Search Results

Search found 14676 results on 588 pages for 'oracle remarketer china'.

Page 459/588 | < Previous Page | 455 456 457 458 459 460 461 462 463 464 465 466  | Next Page >

  • More Animation - Self Dismissing Dialogs

    - by Duncan Mills
    In my earlier articles on animation, I discussed various slide, grow and  flip transitions for items and containers.  In this article I want to discuss a fade animation and specifically the use of fades and auto-dismissal for informational dialogs.  If you use a Mac, you may be familiar with Growl as a notification system, and the nice way that messages that are informational just fade out after a few seconds. So in this blog entry I wanted to discuss how we could make an ADF popup behave in the same way. This can be an effective way of communicating information to the user without "getting in the way" with modal alerts. This of course, has been done before, but everything I've seen previously requires something like JQuery to be in the mix when we don't really need it to be.  The solution I've put together is nice and generic and will work with either <af:panelWindow> or <af:dialog> as a the child of the popup. In terms of usage it's pretty simple to use we  just need to ensure that the popup itself has clientComponent is set to true and includes the animation JavaScript (animateFadingPopup) on a popupOpened event: <af:popup id="pop1" clientComponent="true">   <af:panelWindow title="A Fading Message...">    ...  </af:panelWindow>   <af:clientListener method="animateFadingPopup" type="popupOpened"/> </af:popup>   The popup can be invoked in the normal way using showPopupBehavior or JavaScript, no special code is required there. As a further twist you can include an additional clientAttribute called preFadeDelay to define a delay before the fade itself starts (the default is 5 seconds) . To set the delay to just 2 seconds for example: <af:popup ...>   ...   <af:clientAttribute name="preFadeDelay" value="2"/>   <af:clientListener method="animateFadingPopup" type="popupOpened"/>  </af:popup> The Animation Styles  As before, we have a couple of CSS Styles which define the animation, I've put these into the skin in my case, and, as in the other articles, I've only defined the transitions for WebKit browsers (Chrome, Safari) at the moment. In this case, the fade is timed at 5 seconds in duration. .popupFadeReset {   opacity: 1; } .popupFadeAnimate {   opacity: 0;   -webkit-transition: opacity 5s ease-in-out; } As you can see here, we are achieving the fade by simply setting the CSS opacity property. The JavaScript The final part of the puzzle is, of course, the JavaScript, there are four functions, these are generic (apart from the Style names which, if you've changed above, you'll need to reflect here): The initial function invoked from the popupOpened event,  animateFadingPopup which starts a timer and provides the initial delay before we start to fade the popup. The function that applies the fade animation to the popup - initiatePopupFade. The callback function - closeFadedPopup used to reset the style class and correctly hide the popup so that it can be invoked again and again.   A utility function - findFadeContainer, which is responsible for locating the correct child component of the popup to actually apply the style to. Function - animateFadingPopup This function, as stated is the one hooked up to the popupOpened event via a clientListener. Because of when the code is called it does not actually matter how you launch the popup, or if the popup is re-used from multiple places. All usages will get the fade behavior. /**  * Client listener which will kick off the animation to fade the dialog and register  * a callback to correctly reset the popup once the animation is complete  * @param event  */ function animateFadingPopup(event) { var fadePopup = event.getSource();   var fadeCandidate = false;   //Ensure that the popup is initially Opaque   //This handles the situation where the user has dismissed   //the popup whilst it was in the process of fading   var fadeContainer = findFadeContainer(fadePopup);   if (fadeContainer != null) {     fadeCandidate = true;     fadeContainer.setStyleClass("popupFadeReset");   }   //Only continue if we can actually fade this popup   if (fadeCandidate) {   //See if a delay has been specified     var waitTimeSeconds = event.getSource().getProperty('preFadeDelay');     //Default to 5 seconds if not supplied     if (waitTimeSeconds == undefined) {     waitTimeSeconds = 5;     }     // Now call the fade after the specified time     var fadeFunction = function () {     initiatePopupFade(fadePopup);     };     var fadeDelayTimer = setTimeout(fadeFunction, (waitTimeSeconds * 1000));   } } The things to note about this function is the initial check that we have to do to ensure that the container is currently visible and reset it's style to ensure that it is.  This is to handle the situation where the popup has begun the fade, and yet the user has still explicitly dismissed the popup before it's complete and in doing so has prevented the callback function (described later) from executing. In this particular situation the initial display of the dialog will be (apparently) missing it's normal animation but at least it becomes visible to the user (and most users will probably not notice this difference in any case). You'll notice that the style that we apply to reset the  opacity - popupFadeReset, is not applied to the popup component itself but rather the dialog or panelWindow within it. More about that in the description of the next function findFadeContainer(). Finally, assuming that we have a suitable candidate for fading, a JavaScript  timer is started using the specified preFadeDelay wait time (or 5 seconds if that was not supplied). When this timer expires then the main animation styleclass will be applied using the initiatePopupFade() function Function - findFadeContainer As a component, the <af:popup> does not support styleClass attribute, so we can't apply the animation style directly.  Instead we have to look for the container within the popup which defines the window object that can have a style attached.  This is achieved by the following code: /**  * The thing we actually fade will be the only child  * of the popup assuming that this is a dialog or window  * @param popup  * @return the component, or null if this is not valid for fading  */ function findFadeContainer(popup) { var children = popup.getDescendantComponents();   var fadeContainer = children[0];   if (fadeContainer != undefined) {   var compType = fadeContainer.getComponentType();     if (compType == "oracle.adf.RichPanelWindow" || compType == "oracle.adf.RichDialog") {     return fadeContainer;     }   }   return null; }  So what we do here is to grab the first child component of the popup and check its type. Here I decided to limit the fade behaviour to only <af:dialog> and <af:panelWindow>. This was deliberate.  If  we apply the fade to say an <af:noteWindow> you would see the text inside the balloon fade, but the balloon itself would hang around until the fade animation was over and then hide.  It would of course be possible to make the code smarter to walk up the DOM tree to find the correct <div> to apply the style to in order to hide the whole balloon, however, that means that this JavaScript would then need to have knowledge of the generated DOM structure, something which may change from release to release, and certainly something to avoid. So, all in all, I think that this is an OK restriction and frankly it's windows and dialogs that I wanted to fade anyway, not balloons and menus. You could of course extend this technique and handle the other types should you really want to. One thing to note here is the selection of the first (children[0]) child of the popup. It does not matter if there are non-visible children such as clientListener before the <af:dialog> or <af:panelWindow> within the popup, they are not included in this array, so picking the first element in this way seems to be fine, no matter what the underlying ordering is within the JSF source.  If you wanted a super-robust version of the code you might want to iterate through the children array of the popup to check for the right type, again it's up to you.  Function -  initiatePopupFade  On to the actual fading. This is actually very simple and at it's heart, just the application of the popupFadeAnimate style to the correct component and then registering a callback to execute once the fade is done. /**  * Function which will kick off the animation to fade the dialog and register  * a callback to correctly reset the popup once the animation is complete  * @param popup the popup we are animating  */ function initiatePopupFade(popup) { //Only continue if the popup has not already been dismissed    if (popup.isPopupVisible()) {   //The skin styles that define the animation      var fadeoutAnimationStyle = "popupFadeAnimate";     var fadeAnimationResetStyle = "popupFadeReset";     var fadeContainer = findFadeContainer(popup);     if (fadeContainer != null) {     var fadeContainerReal = AdfAgent.AGENT.getElementById(fadeContainer.getClientId());       //Define the callback this will correctly reset the popup once it's disappeared       var fadeCallbackFunction = function (event) {       closeFadedPopup(popup, fadeContainer, fadeAnimationResetStyle);         event.target.removeEventListener("webkitTransitionEnd", fadeCallbackFunction);       };       //Initiate the fade       fadeContainer.setStyleClass(fadeoutAnimationStyle);       //Register the callback to execute once fade is done       fadeContainerReal.addEventListener("webkitTransitionEnd", fadeCallbackFunction, false);     }   } } I've added some extra checks here though. First of all we only start the whole process if the popup is still visible. It may be that the user has closed the popup before the delay timer has finished so there is no need to start animating in that case. Again we use the findFadeContainer() function to locate the correct component to apply the style to, and additionally we grab the DOM id that represents that container.  This physical ID is required for the registration of the callback function. The closeFadedPopup() call is then registered on the callback so as to correctly close the now transparent (but still there) popup. Function -  closeFadedPopup The final function just cleans things up: /**  * Callback function to correctly cancel and reset the style in the popup  * @param popup id of the popup so we can close it properly  * @param contatiner the window / dialog within the popup to actually style  * @param resetStyle the syle that sets the opacity back to solid  */ function closeFadedPopup(popup, container, resetStyle) { container.setStyleClass(resetStyle);   popup.cancel(); }  First of all we reset the style to make the popup contents opaque again and then we cancel the popup.  This will ensure that any of your user code that is waiting for a popup cancelled event will actually get the event, additionally if you have done this as a modal window / dialog it will ensure that the glasspane is dismissed and you can interact with the UI again.  What's Next? There are several ways in which this technique could be used, I've been working on a popup here, but you could apply the same approach to in-line messages. As this code (in the popup case) is generic it will make s pretty nice declarative component and maybe, if I get time, I'll look at constructing a formal Growl component using a combination of this technique, and active data push. Also, I'm sure the above code can be improved a little too.  Specifically things like registering a popup cancelled listener to handle the style reset so that we don't loose the subtle animation that takes place when the popup is opened in that situation where the user has closed the in-fade dialog.

