Search Results

Search found 11512 results on 461 pages for 'usb mass storage'.

Page 461/461 | < Previous Page | 457 458 459 460 461 

  • Part 2&ndash;Load Testing In The Cloud

    - by Tarun Arora
    Welcome to Part 2, In Part 1 we discussed the advantages of creating a Test Rig in the cloud, the Azure edge and the Test Rig Topology we want to get to. In Part 2, Let’s start by understanding the components of Azure we’ll be making use of followed by manually putting them together to create the test rig, so… let’s get down dirty start setting up the Test Rig.  What Components of Azure will I be using for building the Test Rig in the Cloud? To run the Test Agents we’ll make use of Windows Azure Compute and to enable communication between Test Controller and Test Agents we’ll make use of Windows Azure Connect.  Azure Connect The Test Controller is on premise and the Test Agents are in the cloud (How will they talk?). To enable communication between the two, we’ll make use of Windows Azure Connect. With Windows Azure Connect, you can use a simple user interface to configure IPsec protected connections between computers or virtual machines (VMs) in your organization’s network, and roles running in Windows Azure. With this you can now join Windows Azure role instances to your domain, so that you can use your existing methods for domain authentication, name resolution, or other domain-wide maintenance actions. For more details refer to an overview of Windows Azure connect. A very useful video explaining everything you wanted to know about Windows Azure connect.  Azure Compute Windows Azure compute provides developers a platform to host and manage applications in Microsoft’s data centres across the globe. A Windows Azure application is built from one or more components called ‘roles.’ Roles come in three different types: Web role, Worker role, and Virtual Machine (VM) role, we’ll be using the Worker role to set up the Test Agents. A very nice blog post discussing the difference between the 3 role types. Developers are free to use the .NET framework or other software that runs on Windows with the Worker role or Web role. Developers can also create applications using languages such as PHP and Java. More on Windows Azure Compute. Each Windows Azure compute instance represents a virtual server... Virtual Machine Size CPU Cores Memory Cost Per Hour Extra Small Shared 768 MB $0.04 Small 1 1.75 GB $0.12 Medium 2 3.50 GB $0.24 Large 4 7.00 GB $0.48 Extra Large 8 14.00 GB $0.96   You might want to review the Windows Azure Pricing FAQ. Let’s Get Started building the Test Rig… Configuration Machine Role Comments VM – 1 Domain Controller for Playpit.com On Premise VM – 2 TFS, Test Controller On Premise VM – 3 Test Agent Cloud   In this blog post I would assume that you have the domain, Team Foundation Server and Test Controller Installed and set up already. If not, please refer to the TFS 2010 Installation Guide and this walkthrough on MSDN to set up your Test Controller. You can also download a preconfigured TFS 2010 VM from Brian Keller's blog, Brian also has some great hands on Labs on TFS 2010 that you may want to explore. I. Lets start building VM – 3: The Test Agent Download the Windows Azure SDK and Tools Open Visual Studio and create a new Windows Azure Project using the Cloud Template                   Choose the Worker Role for reasons explained in the earlier post         The WorkerRole.cs implements the Run() and OnStart() methods, no code changes required. You should be able to compile the project and run it in the compute emulator (The compute emulator should have been installed as part of the Windows Azure Toolkit) on your local machine.                   We will only be making changes to WindowsAzureProject, open ServiceDefinition.csdef. Ensure that the vmsize is small (remember the cost chart above). Import the “Connect” module. I am importing the Connect module because I need to join the Worker role VM to the Playpit domain. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect"/> </Imports> </WorkerRole> </ServiceDefinition> Go to the ServiceConfiguration.Cloud.cscfg and note that settings with key ‘Microsoft.WindowsAzure.Plugins.Connect.%%%%’ have been added to the configuration file. This is because you decided to import the connect module. See the config below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration>             Let’s go step by step and understand all the highlighted parameters and where you can find the values for them.       osFamily – By default this is set to 1 (Windows Server 2008 SP2). Change this to 2 if you want the Windows Server 2008 R2 operating system. The Advantage of using osFamily = “2” is that you get Powershell 2.0 rather than Powershell 1.0. In Powershell 2.0 you could simply use “powershell -ExecutionPolicy Unrestricted ./myscript.ps1” and it will work while in Powershell 1.0 you will have to change the registry key by including the following in your command file “reg add HKLM\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell /v ExecutionPolicy /d Unrestricted /f” before you can execute any power shell. The other reason you might want to move to os2 is if you wanted IIS 7.5.       Activation Token – To enable communication between the on premise machine and the Windows Azure Worker role VM both need to have the same token. Log on to Windows Azure Management Portal, click on Connect, click on Get Activation Token, this should give you the activation token, copy the activation token to the clipboard and paste it in the configuration file. Note – Later in the blog I’ll be showing you how to install connect on the on premise machine.                       EnableDomainJoin – Set the value to true, ofcourse we want to join the on windows azure worker role VM to the domain.       DomainFQDN, DomainControllerFQDN, DomainAccountName, DomainPassword, DomainOU, Administrators – This information is specific to your domain. I have extracted this information from the ‘service manager’ and ‘Active Directory Users and Computers’. Also, i created a new Domain-OU namely ‘CloudInstances’ so all my cloud instances joined to my domain show up here, this is optional. You can encrypt the DomainPassword – refer to the instructions here. Or hold fire, I’ll be covering that when i come to certificates and encryption in the coming section.       Now once you have filled all this information up, the configuration file should look something like below, <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> </ConfigurationSettings> </Role> </ServiceConfiguration> Next we will be enabling the Remote Desktop module in to the ServiceDefinition.csdef, we could make changes manually or allow a beautiful wizard to help us make changes. I prefer the second option. So right click on the Windows Azure project and choose Publish       Now once you get the publish wizard, if you haven’t already you would be asked to import your Windows Azure subscription, this is simply the Msdn subscription activation key xml. Once you have done click Next to go to the Settings page and check ‘Enable Remote Desktop for all roles’.       As soon as you do that you get another pop up asking you the details for the user that you would be logging in with (make sure you enter a reasonable expiry date, you do not want the user account to expire today). Notice the more information tag at the bottom, click that to get access to the certificate section. See screen shot below.       From the drop down select the option to create a new certificate        In the pop up window enter the friendly name for your certificate. In my case I entered ‘WAC – Test Rig’ and click ok. This will create a new certificate for you. Click on the view button to see the certificate details. Do you see the Thumbprint, this is the value that will go in the config file (very important). Now click on the Copy to File button to copy the certificate, we will need to import the certificate to the windows Azure Management portal later. So, make sure you save it a safe location.                                Click Finish and enter details of the user you would like to create with permissions for remote desktop access, once you have entered the details on the ‘Remote desktop configuration’ screen click on Ok. From the Publish Windows Azure Wizard screen press Cancel. Cancel because we don’t want to publish the role just yet and Yes because we want to save all the changes in the config file.       Now if you go to the ServiceDefinition.csdef file you will see that the RemoteAccess and RemoteForwarder roles have been imported for you. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceDefinition"> <WorkerRole name="WorkerRole1" vmsize="Small"> <Imports> <Import moduleName="Diagnostics" /> <Import moduleName="Connect" /> <Import moduleName="RemoteAccess" /> <Import moduleName="RemoteForwarder" /> </Imports> </WorkerRole> </ServiceDefinition> Now go to the ServiceConfiguration.Cloud.cscfg file and you see a whole bunch for setting “Microsoft.WindowsAzure.Plugins.RemoteAccess.%%%” values added for you. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="WindowsAzureProject2" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="2" osVersion="*"> <Role name="WorkerRole1"> <Instances count="1" /> <ConfigurationSettings> <Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.ActivationToken" value="45f55fea-f194-4fbc-b36e-25604faac784" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Refresh" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.WaitForConnectivity" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Upgrade" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.EnableDomainJoin" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainFQDN" value="play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainControllerFQDN" value="WIN-KUDQMQFGQOL.play.pit.com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainAccountName" value="playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainPassword" value="************************" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainOU" value="OU=CloudInstances, DC=Play, DC=Pit, DC=com" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.Administrators" value="Playpit\Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.Connect.DomainSiteName" value="" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.Enabled" value="true" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountUsername" value="Administrator" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountEncryptedPassword" value="MIIBnQYJKoZIhvcNAQcDoIIBjjCCAYoCAQAxggFOMIIBSgIBADAyMB4xHDAaBgNVBAMME1dpbmRvd 3MgQXp1cmUgVG9vbHMCEGa+B46voeO5T305N7TSG9QwDQYJKoZIhvcNAQEBBQAEggEABg4ol5Xol66Ip6QKLbAPWdmD4ae ADZ7aKj6fg4D+ATr0DXBllZHG5Umwf+84Sj2nsPeCyrg3ZDQuxrfhSbdnJwuChKV6ukXdGjX0hlowJu/4dfH4jTJC7sBWS AKaEFU7CxvqYEAL1Hf9VPL5fW6HZVmq1z+qmm4ecGKSTOJ20Fptb463wcXgR8CWGa+1w9xqJ7UmmfGeGeCHQ4QGW0IDSBU6ccg vzF2ug8/FY60K1vrWaCYOhKkxD3YBs8U9X/kOB0yQm2Git0d5tFlIPCBT2AC57bgsAYncXfHvPesI0qs7VZyghk8LVa9g5IqaM Cp6cQ7rmY/dLsKBMkDcdBHuCTAzBgkqhkiG9w0BBwEwFAYIKoZIhvcNAwcECDRVifSXbA43gBApNrp40L1VTVZ1iGag+3O1" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteAccess.AccountExpiration" value="2012-11-27T23:59:59.0000000+00:00" /> <Setting name="Microsoft.WindowsAzure.Plugins.RemoteForwarder.Enabled" value="true" /> </ConfigurationSettings> <Certificates> <Certificate name="Microsoft.WindowsAzure.Plugins.RemoteAccess.PasswordEncryption" thumbprint="AA23016CF0BDFC344400B5B82706B608B92E4217" thumbprintAlgorithm="sha1" /> </Certificates> </Role> </ServiceConfiguration>          Okay let’s look at them one at a time,       Enabled - Yes, we would like to enable Remote Access.       AccountUserName – This is the user name you entered while you were on the publish windows azure role screen, as detailed above.       AccountEncrytedPassword – Try and decode that, the certificate is used to encrypt the password you specified for the user account. Remember earlier i said, either use the instructions or wait and i’ll be showing you encryption, now the user account i am using for rdp has the same password as my domain password, so i can simply copy the value of the AccountEncryptedPassword to the DomainPassword as well.       AccountExpiration – This is the expiration as you specified in the wizard earlier, make sure your account does not expire today.       Remote Forwarder – Check out the documentation, below is how I understand it, -- One role in an application that implements a remote desktop connection must import the RemoteForwarder module. The two modules work together to enable the remote desktop connections to role instances. -- If you have multiple roles defined in the service model, it does not matter which role you add the RemoteForwarder module to, but you must add it to only one of the role definitions.       Certificate – Remember the certificate thumbprint from the wizard, the on premise machine and windows azure role machine that need to speak to each other must have the same thumbprint. More on that when we install Windows Azure connect Endpoints on the on premise machine. As i said earlier, in this blog post, I’ll be showing you the manual process so i won’t be scripting any star up tasks to install the test agent or register the test agent with the TFS Server. I’ll be showing you all this cool stuff in the next blog post, that’s because it’s important to understand the manual side of it, it becomes easier for you to troubleshoot in case something fails. Having said that, the changes we have made are sufficient to spin up the Windows Azure Worker Role aka Test Agent VM, have it connected with the play.pit.com domain and have remote access enabled on it. Before we deploy the Test Agent VM we need to set up Windows Azure Connect on the TFS Server. II. Windows Azure Connect: Setting up Connect on VM – 2 i.e. TFS & Test Controller Glad you made it so far, now to enable communication between the on premise TFS/Test Controller and Azure-ed Test Agent we need to enable communication. We have set up the Azure connect module in the Test Agent configuration, now the connect end points need to be enabled on the on premise machines, let’s have a look at how we can do this. Log on to VM – 2 running the TFS Server and Test Controller Log on to the Windows Azure Management Portal and click on Virtual Network Click on Virtual Network, if you already have a subscription you should see the below screen shot, if not, you would be asked to complete the subscription first        Click on Install Local Endpoints from the top left on the panel and you get a url appended with a token id in it, remember the token i showed you earlier, in theory the token you get here should match the token you added to the Test Agent config file.        Copy the url to the clip board and paste it in IE explorer (important, the installation at present only works out of IE and you need to have cookies enabled in order to complete the installation). As stated in the pop up, you can NOT download and run the software later, you need to run it as is, since it contains a token. Once the installation completes you should see the Windows Azure connect icon in the system tray.                         Right click the Azure Connect icon, choose Diagnostics and refer to this link for diagnostic detail terminology. NOTE – Unfortunately I could not see the Windows Azure connect icon in the system tray, a bit of binging with Google revealed that the azure connect icon is only shown when the ‘Windows Azure Connect Endpoint’ Service is started. So go to services.msc and make sure that the service is started, if not start it, unfortunately again, the service did not start for me on a manual start and i realised that one of the dependant services was disabled, you can look at the service dependencies and start them and then start windows azure connect. Bottom line, you need to start Windows Azure connect service before you can proceed. Please refer here on MSDN for more on Troubleshooting Windows Azure connect. (Follow the next step as well)   Now go back to the Windows Azure Management Portal and from Groups and Roles create a new group, lets call it ‘Test Rig’. Make sure you add the VM – 2 (the TFS Server VM where you just installed the endpoint).       Now if you go back to the Azure Connect icon in the system tray and click ‘Refresh Policy’ you will notice that the disconnected status of the icon should change to ready for connection. III. Importing Certificate in to Windows Azure Management Portal But before that you need to import the certificate you created in Step I in to the Windows Azure Management Portal. Log on to the Windows Azure Management Portal and click on ‘Hosted Services, Storage Accounts & CDN’ and then ‘Management Certificates’ followed by Add Certificates as shown in the screen shot below        Browse to the location where you saved the certificate earlier, remember… Refer to Step I in case you forgot.        Now you should be able to see the imported certificate here, make sure the thumbprint of the certificate matches the one you inserted in the config files        IV. Publish Windows Azure Worker Role aka Test Agent Having completed I, II and III, you are ready to publish the Test Agent VM – 3 to the cloud. Go to Visual Studio and right click the Windows Azure project and select Publish. Verify the infomration in the wizard, from the advanced settings tab, you can also enabled capture of intellitrace or profiling information.         Click Next and Click Publish! From the view menu bar select the Windows Azure Activity Log window.       Now you should be able to see the deployment progress in real time.             In the Windows Azure Management Portal, you should also be able to see the progress of creation of a new Worker Role.       Once the deployment is complete you should be able to RDP (go to run prompt type mstsc and in the pop up the machine name) in to the Test Agent Worker Role VM from the Playpit network using the domain admin user account. In case you are unable to log in to the Test Agent using the domain admin user account it means the process of joining the Test Agent to the domain has failed! But the good news is, because you imported the connect module, you can connect to the Test Agent machine using Windows Azure Management Portal and troubleshoot the reason for failure, you will be able to log in with the user name and password you specified in the config file for the keys ‘RemoteAccess.AccountUsername, RemoteAccess.EncryptedPassword (just that enter the password unencrypted)’, fix it or manually join the machine to the domain. Once you have managed to Join the Test Agent VM to the Domain move to the next step.      So, log in to the Test Agent Worker Role VM with the Playpit Domain Administrator and verify that you can log in, the machine is connected to the domain and the connect service is successfully running. If yes, give your self a pat on the back, you are 80% mission accomplished!         Go to the Windows Azure Management Portal and click on Virtual Network, click on Groups and Roles and click on Test Rig, click Edit Group, the edit the Test Rig group you created earlier. In the Connect to section, click on Add to select the worker role you have just deployed. Also, check the ‘Allow connections between endpoints in the group’ with this you will enable to communication between test controller and test agents and test agents/test agents. Click Save.      Now, you are ready to deploy the Test Agent software on the Worker Role Test Agent VM and configure it to work with the Test Controller. V. Configuring VM – 3: Installing Test Agent and Associating Test Agent to Controller Log in to the Worker Role Test Agent VM that you have just successfully deployed, make sure you log in with the domain administrator account. Download the All Agents software from MSDN, ‘en_visual_studio_agents_2010_x86_x64_dvd_509679.iso’, extract the iso and navigate to where you have extracted the iso. In my case, i have extracted the iso to “C:\Resources\Temp\VsAgentSetup”. Open the Test Agent folder and double click on setup.exe. Once you have installed the Test Agent you should reach the configuration window. If you face any issues installing TFS Test Agent on the VM, refer to the walkthrough on MSDN.       Once you have successfully installed the Test Agent software you will need to configure the test agent. Right click the test agent configuration tool and run as a different user. i.e. an Administrator. This is really to run the configuration wizard with elevated privileges (you might have UAC block something's otherwise).        In the run options, you can select ‘service’ you do not need to run the agent as interactive un less you are running coded UI tests. I have specified the domain administrator to connect to the TFS Test Controller. In real life, i would never do that, i would create a separate test user service account for this purpose. But for the blog post, we are using the most powerful user so that any policies or restrictions don’t block you.        Click the Apply Settings button and you should be all green! If not, the summary usually gives helpful error messages that you can resolve and proceed. As per my experience, you may run in to either a permission or a firewall blocking communication issue.        And now the moment of truth! Go to VM –2 open up Visual Studio and from the Test Menu select Manage Test Controller       Mission Accomplished! You should be able to see the Test Agent that you have just configured here,         VI. Creating and Running Load Tests on your brand new Azure-ed Test Rig I have various blog posts on Performance Testing with Visual Studio Ultimate, you can follow the links and videos below, Blog Posts: - Part 1 – Performance Testing using Visual Studio 2010 Ultimate - Part 2 – Performance Testing using Visual Studio 2010 Ultimate - Part 3 – Performance Testing using Visual Studio 2010 Ultimate Videos: - Test Tools Configuration & Settings in Visual Studio - Why & How to Record Web Performance Tests in Visual Studio Ultimate - Goal Driven Load Testing using Visual Studio Ultimate Now that you have created your load tests, there is one last change you need to make before you can run the tests on your Azure Test Rig, create a new Test settings file, and change the Test Execution method to ‘Remote Execution’ and select the test controller you have configured the Worker Role Test Agent against in our case VM – 2 So, go on, fire off a test run and see the results of the test being executed on the Azur-ed Test Rig. Review and What’s next? A quick recap of the benefits of running the Test Rig in the cloud and what i will be covering in the next blog post AND I would love to hear your feedback! Advantages Utilizing the power of Azure compute to run a heavy virtual user load. Benefiting from the Azure flexibility, destroy Test Agents when not in use, takes < 25 minutes to spin up a new Test Agent. Most important test Network Latency, (network latency and speed of connection are two different things – usually network latency is very hard to test), by placing the Test Agents in Microsoft Data centres around the globe, one can actually test the lag in transferring the bytes not because of a slow connection but because the page has been requested from the other side of the globe. Next Steps The process of spinning up the Test Agents in windows Azure is not 100% automated. I am working on the Worker process and power shell scripts to make the role deployment, unattended install of test agent software and registration of the test agent to the test controller automated. In the next blog post I will show you how to make the complete process unattended and automated. Remember to subscribe to http://feeds.feedburner.com/TarunArora. Hope you enjoyed this post, I would love to hear your feedback! If you have any recommendations on things that I should consider or any questions or feedback, feel free to leave a comment. See you in Part III.   Share this post : CodeProject

