To what extent is the size of an SSD a factor in its performance?
In my mind, correct me if I'm wrong, a bigger SSD should be, everything else being equal, faster than a smaller one. A bigger SSD would have more erase blocks and thus more leeway for the FTL (flash translation layer) to do garbage collection optimization. Also there would be more time before TRIM became necessary. I see on Wikipedia that it remarks that "The performance of the SSD can scale with the number of parallel NAND flash chips used in the device" so it seems throughput also increases significantly. Also many SSDs contain internal caches of some sort and presumably those caches are larger for correspondingly large SSDs.
But supposing this effect exists, I would like a quantitative analysis. Does throughput increase linearly? How much is garbage collection impacted, if at all? Does latency stay the same? And so on. Would the performance of a 8 GB SSD be significantly different from, for example, an 80 GB SSD assuming both used high quality chips, controllers, etc?
Are there any resources (webpages, research papers, presentations, books, etc) that discuss correlations between SSD performance (4 KB random write speed, latency, maximum sequential throughput, etc) and size? I realize this does not really sound like a programming question but it is relevant for what I'm working on (using flash for caching hard drive data) which does involve programming.
If there is a better place to ask this question, eg a more hardware oriented site, what would that be? Something like the equivalent of stack overflow (or perhaps a forum) for in-depth questions on hardware interfaces, internals, etc would be appreciated.