    Read the article

  • Basics of Join Factorization

    - by Hong Su
    We continue our series on optimizer transformations with a post that describes the Join Factorization transformation. The Join Factorization transformation was introduced in Oracle 11g Release 2 and applies to UNION ALL queries. Union all queries are commonly used in database applications, especially in data integration applications. In many scenarios the branches in a UNION All query share a common processing, i.e, refer to the same tables. In the current Oracle execution strategy, each branch of a UNION ALL query is evaluated independently, which leads to repetitive processing, including data access and join. The join factorization transformation offers an opportunity to share the common computations across the UNION ALL branches. Currently, join factorization only factorizes common references to base tables only, i.e, not views. Consider a simple example of query Q1. Q1:    select t1.c1, t2.c2    from t1, t2, t3    where t1.c1 = t2.c1 and t1.c1 > 1 and t2.c2 = 2 and t2.c2 = t3.c2   union all    select t1.c1, t2.c2    from t1, t2, t4    where t1.c1 = t2.c1 and t1.c1 > 1 and t2.c3 = t4.c3; Table t1 appears in both the branches. As does the filter predicates on t1 (t1.c1 > 1) and the join predicates involving t1 (t1.c1 = t2.c1). Nevertheless, without any transformation, the scan (and the filtering) on t1 has to be done twice, once per branch. Such a query may benefit from join factorization which can transform Q1 into Q2 as follows: Q2:    select t1.c1, VW_JF_1.item_2    from t1, (select t2.c1 item_1, t2.c2 item_2                   from t2, t3                    where t2.c2 = t3.c2 and t2.c2 = 2                                  union all                   select t2.c1 item_1, t2.c2 item_2                   from t2, t4                    where t2.c3 = t4.c3) VW_JF_1    where t1.c1 = VW_JF_1.item_1 and t1.c1 > 1; In Q2, t1 is "factorized" and thus the table scan and the filtering on t1 is done only once (it's shared). If t1 is large, then avoiding one extra scan of t1 can lead to a huge performance improvement. Another benefit of join factorization is that it can open up more join orders. Let's look at query Q3. Q3:    select *    from t5, (select t1.c1, t2.c2                  from t1, t2, t3                  where t1.c1 = t2.c1 and t1.c1 > 1 and t2.c2 = 2 and t2.c2 = t3.c2                 union all                  select t1.c1, t2.c2                  from t1, t2, t4                  where t1.c1 = t2.c1 and t1.c1 > 1 and t2.c3 = t4.c3) V;   where t5.c1 = V.c1 In Q3, view V is same as Q1. Before join factorization, t1, t2 and t3 must be joined first before they can be joined with t5. But if join factorization factorizes t1 from view V, t1 can then be joined with t5. This opens up new join orders. That being said, join factorization imposes certain join orders. For example, in Q2, t2 and t3 appear in the first branch of the UNION ALL query in view VW_JF_1. T2 must be joined with t3 before it can be joined with t1 which is outside of the VW_JF_1 view. The imposed join order may not necessarily be the best join order. For this reason, join factorization is performed under cost-based transformation framework; this means that we cost the plans with and without join factorization and choose the cheapest plan. Note that if the branches in UNION ALL have DISTINCT clauses, join factorization is not valid. For example, Q4 is NOT semantically equivalent to Q5.   Q4:     select distinct t1.*      from t1, t2      where t1.c1 = t2.c1  union all      select distinct t1.*      from t1, t2      where t1.c1 = t2.c1 Q5:    select distinct t1.*     from t1, (select t2.c1 item_1                   from t2                union all                   select t2.c1 item_1                  from t2) VW_JF_1     where t1.c1 = VW_JF_1.item_1 Q4 might return more rows than Q5. Q5's results are guaranteed to be duplicate free because of the DISTINCT key word at the top level while Q4's results might contain duplicates.   The examples given so far involve inner joins only. Join factorization is also supported in outer join, anti join and semi join. But only the right tables of outer join, anti join and semi joins can be factorized. It is not semantically correct to factorize the left table of outer join, anti join or semi join. For example, Q6 is NOT semantically equivalent to Q7. Q6:     select t1.c1, t2.c2    from t1, t2    where t1.c1 = t2.c1(+) and t2.c2 (+) = 2  union all    select t1.c1, t2.c2    from t1, t2      where t1.c1 = t2.c1(+) and t2.c2 (+) = 3 Q7:     select t1.c1, VW_JF_1.item_2    from t1, (select t2.c1 item_1, t2.c2 item_2                  from t2                  where t2.c2 = 2                union all                  select t2.c1 item_1, t2.c2 item_2                  from t2                                                                                                    where t2.c2 = 3) VW_JF_1       where t1.c1 = VW_JF_1.item_1(+)                                                                  However, the right side of an outer join can be factorized. For example, join factorization can transform Q8 to Q9 by factorizing t2, which is the right table of an outer join. Q8:    select t1.c2, t2.c2    from t1, t2      where t1.c1 = t2.c1 (+) and t1.c1 = 1 union all    select t1.c2, t2.c2    from t1, t2    where t1.c1 = t2.c1(+) and t1.c1 = 2 Q9:   select VW_JF_1.item_2, t2.c2   from t2,             (select t1.c1 item_1, t1.c2 item_2            from t1            where t1.c1 = 1           union all            select t1.c1 item_1, t1.c2 item_2            from t1            where t1.c1 = 2) VW_JF_1   where VW_JF_1.item_1 = t2.c1(+) All of the examples in this blog show factorizing a single table from two branches. This is just for ease of illustration. Join factorization can factorize multiple tables and from more than two UNION ALL branches.  SummaryJoin factorization is a cost-based transformation. It can factorize common computations from branches in a UNION ALL query which can lead to huge performance improvement. 

    Read the article

  • Building Queries Systematically

    - by Jeremy Smyth
    The SQL language is a bit like a toolkit for data. It consists of lots of little fiddly bits of syntax that, taken together, allow you to build complex edifices and return powerful results. For the uninitiated, the many tools can be quite confusing, and it's sometimes difficult to decide how to go about the process of building non-trivial queries, that is, queries that are more than a simple SELECT a, b FROM c; A System for Building Queries When you're building queries, you could use a system like the following:  Decide which fields contain the values you want to use in our output, and how you wish to alias those fields Values you want to see in your output Values you want to use in calculations . For example, to calculate margin on a product, you could calculate price - cost and give it the alias margin. Values you want to filter with. For example, you might only want to see products that weigh more than 2Kg or that are blue. The weight or colour columns could contain that information. Values you want to order by. For example you might want the most expensive products first, and the least last. You could use the price column in descending order to achieve that. Assuming the fields you've picked in point 1 are in multiple tables, find the connections between those tables Look for relationships between tables and identify the columns that implement those relationships. For example, The Orders table could have a CustomerID field referencing the same column in the Customers table. Sometimes the problem doesn't use relationships but rests on a different field; sometimes the query is looking for a coincidence of fact rather than a foreign key constraint. For example you might have sales representatives who live in the same state as a customer; this information is normally not used in relationships, but if your query is for organizing events where sales representatives meet customers, it's useful in that query. In such a case you would record the names of columns at either end of such a connection. Sometimes relationships require a bridge, a junction table that wasn't identified in point 1 above but is needed to connect tables you need; these are used in "many-to-many relationships". In these cases you need to record the columns in each table that connect to similar columns in other tables. Construct a join or series of joins using the fields and tables identified in point 2 above. This becomes your FROM clause. Filter using some of the fields in point 1 above. This becomes your WHERE clause. Construct an ORDER BY clause using values from point 1 above that are relevant to the desired order of the output rows. Project the result using the remainder of the fields in point 1 above. This becomes your SELECT clause. A Worked Example   Let's say you want to query the world database to find a list of countries (with their capitals) and the change in GNP, using the difference between the GNP and GNPOld columns, and that you only want to see results for countries with a population greater than 100,000,000. Using the system described above, we could do the following:  The Country.Name and City.Name columns contain the name of the country and city respectively.  The change in GNP comes from the calculation GNP - GNPOld. Both those columns are in the Country table. This calculation is also used to order the output, in descending order To see only countries with a population greater than 100,000,000, you need the Population field of the Country table. There is also a Population field in the City table, so you'll need to specify the table name to disambiguate. You can also represent a number like 100 million as 100e6 instead of 100000000 to make it easier to read. Because the fields come from the Country and City tables, you'll need to join them. There are two relationships between these tables: Each city is hosted within a country, and the city's CountryCode column identifies that country. Also, each country has a capital city, whose ID is contained within the country's Capital column. This latter relationship is the one to use, so the relevant columns and the condition that uses them is represented by the following FROM clause:  FROM Country JOIN City ON Country.Capital = City.ID The statement should only return countries with a population greater than 100,000,000. Country.Population is the relevant column, so the WHERE clause becomes:  WHERE Country.Population > 100e6  To sort the result set in reverse order of difference in GNP, you could use either the calculation, or the position in the output (it's the third column): ORDER BY GNP - GNPOld or ORDER BY 3 Finally, project the columns you wish to see by constructing the SELECT clause: SELECT Country.Name AS Country, City.Name AS Capital,        GNP - GNPOld AS `Difference in GNP`  The whole statement ends up looking like this:  mysql> SELECT Country.Name AS Country, City.Name AS Capital, -> GNP - GNPOld AS `Difference in GNP` -> FROM Country JOIN City ON Country.Capital = City.ID -> WHERE Country.Population > 100e6 -> ORDER BY 3 DESC; +--------------------+------------+-------------------+ | Country            | Capital    | Difference in GNP | +--------------------+------------+-------------------+ | United States | Washington | 399800.00 | | China | Peking | 64549.00 | | India | New Delhi | 16542.00 | | Nigeria | Abuja | 7084.00 | | Pakistan | Islamabad | 2740.00 | | Bangladesh | Dhaka | 886.00 | | Brazil | Brasília | -27369.00 | | Indonesia | Jakarta | -130020.00 | | Russian Federation | Moscow | -166381.00 | | Japan | Tokyo | -405596.00 | +--------------------+------------+-------------------+ 10 rows in set (0.00 sec) Queries with Aggregates and GROUP BY While this system might work well for many queries, it doesn't cater for situations where you have complex summaries and aggregation. For aggregation, you'd start with choosing which columns to view in the output, but this time you'd construct them as aggregate expressions. For example, you could look at the average population, or the count of distinct regions.You could also perform more complex aggregations, such as the average of GNP per head of population calculated as AVG(GNP/Population). Having chosen the values to appear in the output, you must choose how to aggregate those values. A useful way to think about this is that every aggregate query is of the form X, Y per Z. The SELECT clause contains the expressions for X and Y, as already described, and Z becomes your GROUP BY clause. Ordinarily you would also include Z in the query so you see how you are grouping, so the output becomes Z, X, Y per Z.  As an example, consider the following, which shows a count of  countries and the average population per continent:  mysql> SELECT Continent, COUNT(Name), AVG(Population)     -> FROM Country     -> GROUP BY Continent; +---------------+-------------+-----------------+ | Continent     | COUNT(Name) | AVG(Population) | +---------------+-------------+-----------------+ | Asia          |          51 |   72647562.7451 | | Europe        |          46 |   15871186.9565 | | North America |          37 |   13053864.8649 | | Africa        |          58 |   13525431.0345 | | Oceania       |          28 |    1085755.3571 | | Antarctica    |           5 |          0.0000 | | South America |          14 |   24698571.4286 | +---------------+-------------+-----------------+ 7 rows in set (0.00 sec) In this case, X is the number of countries, Y is the average population, and Z is the continent. Of course, you could have more fields in the SELECT clause, and  more fields in the GROUP BY clause as you require. You would also normally alias columns to make the output more suited to your requirements. More Complex Queries  Queries can get considerably more interesting than this. You could also add joins and other expressions to your aggregate query, as in the earlier part of this post. You could have more complex conditions in the WHERE clause. Similarly, you could use queries such as these in subqueries of yet more complex super-queries. Each technique becomes another tool in your toolbox, until before you know it you're writing queries across 15 tables that take two pages to write out. But that's for another day...