    Read the article

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Data Modeling: Logical Modeling Exercise

    - by swisscheese
    In trying to learn the art of data storage I have been trying to take in as much solid information as possible. PerformanceDBA posted some really helpful tutorials/examples in the following posts among others: is my data normalized? and Relational table naming convention. I already asked a subset question of this model here. So to make sure I understood the concepts he presented and I have seen elsewhere I wanted to take things a step or two further and see if I am grasping the concepts. Hence the purpose of this post, which hopefully others can also learn from. Everything I present is conceptual to me and for learning rather than applying it in some production system. It would be cool to get some input from PerformanceDBA also since I used his models to get started, but I appreciate all input given from anyone. As I am new to databases and especially modeling I will be the first to admit that I may not always ask the right questions, explain my thoughts clearly, or use the right verbage due to lack of expertise on the subject. So please keep that in mind and feel free to steer me in the right direction if I head off track. If there is enough interest in this I would like to take this from the logical to physical phases to show the evolution of the process and share it here on Stack. I will keep this thread for the Logical Diagram though and start new one for the additional steps. For my understanding I will be building a MySQL DB in the end to run some tests and see if what I came up with actually works. Here is the list of things that I want to capture in this conceptual model. Edit for V1.2 The purpose of this is to list Bands, their members, and the Events that they will be appearing at, as well as offer music and other merchandise for sale Members will be able to match up with friends Members can write reviews on the Bands, their music, and their events. There can only be one review per member on a given item, although they can edit their reviews and history will be maintained. BandMembers will have the chance to write a single Comment on Reviews about the Band they are associated with. Collectively as a Band only one Comment is allowed per Review. Members can then rate all Reviews and Comments but only once per given instance Members can select their favorite Bands, music, Merchandise, and Events Bands, Songs, and Events will be categorized into the type of Genre that they are and then further subcategorized into a SubGenre if necessary. It is ok for a Band or Event to fall into more then one Genre/SubGenre combination. Event date, time, and location will be posted for a given band and members can show that they will be attending the Event. An Event can be comprised of more than one Band, and multiple Events can take place at a single location on the same day Every party will be tied to at least one address and address history shall be maintained. Each party could also be tied to more then one address at a time (i.e. billing, shipping, physical) There will be stored profiles for Bands, BandMembers, and general members. So there it is, maybe a bit involved but could be a great learning tool for many hopefully as the process evolves and input is given by the community. Any input? EDIT v1.1 In response to PerformanceDBA U.3) That means no merchandise other than Band merchandise in the database. Correct ? That was my original thought but you got me thinking. Maybe the site would want to sell its own merchandise or even other merchandise from the bands. Not sure a mod to make for that. Would it require an entire rework of the Catalog section or just the identifying relationship that exists with the Band? Attempted a mod to sell both complete albums or song. Either way they would both be in electronic format only available for download. That is why I listed an Album as being comprised of Songs rather then 2 separate entities. U.5) I understand what you bring up about the circular relation with Favorite. I would like to get to this “It is either one Entity with some form of differentiation (FavoriteType) which identifies its treatment” but how to is not clear to me. What am I missing here? u.6) “Business Rules This is probably the only area you are weak in.” Thanks for the honest response. I will readdress these but I hope to clear up some confusion in my head first with the responses I have posted back to you. Q.1) Yes I would like to have Accepted, Rejected, and Blocked. I am not sure what you are referring to as to how this would change the logical model? Q.2) A person does not have to be a User. They can exist only as a BandMember. Is that what you are asking? Minor Issue Zero, One, or More…Oops I admit I forgot to give this attention when building the model. I am submitting this version as is and will address in a future version. I need to read up more on Constraint Checking to make sure I am understanding things. M.4) Depends if you envision OrderPurchase in the future. Can you expand as to what you mean here? EDIT V1.2 In response to PerformanceDBA input... Lessons learned. I was mixing the concept of Identifying / Non-Identifying and Cardinality (i.e. Genre / SubGenre), and doing so inconsistently to make things worse. Associative Tables are not required in Logical Diagrams as their many-to-many relationships can be depicted and then expanded in the Physical Model. I was overlooking the Cardinality in a lot of the relationships The importance of reading through relationships using effective Verb Phrases to reassure I am modeling what I want to accomplish. U.2) In the concept of this model it is only required to track a Venue as a location for an Event. No further data needs to be collected. With that being said Events will take place on a given EventDate and will be hosted at a Venue. Venues will host multiple events and possibly multiple events on a given date. In my new model my thinking was that EventDate is already tied to Event . Therefore, Venue will not need a relationship with EventDate. The 5th and 6th bullets you have listed under U.2) leave me questioning my thinking though. Am I missing something here? U.3) Is it time to move the link between Item and Band up to Item and Party instead? With the current design I don't see a possibility to sell merchandise not tied to the band as you have brought up. U.5) I left as per your input rather than making it a discrete Supertype/Subtype Relationship as I don’t see a benefit of having that type of roll up. Additional Revisions AR.1) After going through the exercise for FavoriteItem, I feel that Item to Review requires a many-to-many relationship so that is indicated. Necessary? Ok here we go for v1.3 I took a few days on this version, going back and forth with my design. Once the logical process is complete, as I want to see if I am on the right track, I will go through in depth what I had learned and the troubles I faced as a beginner going through this process. The big point for this version was it took throwing in some Keys to help see what I was missing in the past. Going through the process of doing a matrix proved to be of great help also. Regardless of anything, if it wasn't for the input given by PerformanceDBA I would still be a lost soul wondering in the dark. Who knows my current design might reaffirm that I still am, but I have learned a lot so I am know I at least have a flashlight in my hand. At this point in time I admit that I am still confused about identifying and non-identifying relationships. In my model I had to use non-identifying relationships with non nulls just to join the relationships I wanted to model. In reading a lot on the subject there seems to be a lot of disagreement and indecisiveness on the subject so I did what I thought represented the right things in my model. When to force (identifying) and when to be free (non-identifying)? Anyone have inputs? EDIT V1.4 Ok took the V1.3 inputs and cleaned things up for this V1.4 Currently working on a V1.5 to include attributes.

    Read the article

  • Struts2 Hibernate Login with User table and group table

    - by J2ME NewBiew
    My problem is, i have a table User and Table Group (this table use to authorization for user - it mean when user belong to a group like admin, they can login into admincp and other user belong to group member, they just only read and write and can not login into admincp) each user maybe belong to many groups and each group has been contain many users and they have relationship are many to many I use hibernate for persistence storage. and struts 2 to handle business logic. When i want to implement login action from Struts2 how can i get value of group member belong to ? to compare with value i want to know? Example I get user from username and password then get group from user class but i dont know how to get value of group user belong to it mean if user belong to Groupid is 1 and in group table , at column adminpermission is 1, that user can login into admincp, otherwise he can't my code: User.java /* * To change this template, choose Tools | Templates * and open the template in the editor. */ package org.dejavu.software.model; import java.io.Serializable; import java.util.Date; import java.util.HashSet; import java.util.Set; import javax.persistence.CascadeType; import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.FetchType; import javax.persistence.GeneratedValue; import javax.persistence.Id; import javax.persistence.JoinColumn; import javax.persistence.JoinTable; import javax.persistence.ManyToMany; import javax.persistence.Table; import javax.persistence.Temporal; /** * * @author Administrator */ @Entity @Table(name="User") public class User implements Serializable{ private static final long serialVersionUID = 2575677114183358003L; private Long userId; private String username; private String password; private String email; private Date DOB; private String address; private String city; private String country; private String avatar; private Set<Group> groups = new HashSet<Group>(0); @Column(name="dob") @Temporal(javax.persistence.TemporalType.DATE) public Date getDOB() { return DOB; } public void setDOB(Date DOB) { this.DOB = DOB; } @Column(name="address") public String getAddress() { return address; } public void setAddress(String address) { this.address = address; } @Column(name="city") public String getCity() { return city; } public void setCity(String city) { this.city = city; } @Column(name="country") public String getCountry() { return country; } public void setCountry(String country) { this.country = country; } @Column(name="email") public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } @ManyToMany(fetch = FetchType.LAZY, cascade = CascadeType.ALL) @JoinTable(name="usergroup",joinColumns={@JoinColumn(name="userid")},inverseJoinColumns={@JoinColumn( name="groupid")}) public Set<Group> getGroups() { return groups; } public void setGroups(Set<Group> groups) { this.groups = groups; } @Column(name="password") public String getPassword() { return password; } public void setPassword(String password) { this.password = password; } @Id @GeneratedValue @Column(name="iduser") public Long getUserId() { return userId; } public void setUserId(Long userId) { this.userId = userId; } @Column(name="username") public String getUsername() { return username; } public void setUsername(String username) { this.username = username; } @Column(name="avatar") public String getAvatar() { return avatar; } public void setAvatar(String avatar) { this.avatar = avatar; } } Group.java /* * To change this template, choose Tools | Templates * and open the template in the editor. */ package org.dejavu.software.model; import java.io.Serializable; import javax.persistence.Column; import javax.persistence.Entity; import javax.persistence.GeneratedValue; import javax.persistence.Id; import javax.persistence.Table; /** * * @author Administrator */ @Entity @Table(name="Group") public class Group implements Serializable{ private static final long serialVersionUID = -2722005617166945195L; private Long idgroup; private String groupname; private String adminpermission; private String editpermission; private String modpermission; @Column(name="adminpermission") public String getAdminpermission() { return adminpermission; } public void setAdminpermission(String adminpermission) { this.adminpermission = adminpermission; } @Column(name="editpermission") public String getEditpermission() { return editpermission; } public void setEditpermission(String editpermission) { this.editpermission = editpermission; } @Column(name="groupname") public String getGroupname() { return groupname; } public void setGroupname(String groupname) { this.groupname = groupname; } @Id @GeneratedValue @Column (name="idgroup") public Long getIdgroup() { return idgroup; } public void setIdgroup(Long idgroup) { this.idgroup = idgroup; } @Column(name="modpermission") public String getModpermission() { return modpermission; } public void setModpermission(String modpermission) { this.modpermission = modpermission; } } UserDAO /* * To change this template, choose Tools | Templates * and open the template in the editor. */ package org.dejavu.software.dao; import java.util.List; import org.dejavu.software.model.User; import org.dejavu.software.util.HibernateUtil; import org.hibernate.Query; import org.hibernate.Session; /** * * @author Administrator */ public class UserDAO extends HibernateUtil{ public User addUser(User user){ Session session = HibernateUtil.getSessionFactory().getCurrentSession(); session.beginTransaction(); session.save(user); session.getTransaction().commit(); return user; } public List<User> getAllUser(){ Session session = HibernateUtil.getSessionFactory().getCurrentSession(); session.beginTransaction(); List<User> user = null; try { user = session.createQuery("from User").list(); } catch (Exception e) { e.printStackTrace(); session.getTransaction().rollback(); } session.getTransaction().commit(); return user; } public User checkUsernamePassword(String username, String password){ Session session = HibernateUtil.getSessionFactory().getCurrentSession(); session.beginTransaction(); User user = null; try { Query query = session.createQuery("from User where username = :name and password = :password"); query.setString("username", username); query.setString("password", password); user = (User) query.uniqueResult(); } catch (Exception e) { e.printStackTrace(); session.getTransaction().rollback(); } session.getTransaction().commit(); return user; } } AdminLoginAction /* * To change this template, choose Tools | Templates * and open the template in the editor. */ package org.dejavu.software.view; import com.opensymphony.xwork2.ActionSupport; import org.dejavu.software.dao.UserDAO; import org.dejavu.software.model.User; /** * * @author Administrator */ public class AdminLoginAction extends ActionSupport{ private User user; private String username,password; private String role; private UserDAO userDAO; public AdminLoginAction(){ userDAO = new UserDAO(); } @Override public String execute(){ return SUCCESS; } @Override public void validate(){ if(getUsername().length() == 0){ addFieldError("username", "Username is required"); }if(getPassword().length()==0){ addFieldError("password", getText("Password is required")); } } public String getPassword() { return password; } public void setPassword(String password) { this.password = password; } public String getRole() { return role; } public void setRole(String role) { this.role = role; } public User getUser() { return user; } public void setUser(User user) { this.user = user; } public String getUsername() { return username; } public void setUsername(String username) { this.username = username; } } other question. i saw some example about Login, i saw some developers use interceptor, im cant understand why they use it, and what benefit "Interceptor" will be taken for us? Thank You Very Much!

