have to change someting in order to have a clean compilation, I just cut & paste from some source code, sorry). The sample can read and write, in random, ordered or reverse ordered mode, but write only in random order is the clearest test. We tryed using std::fstream but also using directly CreateFile(), WriteFile() and so on the results are the same (even if std::fstream is actually a little slower). Parameters for case 'a' = -f_tempdir_\casea.dat -n10000 -t -p -w Parameters for case 'b' = -f_tempdir_\caseb.dat -n10000 -t -v -w Parameters for case 'b.1' = -f_tempdir_\caseb.dat -n10000 -t -w Parameters for case 'c' = -f_tempdir_\casea.dat -n10000 -w Parameters for case 'd' = -f_tempdir_\caseb.dat -n10000 -w Run the test (and even others) and see... // iotest.cpp : Defines the entry point for the console application. // #include <windows.h> #include <iostream> #include <set> #include <vector> #include "stdafx.h" double RealTime_Microsecs() { LARGE_INTEGER fr = {0, 0}; LARGE_INTEGER ti = {0, 0}; double time = 0.0; QueryPerformanceCounter(&ti); QueryPerformanceFrequency(&fr); time = (double) ti.QuadPart / (double) fr.QuadPart; return time; } int main(int argc, char* argv[]) { std::string sFileName ; size_t stSize, stTimes, stBytes ; int retval = 0 ; char *p = NULL ; char *pPattern = NULL ; char *pReadBuf = NULL ; try { // Default stSize = 1<<30 ; // 1Gb stTimes = 1000 ; stBytes = 50 ; bool bTruncate = false ; bool bPre = false ; bool bPreFast = false ; bool bOrdered = false ; bool bReverse = false ; bool bWriteOnly = false ; // Comsumo i parametri for(int index=1; index < argc; ++index) { if ( '-' != argv[index][0] ) throw ; switch(argv[index][1]) { case 'f': sFileName = argv[index]+2 ; break ; case 's': stSize = xw::str::strtol(argv[index]+2) ; break ; case 'n': stTimes = xw::str::strtol(argv[index]+2) ; break ; case 'b':stBytes = xw::str::strtol(argv[index]+2) ; break ; case 't': bTruncate = true ; break ; case 'p' : bPre = true, bPreFast = false ; break ; case 'v' : bPreFast = true, bPre = false ; break ; case 'o' : bOrdered = true, bReverse = false ; break ; case 'r' : bReverse = true, bOrdered = false ; break ; case 'w' : bWriteOnly = true ; break ; default: throw ; break ; } } if ( sFileName.empty() ) { std::cout << "Usage: -f<File Name> -s<File Size> -n<Number of Reads and Writes> -b<Bytes per Read and Write> -t -p -v -o -r -w" << std::endl ; std::cout << "-t truncates the file, -p pre load the file, -v pre load 'veloce', -o writes in order mode, -r write in reverse order mode, -w Write Only" << std::endl ; std::cout << "Default: 1Gb, 1000 times, 50 bytes" << std::endl ; throw ; } if ( !stSize || !stTimes || !stBytes ) { std::cout << "Invalid Parameters" << std::endl ; return -1 ; } size_t stBestSize = 0x00100000 ; std::fstream fFile ; fFile.open(sFileName.c_str(), std::ios_base::binary|std::ios_base::out|std::ios_base::in|(bTruncate?std::ios_base::trunc:0)) ; p = new char[stBestSize] ; pPattern = new char[stBytes] ; pReadBuf = new char[stBytes] ; memset(p, 0, stBestSize) ; memset(pPattern, (int)(stBytes&0x000000ff), stBytes) ; double dTime = RealTime_Microsecs() ; size_t stCopySize, stSizeToCopy = stSize ; if ( bPre ) { do { stCopySize = std::min(stSizeToCopy, stBestSize) ; fFile.write(p, stCopySize) ; stSizeToCopy -= stCopySize ; } while (stSizeToCopy) ; std::cout << "Creating time is: " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; } else if ( bPreFast ) { fFile.seekp(stSize-1) ; fFile.write(p, 1) ; std::cout << "Creating Fast time is: " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; } size_t stPos ; ::srand((unsigned int)dTime) ; double dReadTime, dWriteTime ; stCopySize = stTimes ; std::vector<size_t> inVect ; std::vector<size_t> outVect ; std::set<size_t> outSet ; std::set<size_t> inSet ; // Prepare vector and set do { stPos = (size_t)(::rand()<<16) % stSize ; outVect.push_back(stPos) ; outSet.insert(stPos) ; stPos = (size_t)(::rand()<<16) % stSize ; inVect.push_back(stPos) ; inSet.insert(stPos) ; } while (--stCopySize) ; // Write & read using vectors if ( !bReverse && !bOrdered ) { std::vector<size_t>::iterator outI, inI ; outI = outVect.begin() ; inI = inVect.begin() ; stCopySize = stTimes ; dReadTime = 0.0 ; dWriteTime = 0.0 ; do { dTime = RealTime_Microsecs() ; fFile.seekp(*outI) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++outI ; if ( !bWriteOnly ) { dTime = RealTime_Microsecs() ; fFile.seekg(*inI) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++inI ; } } while (--stCopySize) ; std::cout << "Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " (Ave: " << xw::str::itoa(dWriteTime/stTimes, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { std::cout << "Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " (Ave: " << xw::str::itoa(dReadTime/stTimes, 10, 'f') << ")" << std::endl ; } } // End // Write in order if ( bOrdered ) { std::set<size_t>::iterator i = outSet.begin() ; dWriteTime = 0.0 ; stCopySize = 0 ; for(; i != outSet.end(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekp(stPos) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Ordered Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dWriteTime/stCopySize, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { i = inSet.begin() ; dReadTime = 0.0 ; stCopySize = 0 ; for(; i != inSet.end(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekg(stPos) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Ordered Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dReadTime/stCopySize, 10, 'f') << ")" << std::endl ; } }// End // Write in reverse order if ( bReverse ) { std::set<size_t>::reverse_iterator i = outSet.rbegin() ; dWriteTime = 0.0 ; stCopySize = 0 ; for(; i != outSet.rend(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekp(stPos) ; fFile.write(pPattern, stBytes) ; dWriteTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Reverse ordered Write time is " << xw::str::itoa(dWriteTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dWriteTime/stCopySize, 10, 'f') << ")" << std::endl ; if ( !bWriteOnly ) { i = inSet.rbegin() ; dReadTime = 0.0 ; stCopySize = 0 ; for(; i != inSet.rend(); ++i) { stPos = *i ; dTime = RealTime_Microsecs() ; fFile.seekg(stPos) ; fFile.read(pReadBuf, stBytes) ; dReadTime += RealTime_Microsecs() - dTime ; ++stCopySize ; } std::cout << "Reverse ordered Read time is " << xw::str::itoa(dReadTime, 5, 'f') << " in " << xw::str::itoa(stCopySize) << " (Ave: " << xw::str::itoa(dReadTime/stCopySize, 10, 'f') << ")" << std::endl ; } }// End dTime = RealTime_Microsecs() ; fFile.close() ; std::cout << "Flush/Close Time is " << xw::str::itoa(RealTime_Microsecs()-dTime, 5, 'f') << std::endl ; std::cout << "Program Terminated" << std::endl ; } catch(...) { std::cout << "Something wrong or wrong parameters" << std::endl ; retval = -1 ; } if ( p ) delete []p ; if ( pPattern ) delete []pPattern ; if ( pReadBuf ) delete []pReadBuf ; return retval ; }