    Read the article

  • 12c - Utl_Call_Stack...

    - by noreply(at)blogger.com (Thomas Kyte)
    Over the next couple of months, I'll be writing about some cool new little features of Oracle Database 12c - things that might not make the front page of Oracle.com.  I'm going to start with a new package - UTL_CALL_STACK.In the past, developers have had access to three functions to try to figure out "where the heck am I in my code", they were:dbms_utility.format_call_stackdbms_utility.format_error_backtracedbms_utility.format_error_stackNow these routines, while useful, were of somewhat limited use.  Let's look at the format_call_stack routine for a reason why.  Here is a procedure that will just print out the current call stack for us:ops$tkyte%ORA12CR1> create or replace  2  procedure Print_Call_Stack  3  is  4  begin  5    DBMS_Output.Put_Line(DBMS_Utility.Format_Call_Stack());  6  end;  7  /Procedure created.Now, if we have a package - with nested functions and even duplicated function names:ops$tkyte%ORA12CR1> create or replace  2  package body Pkg is  3    procedure p  4    is  5      procedure q  6      is  7        procedure r  8        is  9          procedure p is 10          begin 11            Print_Call_Stack(); 12            raise program_error; 13          end p; 14        begin 15          p(); 16        end r; 17      begin 18        r(); 19      end q; 20    begin 21      q(); 22    end p; 23  end Pkg; 24  /Package body created.When we execute the procedure PKG.P - we'll see as a result:ops$tkyte%ORA12CR1> exec pkg.p----- PL/SQL Call Stack -----  object      line  object  handle    number  name0x6e891528         4  procedure OPS$TKYTE.PRINT_CALL_STACK0x6ec4a7c0        10  package body OPS$TKYTE.PKG0x6ec4a7c0        14  package body OPS$TKYTE.PKG0x6ec4a7c0        17  package body OPS$TKYTE.PKG0x6ec4a7c0        20  package body OPS$TKYTE.PKG0x76439070         1  anonymous blockBEGIN pkg.p; END;*ERROR at line 1:ORA-06501: PL/SQL: program errorORA-06512: at "OPS$TKYTE.PKG", line 11ORA-06512: at "OPS$TKYTE.PKG", line 14ORA-06512: at "OPS$TKYTE.PKG", line 17ORA-06512: at "OPS$TKYTE.PKG", line 20ORA-06512: at line 1The bit in red above is the output from format_call_stack whereas the bit in black is the error message returned to the client application (it would also be available to you via the format_error_backtrace API call). As you can see - it contains useful information but to use it you would need to parse it - and that can be trickier than it seems.  The format of those strings is not set in stone, they have changed over the years (I wrote the "who_am_i", "who_called_me" functions, I did that by parsing these strings - trust me, they change over time!).Starting in 12c - we'll have structured access to the call stack and a series of API calls to interrogate this structure.  I'm going to rewrite the print_call_stack function as follows:ops$tkyte%ORA12CR1> create or replace 2  procedure Print_Call_Stack  3  as  4    Depth pls_integer := UTL_Call_Stack.Dynamic_Depth();  5    6    procedure headers  7    is  8    begin  9        dbms_output.put_line( 'Lexical   Depth   Line    Name' ); 10        dbms_output.put_line( 'Depth             Number      ' ); 11        dbms_output.put_line( '-------   -----   ----    ----' ); 12    end headers; 13    procedure print 14    is 15    begin 16        headers; 17        for j in reverse 1..Depth loop 18          DBMS_Output.Put_Line( 19            rpad( utl_call_stack.lexical_depth(j), 10 ) || 20                    rpad( j, 7) || 21            rpad( To_Char(UTL_Call_Stack.Unit_Line(j), '99'), 9 ) || 22            UTL_Call_Stack.Concatenate_Subprogram 23                       (UTL_Call_Stack.Subprogram(j))); 24        end loop; 25    end; 26  begin 27    print; 28  end; 29  /Here we are able to figure out what 'depth' we are in the code (utl_call_stack.dynamic_depth) and then walk up the stack using a loop.  We will print out the lexical_depth, along with the line number within the unit we were executing plus - the unit name.  And not just any unit name, but the fully qualified, all of the way down to the subprogram name within a package.  Not only that - but down to the subprogram name within a subprogram name within a subprogram name.  For example - running the PKG.P procedure again results in:ops$tkyte%ORA12CR1> exec pkg.pLexical   Depth   Line    NameDepth             Number-------   -----   ----    ----1         6       20      PKG.P2         5       17      PKG.P.Q3         4       14      PKG.P.Q.R4         3       10      PKG.P.Q.R.P0         2       26      PRINT_CALL_STACK1         1       17      PRINT_CALL_STACK.PRINTBEGIN pkg.p; END;*ERROR at line 1:ORA-06501: PL/SQL: program errorORA-06512: at "OPS$TKYTE.PKG", line 11ORA-06512: at "OPS$TKYTE.PKG", line 14ORA-06512: at "OPS$TKYTE.PKG", line 17ORA-06512: at "OPS$TKYTE.PKG", line 20ORA-06512: at line 1This time - we get much more than just a line number and a package name as we did previously with format_call_stack.  We not only got the line number and package (unit) name - we got the names of the subprograms - we can see that P called Q called R called P as nested subprograms.  Also note that we can see a 'truer' calling level with the lexical depth, we can see we "stepped" out of the package to call print_call_stack and that in turn called another nested subprogram.This new package will be a nice addition to everyone's error logging packages.  Of course there are other functions in there to get owner names, the edition in effect when the code was executed and more. See UTL_CALL_STACK for all of the details.

    Read the article

  • 12c - flashforward, flashback or see it as of now...

    - by noreply(at)blogger.com (Thomas Kyte)
    Oracle 9i exposed flashback query to developers for the first time.  The ability to flashback query dates back to version 4 however (it just wasn't exposed).  Every time you run a query in Oracle it is in fact a flashback query - it is what multi-versioning is all about.However, there was never a flashforward query (well, ok, the workspace manager has this capability - but with lots of extra baggage).  We've never been able to ask a table "what will you look like tomorrow" - but now we do.The capability is called Temporal Validity.  If you have a table with data that is effective dated - has a "start date" and "end date" column in it - we can now query it using flashback query like syntax.  The twist is - the date we "flashback" to can be in the future.  It works by rewriting the query to transparently the necessary where clause and filter out the right rows for the right period of time - and since you can have records whose start date is in the future - you can query a table and see what it would look like at some future time.Here is a quick example, we'll start with a table:ops$tkyte%ORA12CR1> create table addresses  2  ( empno       number,  3    addr_data   varchar2(30),  4    start_date  date,  5    end_date    date,  6    period for valid(start_date,end_date)  7  )  8  /Table created.the new bit is on line 6 (it can be altered into an existing table - so any table  you have with a start/end date column will be a candidate).  The keyword is PERIOD, valid is an identifier I chose - it could have been foobar, valid just sounds nice in the query later.  You identify the columns in your table - or we can create them for you if they don't exist.  Then you just create some data:ops$tkyte%ORA12CR1> insert into addresses (empno, addr_data, start_date, end_date )  2  values ( 1234, '123 Main Street', trunc(sysdate-5), trunc(sysdate-2) );1 row created.ops$tkyte%ORA12CR1>ops$tkyte%ORA12CR1> insert into addresses (empno, addr_data, start_date, end_date )  2  values ( 1234, '456 Fleet Street', trunc(sysdate-1), trunc(sysdate+1) );1 row created.ops$tkyte%ORA12CR1>ops$tkyte%ORA12CR1> insert into addresses (empno, addr_data, start_date, end_date )  2  values ( 1234, '789 1st Ave', trunc(sysdate+2), null );1 row created.and you can either see all of the data:ops$tkyte%ORA12CR1> select * from addresses;     EMPNO ADDR_DATA                      START_DAT END_DATE---------- ------------------------------ --------- ---------      1234 123 Main Street                27-JUN-13 30-JUN-13      1234 456 Fleet Street               01-JUL-13 03-JUL-13      1234 789 1st Ave                    04-JUL-13or query "as of" some point in time - as  you can see in the predicate section - it is just doing a query rewrite to automate the "where" filters:ops$tkyte%ORA12CR1> select * from addresses as of period for valid sysdate-3;     EMPNO ADDR_DATA                      START_DAT END_DATE---------- ------------------------------ --------- ---------      1234 123 Main Street                27-JUN-13 30-JUN-13ops$tkyte%ORA12CR1> @planops$tkyte%ORA12CR1> select * from table(dbms_xplan.display_cursor);PLAN_TABLE_OUTPUT-------------------------------------------------------------------------------SQL_ID  cthtvvm0dxvva, child number 0-------------------------------------select * from addresses as of period for valid sysdate-3Plan hash value: 3184888728-------------------------------------------------------------------------------| Id  | Operation         | Name      | Rows  | Bytes | Cost (%CPU)| Time     |-------------------------------------------------------------------------------|   0 | SELECT STATEMENT  |           |       |       |     3 (100)|          ||*  1 |  TABLE ACCESS FULL| ADDRESSES |     1 |    48 |     3   (0)| 00:00:01 |-------------------------------------------------------------------------------Predicate Information (identified by operation id):---------------------------------------------------   1 - filter((("T"."START_DATE" IS NULL OR              "T"."START_DATE"<=SYSDATE@!-3) AND ("T"."END_DATE" IS NULL OR              "T"."END_DATE">SYSDATE@!-3)))Note-----   - dynamic statistics used: dynamic sampling (level=2)24 rows selected.ops$tkyte%ORA12CR1> select * from addresses as of period for valid sysdate;     EMPNO ADDR_DATA                      START_DAT END_DATE---------- ------------------------------ --------- ---------      1234 456 Fleet Street               01-JUL-13 03-JUL-13ops$tkyte%ORA12CR1> @planops$tkyte%ORA12CR1> select * from table(dbms_xplan.display_cursor);PLAN_TABLE_OUTPUT-------------------------------------------------------------------------------SQL_ID  26ubyhw9hgk7z, child number 0-------------------------------------select * from addresses as of period for valid sysdatePlan hash value: 3184888728-------------------------------------------------------------------------------| Id  | Operation         | Name      | Rows  | Bytes | Cost (%CPU)| Time     |-------------------------------------------------------------------------------|   0 | SELECT STATEMENT  |           |       |       |     3 (100)|          ||*  1 |  TABLE ACCESS FULL| ADDRESSES |     1 |    48 |     3   (0)| 00:00:01 |-------------------------------------------------------------------------------Predicate Information (identified by operation id):---------------------------------------------------   1 - filter((("T"."START_DATE" IS NULL OR              "T"."START_DATE"<=SYSDATE@!) AND ("T"."END_DATE" IS NULL OR              "T"."END_DATE">SYSDATE@!)))Note-----   - dynamic statistics used: dynamic sampling (level=2)24 rows selected.ops$tkyte%ORA12CR1> select * from addresses as of period for valid sysdate+3;     EMPNO ADDR_DATA                      START_DAT END_DATE---------- ------------------------------ --------- ---------      1234 789 1st Ave                    04-JUL-13ops$tkyte%ORA12CR1> @planops$tkyte%ORA12CR1> select * from table(dbms_xplan.display_cursor);PLAN_TABLE_OUTPUT-------------------------------------------------------------------------------SQL_ID  36bq7shnhc888, child number 0-------------------------------------select * from addresses as of period for valid sysdate+3Plan hash value: 3184888728-------------------------------------------------------------------------------| Id  | Operation         | Name      | Rows  | Bytes | Cost (%CPU)| Time     |-------------------------------------------------------------------------------|   0 | SELECT STATEMENT  |           |       |       |     3 (100)|          ||*  1 |  TABLE ACCESS FULL| ADDRESSES |     1 |    48 |     3   (0)| 00:00:01 |-------------------------------------------------------------------------------Predicate Information (identified by operation id):---------------------------------------------------   1 - filter((("T"."START_DATE" IS NULL OR              "T"."START_DATE"<=SYSDATE@!+3) AND ("T"."END_DATE" IS NULL OR              "T"."END_DATE">SYSDATE@!+3)))Note-----   - dynamic statistics used: dynamic sampling (level=2)24 rows selected.All in all a nice, easy way to query effective dated information as of a point in time without a complex where clause.  You need to maintain the data - it isn't that a delete will turn into an update the end dates a record or anything - but if you have tables with start/end dates, this will make it much easier to query them.