    Read the article

  • Sendmail Failing to Forward Locally Addressed Mail to Exchange Server

    - by DomainSoil
    I've recently gained employment as a web developer with a small company. What they neglected to tell me upon hire was that I would be administrating the server along with my other daily duties. Now, truth be told, I'm not clueless when it comes to these things, but this is my first rodeo working with a rack server/console.. However, I'm confident that I will be able to work through any solutions you provide. Short Description: When a customer places an order via our (Magento CE 1.8.1.0) website, a copy of said order is supposed to be BCC'd to our sales manager. I say supposed because this was a working feature before the old administrator left. Long Description: Shortly after I started, we had a server crash which required a server restart. After restart, we noticed a few features on our site weren't working, but all those have been cleaned up except this one. I had to create an account on our server for root access. When a customer places an order, our sites software (Magento CE 1.8.1.0) is configured to BCC the customers order email to our sales manager. We use a Microsoft Exchange 2007 Server for our mail, which is hosted on a different machine (in-house) that I don't have access to ATM, but I'm sure I could if needed. As far as I can tell, all other external emails work.. Only INTERNAL email addresses fail to deliver. I know this because I've also tested my own internal address via our website. I set up an account with an internal email, made a test order, and never received the email. I changed my email for the account to an external GMail account, and received emails as expected. Let's dive into the logs and config's. For privacy/security reasons, names have been changed to the following: domain.com = Our Top Level Domain. email.local = Our Exchange Server. example.com = ANY other TLD. OLDadmin = Our previous Server Administrator. NEWadmin = Me. SALES@ = Our Sales Manager. Customer# = A Customer. Here's a list of the programs and config files used that hold relevant for this issue: Server: > [root@www ~]# cat /etc/centos-release CentOS release 6.3 (final) Sendmail: > [root@www ~]# sendmail -d0.1 -bt < /dev/null Version 8.14.4 ========SYSTEM IDENTITY (after readcf)======== (short domain name) $w = domain (canonical domain name) $j = domain.com (subdomain name) $m = com (node name) $k = www.domain.com > [root@www ~]# rpm -qa | grep -i sendmail sendmail-cf-8.14.4-8.e16.noarch sendmail-8.14-4-8.e16.x86_64 nslookup: > [root@www ~]# nslookup email.local Name: email.local Address: 192.168.1.50 hostname: > [root@www ~]# hostname www.domain.com /etc/mail/access: > [root@www ~]# vi /etc/mail/access Connect:localhost.localdomain RELAY Connect:localhost RELAY Connect:127.0.0.1 RELAY /etc/mail/domaintable: > [root@www ~]# vi /etc/mail/domaintable # /etc/mail/local-host-names: > [root@www ~]# vi /etc/mail/local-host-names # /etc/mail/mailertable: > [root@www ~]# vi /etc/mail/mailertable # /etc/mail/sendmail.cf: > [root@www ~]# vi /etc/mail/sendmail.cf ###################################################################### ##### ##### DO NOT EDIT THIS FILE! Only edit the source .mc file. ##### ###################################################################### ###################################################################### ##### $Id: cfhead.m4,v 8.120 2009/01/23 22:39:21 ca Exp $ ##### ##### $Id: cf.m4,v 8.32 1999/02/07 07:26:14 gshapiro Exp $ ##### ##### setup for linux ##### ##### $Id: linux.m4,v 8.13 2000/09/17 17:30:00 gshapiro Exp $ ##### ##### $Id: local_procmail.m4,v 8.22 2002/11/17 04:24:19 ca Exp $ ##### ##### $Id: no_default_msa.m4,v 8.2 2001/02/14 05:03:22 gshapiro Exp $ ##### ##### $Id: smrsh.m4,v 8.14 1999/11/18 05:06:23 ca Exp $ ##### ##### $Id: mailertable.m4,v 8.25 2002/06/27 23:23:57 gshapiro Exp $ ##### ##### $Id: virtusertable.m4,v 8.23 2002/06/27 23:23:57 gshapiro Exp $ ##### ##### $Id: redirect.m4,v 8.15 1999/08/06 01:47:36 gshapiro Exp $ ##### ##### $Id: always_add_domain.m4,v 8.11 2000/09/12 22:00:53 ca Exp $ ##### ##### $Id: use_cw_file.m4,v 8.11 2001/08/26 20:58:57 gshapiro Exp $ ##### ##### $Id: use_ct_file.m4,v 8.11 2001/08/26 20:58:57 gshapiro Exp $ ##### ##### $Id: local_procmail.m4,v 8.22 2002/11/17 04:24:19 ca Exp $ ##### ##### $Id: access_db.m4,v 8.27 2006/07/06 21:10:10 ca Exp $ ##### ##### $Id: blacklist_recipients.m4,v 8.13 1999/04/02 02:25:13 gshapiro Exp $ ##### ##### $Id: accept_unresolvable_domains.m4,v 8.10 1999/02/07 07:26:07 gshapiro Exp $ ##### ##### $Id: masquerade_envelope.m4,v 8.9 1999/02/07 07:26:10 gshapiro Exp $ ##### ##### $Id: masquerade_entire_domain.m4,v 8.9 1999/02/07 07:26:10 gshapiro Exp $ ##### ##### $Id: proto.m4,v 8.741 2009/12/11 00:04:53 ca Exp $ ##### # level 10 config file format V10/Berkeley # override file safeties - setting this option compromises system security, # addressing the actual file configuration problem is preferred # need to set this before any file actions are encountered in the cf file #O DontBlameSendmail=safe # default LDAP map specification # need to set this now before any LDAP maps are defined #O LDAPDefaultSpec=-h localhost ################## # local info # ################## # my LDAP cluster # need to set this before any LDAP lookups are done (including classes) #D{sendmailMTACluster}$m Cwlocalhost # file containing names of hosts for which we receive email Fw/etc/mail/local-host-names # my official domain name # ... define this only if sendmail cannot automatically determine your domain #Dj$w.Foo.COM # host/domain names ending with a token in class P are canonical CP. # "Smart" relay host (may be null) DSemail.local # operators that cannot be in local usernames (i.e., network indicators) CO @ % ! # a class with just dot (for identifying canonical names) C.. # a class with just a left bracket (for identifying domain literals) C[[ # access_db acceptance class C{Accept}OK RELAY C{ResOk}OKR # Hosts for which relaying is permitted ($=R) FR-o /etc/mail/relay-domains # arithmetic map Karith arith # macro storage map Kmacro macro # possible values for TLS_connection in access map C{Tls}VERIFY ENCR # who I send unqualified names to if FEATURE(stickyhost) is used # (null means deliver locally) DRemail.local. # who gets all local email traffic # ($R has precedence for unqualified names if FEATURE(stickyhost) is used) DHemail.local. # dequoting map Kdequote dequote # class E: names that should be exposed as from this host, even if we masquerade # class L: names that should be delivered locally, even if we have a relay # class M: domains that should be converted to $M # class N: domains that should not be converted to $M #CL root C{E}root C{w}localhost.localdomain C{M}domain.com # who I masquerade as (null for no masquerading) (see also $=M) DMdomain.com # my name for error messages DnMAILER-DAEMON # Mailer table (overriding domains) Kmailertable hash -o /etc/mail/mailertable.db # Virtual user table (maps incoming users) Kvirtuser hash -o /etc/mail/virtusertable.db CPREDIRECT # Access list database (for spam stomping) Kaccess hash -T<TMPF> -o /etc/mail/access.db # Configuration version number DZ8.14.4 /etc/mail/sendmail.mc: > [root@www ~]# vi /etc/mail/sendmail.mc divert(-1)dnl dnl # dnl # This is the sendmail macro config file for m4. If you make changes to dnl # /etc/mail/sendmail.mc, you will need to regenerate the dnl # /etc/mail/sendmail.cf file by confirming that the sendmail-cf package is dnl # installed and then performing a dnl # dnl # /etc/mail/make dnl # include(`/usr/share/sendmail-cf/m4/cf.m4')dnl VERSIONID(`setup for linux')dnl OSTYPE(`linux')dnl dnl # dnl # Do not advertize sendmail version. dnl # dnl define(`confSMTP_LOGIN_MSG', `$j Sendmail; $b')dnl dnl # dnl # default logging level is 9, you might want to set it higher to dnl # debug the configuration dnl # dnl define(`confLOG_LEVEL', `9')dnl dnl # dnl # Uncomment and edit the following line if your outgoing mail needs to dnl # be sent out through an external mail server: dnl # define(`SMART_HOST', `email.local')dnl dnl # define(`confDEF_USER_ID', ``8:12'')dnl dnl define(`confAUTO_REBUILD')dnl define(`confTO_CONNECT', `1m')dnl define(`confTRY_NULL_MX_LIST', `True')dnl define(`confDONT_PROBE_INTERFACES', `True')dnl define(`PROCMAIL_MAILER_PATH', `/usr/bin/procmail')dnl define(`ALIAS_FILE', `/etc/aliases')dnl define(`STATUS_FILE', `/var/log/mail/statistics')dnl define(`UUCP_MAILER_MAX', `2000000')dnl define(`confUSERDB_SPEC', `/etc/mail/userdb.db')dnl define(`confPRIVACY_FLAGS', `authwarnings,novrfy,noexpn,restrictqrun')dnl define(`confAUTH_OPTIONS', `A')dnl dnl # dnl # The following allows relaying if the user authenticates, and disallows dnl # plaintext authentication (PLAIN/LOGIN) on non-TLS links dnl # dnl define(`confAUTH_OPTIONS', `A p')dnl dnl # dnl # PLAIN is the preferred plaintext authentication method and used by dnl # Mozilla Mail and Evolution, though Outlook Express and other MUAs do dnl # use LOGIN. Other mechanisms should be used if the connection is not dnl # guaranteed secure. dnl # Please remember that saslauthd needs to be running for AUTH. dnl # dnl TRUST_AUTH_MECH(`EXTERNAL DIGEST-MD5 CRAM-MD5 LOGIN PLAIN')dnl dnl define(`confAUTH_MECHANISMS', `EXTERNAL GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN PLAIN')dnl dnl # dnl # Rudimentary information on creating certificates for sendmail TLS: dnl # cd /etc/pki/tls/certs; make sendmail.pem dnl # Complete usage: dnl # make -C /etc/pki/tls/certs usage dnl # dnl define(`confCACERT_PATH', `/etc/pki/tls/certs')dnl dnl define(`confCACERT', `/etc/pki/tls/certs/ca-bundle.crt')dnl dnl define(`confSERVER_CERT', `/etc/pki/tls/certs/sendmail.pem')dnl dnl define(`confSERVER_KEY', `/etc/pki/tls/certs/sendmail.pem')dnl dnl # dnl # This allows sendmail to use a keyfile that is shared with OpenLDAP's dnl # slapd, which requires the file to be readble by group ldap dnl # dnl define(`confDONT_BLAME_SENDMAIL', `groupreadablekeyfile')dnl dnl # dnl define(`confTO_QUEUEWARN', `4h')dnl dnl define(`confTO_QUEUERETURN', `5d')dnl dnl define(`confQUEUE_LA', `12')dnl dnl define(`confREFUSE_LA', `18')dnl define(`confTO_IDENT', `0')dnl dnl FEATURE(delay_checks)dnl FEATURE(`no_default_msa', `dnl')dnl FEATURE(`smrsh', `/usr/sbin/smrsh')dnl FEATURE(`mailertable', `hash -o /etc/mail/mailertable.db')dnl FEATURE(`virtusertable', `hash -o /etc/mail/virtusertable.db')dnl FEATURE(redirect)dnl FEATURE(always_add_domain)dnl FEATURE(use_cw_file)dnl FEATURE(use_ct_file)dnl dnl # dnl # The following limits the number of processes sendmail can fork to accept dnl # incoming messages or process its message queues to 20.) sendmail refuses dnl # to accept connections once it has reached its quota of child processes. dnl # dnl define(`confMAX_DAEMON_CHILDREN', `20')dnl dnl # dnl # Limits the number of new connections per second. This caps the overhead dnl # incurred due to forking new sendmail processes. May be useful