    Read the article

  • How well does Scala Perform Comapred to Java?

    - by Teja Kantamneni
    The Question actually says it all. The reason behind this question is I am about to start a small side project and want to do it in Scala. I am learning scala for the past one month and now I am comfortable working with it. The scala compiler itself is pretty slow (unless you use fsc). So how well does it perform on JVM? I previously worked on groovy and I had seen sometimes over performed than java. My Question is how well scala perform on JVM compared to Java. I know scala has some very good features(FP, dynamic lang, statically typed...) but end of the day we need the performance...

    Read the article

  • MySQL: Is it faster to use inserts and updates instead of insert on duplicate key update?

    - by Nir
    I have a cron job that updates a large number of rows in a database. Some of the rows are new and therefore inserted and some are updates of existing ones and therefore update. I use insert on duplicate key update for the whole data and get it done in one call. But- I actually know which rows are new and which are updated so I can also do inserts and updates seperately. Will seperating the inserts and updates have advantage in terms of performance? What are the mechanics behind this ? Thanks!

    Read the article

  • I'm asked to tune a long starting app into a short time period

    - by Jason
    Hi, I'm asked to shorten the startup period of a long starting app, however I have also to obligate to my managers to the amount of time i will reduce the startup - something like 10-20 seconds. As i'm new in my company I said I can obligate with timeframe of months (its a big server and I'm new and i plan to do lazy load + performance tuning). that answer was not accepted I was required to do some kind of a cache to hold important data in another server and then when my server starts up it would reach all its data from that cache - I find it a kind of a workaround and i don't really like it. do you like it? what do you think I should do? any suggestions? PS when i profiled the app i saw many small issues that make the startup long (like 2 minutes) it would not be a short process to fix all and to make lazy load. Any kind of suggestions would help. language - java. Thanks

    Read the article

  • Snapshotting single disk of running Hyper-V VM

    - by modelnine
    I'm currently somewhat at a loss of how to create a snapshot of a single virtual hard-disk of a running Hyper-V VM. Generally, creating a differential disk while a server is shut down is no problem (i.e., call the new-vhd cmdlet and pass a ParentPath, then update the VHD-binding of the respective VM-device), but while the host is running, all I can find is checkpointing the VM as a whole (which creates snapshots of all attached disks), and leaves the VM-state in a form which isn't easily processable by external tools (i.e., it requires reading additional meta-data from the VM). Generally, what'd I'd like to happen for a single-disk snapshot (in my understanding) is: Pause the VM Rename current disk to some other name which specifies it as a base-snapshot Create a new VHD which has the renamed VHD as parent path and is marked as "current" Swap the VHD for the VM for the snapshotted hard-disk to the newly created differential VHD Resume the VM Is there any means to do this programatically? Update: I've seen that this is actually possible with SCSI-disks, i.e. pause the VM, remove the SCSI disk, make the snapshot, reattach the SCSI disk at the same position, resume the VM. And, the VM resumes properly. But: is something similar also possible with G1 machines for the boot disk which is always IDE?

    Read the article

  • Image size guidelines

    - by user502014
    Hi all, This may well be a little of an open-ended question The site I am working on requires to be optimised for performance. One of the key areas is to optimise the file sizes of the images used upon the site. Unfortunatley these images are being created by employees who do not have the required knowledge for creating images for the web, and it is my job to produce a set of guidelines for them to use. I was wondering whether there was any resource/guidlines/literature regarding typical images file sizes for images of different dimensions - as I would like to include something like this to aid them to ensure their images are being created properly. Any info would be greatly appreciated. Thanks in advance

    Read the article

< Previous Page | 41 42 43 44 45 46 47 48 49 50 51 52  | Next Page >