    Read the article

  • Slides of my HOL on MySQL Cluster

    - by user13819847
    Hi!Thanks everyone who attended my hands-on lab on MySQL Cluster at MySQL Connect last Saturday.The following are the links for the slides, the HOL instructions, and the code examples.I'll try to summarize my HOL below.Aim of the HOL was to help attendees to familiarize with MySQL Cluster. In particular, by learning: the basics of MySQL Cluster Architecture the basics of MySQL Cluster Configuration and Administration how to start a new Cluster for evaluation purposes and how to connect to it We started by introducing MySQL Cluster. MySQL Cluster is a proven technology that today is successfully servicing the most performance-intensive workloads. MySQL Cluster is deployed across telecom networks and is powering mission-critical web applications. Without trading off use of commodity hardware, transactional consistency and use of complex queries, MySQL Cluster provides: Web Scalability (web-scale performance on both reads and writes) Carrier Grade Availability (99.999%) Developer Agility (freedom to use SQL or NoSQL access methods) MySQL Cluster implements: an Auto-Sharding, Multi-Master, Shared-nothing Architecture, where independent nodes can scale horizontally on commodity hardware with no shared disks, no shared memory, no single point of failure In the architecture of MySQL Cluster it is possible to find three types of nodes: management nodes: responsible for reading the configuration files, maintaining logs, and providing an interface to the administration of the entire cluster data nodes: where data and indexes are stored api nodes: provide the external connectivity (e.g. the NDB engine of the MySQL Server, APIs, Connectors) MySQL Cluster is recommended in the situations where: it is crucial to reduce service downtime, because this produces a heavy impact on business sharding the database to scale write performance higly impacts development of application (in MySQL Cluster the sharding is automatic and transparent to the application) there are real time needs there are unpredictable scalability demands it is important to have data-access flexibility (SQL & NoSQL) MySQL Cluster is available in two Editions: Community Edition (Open Source, freely downloadable from mysql.com) Carrier Grade Edition (Commercial Edition, can be downloaded from eDelivery for evaluation purposes) MySQL Carrier Grade Edition adds on the top of the Community Edition: Commercial Extensions (MySQL Cluster Manager, MySQL Enterprise Monitor, MySQL Cluster Installer) Oracle's Premium Support Services (largest team of MySQL experts backed by MySQL developers, forward compatible hot fixes, multi-language support, and more) We concluded talking about the MySQL Cluster vision: MySQL Cluster is the default database for anyone deploying rapidly evolving, realtime transactional services at web-scale, where downtime is simply not an option. From a practical point of view the HOL's steps were: MySQL Cluster installation start & monitoring of the MySQL Cluster processes client connection to the Management Server and to an SQL Node connection using the NoSQL NDB API and the Connector J In the hope that this blog post can help you get started with MySQL Cluster, I take the opportunity to thank you for the questions you made both during the HOL and at the MySQL Cluster booth. Slides are also on SlideShares: Santo Leto - MySQL Connect 2012 - Getting Started with Mysql Cluster Happy Clustering!