against dnl # DoS attacks or barrages of spam. (As mentioned below, a per-IP address dnl # limit would be useful but is not available as an option at this writing.) dnl # dnl define(`confCONNECTION_RATE_THROTTLE', `3')dnl dnl # dnl # The -t option will retry delivery if e.g. the user runs over his quota. dnl # FEATURE(local_procmail, `', `procmail -t -Y -a $h -d $u')dnl FEATURE(`access_db', `hash -T<TMPF> -o /etc/mail/access.db')dnl FEATURE(`blacklist_recipients')dnl EXPOSED_USER(`root')dnl dnl # dnl # For using Cyrus-IMAPd as POP3/IMAP server through LMTP delivery uncomment dnl # the following 2 definitions and activate below in the MAILER section the dnl # cyrusv2 mailer. dnl # dnl define(`confLOCAL_MAILER', `cyrusv2')dnl dnl define(`CYRUSV2_MAILER_ARGS', `FILE /var/lib/imap/socket/lmtp')dnl dnl # dnl # The following causes sendmail to only listen on the IPv4 loopback address dnl # 127.0.0.1 and not on any other network devices. Remove the loopback dnl # address restriction to accept email from the internet or intranet. dnl # DAEMON_OPTIONS(`Port=smtp,Addr=127.0.0.1, Name=MTA')dnl dnl # dnl # The following causes sendmail to additionally listen to port 587 for dnl # mail from MUAs that authenticate. Roaming users who can't reach their dnl # preferred sendmail daemon due to port 25 being blocked or redirected find dnl # this useful. dnl # dnl DAEMON_OPTIONS(`Port=submission, Name=MSA, M=Ea')dnl dnl # dnl # The following causes sendmail to additionally listen to port 465, but dnl # starting immediately in TLS mode upon connecting. Port 25 or 587 followed dnl # by STARTTLS is preferred, but roaming clients using Outlook Express can't dnl # do STARTTLS on ports other than 25. Mozilla Mail can ONLY use STARTTLS dnl # and doesn't support the deprecated smtps; Evolution <1.1.1 uses smtps dnl # when SSL is enabled-- STARTTLS support is available in version 1.1.1. dnl # dnl # For this to work your OpenSSL certificates must be configured. dnl # dnl DAEMON_OPTIONS(`Port=smtps, Name=TLSMTA, M=s')dnl dnl # dnl # The following causes sendmail to additionally listen on the IPv6 loopback dnl # device. Remove the loopback address restriction listen to the network. dnl # dnl DAEMON_OPTIONS(`port=smtp,Addr=::1, Name=MTA-v6, Family=inet6')dnl dnl # dnl # enable both ipv6 and ipv4 in sendmail: dnl # dnl DAEMON_OPTIONS(`Name=MTA-v4, Family=inet, Name=MTA-v6, Family=inet6') dnl # dnl # We strongly recommend not accepting unresolvable domains if you want to dnl # protect yourself from spam. However, the laptop and users on computers dnl # that do not have 24x7 DNS do need this. dnl # FEATURE(`accept_unresolvable_domains')dnl dnl # dnl FEATURE(`relay_based_on_MX')dnl dnl # dnl # Also accept email sent to "localhost.localdomain" as local email. dnl # LOCAL_DOMAIN(`localhost.localdomain')dnl dnl # dnl # The following example makes mail from this host and any additional dnl # specified domains appear to be sent from mydomain.com dnl # MASQUERADE_AS(`domain.com')dnl dnl # dnl # masquerade not just the headers, but the envelope as well dnl FEATURE(masquerade_envelope)dnl dnl # dnl # masquerade not just @mydomainalias.com, but @*.mydomainalias.com as well dnl # FEATURE(masquerade_entire_domain)dnl dnl # MASQUERADE_DOMAIN(domain.com)dnl dnl MASQUERADE_DOMAIN(localhost.localdomain)dnl dnl MASQUERADE_DOMAIN(mydomainalias.com)dnl dnl MASQUERADE_DOMAIN(mydomain.lan)dnl MAILER(smtp)dnl MAILER(procmail)dnl dnl MAILER(cyrusv2)dnl /etc/mail/trusted-users: > [root@www ~]# vi /etc/mail/trusted-users # /etc/mail/virtusertable: > [root@www ~]# vi /etc/mail/virtusertable [email protected] [email protected] [email protected] [email protected] /etc/hosts: > [root@www ~]# vi /etc/hosts 127.0.0.1 localhost.localdomain localhost ::1 localhost6.localdomain6 localhost6 192.168.1.50 email.local I've only included the "local info" part of sendmail.cf, to save space. If there are any files that I've missed, please advise so I may produce them. Now that that's out of the way, lets look at some entries from /var/log/maillog. The first entry is from an order BEFORE the crash, when the site was working as expected. ##Order 200005374 Aug 5, 2014 7:06:38 AM## Aug 5 07:06:39 www sendmail[26149]: s75C6dqB026149: from=OLDadmin, size=11091, class=0, nrcpts=2, msgid=<[email protected]>, relay=OLDadmin@localhost Aug 5 07:06:39 www sendmail[26150]: s75C6dXe026150: from=<[email protected]>, size=11257, class=0, nrcpts=2, msgid=<[email protected]>, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 07:06:39 www sendmail[26149]: s75C6dqB026149: [email protected],=?utf-8?B?dGhvbWFzICBHaWxsZXNwaWU=?= <[email protected]>, ctladdr=OLDadmin (501/501), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=71091, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent (s75C6dXe026150 Message accepted for delivery) Aug 5 07:06:40 www sendmail[26152]: s75C6dXe026150: to=<[email protected]>,<[email protected]>, delay=00:00:01, xdelay=00:00:01, mailer=relay, pri=161257, relay=email.local. [192.168.1.50], dsn=2.0.0, stat=Sent ( <[email protected]> Queued mail for delivery) This next entry from maillog is from an order AFTER the crash. ##Order 200005375 Aug 5, 2014 9:45:25 AM## Aug 5 09:45:26 www sendmail[30021]: s75EjQ4O030021: from=OLDadmin, size=11344, class=0, nrcpts=2, msgid=<[email protected]>, relay=OLDadmin@localhost Aug 5 09:45:26 www sendmail[30022]: s75EjQm1030022: <[email protected]>... User unknown Aug 5 09:45:26 www sendmail[30021]: s75EjQ4O030021: [email protected], ctladdr=OLDadmin (501/501), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=71344, relay=[127.0.0.1] [127.0.0.1], dsn=5.1.1, stat=User unknown Aug 5 09:45:26 www sendmail[30022]: s75EjQm1030022: from=<[email protected]>, size=11500, class=0, nrcpts=1, msgid=<[email protected]>, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 09:45:26 www sendmail[30021]: s75EjQ4O030021: to==?utf-8?B?S2VubmV0aCBCaWViZXI=?= <[email protected]>, ctladdr=OLDadmin (501/501), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=71344, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent (s75EjQm1030022 Message accepted for delivery) Aug 5 09:45:26 www sendmail[30021]: s75EjQ4O030021: s75EjQ4P030021: DSN: User unknown Aug 5 09:45:26 www sendmail[30022]: s75EjQm3030022: <[email protected]>... User unknown Aug 5 09:45:26 www sendmail[30021]: s75EjQ4P030021: to=OLDadmin, delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=42368, relay=[127.0.0.1] [127.0.0.1], dsn=5.1.1, stat=User unknown Aug 5 09:45:26 www sendmail[30022]: s75EjQm3030022: from=<>, size=12368, class=0, nrcpts=0, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 09:45:26 www sendmail[30021]: s75EjQ4P030021: s75EjQ4Q030021: return to sender: User unknown Aug 5 09:45:26 www sendmail[30022]: s75EjQm5030022: from=<>, size=14845, class=0, nrcpts=1, msgid=<[email protected]>, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 09:45:26 www sendmail[30021]: s75EjQ4Q030021: to=postmaster, delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=43392, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent (s75EjQm5030022 Message accepted for delivery) Aug 5 09:45:26 www sendmail[30025]: s75EjQm5030022: to=root, delay=00:00:00, xdelay=00:00:00, mailer=local, pri=45053, dsn=2.0.0, stat=Sent Aug 5 09:45:27 www sendmail[30024]: s75EjQm1030022: to=<[email protected]>, delay=00:00:01, xdelay=00:00:01, mailer=relay, pri=131500, relay=email.local. [192.168.1.50], dsn=2.0.0, stat=Sent ( <[email protected]> Queued mail for delivery) To add a little more, I think I've pinpointed the actual crash event. ##THE CRASH## Aug 5 09:39:46 www sendmail[3251]: restarting /usr/sbin/sendmail due to signal Aug 5 09:39:46 www sm-msp-queue[3260]: restarting /usr/sbin/sendmail due to signal Aug 5 09:39:46 www sm-msp-queue[29370]: starting daemon (8.14.4): queueing@01:00:00 Aug 5 09:39:47 www sendmail[29372]: starting daemon (8.14.4): SMTP+queueing@01:00:00 Aug 5 09:40:02 www sendmail[29465]: s75Ee2vT029465: Authentication-Warning: www.domain.com: OLDadmin set sender to root using -f Aug 5 09:40:02 www sendmail[29464]: s75Ee2IF029464: Authentication-Warning: www.domain.com: OLDadmin set sender to root using -f Aug 5 09:40:02 www sendmail[29465]: s75Ee2vT029465: from=root, size=1426, class=0, nrcpts=1, msgid=<[email protected]>, relay=OLDadmin@localhost Aug 5 09:40:02 www sendmail[29464]: s75Ee2IF029464: from=root, size=1426, class=0, nrcpts=1, msgid=<[email protected]>, relay=OLDadmin@localhost Aug 5 09:40:02 www sendmail[29466]: s75Ee23t029466: from=<[email protected]>, size=1784, class=0, nrcpts=1, msgid=<[email protected]>, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 09:40:02 www sendmail[29466]: s75Ee23t029466: to=<[email protected]>, delay=00:00:00, mailer=local, pri=31784, dsn=4.4.3, stat=queued Aug 5 09:40:02 www sendmail[29467]: s75Ee2wh029467: from=<[email protected]>, size=1784, class=0, nrcpts=1, msgid=<[email protected]>, proto=ESMTP, daemon=MTA, relay=localhost.localdomain [127.0.0.1] Aug 5 09:40:02 www sendmail[29467]: s75Ee2wh029467: to=<[email protected]>, delay=00:00:00, mailer=local, pri=31784, dsn=4.4.3, stat=queued Aug 5 09:40:02 www sendmail[29464]: s75Ee2IF029464: to=OLDadmin, ctladdr=root (0/0), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=31426, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent (s75Ee23t029466 Message accepted for delivery) Aug 5 09:40:02 www sendmail[29465]: s75Ee2vT029465: to=OLDadmin, ctladdr=root (0/0), delay=00:00:00, xdelay=00:00:00, mailer=relay, pri=31426, relay=[127.0.0.1] [127.0.0.1], dsn=2.0.0, stat=Sent (s75Ee2wh029467 Message accepted for delivery) Aug 5 09:40:06 www sm-msp-queue[29370]: restarting /usr/sbin/sendmail due to signal Aug 5 09:40:06 www sendmail[29372]: restarting /usr/sbin/sendmail due to signal Aug 5 09:40:06 www sm-msp-queue[29888]: starting daemon (8.14.4): queueing@01:00:00 Aug 5 09:40:06 www sendmail[29890]: starting daemon (8.14.4): SMTP+queueing@01:00:00 Aug 5 09:40:06 www sendmail[29891]: s75Ee23t029466: to=<[email protected]>, delay=00:00:04, mailer=local, pri=121784, dsn=5.1.1, stat=User unknown Aug 5 09:40:06 www sendmail[29891]: s75Ee23t029466: s75Ee6xY029891: DSN: User unknown Aug 5 09:40:06 www sendmail[29891]: s75Ee6xY029891: to=<[email protected]>, delay=00:00:00, xdelay=00:00:00, mailer=local, pri=33035, dsn=2.0.0, stat=Sent Aug 5 09:40:06 www sendmail[29891]: s75Ee2wh029467: to=<[email protected]>, delay=00:00:04, mailer=local, pri=121784, dsn=5.1.1, stat=User unknown Aug 5 09:40:06 www sendmail[29891]: s75Ee2wh029467: s75Ee6xZ029891: DSN: User unknown Aug 5 09:40:06 www sendmail[29891]: s75Ee6xZ029891: to=<[email protected]>, delay=00:00:00, xdelay=00:00:00, mailer=local, pri=33035, dsn=2.0.0, stat=Sent Something to note about the maillog's: Before the crash, the msgid included localhost.localdomain; after the crash it's been domain.com. Thanks to all who take the time to read and look into this issue. I appreciate it and look forward to tackling this issue together.

    Read the article

  • New CentOS/cPanel servers showing high load averages at idle

    - by Jax
    I have taken delivery of two identically specced CentOS/cPanel servers, showing the same behaviour of a resting load average of 1.30, 1.21, 1.16 and yet the CPU is sitting 100% idle. Hardware: Xeon(R) CPU E3-1270 4GB RAM Behavior:- top shows CPU 99.9% idle virtually no disk IO Some command output :- uname -a Linux server.myserver.com 2.6.18-308.4.1.el5PAE #1 SMP Tue Apr 17 17:47:38 EDT 2012 i686 i686 i386 GNU/Linux top top - 10:37:50 up 1:47, 1 user, load average: 1.28, 1.20, 1.17 Tasks: 199 total, 1 running, 198 sleeping, 0 stopped, 0 zombie Cpu(s): 0.0%us, 0.0%sy, 0.0%ni, 99.9%id, 0.1%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 4125104k total, 438764k used, 3686340k free, 25788k buffers Swap: 2096440k total, 0k used, 2096440k free, 291080k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1 root 15 0 2160 640 552 S 0.0 0.0 0:00.89 init 2 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/0 3 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0 4 root RT -5 0 0 0 S 0.0 0.0 0:00.00 watchdog/0 5 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/1 6 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/1 7 root RT -5 0 0 0 S 0.0 0.0 0:00.00 watchdog/1 8 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/2 9 root 35 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/2 10 root RT -5 0 0 0 S 0.0 0.0 0:00.00 watchdog/2 11 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/3 12 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/3 13 root RT -5 0 0 0 S 0.0 0.0 0:00.00 watchdog/3 14 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/4 15 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/4 16 root RT -5 0 0 0 S 0.0 0.0 0:00.00 watchdog/4 17 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/5 18 root 38 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/5 19 root RT -5 0 0 0 S 0.0 0.0 0:00.00 watchdog/5 20 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/6 21 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/6 22 root RT -5 0 0 0 S 0.0 0.0 0:00.00 watchdog/6 23 root RT -5 0 0 0 S 0.0 0.0 0:00.00 migration/7 24 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/7 25 root RT -5 0 0 0 S 0.0 0.0 0:00.00 watchdog/7 26 root 10 -5 0 0 0 S 0.0 0.0 0:06.42 events/0 27 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 events/1 28 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 events/2 29 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 events/3 30 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 events/4 31 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 events/5 32 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 events/6 33 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 events/7 34 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 khelper 35 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kthread 45 root 13 -5 0 0 0 S 0.0 0.0 0:00.00 kblockd/0 46 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kblockd/1 47 root 14 -5 0 0 0 S 0.0 0.0 0:00.00 kblockd/2 48 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kblockd/3 49 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kblockd/4 50 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kblockd/5 51 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kblockd/6 52 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kblockd/7 53 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kacpid 189 root 11 -5 0 0 0 S 0.0 0.0 0:00.00 cqueue/0 190 root 11 -5 0 0 0 S 0.0 0.0 0:00.00 cqueue/1 191 root 12 -5 0 0 0 S 0.0 0.0 0:00.00 cqueue/2 192 root 12 -5 0 0 0 S 0.0 0.0 0:00.00 cqueue/3 193 root 13 -5 0 0 0 S 0.0 0.0 0:00.00 cqueue/4 194 root 13 -5 0 0 0 S 0.0 0.0 0:00.00 cqueue/5 195 root 14 -5 0 0 0 S 0.0 0.0 0:00.00 cqueue/6 196 root 14 -5 0 0 0 S 0.0 0.0 0:00.00 cqueue/7 199 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 khubd ps axf PID TTY STAT TIME COMMAND 1 ? Ss 0:00 init [3] 2 ? S< 0:00 [migration/0] 3 ? SN 0:00 [ksoftirqd/0] 4 ? S< 0:00 [watchdog/0] 5 ? S< 0:00 [migration/1] 6 ? SN 0:00 [ksoftirqd/1] 7 ? S< 0:00 [watchdog/1] 8 ? S< 0:00 [migration/2] 9 ? SN 0:00 [ksoftirqd/2] 10 ? S< 0:00 [watchdog/2] 11 ? S< 0:00 [migration/3] 12 ? SN 0:00 [ksoftirqd/3] 13 ? S< 0:00 [watchdog/3] 14 ? S< 0:00 [migration/4] 15 ? SN 0:00 [ksoftirqd/4] 16 ? S< 0:00 [watchdog/4] 17 ? S< 0:00 [migration/5] 18 ? SN 0:00 [ksoftirqd/5] 19 ? S< 0:00 [watchdog/5] 20 ? S< 0:00 [migration/6] 21 ? SN 0:00 [ksoftirqd/6] 22 ? S< 0:00 [watchdog/6] 23 ? S< 0:00 [migration/7] 24 ? SN 0:00 [ksoftirqd/7] 25 ? S< 0:00 [watchdog/7] 26 ? S< 0:06 [events/0] 27 ? S< 0:00 [events/1] 28 ? S< 0:00 [events/2] 29 ? S< 0:00 [events/3] 30 ? S< 0:00 [events/4] 31 ? S< 0:00 [events/5] 32 ? S< 0:00 [events/6] 33 ? S< 0:00 [events/7] 34 ? S< 0:00 [khelper] 35 ? S< 0:00 [kthread] 45 ? S< 0:00 \_ [kblockd/0] 46 ? S< 0:00 \_ [kblockd/1] 47 ? S< 0:00 \_ [kblockd/2] 48 ? S< 0:00 \_ [kblockd/3] 49 ? S< 0:00 \_ [kblockd/4] 50 ? S< 0:00 \_ [kblockd/5] 51 ? S< 0:00 \_ [kblockd/6] 52 ? S< 0:00 \_ [kblockd/7] 53 ? S< 0:00 \_ [kacpid] 189 ? S< 0:00 \_ [cqueue/0] 190 ? S< 0:00 \_ [cqueue/1] 191 ? S< 0:00 \_ [cqueue/2] 192 ? S< 0:00 \_ [cqueue/3] 193 ? S< 0:00 \_ [cqueue/4] 194 ? S< 0:00 \_ [cqueue/5] 195 ? S< 0:00 \_ [cqueue/6] 196 ? S< 0:00 \_ [cqueue/7] 199 ? S< 0:00 \_ [khubd] 201 ? S< 0:00 \_ [kseriod] 301 ? S 0:00 \_ [khungtaskd] 302 ? S 0:00 \_ [pdflush] 303 ? S 0:00 \_ [pdflush] 304 ? S< 0:00 \_ [kswapd0] 305 ? S< 0:00 \_ [aio/0] 306 ? S< 0:00 \_ [aio/1] 307 ? S< 0:00 \_ [aio/2] 308 ? S< 0:00 \_ [aio/3] 309 ? S< 0:00 \_ [aio/4] 310 ? S< 0:00 \_ [aio/5] 311 ? S< 0:00 \_ [aio/6] 312 ? S< 0:00 \_ [aio/7] 472 ? S< 0:00 \_ [kpsmoused] 551 ? S< 0:00 \_ [ata/0] 552 ? S< 0:00 \_ [ata/1] 553 ? S< 0:00 \_ [ata/2] 554 ? S< 0:00 \_ [ata/3] 555 ? S< 0:00 \_ [ata/4] 556 ? S< 0:00 \_ [ata/5] 557 ? S< 0:00 \_ [ata/6] 558 ? S< 0:00 \_ [ata/7] 559 ? S< 0:00 \_ [ata_aux] 569 ? S< 0:00 \_ [scsi_eh_0] 570 ? S< 0:00 \_ [scsi_eh_1] 571 ? S< 0:00 \_ [scsi_eh_2] 572 ? S< 0:00 \_ [scsi_eh_3] 573 ? S< 0:00 \_ [scsi_eh_4] 574 ? S< 0:00 \_ [scsi_eh_5] 593 ? S< 0:00 \_ [kstriped] 630 ? S< 0:00 \_ [kjournald] 655 ? S< 0:00 \_ [kauditd] 1860 ? S< 0:00 \_ [kmpathd/0] 1861 ? S< 0:00 \_ [kmpathd/1] 1862 ? S< 0:00 \_ [kmpathd/2] 1863 ? S< 0:00 \_ [kmpathd/3] 1864 ? S< 0:00 \_ [kmpathd/4] 1865 ? S< 0:00 \_ [kmpathd/5] 1866 ? S< 0:00 \_ [kmpathd/6] 1867 ? S< 0:00 \_ [kmpathd/7] 1868 ? S< 0:00 \_ [kmpath_handlerd] 1902 ? S< 0:00 \_ [kjournald] 1904 ? S< 0:00 \_ [kjournald] 1906 ? S< 0:00 \_ [kjournald] 1908 ? S< 0:00 \_ [kjournald] 1910 ? S< 0:00 \_ [kjournald] 2184 ? S< 0:00 \_ [iscsi_eh] 2288 ? S< 0:00 \_ [cnic_wq] 2298 ? S< 0:00 \_ [bnx2i_thread/0] 2299 ? S< 0:00 \_ [bnx2i_thread/1] 2300 ? S< 0:00 \_ [bnx2i_thread/2] 2301 ? S< 0:00 \_ [bnx2i_thread/3] 2302 ? S< 0:00 \_ [bnx2i_thread/4] 2303 ? S< 0:00 \_ [bnx2i_thread/5] 2304 ? S< 0:00 \_ [bnx2i_thread/6] 2305 ? S< 0:00 \_ [bnx2i_thread/7] 2330 ? S< 0:00 \_ [ib_addr] 2359 ? S< 0:00 \_ [ib_mcast] 2360 ? S< 0:00 \_ [ib_inform] 2361 ? S< 0:00 \_ [local_sa] 2371 ? S< 0:00 \_ [iw_cm_wq] 2381 ? S< 0:00 \_ [ib_cm/0] 2382 ? S< 0:00 \_ [ib_cm/1] 2383 ? S< 0:00 \_ [ib_cm/2] 2384 ? S< 0:00 \_ [ib_cm/3] 2385 ? S< 0:00 \_ [ib_cm/4] 2386 ? S< 0:00 \_ [ib_cm/5] 2387 ? S< 0:00 \_ [ib_cm/6] 2388 ? S< 0:00 \_ [ib_cm/7] 2398 ? S< 0:00 \_ [rdma_cm] 2684 ? S< 0:00 \_ [bond0] 2882 ? S< 0:00 \_ [bond1] 3195 ? S< 0:00 \_ [kondemand/0] 3197 ? S< 0:00 \_ [kondemand/1] 3198 ? S< 0:00 \_ [kondemand/2] 3199 ? S< 0:00 \_ [kondemand/3] 3200 ? S< 0:00 \_ [kondemand/4] 3201 ? S< 0:00 \_ [kondemand/5] 3202 ? S< 0:00 \_ [kondemand/6] 3203 ? S< 0:00 \_ [kondemand/7] 688 ? S<s 0:00 /sbin/udevd -d 2425 ? S<Lsl 0:00 iscsiuio 2432 ? Ss 0:00 iscsid 2434 ? S<Ls 0:00 iscsid 3061 ? S<sl 0:00 auditd 3063 ? S<sl 0:00 \_ /sbin/audispd 3121 ? Ss 0:00 syslogd -m 0 3124 ? Ss 0:00 klogd -x 3220 ? Ss 0:00 irqbalance 3278 ? Ss 0:00 dbus-daemon --system 3324 ? Ss 0:00 /usr/sbin/acpid 3337 ? Ss 0:00 hald 3338 ? S 0:00 \_ hald-runner 3345 ? S 0:00 \_ hald-addon-acpi: listening on acpid socket /var/run/acpid.socket 3349 ? S 0:00 \_ hald-addon-keyboard: listening on /dev/input/event1 3360 ? S 0:00 \_ hald-addon-storage: polling /dev/sr0 3413 ? Ssl 0:00 automount 3435 ? Ssl 0:00 /usr/sbin/named -u named 3466 ? Ss 0:00 /usr/sbin/sshd 4072 ? Ss 0:00 \_ sshd: root@pts/0 4078 pts/0 Ss 0:00 \_ -bash 5436 pts/0 R+ 0:00 \_ ps axf 3484 ? Ss 0:00 xinetd -stayalive -pidfile /var/run/xinetd.pid 3500 ? SLs 0:00 ntpd -u ntp:ntp -p /var/run/ntpd.pid -g 3514 ? S 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/server.myserver.com.pid 3575 ? Sl 0:00 \_ /usr/sbin/mysqld --basedir=/ --datadir=/var/lib/mysql --user=mysql --log-error=/var/lib/mysql/server.myserver.com.err --pid-fil 3687 ? Ss 0:00 /usr/sbin/exim -bd -q1h 3709 ? Ss 0:00 /usr/sbin/dovecot 3710 ? S 0:00 \_ dovecot-auth 3725 ? S 0:00 \_ pop3-login 3726 ? S 0:00 \_ pop3-login 3727 ? S 0:00 \_ imap-login 3728 ? S 0:00 \_ imap-login 3729 ? Ss 0:00 /usr/local/apache/bin/httpd -k start -DSSL 4326 ? S 0:00 \_ /usr/bin/perl /usr/local/cpanel/bin/leechprotect 4332 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 4333 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 4334 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 4335 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 4336 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 4337 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 4382 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 4383 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 4384 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 5389 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 5390 ? S 0:00 \_ /usr/local/apache/bin/httpd -k start -DSSL 3741 ? Ss 0:00 pure-ftpd (SERVER) 3746 ? S 0:00 /usr/sbin/pure-authd -s /var/run/ftpd.sock -r /usr/sbin/pureauth 3759 ? Ss 0:00 crond 3772 ? Ss 0:00 /usr/sbin/atd 3909 ? S 0:00 cpsrvd (SSL) - waiting for connections 5435 ? Z 0:00 \_ [cpsrvd-ssl] <defunct> 3931 ? S 0:00 queueprocd - wait to process a task 3948 ? S 0:00 tailwatchd 3954 ? SN 0:00 cpanellogd - sleeping for logs 4003 ? Ss 0:00 ./nimbus /opt/nimsoft 4016 ? S 0:00 \_ nimbus(controller) 4053 ? Sl 0:00 \_ nimbus(spooler) 4066 ? S 0:00 \_ nimbus(hdb) 4069 ? S 0:00 \_ nimbus(cdm) 4070 ? S 0:00 \_ nimbus(processes) 4023 ? S 0:00 /usr/sbin/smartd -q never 4027 tty1 Ss+ 0:00 /sbin/mingetty tty1 4028 tty2 Ss+ 0:00 /sbin/mingetty tty2 4029 tty3 Ss+ 0:00 /sbin/mingetty tty3 4030 tty4 Ss+ 0:00 /sbin/mingetty tty4 4031 tty5 Ss+ 0:00 /sbin/mingetty tty5 4033 tty6 Ss+ 0:00 /sbin/mingetty tty6 4035 ttyS1 Ss+ 0:00 /sbin/agetty -h -L ttyS1 19200 vt100 vmstat 10 6 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------ r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 0 3718136 25684 257424 0 0 8 3 127 189 0 0 100 0 0 0 0 0 3718136 25700 257420 0 0 0 7 1013 1500 0 0 100 0 0 0 0 0 3718136 25700 257424 0 0 0 1 1013 1551 0 0 100 0 0 0 0 0 3718136 25700 257424 0 0 0 0 1012 1469 0 0 100 0 0 1 0 0 3712680 25716 257424 0 0 0 2 1013 1542 0 0 100 0 0 0 0 0 3718376 25740 257424 0 0 0 46 1017 1534 0 0 100 0 0 Can anyone advise me as to what is the cause of and how I may resolve this behaviour? A kernel/driver conflict perhaps? I don't see any processes in R or D state that might inflate the load averages artificially, I realise it may be considered low in an 8 thread system but its higher at idle than any normal behaviour I've previously come across. Thanks in advance for your time. Edit: iotop Total DISK READ: 0.00 B/s | Total DISK WRITE: 0.00 B/s TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND 26 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.29 % [events/0] 3205 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.10 % [kondemand/2] 3208 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kondemand/5] 3209 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kondemand/6] 3207 be/3 root 0.00 B/s 0.00 B/s 0.10 % 0.00 % [kondemand/4] 3210 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kondemand/7] 3227 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % irqbalance 3288 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [rpciod/1] 3287 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [rpciod/0] 3206 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kondemand/3] 3069 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % auditd 3070 be/2 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % audispd 655 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kauditd] 3619 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % automount 3 be/7 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [ksoftirqd/0] 3068 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % auditd 29 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [events/3] 4 rt/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [watchdog/0] 7 rt/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [watchdog/1] 10 rt/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [watchdog/2] 13 rt/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [watchdog/3] 16 rt/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [watchdog/4] 19 rt/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [watchdog/5] 22 rt/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [watchdog/6] 25 rt/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [watchdog/7] 27 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [events/1] 28 be/3 root 0.00 B/s 0.00 B/s 0.29 % 0.00 % [events/2] 30 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [events/4] 31 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [events/5] 32 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [events/6] 33 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [events/7] 34 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [khelper] 35 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kthread] 45 be/3 root 0.00 B/s 0.00 B/s 0.00 % 0.00 % [kblockd/0]

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • android Emulator always stop at "waiting for Home..."