    Read the article

  • Announcing the release of the Windows Azure SDK 2.1 for .NET

    - by ScottGu
    Today we released the v2.1 update of the Windows Azure SDK for .NET.  This is a major refresh of the Windows Azure SDK and it includes some great new features and enhancements. These new capabilities include: Visual Studio 2013 Preview Support: The Windows Azure SDK now supports using the new VS 2013 Preview Visual Studio 2013 VM Image: Windows Azure now has a built-in VM image that you can use to host and develop with VS 2013 in the cloud Visual Studio Server Explorer Enhancements: Redesigned with improved filtering and auto-loading of subscription resources Virtual Machines: Start and Stop VM’s w/suspend billing directly from within Visual Studio Cloud Services: New Emulator Express option with reduced footprint and Run as Normal User support Service Bus: New high availability options, Notification Hub support, Improved VS tooling PowerShell Automation: Lots of new PowerShell commands for automating Web Sites, Cloud Services, VMs and more All of these SDK enhancements are now available to start using immediately and you can download the SDK from the Windows Azure .NET Developer Center.  Visual Studio’s Team Foundation Service (http://tfs.visualstudio.com/) has also been updated to support today’s SDK 2.1 release, and the SDK 2.1 features can now be used with it (including with automated builds + tests). Below are more details on the new features and capabilities released today: Visual Studio 2013 Preview Support Today’s Window Azure SDK 2.1 release adds support for the recent Visual Studio 2013 Preview. The 2.1 SDK also works with Visual Studio 2010 and Visual Studio 2012, and works side by side with the previous Windows Azure SDK 1.8 and 2.0 releases. To install the Windows Azure SDK 2.1 on your local computer, choose the “install the sdk” link from the Windows Azure .NET Developer Center. Then, chose which version of Visual Studio you want to use it with.  Clicking the third link will install the SDK with the latest VS 2013 Preview: If you don’t already have the Visual Studio 2013 Preview installed on your machine, this will also install Visual Studio Express 2013 Preview for Web. Visual Studio 2013 VM Image Hosted in the Cloud One of the requests we’ve heard from several customers has been to have the ability to host Visual Studio within the cloud (avoiding the need to install anything locally on your computer). With today’s SDK update we’ve added a new VM image to the Windows Azure VM Gallery that has Visual Studio Ultimate 2013 Preview, SharePoint 2013, SQL Server 2012 Express and the Windows Azure 2.1 SDK already installed on it.  This provides a really easy way to create a development environment in the cloud with the latest tools. With the recent shutdown and suspend billing feature we shipped on Windows Azure last month, you can spin up the image only when you want to do active development, and then shut down the virtual machine and not have to worry about usage charges while the virtual machine is not in use. You can create your own VS image in the cloud by using the New->Compute->Virtual Machine->From Gallery menu within the Windows Azure Management Portal, and then by selecting the “Visual Studio Ultimate 2013 Preview” template: Visual Studio Server Explorer: Improved Filtering/Management of Subscription Resources With the Windows Azure SDK 2.1 release you’ll notice significant improvements in the Visual Studio Server Explorer. The explorer has been redesigned so that all Windows Azure services are now contained under a single Windows Azure node.  From the top level node you can now manage your Windows Azure credentials, import a subscription file or filter Server Explorer to only show services from particular subscriptions or regions. Note: The Web Sites and Mobile Services nodes will appear outside the Windows Azure Node until the final release of VS 2013. If you have installed the ASP.NET and Web Tools Preview Refresh, though, the Web Sites node will appear inside the Windows Azure node even with the VS 2013 Preview. Once your subscription information is added, Windows Azure services from all your subscriptions are automatically enumerated in the Server Explorer. You no longer need to manually add services to Server Explorer individually. This provides a convenient way of viewing all of your cloud services, storage accounts, service bus namespaces, virtual machines, and web sites from one location: Subscription and Region Filtering Support Using the Windows Azure node in Server Explorer, you can also now filter your Windows Azure services in the Server Explorer by the subscription or region they are in.  If you have multiple subscriptions but need to focus your attention to just a few subscription for some period of time, this a handy way to hide the services from other subscriptions view until they become relevant. You can do the same sort of filtering by region. To enable this, just select “Filter Services” from the context menu on the Windows Azure node: Then choose the subscriptions and/or regions you want to filter by. In the below example, I’ve decided to show services from my pay-as-you-go subscription within the East US region: Visual Studio will then automatically filter the items that show up in the Server Explorer appropriately: With storage accounts and service bus namespaces, you sometimes need to work with services outside your subscription. To accommodate that scenario, those services allow you to attach an external account (from the context menu). You’ll notice that external accounts have a slightly different icon in server explorer to indicate they are from outside your subscription. Other Improvements We’ve also improved the Server Explorer by adding additional properties and actions to the service exposed. You now have access to most of the properties on a cloud service, deployment slot, role or role instance as well as the properties on storage accounts, virtual machines and web sites. Just select the object of interest in Server Explorer and view the properties in the property pane. We also now have full support for creating/deleting/update storage tables, blobs and queues from directly within Server Explorer.  Simply right-click on the appropriate storage account node and you can create them directly within Visual Studio: Virtual Machines: Start/Stop within Visual Studio Virtual Machines now have context menu actions that allow you start, shutdown, restart and delete a Virtual Machine directly within the Visual Studio Server Explorer. The shutdown action enables you to shut down the virtual machine and suspend billing when the VM is not is use, and easily restart it when you need it: This is especially useful in Dev/Test scenarios where you can start a VM – such as a SQL Server – during your development session and then shut it down / suspend billing when you are not developing (and no longer be billed for it). You can also now directly remote desktop into VMs using the “Connect using Remote Desktop” context menu command in VS Server Explorer.  Cloud Services: Emulator Express with Run as Normal User Support You can now launch Visual Studio and run your cloud services locally as a Normal User (without having to elevate to an administrator account) using a new Emulator Express option included as a preview feature with this SDK release.  Emulator Express is a version of the Windows Azure Compute Emulator that runs a restricted mode – one instance per role – and it doesn’t require administrative permissions and uses 40% less resources than the full Windows Azure Emulator. Emulator Express supports both web and worker roles. To run your application locally using the Emulator Express option, simply change the following settings in the Windows Azure project. On the shortcut menu for the Windows Azure project, choose Properties, and then choose the Web tab. Check the setting for IIS (Internet Information Services). Make sure that the option is set to IIS Express, not the full version of IIS. Emulator Express is not compatible with full IIS. On the Web tab, choose the option for Emulator Express. Service Bus: Notification Hubs With the Windows Azure SDK 2.1 release we are adding support for Windows Azure Notification Hubs as part of our official Windows Azure SDK, inside of Microsoft.ServiceBus.dll (previously the Notification Hub functionality was in a preview assembly). You are now able to create, update and delete Notification Hubs programmatically, manage your device registrations, and send push notifications to all your mobile clients across all platforms (Windows Store, Windows Phone 8, iOS, and Android). Learn more about Notification Hubs on MSDN here, or watch the Notification Hubs //BUILD/ presentation here. Service Bus: Paired Namespaces One of the new features included with today’s Windows Azure SDK 2.1 release is support for Service Bus “Paired Namespaces”.  Paired Namespaces enable you to better handle situations where a Service Bus service namespace becomes unavailable (for example: due to connectivity issues or an outage) and you are unable to send or receive messages to the namespace hosting the queue, topic, or subscription. Previously,to handle this scenario you had to manually setup separate namespaces that can act as a backup, then implement manual failover and retry logic which was sometimes tricky to get right. Service Bus now supports Paired Namespaces, which enables you to connect two namespaces together. When you activate the secondary namespace, messages are stored in the secondary queue for delivery to the primary queue at a later time. If the primary container (namespace) becomes unavailable for some reason, automatic failover enables the messages in the secondary queue. For detailed information about paired namespaces and high availability, see the new topic Asynchronous Messaging Patterns and High Availability. Service Bus: Tooling Improvements In this release, the Windows Azure Tools for Visual Studio contain several enhancements and changes to the management of Service Bus messaging entities using Visual Studio’s Server Explorer. The most noticeable change is that the Service Bus node is now integrated into the Windows Azure node, and supports integrated subscription management. Additionally, there has been a change to the code generated by the Windows Azure Worker Role with Service Bus Queue project template. This code now uses an event-driven “message pump” programming model using the QueueClient.OnMessage method. PowerShell: Tons of New Automation Commands Since my last blog post on the previous Windows Azure SDK 2.0 release, we’ve updated Windows Azure PowerShell (which is a separate download) five times. You can find the full change log here. We’ve added new cmdlets in the following areas: China instance and Windows Azure Pack support Environment Configuration VMs Cloud Services Web Sites Storage SQL Azure Service Bus China Instance and Windows Azure Pack We now support the following cmdlets for the China instance and Windows Azure Pack, respectively: China Instance: Web Sites, Service Bus, Storage, Cloud Service, VMs, Network Windows Azure Pack: Web Sites, Service Bus We will have full cmdlet support for these two Windows Azure environments in PowerShell in the near future. Virtual Machines: Stop/Start Virtual Machines Similar to the Start/Stop VM capability in VS Server Explorer, you can now stop your VM and suspend billing: If you want to keep the original behavior of keeping your stopped VM provisioned, you can pass in the -StayProvisioned switch parameter. Virtual Machines: VM endpoint ACLs We’ve added and updated a bunch of cmdlets for you to configure fine-grained network ACL on your VM endpoints. You can use the following cmdlets to create ACL config and apply them to a VM endpoint: New-AzureAclConfig Get-AzureAclConfig Set-AzureAclConfig Remove-AzureAclConfig Add-AzureEndpoint -ACL Set-AzureEndpoint –ACL The following example shows how to add an ACL rule to an existing endpoint of a VM. Other improvements for Virtual Machine management includes Added -NoWinRMEndpoint parameter to New-AzureQuickVM and Add-AzureProvisioningConfig to disable Windows Remote Management Added -DirectServerReturn parameter to Add-AzureEndpoint and Set-AzureEndpoint to enable/disable direct server return Added Set-AzureLoadBalancedEndpoint cmdlet to modify load balanced endpoints Cloud Services: Remote Desktop and Diagnostics Remote Desktop and Diagnostics are popular debugging options for Cloud Services. We’ve introduced cmdlets to help you configure these two Cloud Service extensions from Windows Azure PowerShell. Windows Azure Cloud Services Remote Desktop extension: New-AzureServiceRemoteDesktopExtensionConfig Get-AzureServiceRemoteDesktopExtension Set-AzureServiceRemoteDesktopExtension Remove-AzureServiceRemoteDesktopExtension Windows Azure Cloud Services Diagnostics extension New-AzureServiceDiagnosticsExtensionConfig Get-AzureServiceDiagnosticsExtension Set-AzureServiceDiagnosticsExtension Remove-AzureServiceDiagnosticsExtension The following example shows how to enable Remote Desktop for a Cloud Service. Web Sites: Diagnostics With our last SDK update, we introduced the Get-AzureWebsiteLog –Tail cmdlet to get the log streaming of your Web Sites. Recently, we’ve also added cmdlets to configure Web Site application diagnostics: Enable-AzureWebsiteApplicationDiagnostic Disable-AzureWebsiteApplicationDiagnostic The following 2 examples show how to enable application diagnostics to the file system and a Windows Azure Storage Table: SQL Database Previously, you had to know the SQL Database server admin username and password if you want to manage the database in that SQL Database server. Recently, we’ve made the experience much easier by not requiring the admin credential if the database server is in your subscription. So you can simply specify the -ServerName parameter to tell Windows Azure PowerShell which server you want to use for the following cmdlets. Get-AzureSqlDatabase New-AzureSqlDatabase Remove-AzureSqlDatabase Set-AzureSqlDatabase We’ve also added a -AllowAllAzureServices parameter to New-AzureSqlDatabaseServerFirewallRule so that you can easily add a firewall rule to whitelist all Windows Azure IP addresses. Besides the above experience improvements, we’ve also added cmdlets get the database server quota and set the database service objective. Check out the following cmdlets for details. Get-AzureSqlDatabaseServerQuota Get-AzureSqlDatabaseServiceObjective Set-AzureSqlDatabase –ServiceObjective Storage and Service Bus Other new cmdlets include Storage: CRUD cmdlets for Azure Tables and Queues Service Bus: Cmdlets for managing authorization rules on your Service Bus Namespace, Queue, Topic, Relay and NotificationHub Summary Today’s release includes a bunch of great features that enable you to build even better cloud solutions.  All the above features/enhancements are shipped and available to use immediately as part of the 2.1 release of the Windows Azure SDK for .NET. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • How can I run supervisord without using root?

    - by Jason Baker
    I seem to be having trouble figuring out why supervisord won't run as a non-root user. If I start it with the user set to jason (pid 1000), I get the following in the log file: 2010-05-24 08:53:32,143 CRIT Set uid to user 1000 2010-05-24 08:53:32,143 WARN Included extra file "/home/jason/src/tsched/celeryd.conf" during parsing 2010-05-24 08:53:32,189 INFO RPC interface 'supervisor' initialized 2010-05-24 08:53:32,189 WARN cElementTree not installed, using slower XML parser for XML-RPC 2010-05-24 08:53:32,189 CRIT Server 'unix_http_server' running without any HTTP authentication checking 2010-05-24 08:53:32,190 INFO daemonizing the supervisord process 2010-05-24 08:53:32,191 INFO supervisord started with pid 3444 ...then the process dies for some unknown reason. If I start it without sudo (under the user jason), I get similar output: 2010-05-24 08:51:32,859 INFO supervisord started with pid 3306 2010-05-24 08:52:15,761 CRIT Can't drop privilege as nonroot user 2010-05-24 08:52:15,761 WARN Included extra file "/home/jason/src/tsched/celeryd.conf" during parsing 2010-05-24 08:52:15,807 INFO RPC interface 'supervisor' initialized 2010-05-24 08:52:15,807 WARN cElementTree not installed, using slower XML parser for XML-RPC 2010-05-24 08:52:15,807 CRIT Server 'unix_http_server' running without any HTTP authentication checking 2010-05-24 08:52:15,808 INFO daemonizing the supervisord process 2010-05-24 08:52:15,809 INFO supervisord started with pid 3397 ...and it still doesn't run. If it's any help, here's the supervisord.conf file I'm using: [unix_http_server] file=/tmp/supervisor.sock ; path to your socket file [supervisord] logfile=./supervisord.log ; supervisord log file logfile_maxbytes=50MB ; maximum size of logfile before rotation logfile_backups=10 ; number of backed up logfiles loglevel=debug ; info, debug, warn, trace pidfile=./supervisord.pid ; pidfile location nodaemon=false ; run supervisord as a daemon minfds=1024 ; number of startup file descriptors minprocs=200 ; number of process descriptors user=jason ; default user childlogdir=./supervisord/ ; where child log files will live [rpcinterface:supervisor] supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface [supervisorctl] serverurl=unix:///tmp/supervisor.sock ; use unix:// schem for a unix sockets. [include] # Uncomment this line for celeryd for Python files=celeryd.conf # Uncomment this line for celeryd for Django. ;files=django/celeryd.conf ...and here's celeryd.conf: [program:celery] command=bin/celeryd --loglevel=INFO --logfile=./celeryd.log environment=PYTHONPATH='./tsched_worker', JIVA_DB_PLATFORM='oracle', ORACLE_HOME='/usr/lib/oracle/xe/app/oracle/product/10.2.0/server', LD_LIBRARY_PATH='/usr/lib/oracle/xe/app/oracle/product/10.2.0/server/lib', TNS_ADMIN='/home/jason', CELERY_CONFIG_MODULE='tsched_worker.celeryconfig' directory=. user=jason numprocs=1 stdout_logfile=/var/log/celeryd.log stderr_logfile=/var/log/celeryd.log autostart=true autorestart=true startsecs=10 ; Need to wait for currently executing tasks to finish at shutdown. ; Increase this if you have very long running tasks. stopwaitsecs = 600 ; if rabbitmq is supervised, set its priority higher ; so it starts first priority=998 Can anyone help me figure out what's going on?