    - by wuwupp
    hi,there, I freshed install Eclipse, jdk, android sdk 1.5 in winxp. but when I run the "hello world" app, the emulator always stop at "andorid" loading message. In eclipse console, it shows "waiting for HOME..." and in DDMS LogCat, it shows following msg: there are some error and warning. So, what's wrong with my case? I have googled lots of results, but no one can help me. Please help me. Many thx 06-13 00:07:54.323: INFO/DEBUG(551): debuggerd: Jun 30 2009 17:00:51 06-13 00:07:54.383: INFO/vold(550): Android Volume Daemon version 2.0 06-13 00:07:54.724: ERROR/flash_image(556): can't find recovery partition 06-13 00:07:55.223: DEBUG/qemud(558): entering main loop 06-13 00:07:55.323: DEBUG/qemud(558): multiplexer_handle_control: unknown control message (18 bytes): 'ko:unknown command' 06-13 00:07:55.493: INFO/vold(550): New MMC card 'SU02G' (serial 1012966) added @ /devices/platform/goldfish_mmc.0/mmc_host/mmc0/mmc0:e118 06-13 00:07:55.773: INFO/vold(550): Disk (blkdev 179:0), 262144 secs (128 MB) 0 partitions 06-13 00:07:55.773: INFO/vold(550): New blkdev 179.0 on media SU02G, media path /devices/platform/goldfish_mmc.0/mmc_host/mmc0/mmc0:e118, Dpp 0 06-13 00:07:55.814: INFO/vold(550): Evaluating dev '/devices/platform/goldfish_mmc.0/mmc_host/mmc0/mmc0:e118/block/mmcblk0' for mountable filesystems for '/sdcard' 06-13 00:07:56.014: ERROR/vold(550): Error opening switch name path '/sys/class/switch/test2' (No such file or directory) 06-13 00:07:56.014: ERROR/vold(550): Error bootstrapping switch '/sys/class/switch/test2' (m) 06-13 00:07:56.073: ERROR/vold(550): Error opening switch name path '/sys/class/switch/test' (No such file or directory) 06-13 00:07:56.073: ERROR/vold(550): Error bootstrapping switch '/sys/class/switch/test' (m) 06-13 00:07:56.073: DEBUG/vold(550): Bootstrapping complete 06-13 00:07:56.743: INFO//system/bin/dosfsck(550): dosfsck 3.0.1 (23 Nov 2008) 06-13 00:07:56.753: INFO//system/bin/dosfsck(550): dosfsck 3.0.1, 23 Nov 2008, FAT32, LFN 06-13 00:07:56.783: INFO//system/bin/dosfsck(550): Checking we can access the last sector of the filesystem 06-13 00:07:56.893: INFO//system/bin/dosfsck(550): Boot sector contents: 06-13 00:07:56.924: INFO//system/bin/dosfsck(550): System ID "MSWIN4.1" 06-13 00:07:56.934: INFO//system/bin/dosfsck(550): Media byte 0xf8 (hard disk) 06-13 00:07:56.953: INFO//system/bin/dosfsck(550): 512 bytes per logical sector 06-13 00:07:56.974: INFO//system/bin/dosfsck(550): 512 bytes per cluster 06-13 00:07:57.005: INFO//system/bin/dosfsck(550): 32 reserved sectors 06-13 00:07:57.013: INFO//system/bin/dosfsck(550): First FAT starts at byte 16384 (sector 32) 06-13 00:07:57.013: INFO//system/bin/dosfsck(550): 2 FATs, 32 bit entries 06-13 00:07:57.023: INFO//system/bin/dosfsck(550): 1040384 bytes per FAT (= 2032 sectors) 06-13 00:07:57.043: INFO//system/bin/dosfsck(550): Root directory start at cluster 2 (arbitrary size) 06-13 00:07:57.043: INFO//system/bin/dosfsck(550): Data area starts at byte 2097152 (sector 4096) 06-13 00:07:57.043: INFO//system/bin/dosfsck(550): 258048 data clusters (132120576 bytes) 06-13 00:07:57.103: INFO//system/bin/dosfsck(550): 9 sectors/track, 2 heads 06-13 00:07:57.103: INFO//system/bin/dosfsck(550): 0 hidden sectors 06-13 00:07:57.123: INFO//system/bin/dosfsck(550): 262144 sectors total 06-13 00:07:57.313: DEBUG/qemud(558): fdhandler_accept_event: accepting on fd 10 06-13 00:07:57.313: DEBUG/qemud(558): created client 0xe078 listening on fd 8 06-13 00:07:57.313: DEBUG/qemud(558): fdhandler_event: disconnect on fd 8 06-13 00:07:57.623: DEBUG/qemud(558): fdhandler_accept_event: accepting on fd 10 06-13 00:07:57.623: DEBUG/qemud(558): created client 0xf028 listening on fd 8 06-13 00:07:57.643: DEBUG/qemud(558): client_fd_receive: attempting registration for service 'gsm' 06-13 00:07:57.763: DEBUG/qemud(558): client_fd_receive: - received channel id 1 06-13 00:08:12.553: INFO//system/bin/dosfsck(550): Checking for unused clusters. 06-13 00:08:13.483: INFO//system/bin/dosfsck(550): Checking free cluster summary. 06-13 00:08:13.643: DEBUG/AndroidRuntime(553): AndroidRuntime START <<<<<<<<<<<<<< 06-13 00:08:13.705: DEBUG/AndroidRuntime(553): CheckJNI is ON 06-13 00:08:13.793: INFO//system/bin/dosfsck(550): /dev/block//vold/179:0: 0 files, 1/258048 clusters 06-13 00:08:14.063: INFO/logwrapper(550): /system/bin/dosfsck terminated by exit(0) 06-13 00:08:14.143: DEBUG/vold(550): Filesystem check completed OK 06-13 00:08:14.683: INFO/vold(550): Sucessfully mounted vfat filesystem 179:0 on /sdcard (safe-mode on) 06-13 00:08:17.023: INFO/(554): ServiceManager: 0xac38 06-13 00:08:17.883: INFO/AudioFlinger(554): AudioFlinger's thread ready to run for output 0 06-13 00:08:18.163: INFO/CameraService(554): CameraService started: pid=554 06-13 00:08:21.824: DEBUG/AndroidRuntime(553): --- registering native functions --- 06-13 00:08:27.813: INFO/Zygote(553): Preloading classes... 06-13 00:08:27.994: DEBUG/dalvikvm(553): GC freed 764 objects / 42216 bytes in 88ms 06-13 00:08:30.234: DEBUG/dalvikvm(553): GC freed 278 objects / 17160 bytes in 48ms 06-13 00:08:33.094: DEBUG/dalvikvm(553): GC freed 208 objects / 12696 bytes in 44ms 06-13 00:08:34.343: DEBUG/dalvikvm(553): Trying to load lib /system/lib/libmedia_jni.so 0x0 06-13 00:08:35.803: DEBUG/dalvikvm(553): Added shared lib /system/lib/libmedia_jni.so 0x0 06-13 00:08:35.903: DEBUG/dalvikvm(553): Trying to load lib /system/lib/libmedia_jni.so 0x0 06-13 00:08:35.903: DEBUG/dalvikvm(553): Shared lib '/system/lib/libmedia_jni.so' already loaded in same CL 0x0 06-13 00:08:36.003: DEBUG/dalvikvm(553): Trying to load lib /system/lib/libmedia_jni.so 0x0 06-13 00:08:36.003: DEBUG/dalvikvm(553): Shared lib '/system/lib/libmedia_jni.so' already loaded in same CL 0x0 06-13 00:08:36.215: DEBUG/dalvikvm(553): Trying to load lib /system/lib/libmedia_jni.so 0x0 06-13 00:08:36.244: DEBUG/dalvikvm(553): Shared lib '/system/lib/libmedia_jni.so' already loaded in same CL 0x0 06-13 00:08:36.455: DEBUG/dalvikvm(553): GC freed 462 objects / 29144 bytes in 70ms 06-13 00:08:44.123: DEBUG/dalvikvm(553): GC freed 3584 objects / 171648 bytes in 125ms 06-13 00:09:10.473: DEBUG/dalvikvm(553): GC freed 11329 objects / 400856 bytes in 196ms 06-13 00:09:17.373: DEBUG/dalvikvm(553): GC freed 10472 objects / 438272 bytes in 199ms 06-13 00:09:24.563: DEBUG/dalvikvm(553): GC freed 10975 objects / 459800 bytes in 202ms 06-13 00:09:46.403: DEBUG/dalvikvm(553): GC freed 14372 objects / 506896 bytes in 252ms 06-13 00:09:53.793: DEBUG/dalvikvm(553): GC freed 11314 objects / 481360 bytes in 215ms 06-13 00:09:57.743: DEBUG/dalvikvm(553): GC freed 5928 objects / 248640 bytes in 195ms 06-13 00:10:01.324: DEBUG/dalvikvm(553): GC freed 349 objects / 37032 bytes in 190ms 06-13 00:10:05.253: DEBUG/dalvikvm(553): GC freed 778 objects / 48376 bytes in 217ms 06-13 00:10:06.564: DEBUG/dalvikvm(553): GC freed 321 objects / 37288 bytes in 219ms 06-13 00:10:08.194: DEBUG/dalvikvm(553): GC freed 477 objects / 29584 bytes in 212ms 06-13 00:10:08.663: DEBUG/dalvikvm(553): Trying to load lib /system/lib/libwebcore.so 0x0 06-13 00:10:09.743: DEBUG/dalvikvm(553): Added shared lib /system/lib/libwebcore.so 0x0 06-13 00:10:11.634: DEBUG/dalvikvm(553): GC freed 441 objects / 26224 bytes in 236ms 06-13 00:10:12.893: DEBUG/dalvikvm(553): GC freed 506 objects / 41464 bytes in 235ms 06-13 00:10:14.153: DEBUG/dalvikvm(553): GC freed 537 objects / 38832 bytes in 239ms 06-13 00:10:15.883: DEBUG/dalvikvm(553): GC freed 342 objects / 22552 bytes in 248ms 06-13 00:10:17.124: DEBUG/dalvikvm(553): GC freed 338 objects / 18736 bytes in 264ms 06-13 00:10:18.523: DEBUG/dalvikvm(553): GC freed 629 objects / 32136 bytes in 260ms 06-13 00:10:38.933: DEBUG/dalvikvm(553): GC freed 14257 objects / 497280 bytes in 368ms 06-13 00:10:46.453: DEBUG/dalvikvm(553): GC freed 11164 objects / 469576 bytes in 360ms 06-13 00:10:52.973: DEBUG/dalvikvm(553): GC freed 7134 objects / 311432 bytes in 339ms 06-13 00:10:55.595: DEBUG/dalvikvm(553): GC freed 752 objects / 43224 bytes in 520ms 06-13 00:10:56.863: DEBUG/dalvikvm(553): GC freed 598 objects / 31496 bytes in 307ms 06-13 00:10:58.543: DEBUG/dalvikvm(553): GC freed 413 objects / 26336 bytes in 355ms 06-13 00:10:59.263: INFO/Zygote(553): ...preloaded 1166 classes in 151403ms. 06-13 00:10:59.683: DEBUG/dalvikvm(553): GC freed 313 objects / 19952 bytes in 343ms 06-13 00:10:59.793: INFO/Zygote(553): Preloading resources... 06-13 00:11:00.683: DEBUG/dalvikvm(553): GC freed 54 objects / 11248 bytes in 340ms 06-13 00:11:05.723: DEBUG/dalvikvm(553): GC freed 337 objects / 15008 bytes in 317ms 06-13 00:11:08.703: DEBUG/dalvikvm(553): GC freed 280 objects / 11768 bytes in 312ms 06-13 00:11:09.303: INFO/Zygote(553): ...preloaded 48 resources in 9513ms. 06-13 00:11:09.795: INFO/Zygote(553): ...preloaded 15 resources in 454ms. 06-13 00:11:10.303: DEBUG/dalvikvm(553): GC freed 118 objects / 8616 bytes in 420ms 06-13 00:11:10.913: DEBUG/dalvikvm(553): GC freed 205 objects / 8104 bytes in 308ms 06-13 00:11:11.344: DEBUG/dalvikvm(553): GC freed 36 objects / 1400 bytes in 320ms 06-13 00:11:11.543: INFO/dalvikvm(553): Splitting out new zygote heap 06-13 00:11:12.973: INFO/dalvikvm(553): System server process 585 has been created 06-13 00:11:13.336: INFO/Zygote(553): Accepting command socket connections 06-13 00:11:14.963: INFO/jdwp(585): received file descriptor 10 from ADB 06-13 00:11:16.843: WARN/System.err(585): Can't dispatch DDM chunk 46454154: no handler defined 06-13 00:11:16.953: WARN/System.err(585): Can't dispatch DDM chunk 4d505251: no handler defined 06-13 00:11:17.763: DEBUG/dalvikvm(585): Trying to load lib /system/lib/libandroid_servers.so 0x0 06-13 00:11:19.714: DEBUG/dalvikvm(585): Added shared lib /system/lib/libandroid_servers.so 0x0 06-13 00:11:20.123: INFO/sysproc(585): Entered system_init() 06-13 00:11:20.223: INFO/sysproc(585): ServiceManager: 0x1017b8 06-13 00:11:20.359: INFO/SurfaceFlinger(585): SurfaceFlinger is starting 06-13 00:11:20.493: INFO/SurfaceFlinger(585): SurfaceFlinger's main thread ready to run. Initializing graphics H/W... 06-13 00:11:20.634: ERROR/MemoryHeapBase(585): error opening /dev/pmem: No such file or directory 06-13 00:11:20.704: ERROR/SurfaceFlinger(585): Couldn't open /sys/power/wait_for_fb_sleep or /sys/power/wait_for_fb_wake 06-13 00:11:22.013: ERROR/GLLogger(585): couldn't load library (Cannot find library) 06-13 00:11:22.103: INFO/SurfaceFlinger(585): EGL informations: 06-13 00:11:22.113: INFO/SurfaceFlinger(585): # of configs : 6 06-13 00:11:22.123: INFO/SurfaceFlinger(585): vendor : Android 06-13 00:11:22.123: INFO/SurfaceFlinger(585): version : 1.31 Android META-EGL 06-13 00:11:22.134: INFO/SurfaceFlinger(585): extensions: 06-13 00:11:22.134: INFO/SurfaceFlinger(585): Client API: OpenGL ES 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): using (fd=22) 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): id = 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): xres = 320 px 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): yres = 480 px 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): xres_virtual = 320 px 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): yres_virtual = 960 px 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): bpp = 16 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): r = 11:5 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): g = 5:6 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): b = 0:5 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): width = 49 mm (165.877548 dpi) 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): height = 74 mm (164.756760 dpi) 06-13 00:11:22.193: INFO/EGLDisplaySurface(585): refresh rate = 60.00 Hz 06-13 00:11:22.533: WARN/HAL(585): load: module=/system/lib/hw/copybit.goldfish.so error=Cannot find library 06-13 00:11:22.543: WARN/HAL(585): load: module=/system/lib/hw/copybit.default.so error=Cannot find library 06-13 00:11:22.553: WARN/SurfaceFlinger(585): ro.sf.lcd_density not defined, using 160 dpi by default. 06-13 00:11:22.644: INFO/SurfaceFlinger(585): OpenGL informations: 06-13 00:11:22.654: INFO/SurfaceFlinger(585): vendor : Android 06-13 00:11:22.654: INFO/SurfaceFlinger(585): renderer : Android PixelFlinger 1.0 06-13 00:11:22.654: INFO/SurfaceFlinger(585): version : OpenGL ES-CM 1.0 06-13 00:11:22.654: INFO/SurfaceFlinger(585): extensions: GL_OES_byte_coordinates GL_OES_fixed_point GL_OES_single_precision GL_OES_read_format GL_OES_compressed_paletted_texture GL_OES_draw_texture GL_OES_matrix_get GL_OES_query_matrix GL_ARB_texture_compression GL_ARB_texture_non_power_of_two GL_ANDROID_direct_texture GL_ANDROID_user_clip_plane GL_ANDROID_vertex_buffer_object GL_ANDROID_generate_mipmap 06-13 00:11:22.673: WARN/HAL(585): load: module=/system/lib/hw/copybit.goldfish.so error=Cannot find library 06-13 00:11:22.683: WARN/HAL(585): load: module=/system/lib/hw/copybit.default.so error=Cannot find library 06-13 00:11:22.703: WARN/HAL(585): load: module=/system/lib/hw/overlay.goldfish.so error=Cannot find library 06-13 00:11:22.713: WARN/HAL(585): load: module=/system/lib/hw/overlay.default.so error=Cannot find library 06-13 00:11:23.663: INFO/sysproc(585): System server: starting Android runtime. 06-13 00:11:23.733: INFO/sysproc(585): System server: starting Android services. 06-13 00:11:23.953: INFO/SystemServer(585): Entered the Android system server! 06-13 00:11:24.303: INFO/sysproc(585): System server: entering thread pool. 06-13 00:11:24.763: ERROR/GLLogger(585): couldn't load library (Cannot find library) 06-13 00:11:25.893: INFO/ARMAssembler(585): generated scanline__00000077:03545404_00000A01_00000000 [ 30 ipp] (51 ins) at [0x18f708:0x18f7d4] in 72796961 ns 06-13 00:11:26.193: INFO/SystemServer(585): Starting Power Manager. 06-13 00:11:26.953: INFO/SystemServer(585): Starting Activity Manager. 06-13 00:11:31.733: INFO/SystemServer(585): Starting telephony registry 06-13 00:11:32.054: INFO/SystemServer(585): Starting Package Manager. 06-13 00:11:32.553: INFO/Installer(585): connecting... 06-13 00:11:32.914: INFO/installd(555): new connection 06-13 00:11:35.193: INFO/PackageManager(585): Got library android.awt in /system/framework/android.awt.jar 06-13 00:11:35.313: INFO/PackageManager(585): Got library android.test.runner in /system/framework/android.test.runner.jar 06-13 00:11:35.324: INFO/PackageManager(585): Got library com.android.im.plugin in /system/framework/com.android.im.plugin.jar 06-13 00:11:44.643: DEBUG/PackageManager(585): Scanning app dir /system/framework 06-13 00:11:49.513: DEBUG/PackageManager(585): Scanning app dir /system/app 06-13 00:11:51.493: DEBUG/dalvikvm(585): GC freed 6088 objects / 251280 bytes in 1237ms 06-13 00:12:27.497: DEBUG/dalvikvm(585): GC freed 3435 objects / 216088 bytes in 792ms 06-13 00:12:29.213: DEBUG/PackageManager(585): Scanning app dir /data/app 06-13 00:12:30.223: DEBUG/PackageManager(585): Scanning app dir /data/app-private 06-13 00:12:30.425: INFO/PackageManager(585): Time to scan packages: 47.319 seconds 06-13 00:12:30.703: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH in package com.android.providers.contacts 06-13 00:12:30.803: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH.cp in package com.android.providers.contacts 06-13 00:12:30.853: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH in package com.android.development 06-13 00:12:30.913: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH.ALL_SERVICES in package com.android.development 06-13 00:12:31.133: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH.YouTubeUser in package com.android.development 06-13 00:12:31.143: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.ACCESS_GOOGLE_PASSWORD in package com.android.development 06-13 00:12:31.234: WARN/PackageManager(585): Unknown permission com.google.android.providers.gmail.permission.WRITE_GMAIL in package com.android.settings 06-13 00:12:31.254: WARN/PackageManager(585): Unknown permission com.google.android.providers.gmail.permission.READ_GMAIL in package com.android.settings 06-13 00:12:31.303: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH in package com.android.settings 06-13 00:12:31.683: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH in package com.android.browser 06-13 00:12:31.803: WARN/PackageManager(585): Unknown permission com.google.android.googleapps.permission.GOOGLE_AUTH.mail in package com.android.contacts 06-13 00:12:34.603: DEBUG/dalvikvm(585): GC freed 2851 objects / 161304 bytes in 845ms 06-13 00:12:35.403: INFO/SystemServer(585): Starting Content Manager. 06-13 00:12:39.954: WARN/ActivityManager(585): Unable to start service Intent { action=android.accounts.IAccountsService comp={com.google.android.googleapps/com.google.android.googleapps.GoogleLoginService} }: not found 06-13 00:12:40.063: WARN/AccountMonitor(585): Couldn't connect to Intent { action=android.accounts.IAccountsService comp={com.google.android.googleapps/com.google.android.googleapps.GoogleLoginService} } (Missing service?) 06-13 00:12:40.253: INFO/SystemServer(585): Starting System Content Providers. 06-13 00:12:40.553: INFO/ActivityThread(585): Publishing provider settings: com.android.providers.settings.SettingsProvider 06-13 00:12:41.433: INFO/ActivityThread(585): Publishing provider sync: android.content.SyncProvider 06-13 00:12:41.683: INFO/SystemServer(585): Starting Battery Service. 06-13 00:12:42.293: ERROR/BatteryService(585): Could not open '/sys/class/power_supply/usb/online' 06-13 00:12:42.433: ERROR/BatteryService(585): Could not open '/sys/class/power_supply/battery/batt_vol' 06-13 00:12:42.543: ERROR/BatteryService(585): Could not open '/sys/class/power_supply/battery/batt_temp' 06-13 00:12:42.933: INFO/SystemServer(585): Starting Hardware Service. 06-13 00:12:43.398: DEBUG/qemud(558): fdhandler_accept_event: accepting on fd 10 06-13 00:12:43.623: DEBUG/qemud(558): created client 0x10fd8 listening on fd 11 06-13 00:12:43.743: DEBUG/qemud(558): client_fd_receive: attempting registration for service 'hw-control' 06-13 00:12:43.873: DEBUG/qemud(558): client_fd_receive: - received channel id 2 06-13 00:15:20.695: WARN/SurfaceFlinger(585): executeScheduledBroadcasts() skipped, contention on the client. We'll try again later...

    Read the article

  • Simple Self Join Query Bad Performance

    - by user1514042
    Could anyone advice on how do I improve the performance of the following query. Note, the problem seems to be caused by where clause. Data (table contains a huge set of rows - 500K+, the set of parameters it's called with assums the return of 2-5K records per query, which takes 8-10 minutes currently): USE [SomeDb] GO SET ANSI_NULLS ON GO SET QUOTED_IDENTIFIER ON GO CREATE TABLE [dbo].[Data]( [x] [money] NOT NULL, [y] [money] NOT NULL, CONSTRAINT [PK_Data] PRIMARY KEY CLUSTERED ( [x] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ) ON [PRIMARY] GO The Query select top 10000 s.x as sx, e.x as ex, s.y as sy, e.y as ey, e.y - s.y as y_delta, e.x - s.x as x_delta from Data s inner join Data e on e.x > s.x and e.x - s.x between xFrom and xTo --where e.y - s.y > @yDelta -- when uncommented causes a huge delay Update 1 - Execution Plan <?xml version="1.0" encoding="utf-16"?> <ShowPlanXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" Version="1.2" Build="11.0.2100.60" xmlns="http://schemas.microsoft.com/sqlserver/2004/07/showplan"> <BatchSequence> <Batch> <Statements> <StmtSimple StatementCompId="1" StatementEstRows="100" StatementId="1" StatementOptmLevel="FULL" StatementOptmEarlyAbortReason="GoodEnoughPlanFound" StatementSubTreeCost="0.0263655" StatementText="select top 100&#xD;&#xA;s.x as sx,&#xD;&#xA;e.x as ex,&#xD;&#xA;s.y as sy,&#xD;&#xA;e.y as ey,&#xD;&#xA;e.y - s.y as y_delta,&#xD;&#xA;e.x - s.x as x_delta&#xD;&#xA;from Data s &#xD;&#xA; inner join Data e&#xD;&#xA; on e.x &gt; s.x and e.x - s.x between 100 and 105&#xD;&#xA;where e.y - s.y &gt; 0.01&#xD;&#xA;" StatementType="SELECT" QueryHash="0xAAAC02AC2D78CB56" QueryPlanHash="0x747994153CB2D637" RetrievedFromCache="true"> <StatementSetOptions ANSI_NULLS="true" ANSI_PADDING="true" ANSI_WARNINGS="true" ARITHABORT="true" CONCAT_NULL_YIELDS_NULL="true" NUMERIC_ROUNDABORT="false" QUOTED_IDENTIFIER="true" /> <QueryPlan DegreeOfParallelism="0" NonParallelPlanReason="NoParallelPlansInDesktopOrExpressEdition" CachedPlanSize="24" CompileTime="13" CompileCPU="13" CompileMemory="424"> <MemoryGrantInfo SerialRequiredMemory="0" SerialDesiredMemory="0" /> <OptimizerHardwareDependentProperties EstimatedAvailableMemoryGrant="52199" EstimatedPagesCached="14561" EstimatedAvailableDegreeOfParallelism="4" /> <RelOp AvgRowSize="55" EstimateCPU="1E-05" EstimateIO="0" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Compute Scalar" NodeId="0" Parallel="false" PhysicalOp="Compute Scalar" EstimatedTotalSubtreeCost="0.0263655"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> <ColumnReference Column="Expr1004" /> <ColumnReference Column="Expr1005" /> </OutputList> <ComputeScalar> <DefinedValues> <DefinedValue> <ColumnReference Column="Expr1004" /> <ScalarOperator ScalarString="[SomeDb].[dbo].[Data].[y] as [e].[y]-[SomeDb].[dbo].[Data].[y] as [s].[y]"> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> </DefinedValue> <DefinedValue> <ColumnReference Column="Expr1005" /> <ScalarOperator ScalarString="[SomeDb].[dbo].[Data].[x] as [e].[x]-[SomeDb].[dbo].[Data].[x] as [s].[x]"> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> </DefinedValue> </DefinedValues> <RelOp AvgRowSize="39" EstimateCPU="1E-05" EstimateIO="0" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Top" NodeId="1" Parallel="false" PhysicalOp="Top" EstimatedTotalSubtreeCost="0.0263555"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="100" ActualEndOfScans="1" ActualExecutions="1" /> </RunTimeInformation> <Top RowCount="false" IsPercent="false" WithTies="false"> <TopExpression> <ScalarOperator ScalarString="(100)"> <Const ConstValue="(100)" /> </ScalarOperator> </TopExpression> <RelOp AvgRowSize="39" EstimateCPU="151828" EstimateIO="0" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Inner Join" NodeId="2" Parallel="false" PhysicalOp="Nested Loops" EstimatedTotalSubtreeCost="0.0263455"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="100" ActualEndOfScans="0" ActualExecutions="1" /> </RunTimeInformation> <NestedLoops Optimized="false"> <OuterReferences> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OuterReferences> <RelOp AvgRowSize="23" EstimateCPU="1.80448" EstimateIO="3.76461" EstimateRebinds="0" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="1" LogicalOp="Clustered Index Scan" NodeId="3" Parallel="false" PhysicalOp="Clustered Index Scan" EstimatedTotalSubtreeCost="0.0032831" TableCardinality="1640290"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="15225" ActualEndOfScans="0" ActualExecutions="1" /> </RunTimeInformation> <IndexScan Ordered="false" ForcedIndex="false" ForceScan="false" NoExpandHint="false"> <DefinedValues> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </DefinedValue> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </DefinedValue> </DefinedValues> <Object Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Index="[PK_Data]" Alias="[e]" IndexKind="Clustered" /> </IndexScan> </RelOp> <RelOp AvgRowSize="23" EstimateCPU="0.902317" EstimateIO="1.88387" EstimateRebinds="1" EstimateRewinds="0" EstimatedExecutionMode="Row" EstimateRows="100" LogicalOp="Clustered Index Seek" NodeId="4" Parallel="false" PhysicalOp="Clustered Index Seek" EstimatedTotalSubtreeCost="0.0263655" TableCardinality="1640290"> <OutputList> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </OutputList> <RunTimeInformation> <RunTimeCountersPerThread Thread="0" ActualRows="100" ActualEndOfScans="15224" ActualExecutions="15225" /> </RunTimeInformation> <IndexScan Ordered="true" ScanDirection="FORWARD" ForcedIndex="false" ForceSeek="false" ForceScan="false" NoExpandHint="false" Storage="RowStore"> <DefinedValues> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </DefinedValue> <DefinedValue> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </DefinedValue> </DefinedValues> <Object Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Index="[PK_Data]" Alias="[s]" IndexKind="Clustered" /> <SeekPredicates> <SeekPredicateNew> <SeekKeys> <EndRange ScanType="LT"> <RangeColumns> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </RangeColumns> <RangeExpressions> <ScalarOperator ScalarString="[SomeDb].[dbo].[Data].[x] as [e].[x]"> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> </RangeExpressions> </EndRange> </SeekKeys> </SeekPredicateNew> </SeekPredicates> <Predicate> <ScalarOperator ScalarString="([SomeDb].[dbo].[Data].[x] as [e].[x]-[SomeDb].[dbo].[Data].[x] as [s].[x])&gt;=($100.0000) AND ([SomeDb].[dbo].[Data].[x] as [e].[x]-[SomeDb].[dbo].[Data].[x] as [s].[x])&lt;=($105.0000) AND ([SomeDb].[dbo].[Data].[y] as [e].[y]-[SomeDb].[dbo].[Data].[y] as [s].[y])&gt;(0.01)"> <Logical Operation="AND"> <ScalarOperator> <Compare CompareOp="GE"> <ScalarOperator> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> <ScalarOperator> <Const ConstValue="($100.0000)" /> </ScalarOperator> </Compare> </ScalarOperator> <ScalarOperator> <Compare CompareOp="LE"> <ScalarOperator> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="x" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="x" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> <ScalarOperator> <Const ConstValue="($105.0000)" /> </ScalarOperator> </Compare> </ScalarOperator> <ScalarOperator> <Compare CompareOp="GT"> <ScalarOperator> <Arithmetic Operation="SUB"> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[e]" Column="y" /> </Identifier> </ScalarOperator> <ScalarOperator> <Identifier> <ColumnReference Database="[SomeDb]" Schema="[dbo]" Table="[Data]" Alias="[s]" Column="y" /> </Identifier> </ScalarOperator> </Arithmetic> </ScalarOperator> <ScalarOperator> <Const ConstValue="(0.01)" /> </ScalarOperator> </Compare> </ScalarOperator> </Logical> </ScalarOperator> </Predicate> </IndexScan> </RelOp> </NestedLoops> </RelOp> </Top> </RelOp> </ComputeScalar> </RelOp> </QueryPlan> </StmtSimple> </Statements> </Batch> </BatchSequence> </ShowPlanXML>