    Read the article

  • Looking for Your Next Challenge...Don't Stretch Too Far

    - by david.talamelli
    In my role as a Recruiter at Oracle I receive a large number of resumes of people who are interested in working with us. People contact me for a number of reasons, it can be about a specific role that we may be hiring for or they may send me an email asking if there are any suitable roles for them. Sometimes when I speak to people we have similar roles available to the roles that they may actually be in now. Sometimes people are interested in making this type of sideways move if their motivation to change jobs is not necessarily that they are looking for increased responsibility or career advancement (example: money, redundancy, work environment). However there are times when after walking through a specific role with a candidate that they may say to me - "You know that is very similar to the role that I am doing now. I would not want to move unless my next role presents me with the next challenge in my career". This is a far statement - if a person is looking to change jobs for the next step in their career they should be looking at suitable opportunities that will address their need. In this instance a sideways step will not really present any new challenges or responsibilities. The main change would be the company they are working for. Candidates looking for a new role because they are looking to move up the ladder should be looking for a role that offers them the next level of responsibility. I think the best job changes for people who are looking for career advancement are the roles that stretch someone outside of their comfort zone but do not stretch them so much that they can't cope with the added responsibilities and pressure. In my head I often think of this example in the same context of an elastic band - you can stretch it, but only so much before it snaps. That is what you should be looking for - to be stretched but not so much that you snap. If you are for example in an individual contributor role and would like to move into a management role - you may not be quite ready to take on a role that is managing a large workforce or requires significant people management experience. While your intentions may be right, your lack of management experience may fit you outside of the scope of search to be successful this type of role. In this example you can move from an individual contributor role to a management role but it may need to be managing a smaller team rather than a larger team. While you are trying to make this transition you can try to pick up some responsibilities in your current role that would give you the skills and experience you need for your next role. Never be afraid to put your hand up to help on a new project or piece of work. You never know when that newly gained experience may come in handy in your career. This article was originally posted on David Talamelli's Blog - David's Journal on Tap

    Read the article

  • Deployment Options for AutoVue 20.0 Users

    - by celine.beck
    AutoVue release 20.0 boasts a brand new architecture. As part of this product rearchitecture, AutoVue can now be deployed either as a desktop deployment to serve the needs of individual users in their personal productivity; or in a Client / Server deployment for those that require connections to enterprise applications / back-end systems. The most common question that we hear from our customers about this new architecture is the following: "Is AutoVue Desktop Version still part of release 20.0 and if so, what is the difference between AutoVue Desktop Version and the Desktop deployment of AutoVue release 20.0?" A detailed answer to these questions is provided in a very complete article entitled Understanding Deployment Options for AutoVue 19.3 Desktop Version users upgrading to AutoVue 20.0 (note 1058254.1) which was posted on My Oracle Support. Is AutoVue Desktop Version still part of AutoVue 20.0? Yes, AutoVue Desktop Version 20.0 is still available to customers and partners, as a maintenance release of AutoVue 19.3. As such, it will not contain any of the new capabilities featured in AutoVue release 20.0. All format enhancements and new format support have been added to release 20.0 Desktop Version though. What is the different between AutoVue Desktop Version 20.0 and the Desktop Deployment of AutoVue release 20.0? AutoVue 20.0 Desktop deployment works like the AutoVue Desktop version. It is installed as a standalone product on each user's machine and runs a local instance of AutoVue. The AutoVue 20.0 Desktop deployment includes all new features, formats and performance enhancements included in release 20.0 (walkthrough capability, improved compare, ...) What deployment options are available to AutoVue 19.3 Desktop Version customers? AutoVue Desktop Version users can evolve at their own pace to the new AutoVue platform. With release 20.0, customers can opt to: Option 1: Stay on AutoVue Desktop Version 20.0 Option 2: Migrate to AutoVue and select the desktop deployment method Option 3: Migrate to AutoVue and select the Client/Server deployment method What is the Client / Server deployment of AutoVue 20.0? The Client/Server deployment has AutoVue installed on a server, to which local client machines connect to access and view documents. AutoVue 20.0 Client Server Deployment allows users to leverage the new online/offline capabilities in release 20.0 and easily switch between online and offline modes of operation. With the Client/Server deployment, customers also get a complete, open and standards-based set of integration tools that allows them to tie AutoVue to any enterprise applications to provide users with a consistent view of data and business objects and expand workflow automation to document-based processes. Related articles: AutoVue Release 20.0 Now Available, New Walkthrough Capability in AutoVue 20.0, Watch the AutoVue 20.0 Release Webcast, April 27 at 12pm EST

    Read the article

  • Easy Listening = CRM On Demand Podcasts

    - by Anne
    OK, here's my NEW favorite resource for CRM On Demand info -- podcasts! Specifically, the CRM On Demand Podcast site -- signed, sealed, and delivered with humor and know-how. Yes, I admit, I know the cast of characters. But let's face it, sometimes dealing with software is just soooo dry! Not so when discussed by the two main commentators, Louis Peters and Robert Davidson, whom someone once referred to as CRM On Demand's "Click and Clack." (Thought that was too good not to pass along!) Anyhow, another huge plus about the site is the option to listen OR to read. Out walking my dog or doing the dishes? Just turn up the podcast. Listening to music or watching TV? I'll read Louis's entertaining write-ups to glean great info about CRM On Demand in a very short period of time. So that you get a better understanding of why I like this site so much, here's a sampling of what's discussed: Five Things about Books of Business As Louis Peters put it in his entry, when you see "Five Things" in the title, "you'll know you're going to get some concrete advice that you can put to work right away." Well, Louis and Robert do just that, pointing you in the right direction when using Books of Business to segment data. Moving to Indexed Fields - A Rough Guide (only an article, not a podcast) I've read all about performance and even helped develop material around it. But nowhere have I heard indexed custom fields referred to as "super heroes." Louis and Robert use imaginative language to describe the process for moving your data to indexed fields for optimal performance. Data Access QA from the Forums I think that everyone would admit that data access and visibility is the most difficult topic to understand in CRM On Demand. Following up on their previous podcast on the same topic, Louis and Robert answer a few key questions from the many postings on the Oracle CRM On Demand forums. And I bet that the scenarios match many companies' business requirements...maybe even yours! We Need to Talk About Adoption Another expert, Tim Koehler, joins Louis to talk about how to drive user adoption: aligning product usage with business results, communicating why and how to use the product, getting feedback on usability, and so on. Hope I've made my point -- turn to these podcasts to hear knowledgeable folks discuss CRM On Demand tips and tricks in entertaining ways. One podcast is even called "SaaS Talk"!

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Adding Descriptive Flex Field (DFF) through OAF Personalization

    - by Manoj Madhusoodanan
    In this blog I will explain how to add a DFF to a existing OAF page through personalization.I am using Supplier Quick Update Page ( /oracle/apps/pos/supplier/webui/SuppSummPG ). If you want to see how to create DFF please click here. In this scenario I am using a custom DFF. Following are the details. Application -> Payables ( Code: SQLAP )Name -> XXCUST_SUPPLIER_DFFTitle -> XXCUST - Supplier DFFTable Name -> AP_SUPPLIERSDFV View name -> XXCUST_SUPPLIER_DFVReference Fields -> ATTRIBUTE_CATEGORY Following are the Context Field Details. Prompt -> Supplier TypeValue Set -> XXCUST_SUP_TYPE ( Values : External and Internal )Reference Field -> ATTRIBUTE_CATEGORY Below table shows the segment details of XXCUST_SUPPLIER_DFF. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Code Segments Column Value Set Global Data Elements Identification Number ATTRIBUTE1 15 Characters External Type ATTRIBUTE2 XXCUST_EXT_SUP_TYPE Values          Domestic           International Internal Department ATTRIBUTE2 15 Characters Following steps you need to perform to create flex item in the Quick Update page. 1) Click on Personalize Page.In the Personalize Page click on Complete View. 2) Click on Create Item.( Based on where you want to place the DFF choose appropriate layout). 3) Create flex item with following details. 4) If you want to arrange the item in the page click on Reorder. Following is the output.

    Read the article

  • Devoxx 2011 Trip Report + Pictures

    - by arungupta
    3350 attendees from 40 countries lived in "paradise" for 5 days last week. This paradise had 170+ rock star speakers delivering 200+ hours of technical content in about 150 sessions. And it truly was a paradise with a clear differentiation from other Java conferences. There were several Oracle speakers at the paradise covering the entire gamut of Java platform. I delivered a Java EE 6 hands-on lab (new content), showcased Java EE 7 and GlassFish 4.0 early work at the keynote, and participated in a panel to talk about Contexts and Dependency Injection. The demo in the keynote showed how to deploy a Java EE application in a managed environment. The demo showed a Conference Planner application that can be used by conference organizers to display sessions, tracks, and speaker information. This same application can be deployed and display data from JavaOne 2011 or Devoxx 2011 based upon the SQL chosen for database initialization. If javaone-sf-2011.sql is chosen for datbase initialization then the application looks like as shown: If devoxx-2011.sql is chosen then the application looks like as shown: And of course, clicking on Tracks, Speakers, Sessions shows you information from the respective conference. The complete source code for the application and detailed instructions are availaable at glassfish.org/javaone2011. In short: Download the sample app and unzip Download GlassFish build b05. Download platform-specific Load Balancer template Run "bin/install.sh" to configure GlassFish Pick javaone-sf-2011.sql or devoxx-2011.sql for database initialization You can also watch the application in action in this video: A breaking news shared at the conference was that Devoxx France is coming from April 18- 20 and 75% of the talks will be in French. Stay tuned for more details on that. I'm sure Antonio and gang will put up a great show out there! Just a tip for the first timers to Devoxx ... A bus leaves from Brussels airport to Antwerp city center between 4am - 11pm at the top of every hour, takes about 45 minutes, and costs 10 euros (only cash). Take a tram #6 (going towards Luchtbal) from Astrid station (next to the city center) and get off at the last station for Metropolis. It takes about 15 minutes. Purchase a day pass at the station using kiosks (much cheaper) or you can buy in the bus as well (about double the price). Either way, cash only. Here are a few pictures captured from the event: And the complete album here: Thank you Stephan for giving me an opportunity to speak at my first Devoxx. I hope to be back next year, just in time for Java EE 7 going final!

    Read the article

  • The Minimalist Approach to Content Governance - Retire Phase

    - by Kellsey Ruppel
     Originally posted by John Brunswick. Good news - the Retire Phase is actually more fun than the Manage Phase. During the Retire Phase our content management team should not have to track down content creators if the Request Phase of this process was completed successfully. The ownership meta data, success criteria and time stamp that was applied to the original content submission will help to manage content at the end of the content life cycle. The Retire Phase will provide the opportunity for us to prune irrelevant content items through archiving or deletion, keeping the content system clear of irrelevant information, streamlining users ability to browse and search for content.   1. Act on Metrics Established during the Request Phase Why - Some information is only relevant for a given amount of time. In Content Platform Migration Strategy - Artifacts vs Perishable Content we examined two content types - Artifacts and Perishable content. Understanding the differences between Artifacts and Perishable content will allow us to explicitly respect their various lifespans. Additionally, some content may have been part of a project that failed to meet the success criteria outlined in the Request Phase. Any content that did not meet the metrics outlined in the Request Phase should be considered for deletion. How - Thankfully by adhering to to The Minimalist Approach to Content Governance our content should have some level of meta data associated with it that will allow us to quickly sort and understand how to deal with it. Content Management Systems like Oracle's Universal Content Management (UCM) natively allow you to create and save advanced searches that can use content meta data like folders, author, expiration date, security settings and custom meta data to pull back listings of content for examination. Additionally, analytics are available for all content items that allow us to determine if the usage is meeting success criteria that may have been previously outlined during the request phase. The lists that are produced from these approaches can be quickly reviewed for each project with the content owners and based on the nature of the content and success criteria undergo archiving or deletion. Impact - Retiring content that is no longer relevant will allow end users to have fast and relevant access to information across your enterprise. As we mentioned in our first post in this series - it is easy to quickly start producing content, but the challenge is ensuring that the environment is easy to navigate and use on the third week and during the third year. The light level of effort that was placed into the Request Phase of this process will set us up to keep content clean and relevant for a long time to come. With an up-to-date content repository users will be able to quickly find access to the information that is critical to their work processes. You might not get a holiday named in your honor managing the content system, but will appreciate their quick access to quality information.

    Read the article

  • Error trapping for a missing data source in a Spring MVC / Spring JDBC web app [migrated]

    - by Geeb
    I have written a web app that uses Spring MVC libraries and Spring JDBC to connect to an Oracle DB. (I don't use any ORM type libraries as I create stored procedures on Oracle that do my stuff and I'm quite happy with that.) I use a connection pool to Oracle managed by the Tomcat container The app generally works absolutely fine by the way! BUT... I noticed the other day when I tried to set up the app on another Tomcat instance that I had forgotten to configure the connection pool and obviously the app could not get hold of an org.apache.commons.dbcp.BasicDataSource object, so it crashed. I define the pool params in the tomcat "context.conf" In my "web.xml" I have: <servlet> <servlet-name>appServlet</servlet-name> <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class> <init-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/Spring/appServlet/servlet-context.xml</param-value> </init-param> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>appServlet</servlet-name> <!-- Map *everything* to appServlet --> <url-pattern>/</url-pattern> </servlet-mapping> <resource-ref> <description>Oracle Datasource example</description> <res-ref-name>jdbc/ora1</res-ref-name> <res-type>org.apache.commons.dbcp.BasicDataSource</res-type> <res-auth>Container</res-auth> </resource-ref> And I have a Spring "servlet-context.xml" where JNDI is used to map the data source object provided by the connection pool to a Spring bean with the ID of "dataSource": <jee:jndi-lookup id="dataSource" jndi-name="java:comp/env/jdbc/ora1" resource-ref="true" /> Here's the question: Where do I trap the case where the database cannot be accessed for whatever reason? I don't want the user to see a yard-and-a-half of Java stack trace in their browser, rather a nicer message that tells them there is a database problem etc. It seems that my app tries to configure the "dataSource" bean (in "servlet-context.xml") before any code has tested it can actually provide a dataSource object from the pool?! Maybe I'm not fully understanding exactly what is going on in these stages of the app firing up ... Thanks for any advice!

    Read the article

  • Recruitment Drive - Things Don't Always Go As Planned - Stay Flexible by Kalyan Neelagiri

    - by david.talamelli
    I am one of the Recruiters for Oracle and work in our India Recruitment Team. When we are hiring for multiple positions we often hold Recruitment Events to interview a large number of people as effectively as possible. These Events are often held on the weekend as many people are not free to attend an all day event during the working week. Just recently during a recruitment campaign we were running I was tasked to set up a Recruitment Event for some roles we were hiring for. I have set up and run weekend recruitment events in the past which have all run smoothly. However, this time arranging this recruitment event was quite a challenge for me. The planned event was taking place on a Saturday. I had almost sent out the confirmed scheduled list of candidates to the respective hiring team on Friday and was on track for the event to take place, but unfortunately there was breaking news in the media that there was a strike called in the city because of some political agitations and protests taking place on the event day. The hiring manager had rushed to me asking for my thoughts and ideas. I was in two minds on what to do. One on hand I was not ready to cancel the event because of all the work that so many people had put into getting this prepared and also I did not want to reschedule the event at the last minute if I did not need to. On the other hand I understood it may be best to reschedule the event as people may not be able to attend based on the political protests taking place on the day. In the end I decided to gather and check for other options because this might cause confusion and a problem for the scheduled candidates to drive in to the venue. So we had concluded to reschedule our event plans and moved the event to the next week. The good news is that we successfully executed this recruitment drive the following Saturday. We were glad that 100% of the candidates we able to make it to the new interview date and despite all the agitations in the city we were successful in hiring people for all the roles we had open. Things do not always go as planned. The best laid plans can sometimes be for nought based on external factors outside of our control. What this experience has taught me is that rather than focus on the negatives when you are thrown a curveball the best approach is to stay flexible and focus on finding ways to reach your outcome. Your plans may need to change but you can still achieve the results you are after if you have the right mind set.

    Read the article

  • JNDI Datasource Problem on Tomcat 6, Hibernate

    - by Asuman AKYILDIZ
    I am using Tomcat 6 as application server, Struts-Hibernate and MyEclipse 6.0. My application uses JDBC driver but I should modify it to use JNDI Datasource. I followed steps as described in tomcat 6.0 howto tutorial. I defined my resource in tomcatconf: <Resource name="jdbc/ats" global="jdbc/ats" auth="Container" type="javax.sql.DataSource" driverClassName="oracle.jdbc.OracleDriver" url="jdbc:oracle:thin:@//localhost:1521/MISDEV" username="TEST" password="TEST" maxActive="20" maxIdle="10" maxWait="-1" validationQuery="SELECT 1 from dual" removeAbandoned="true" removeAbandonedTimeout="30" logAbandoned="false"/> I gave reference in my application web.xml: <resource-ref> <description>Oracle Datasource example</description> <res-ref-name>jdbc/ats</res-ref-name> <res-type>javax.sql.DataSource</res-type> <res-auth>Container</res-auth> </resource-ref> And I defined datasource-dialect in my hibernate-cfg.xml <property name="connection.datasource">java:comp/env/jdbc/ats</property> <property name="dialect">org.hibernate.dialect.Oracle9Dialect</property> But when I create hibernate session, it can not open the connection: 09:18:11,322 ERROR JDBCExceptionReporter:72 - Connections could not be acquired from the underlying database! org.hibernate.exception.GenericJDBCException: Cannot open connection I also tried to set the properties at runtime: Configuration configuration = new Configuration(); configuration.setProperty("hibernate.dialect", "org.hibernate.dialect.Oracle9Dialect"); //configuration.setProperty("hibernate.connection.datasource", "java:comp/env/jdbc/ats"); configuration.setProperty("hibernate.current_session_context_class", "thread"); configuration.setProperty("hibernate.connection.provider_class", "org.hibernate.connection.C3P0ConnectionProvider"); configuration.setProperty("hibernate.show_sql", "true"); sessionFactory = configuration.configure().buildSessionFactory(); It does not open connection again. But, when I use JDBC driver it works: Configuration configuration = new Configuration(); configuration.setProperty("hibernate.dialect", "org.hibernate.dialect.Oracle9Dialect"); //configuration.setProperty("hibernate.connection.datasource", "java:comp/env/jdbc/ats"); configuration.setProperty("hibernate.connection.url", "jdbc:oracle:thin:@//localhost:1521/MISDEV"); configuration.setProperty("hibernate.connection.username", "test"); configuration.setProperty("hibernate.connection.password", "test"); configuration.setProperty("hibernate.connection.driver_class", "oracle.jdbc.OracleDriver"); configuration.setProperty("hibernate.transaction.factory_class", "org.hibernate.transaction.JDBCTransactionFactory"); configuration.setProperty("hibernate.current_session_context_class", "thread"); configuration.setProperty("hibernate.connection.provider_class", "org.hibernate.connection.C3P0ConnectionProvider"); configuration.setProperty("hibernate.show_sql", "true"); sessionFactory = configuration.configure().buildSessionFactory(); I have been searching for 3 days and no success. What may be de problem?

    Read the article

  • Quickie Guide Getting Java Embedded Running on Raspberry Pi

    - by hinkmond
    Gary C. and I did a Bay Area Java User Group presentation of how to get Java Embedded running on a RPi. See: here. But, if you want the Quickie Guide on how to get Java up and running on the RPi, then follow these steps (which I'm doing right now as we speak, since I got my RPi in the mail on Monday. Woo-hoo!!!). So, follow along at home as I do the same steps here on my board... 1. Download the Win32DiskImager if you are on Windows, or use dd on a Linux PC: https://launchpad.net/win32-image-writer/0.6/0.6/+download/win32diskimager-binary.zip 2. Download the RPi Debian Wheezy image from here: http://files.velocix.com/c1410/images/debian/7/2012-08-08-wheezy-armel/2012-08-08-wheezy-armel.zip 3. Insert a blank 4GB SD Card into your Windows or Linux PC. 4. Use either Win32DiskImager or Linux dd to burn the unzipped image from #2 to the SD Card. 5. Insert the SD Card into your RPi. Connect an Ethernet cable to your RPi to your network. Connect the RPi Power Adapter. 6. The RPi will boot onto your network. Find its IP address using Windows Wireshark or Linux: sudo tcpdump -vv -ieth0 port 67 and port 68 7. ssh to your RPi: ssh <ip_addr_rpi> -l pi <Password: "raspberry"> 8. Download Java SE Embedded: http://www.oracle.com/technetwork/java/embedded/downloads/javase/index.html NOTE: First click accept, then choose the first bundle in the list: ARMv6/7 Linux - Headless EABI, VFP, SoftFP ABI, Little Endian - ejre-7u6-fcs-b24-linux-arm-vfp-client_headless-10_aug_2012.tar.gz 9. scp the bundle from #8 to your RPi: scp <ejre-bundle> pi@<ip_addr_rpi> 10. mkdir /usr/local, untar the bundle from #9 and rename (move) the ejre1.7.0_06 directory to /usr/local/java That's it! You are ready to roll with Java Embedded on your RPi. Hinkmond

    Read the article

  • 2D Barcode Addendum

    - by Tim Dexter
    Having finally got my external drive back(long story) today from Oklahoma (thank you so much Sammy) Im back with a full compliment of Oracle and blogging tools at my disposal. I have missed JDeveloper this past week, which I have found, I immensely prefer over Eclipse (let the flaming commence :0) I use Zoundry Raven for writing articles and its not installed locally but on my external drove, so I have been soldiering on with the blog server's pain in the backside UI for writing. Now I have my favority editor back and things are calming down workwise, I will start to get the Excel template posts out. Today thou, a note about 2D barcode support or more specifically any barcode that needs some data manipulation before the barcode font is applied. I wrote about these fonts a long time back and laid out the java class you would need to write if you had an algorithm from the font manufacturer to use. I missed out a valuable point and James at Luminex fell into the trap. He was wanting to use the datamatrix font from IDAutomation but and had built the java class to be called from the RTF template but it was not encoding or at least did not appear to be. New debugging feature to the rescue. Kan over at the bipconsultng blog documented the feature a while back. Just adding <?xdo-debug-level:'STATEMENT'?> to my test template generated all the debug files in my c:\temp directory. No messing with files, just a simple command ... at last! Kan has documented the feature here. With the log in hand I spotted a java error stack referencing a missing code128a method, huh? Looking at James' class he had the following snippet: ENCODERS.put("code128a",mUtility.getClass().getMethod("code128a",clazz)); ENCODERS.put("code128b",mUtility.getClass().getMethod("code128b", clazz)); ENCODERS.put("code128c",mUtility.getClass().getMethod("code128c", clazz)); ENCODERS.put("pdf417",mUtility.getClass().getMethod("pdf417", clazz)); ENCODERS.put("datamatrix",mUtility.getClass().getMethod("datamatrix", clazz)); His class did not include the other code128 and pdf147 methods and BIP was expecting them. An easy fix, just comment them out, rebuild and deploy and the encoding started working. If you are hitting similar problems, check that class and ensure all of the referenced methods are available, if not, delete or get commenting. James now has purdy labels popping out that his hard ware can read, sweet!

    Read the article

  • The Work Order Printing Challenge

    - by celine.beck
    One of the biggest concerns we've heard from maintenance practitioners is the ability to print and batch print work order details along with its accompanying attachments. Indeed, maintenance workers traditionally rely on work order packets to complete their job. A standard work order packet can include a variety of information like equipment documentation, operating instructions, checklists, end-of-task feedback forms and the likes. Now, the problem is that most Asset Lifecycle Management applications do not provide a simple and efficient solution for process printing with document attachments. Work order forms can be easily printed but attachments are usually left out of the printing process. This sounds like a minor problem, but when you are processing high volume of work orders on a regular basis, this inconvenience can result in important inefficiencies. In order to print work order and its related attachments, maintenance personnel need to print the work order details and then go back to the work order and open each individual attachment using the proper authoring application to view and print each document. The printed output is collated into a work order packet. The AutoVue Document Print Service products that were just released in April 2010 aim at helping organizations address the work order printing challenge. Customers and partners can leverage the AutoVue Document Print Services to build a complete printing solution that complements their existing print server solution with AutoVue's document- and platform-agnostic document print services. The idea is to leverage AutoVue's printing services to invoke printing either programmatically or manually directly from within the work order management application, and efficiently process the printing of complete work order packets, including all types of attachments, from office files to more advanced engineering documents like 2D CAD drawings. Oracle partners like MIPRO Consulting, specialists in PeopleSoft implementations, have already expressed interest in the AutoVue Document Print Service products for their ability to offer print services to the PeopleSoft ALM suite, so that customers are able to print packages of documents for maintenance personnel. For more information on the subject, please consult MIPRO Consulting's article entitled Unsung Value: Primavera and AutoVue Integration into PeopleSoft posted on their blog. The blog post entitled Introducing AutoVue Document Print Service provides additional information on how the solution works. We would also love to hear what your thoughts are on the topic, so please do not hesitate to post your comments/feedback on our blog. Related Articles: Introducing AutoVue Document Print Service Print Any Document Type with AutoVue Document Print Services

    Read the article

  • Engagement: Don’t Forget Your Employees!

    - by Kellsey Ruppel
    By Mark Brown, Sr. Director, Oracle WebCenter  This week we want to focus on Employee Engagement, and how it is critical to your business. Today we hear and read a great deal about “Customer Engagement” – and rightly so, it is those customers, whether they be traditional paying customers, citizens, students, club members, or whomever it is that are “paying the bills”.  A more engaged customer is more likely to make it easier to pay those bills by buying more, giving good reviews, or spreading the word of how wonderful their experience was. But what about those who are providing those services, those who design and make those goods; why is it that all too often they are left out of conversations concerning engagement? In fact, it is critical that we consider our employees as customers since they are using internal systems that run your organization the same way customers use external systems. Studies have shown that an organization in which the employees feel “engaged” or better able to make decisions, do their jobs, and are connected to their peers have better return to their stakeholders. (shareholders).  On the surface this seems obvious, happy employees are more productive employees. But it leads to the question – how many of our existing policies, systems and processes are actually reducing that level of engagement? Let’s look at a couple examples. If posting new information that may be of great value to everyone in the larger organization is hard to do because we use an antiquated system, then we’re making it hard to share and increasing the potential for duplicate work. If it is not trivially obvious how to create and publish this post, then chances are very high that I’ll put it on the bottom of my queue. And finally, when critical information is spread across various systems, intranet sites, workgroups and peoples inboxes, then it is very hard to learn and grow from that information.  These may sound trivial, but how often do we push things off not because it is intellectually challenging, we may have the answer at our fingertips, but because it is hard to make that information readily available.  If an engaged employee is a productive employee, then what can we do to increase their level of engagement? We can start by looking for opportunities to provide self-documenting self-service solutions. Our newer employees grew up using simplified web interfaces everyday and they loathe calling a help-desk unless it is the last resort. Sadly, many of our enterprise applications have not kept pace and we all still have processes that are based on sending an email -- like discount approvals, vacation requests, or even offer-letter approvals.   My suggestion is to pick one highly visible, high-impact process where employees are either reticent to execute on the process or openly complain about how cumbersome it is and look at the mechanism for that process. If there are better ways, streamlined steps, better UIs that could be done, then you have a candidate to reconfigure that process and make it more engaging. Looking to better engage your employees? Start here!

    Read the article

  • A Technique for Performing Cross-host Upgrades to FMW 11gR1

    - by reza.shafii
    The main tool used for the upgrade of iAS 10g mid-tier (data not stored in 10g meta-data repository schemas) environments to Fusion Middleware (FMW) 11gR1 is the FMW Upgrade Assistant (UA). This tool performs what we call an out-of-place upgrade which in a nut-shell means the following: Upgrade is performed by pointing the UA to a 10g source topology as well as an 11g destination topology. The destination topology must be created, using the standard FMW 11g installation and configuration process, prior to the execution of the UA. The UA carries over all of the required changes from the source environment to the destination. This approach has a number of advantages rooted in the fact that the source environment - which is presumably working well and serving its needs - is not disturbed during the upgrade process as the UA only performs read-only operations on it. The UA today can only perform such out-of-place upgrades when the source and destination topologies reside on the same machine. This can sometimes be an issue when the host on which the iAS 10g environment is installed is running at full capacity and installing new hardware for the purpose of the upgrade (in most cases what would be needed is extra memory) is completely infeasible. In such cases, upgrade across a different host is still possible by using the following technique: Backup your source environment and restore it on to a target machine. The backup and restore procedures for the iAS 10.1.2 components are described within this section of the release's Administration Guide. As described in the docs, the Oracle Application Server Backup and Recovery Tool provides capabilities for backing up the installation on one machine and restoring it on another which is exactly what you want to do for the purpose of cross host upgrade. Ensure that the restored environment on your target host is fully functional. Go through the upgrade steps on the target machine to perform the out-of-place upgrade using the UA. Although this process does add another big step to the overall upgrade process, it does make it possible to perform a cross-host upgrade to 11gR1 when necessary. The easiest approach would of course be to find a way of ensuring that the required hardware capacity for upgrade is available on the original 10g host. Using techniques such as scheduling the upgrade at low traffic times and/or temporarily stopping other processes running on the machine to clear up some memory might provide you the sufficient memory needed to perform the out-of-place upgrade and save you the need for using the backup/restore technique I have described in this post.

    Read the article

  • The Loneliest Road in America and the OTN Garage

    - by rickramsey
    Source I never told anyone how the image of the OTN Garage on Facebook came to be. I took the Facebook picture on Route 50 in Nevada, USA, in October of 2010. I was riding from Colorado to Oracle OpenWorld in San Francisco, so it was probably October. Route 50 is known as "The Loneliest Road in America." There are roads across Nevada that have even LESS traffic, but Route 50 still one. desolate. road. Although I have seen stranger things while riding along Nevada's Extraterrestrial Highway, I still run across notable oddities every time I ride Route 50. Like the old man with a bandolero of water bottles jogging along the side of the highway in the middle of the day, 50 miles from the closest town. First ultra-marathoner I'd seen in action. He waved at me. Or the dozen Corvettes with California license plates driving toward me, all doing the speed limit in the middle of nowhere because they were being tailed by half a dozen Nevada state troopers. #fail. I don't remember which town I was in, but I noticed the building when I stopped at the gas station. While standing there pouring fuel into the Harley, the store caught my eye. So I pulled the bike in front and walked inside. The owner is a little old lady, about 100 years old. Most of the goods she had on the shelves looked like they had been placed there during WWII. She was itty bitty and could barely see over the counter, but she was so happy when I bought a bar of Hershey's chocolate that she gave me a five cent discount. I took a few pictures and, when I got back, Kemer Thomson, who sometimes blogs here, photoshopped the OTN Garage and Oil Change signs onto it. The bike is a 2009 Road King Classic with a Bob Dron fairing and a Corbin heated seat. The seat came in handy when I rode home over Tioga Pass. The Road King is a very comfy touring bike with a great Harley rumble. I'm kinda sorry I sold it. When I stopped for fuel about 75 miles down the road at the next town, I peeled back the chocolate bar. I had turned into powder. Probably 50 years ago. - Rick Website Newsletter Facebook Twitter

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

< Previous Page | 455 456 457 458 459 460 461 462 463 464 465 466  | Next Page >