    Read the article

  • ?Exadata??????DBFS

    - by Liu Maclean(???)
    ?Exadata???DBFS ??????? 1. ??fuse RPM  [root@dm01db01 ~]# yum install fuse Loaded plugins: rhnplugin, security This system is not registered with ULN. ULN support will be disabled. Setting up Install Process Resolving Dependencies --> Running transaction check ---> Package fuse.x86_64 0:2.7.4-8.0.1.el5 set to be updated --> Finished Dependency Resolution Dependencies Resolved ========================================================================================================================================================================  Package                            Arch                                 Version                                         Repository                                Size ======================================================================================================================================================================== Installing:  fuse                               x86_64                               2.7.4-8.0.1.el5                                 el5_latest                                85 k Transaction Summary ======================================================================================================================================================================== Install       1 Package(s) Upgrade       0 Package(s) Total download size: 85 k Is this ok [y/N]: y Downloading Packages: fuse-2.7.4-8.0.1.el5.x86_64.rpm                                                                                                                  |  85 kB     00:00      Running rpm_check_debug Running Transaction Test Finished Transaction Test Transaction Test Succeeded Running Transaction   Installing     : fuse                                                                                                                                             1/1  Installed:   fuse.x86_64 0:2.7.4-8.0.1.el5                                                                                                                                          [root@dm01db01 ~]# yum install fuse-libs Loaded plugins: rhnplugin, security This system is not registered with ULN. ULN support will be disabled. Setting up Install Process Resolving Dependencies --> Running transaction check ---> Package fuse-libs.i386 0:2.7.4-8.0.1.el5 set to be updated ---> Package fuse-libs.x86_64 0:2.7.4-8.0.1.el5 set to be updated --> Finished Dependency Resolution Dependencies Resolved ========================================================================================================================================================================  Package                                Arch                                Version                                       Repository                               Size ======================================================================================================================================================================== Installing:  fuse-libs                              i386                                2.7.4-8.0.1.el5                               el5_latest                               71 k  fuse-libs                              x86_64                              2.7.4-8.0.1.el5                               el5_latest                               70 k Transaction Summary ======================================================================================================================================================================== Install       2 Package(s) Upgrade       0 Package(s) Total download size: 141 k Is this ok [y/N]: y Downloading Packages: (1/2): fuse-libs-2.7.4-8.0.1.el5.x86_64.rpm                                                                                                      |  70 kB     00:00      (2/2): fuse-libs-2.7.4-8.0.1.el5.i386.rpm                                                                                                        |  71 kB     00:00      ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Total                                                                                                                                    71 kB/s | 141 kB     00:01      Running rpm_check_debug Running Transaction Test Finished Transaction Test Transaction Test Succeeded Running Transaction   Installing     : fuse-libs                                                                                                                                        1/2    Installing     : fuse-libs                                                                                                                                        2/2  Installed:   fuse-libs.i386 0:2.7.4-8.0.1.el5                                                  fuse-libs.x86_64 0:2.7.4-8.0.1.el5                                                  Complete! [root@dm01db01 ~]# yum install fuse-devel Loaded plugins: rhnplugin, security This system is not registered with ULN. ULN support will be disabled. Setting up Install Process Resolving Dependencies --> Running transaction check ---> Package fuse-devel.i386 0:2.7.4-8.0.1.el5 set to be updated ---> Package fuse-devel.x86_64 0:2.7.4-8.0.1.el5 set to be updated --> Finished Dependency Resolution Dependencies Resolved ========================================================================================================================================================================  Package                                 Arch                                Version                                      Repository                               Size ======================================================================================================================================================================== Installing:  fuse-devel                              i386                                2.7.4-8.0.1.el5                              el5_latest                               28 k  fuse-devel                              x86_64                              2.7.4-8.0.1.el5                              el5_latest                               28 k Transaction Summary ======================================================================================================================================================================== Install       2 Package(s) Upgrade       0 Package(s) Total download size: 57 k Is this ok [y/N]: y Downloading Packages: (1/2): fuse-devel-2.7.4-8.0.1.el5.x86_64.rpm                                                                                                     |  28 kB     00:00      (2/2): fuse-devel-2.7.4-8.0.1.el5.i386.rpm                                                                                                       |  28 kB     00:00      ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Total                                                                                                                                    21 kB/s |  57 kB     00:02      Running rpm_check_debug Running Transaction Test Finished Transaction Test Transaction Test Succeeded Running Transaction   Installing     : fuse-devel                                                                                                                                       1/2    Installing     : fuse-devel                                                                                                                                       2/2  Installed:   fuse-devel.i386 0:2.7.4-8.0.1.el5                                                 fuse-devel.x86_64 0:2.7.4-8.0.1.el5                                                 Complete! 2. ?? DBFS??? ?????? cd $ORACLE_HOME/rdbms/admin sqlplus / as sysdba Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production With the Partitioning, Real Application Clusters, Automatic Storage Management, OLAP, Data Mining and Real Application Testing options SQL> @prvtfspi.plb Package body created. No errors. Package body created. No errors. ?????dbms_dbfs_sfs package  SQL> create tablespace dbfstbs datafile size 20g; Tablespace created. SQL> create user maclean_dbfs identified by oracle; User created. SQL> grant dba to maclean_dbfs; Grant succeeded. @@!!! SQL> grant  dbfs_role to maclean_dbfs; Grant succeeded. 3. ??DBFS SQL> conn maclean_dbfs/oracle Connected. SQL> @?/rdbms/admin/dbfs_create_filesystem.sql  dbfstbs mac_dbfs   No errors. -------- CREATE STORE: begin dbms_dbfs_sfs.createFilesystem(store_name => 'FS_MAC_DBFS', tbl_name => 'T_MAC_DBFS', tbl_tbs => 'dbfstbs', lob_tbs => 'dbfstbs', do_partition => false, partition_key => 1, do_compress => false, compression => '', do_dedup => false, do_encrypt => false); end; -------- REGISTER STORE: begin dbms_dbfs_content.registerStore(store_name=> 'FS_MAC_DBFS', provider_name => 'sample1', provider_package => 'dbms_dbfs_sfs'); end; -------- MOUNT STORE: begin dbms_dbfs_content.mountStore(store_name=>'FS_MAC_DBFS', store_mount=>'mac_dbfs'); end; -------- CHMOD STORE: declare m integer; begin m := dbms_fuse.fs_chmod('/mac_dbfs', 16895); end; No errors. 4.  ??mount point  [root@dm01db01 ~]# mkdir /dbfs [root@dm01db01 ~]# chown oracle:oinstall /dbfs 5. ??library path ?OS  # echo "/usr/local/lib" >> /etc/ld.so.conf.d/usr_local_lib.conf 6. ?????? export ORACLE_HOME=/s01/orabase/product/11.2.0/dbhome_1 [root@dm01db01 ~]# ln -s $ORACLE_HOME/lib/libclntsh.so.11.1 /usr/local/lib/libclntsh.so.11.1 [root@dm01db01 ~]#  ln -s $ORACLE_HOME/lib/libnnz11.so /usr/local/lib/libnnz11.so [root@dm01db01 ~]#  ln -s /lib64/libfuse.so.2 /usr/local/lib/libfuse.so.2 7. ??ldconfig  [root@dm01db01 ~]# ldconfig [root@dm01db01 ~]#  8. ??fusermount??????? [root@dm01db01 ~]#  chmod +x /usr/bin/fusermount [root@dm01db01 ~]#  ls -l /usr/bin/fusermount lrwxrwxrwx 1 root root 15 Sep  7 03:06 /usr/bin/fusermount -> /bin/fusermount [root@dm01db01 ~]#  ls -l /bin/fusermount -rwsr-x--x 1 root fuse 27072 Oct 17  2011 /bin/fusermount 9. ???????OS  dbfs_client maclean_dbfs@dm01db01:1521/orcl  /dbfs 10. ????nohup + &?????mount DBFS,???????????? [oracle@dm01db01 ~]$ echo "oracle"  >> dbfs_pw [oracle@dm01db01 ~]$ nohup dbfs_client maclean_dbfs@dm01db01:1521/orcl /dbfs < dbfs_pw & [oracle@dm01db01 ~]$ df -h Filesystem            Size  Used Avail Use% Mounted on /dev/mapper/VGExaDb-LVDbSys1                        30G   15G   14G  53% / /dev/sda1             502M   30M  447M   7% /boot /dev/mapper/VGExaDb-LVDbOra1                        99G   20G   75G  21% /u01 tmpfs                  81G     0   81G   0% /dev/shm dbfs-maclean_dbfs@orcl:/                        20G  120K   20G   1% /dbfs [oracle@dm01db01 ~]$ mount /dev/mapper/VGExaDb-LVDbSys1 on / type ext3 (rw) proc on /proc type proc (rw) sysfs on /sys type sysfs (rw) devpts on /dev/pts type devpts (rw,gid=5,mode=620) /dev/sda1 on /boot type ext3 (rw,nodev) /dev/mapper/VGExaDb-LVDbOra1 on /u01 type ext3 (rw,nodev) tmpfs on /dev/shm type tmpfs (rw,size=82052m) none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw) dbfs-maclean_dbfs@orcl:/ on /dbfs type fuse (rw,nosuid,nodev,max_read=1048576,default_permissions,user=oracle) [oracle@dm01db01 ~]$ ls -l /dbfs/ total 0 drwxrwxrwx 3 root root 0 Sep 14 05:11 mac_dbfs [oracle@nas ~]$ dbfs_client  --------MOUNT mode: usage: dbfs_client <db_user>@<db_server> [options] <mountpoint>   db_user:              Name of Database user that owns DBFS content repository filesystem(s)   db_server:            A valid connect string for Oracle database server                         (for example, hrdb_host:1521/hrservice)   mountpoint:           Path to mount Database File System(s)                         All the file systems owned by the database user will be seen at the mountpoint. DBFS options:   -o direct_io          Bypass the Linux page cache. Gives much better performance for large files.                         Programs in the file system cannot be executed with this option.                         This option is recommended when DBFS is used as an ETL staging area.   -o wallet             Run dbfs_client in background.                         Wallet must be configured to get credentials.   -o failover           dbfs_client fails over to surviving database instance with no data loss.                         Some performance cost on writes, especially for small files.   -o allow_root         Allows root access to the filesystem.                         This option requires setting 'user_allow_other' parameter in '/etc/fuse.conf'.   -o allow_other        Allows other users access to the file system.                         This option requires setting 'user_allow_other' parameter in '/etc/fuse.conf'.   -o rw                 Mount the filesystem read-write. [Default]   -o ro                 Mount the filesystem read-only. Files cannot be modified.   -o trace_file=STR     Tracing <filename> | 'syslog'   -o trace_level=N      Trace Level: 1->DEBUG, 2->INFO, 3->WARNING, 4->ERROR, 5->CRITICAL [Default: 4]   -h                    help   -V                    version --------COMMAND mode: Usage:     dbfs_client <db_user>@<db_server> --command command [switches] [arguments]             command:          Command to be executed, e.g., ls, cp, mkdir, rm            switches:         Switches are described below for each command.            arguments:        File names or directory names NOTE:      All database pathnames must be absolute and preceded by dbfs:/ Commands   ls            dbfs_client <db_user>@<db_server> --command ls [switches] target      Switches:              -a         Show all files including those starting with '.'            -l         Use a long listing format. In addition to the name of each file                       print the file type, permissions, size, user and group information            -R         List subdirectories recursively cp                     dbfs_client <db_user>@<db_server> --command cp [switches] source destination      Switches:              -r, -R      Copy a directory and its contents recursively into the destination directory rm                     dbfs_client <db_user>@<db_server> --command rm [switches] target      Switches:              -r, -R      Removes a directory and its contents recursively mkdir                  dbfs_client <db_user>@<db_server> --command mkdir directory_name Examples                     dbfs_client ETLUser@DBConnectString --command ls -l -a dbfs:/staging_area/directory1            dbfs_client ETLUser@DBConnectString --command cp -R  /tmp/1-Jan-2009-dump dbfs:/staging_area            dbfs_client ETLUser@DBConnectString --command rm dbfs:/staging_area/hello.txt            dbfs_client ETLUser@DBConnectString --command mkdir dbfs:/staging_area/directory2 [oracle@dm01db01 ~]$ ls -lh /tmp/largefile -rw-r--r-- 1 oracle oinstall 2.0G Sep 14 08:50 /tmp/largefile [oracle@dm01db01 ~]$ time dbfs_client  maclean_dbfs@dm01db01:1521/orcl --command cp /tmp/largefile dbfs:/mac_dbfs Password: /tmp/largefile -> dbfs:/mac_dbfs/largefile real    0m11.802s user    0m0.580s sys     0m2.375s ?Exadata?????2G?????? DBFS???11s => 200MB/s 

    Read the article

  • WMI/VBS/HTML System Information Script

    - by Methical
    Hey guys; havin' a problem with this code here; can't seem to work out whats goin' wrong with it. All other variables seem to print fine in the HTML ouput; but I get an error that relates to the cputype variable. I get the following error C:\Users\Methical\Desktop\sysinfo.vbs(235,1) Microsoft VBScript runtime error: Invalid procedure call or argument I think it has somethin' to do with this line here fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>CPU</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & cputype & "</i></td></tr>" If i delete this line; the script compiles and outputs with no errors. Here is the full code below Dim strComputer, objWMIService, propValue, objItem Dim strUserName, strPassword, colItems, SWBemlocator ' This section querries for the workstation to be scanned. UserName = "" Password = "" strComputer = "127.1.1.1" ImgDir = "C:\Scripts\images\" 'Sets up the connections and opjects to be used throughout the script. Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator") Set objWMIService = SWBemlocator.ConnectServer(,"root\CIMV2",strUserName,strPassword) 'This determines the current date and time of the PC being scanned. Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_LocalTime", "WQL", wbemFlagReturnImmediately + wbemFlagForwardOnly) For Each objItem in colItems If objItem.Minute < 10 Then theMinutes = "0" & objItem.Minute Else theMinutes = objItem.Minute End If If objItem.Second < 10 Then theSeconds = "0" & objItem.Second Else theSeconds = objItem.Second End If DateTime = objItem.Month & "/" & objItem.Day & "/" & objItem.Year & " - " & objItem.Hour & ":" & theMinutes & ":" & theSeconds Next 'Gets some ingomation about the Operating System including Service Pack level. Set colItems = objWMIService.ExecQuery("Select * from Win32_OperatingSystem",,48) For Each objItem in colItems WKID = objItem.CSName WKOS = objItem.Caption CSD = objItem.CSDVersion Architecture = objItem.OSArchitecture SysDir = objItem.SystemDirectory SysDrive = objItem.SystemDrive WinDir = objItem.WindowsDirectory ServicePack = objItem.ServicePackMajorVersion & "." & objItem.ServicePackMinorVersion Next 'This section returns the Time Zone Set colItems = objWMIService.ExecQuery("Select * from Win32_TimeZone") For Each objItem in colItems Zone = objItem.Description Next 'This section displays the Shadow Storage information Set colItems = objWMIService.ExecQuery("Select * from Win32_ShadowStorage") For Each objItem in colItems Allocated = int((objItem.AllocatedSpace/1024)/1024+1) UsedSpace = int((objItem.UsedSpace/1024)/1024+1) MaxSpace = int((objItem.MaxSpace/1024)/1024+1) Next 'This section returns the InstallDate of the OS Set objSWbemDateTime = _ CreateObject("WbemScripting.SWbemDateTime") Set colOperatingSystems = _ objWMIService.ExecQuery _ ("Select * from Win32_OperatingSystem") For Each objOperatingSystem _ in colOperatingSystems objSWbemDateTime.Value = _ objOperatingSystem.InstallDate InstallDate = _ objSWbemDateTime.GetVarDate(False) Next 'This section returns the Video card and current resolution. Set colItems = objWMIService.ExecQuery("Select * from Win32_DisplayConfiguration",,48) For Each objItem in colItems VideoCard = objItem.DeviceName Resolution = objItem.PelsWidth & " x " & objItem.PelsHeight & " x " & objItem.BitsPerPel & " bits" Next 'This section returns the Video card memory. Set objWMIService = GetObject("winmgmts:root\cimv2") Set colItems = objWMIService.ExecQuery ("Select * from Win32_VideoController") For Each objItem in colItems VideoMemory = objItem.AdapterRAM/1024/1024 Next 'This returns various system information including current logged on user, domain, memory, manufacture and model. Set colItems = objWMIService.ExecQuery("Select * from Win32_ComputerSystem",,48) For Each objItem in colItems UserName = objItem.UserName Domain = objItem.Domain TotalMemory = int((objItem.TotalPhysicalMemory/1024)/1024+1) Manufacturer = objItem.Manufacturer Model = objItem.Model SysType = objItem.SystemType Next 'This determines the total hard drive space and free hard drive space. Set colItems = objWMIService.ExecQuery("Select * from Win32_LogicalDisk Where Name='C:'",,48) For Each objItem in colItems FreeHDSpace = Fix(((objItem.FreeSpace/1024)/1024)/1024) TotalHDSpace = Fix(((objItem.Size/1024)/1024)/1024) Next 'This section returns the default printer and printer port. Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_Printer where Default=True", "WQL", wbemFlagReturnImmediately + wbemFlagForwardOnly) For Each objItem in colItems Printer = objItem.Name PortName = objItem.PortName Next 'This returns the CPU information. Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_Processor", "WQL", wbemFlagReturnImmediately + wbemFlagForwardOnly) For Each objItem in colItems CPUDesc = LTrim(objItem.Name) Next '// CPU Info For each objCPU in GetObject("winmgmts:{impersonationLevel=impersonate}\\" & strComputer & "\root\cimv2").InstancesOf("Win32_Processor") Select Case objCPU.Family Case 2 cputype = "Unknown" Case 11 cputype = "Pentium brand" Case 12 cputype = "Pentium Pro" Case 13 cputype = "Pentium II" Case 14 cputype = "Pentium processor with MMX technology" Case 15 cputype = "Celeron " Case 16 cputype = "Pentium II Xeon" Case 17 cputype = "Pentium III" Case 28 cputype = "AMD Athlon Processor Family" Case 29 cputype = "AMD Duron Processor" Case 30 cputype = "AMD2900 Family" Case 31 cputype = "K6-2+" Case 130 cputype = "Itanium Processor" Case 176 cputype = "Pentium III Xeon" Case 177 cputype = "Pentium III Processor with Intel SpeedStep Technology" Case 178 cputype = "Pentium 4" Case 179 cputype = "Intel Xeon" Case 181 cputype = "Intel Xeon processor MP" Case 182 cputype = "AMD AthlonXP Family" Case 183 cputype = "AMD AthlonMP Family" Case 184 cputype = "Intel Itanium 2" Case 185 cputype = "AMD Opteron? Family" End Select Next 'This returns the current uptime (time since last reboot) of the system. Set colOperatingSystems = objWMIService.ExecQuery ("Select * from Win32_OperatingSystem") For Each objOS in colOperatingSystems dtmBootup = objOS.LastBootUpTime dtmLastBootupTime = WMIDateStringToDate(dtmBootup) dtmSystemUptime = DateDiff("h", dtmLastBootUpTime, Now) Uptime = dtmSystemUptime Next Function WMIDateStringToDate(dtmBootup) WMIDateStringToDate = CDate(Mid(dtmBootup, 5, 2) & "/" & Mid(dtmBootup, 7, 2) & "/" & Left(dtmBootup, 4) & " " & Mid (dtmBootup, 9, 2) & ":" & Mid(dtmBootup, 11, 2) & ":" & Mid(dtmBootup,13, 2)) End Function dim objFSO Set objFSO = CreateObject("Scripting.FileSystemObject") ' -- The heart of the create file script ----------------------- ' -- Creates the file using the value of strFile on Line 11 ' -------------------------------------------------------------- Set fileOutput = objFSO.CreateTextFile( "x.html", true ) 'Set fileOutput = objExplorer.Document 'This is the code for the web page to be displayed. fileOutput.WriteLine "<html>" fileOutput.WriteLine " <head>" fileOutput.WriteLine " <title>System Information for '" & WKID & "' </title>" fileOutput.WriteLine " </head>" fileOutput.WriteLine " <body bgcolor='#FFFFFF' text='#000000' link='#0000FF' vlink='000099' alink='#00FF00'>" fileOutput.WriteLine " <center>" fileOutput.WriteLine " <h1>System Information for " & WKID & "</h1>" fileOutput.WriteLine " <table border='0' cellspacing='1' cellpadding='1' width='95%'>" fileOutput.WriteLine " <tr><td background='" & ImgDir & "blue_spacer.gif'>" fileOutput.WriteLine " <table border='0' cellspacing='0' cellpadding='0' width='100%'>" fileOutput.WriteLine " <tr><td>" fileOutput.WriteLine " <table border='0' cellspacing='0' cellpadding='0' width='100%'>" fileOutput.WriteLine " <tr>" fileOutput.WriteLine " <td width='5%' align='left' valign='middle' background='" & ImgDir & "blue_spacer.gif'><img src='" & ImgDir & "write.gif'></td>" fileOutput.WriteLine " <td width='95%' align='left' valign='middle' background='" & ImgDir & "blue_spacer.gif'> <font color='#FFFFFF' size='5'>WKInfo - </font><font color='#FFFFFF' size='3'>General information on the Workstation.</font></td>" fileOutput.WriteLine " </tr>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#FFFFFF'>" fileOutput.WriteLine " <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>Date and Time</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Date/Time</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & DateTime & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Uptime</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Uptime & " hours</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Time Zone</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Zone & " </i></td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>General Computer Information</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Manufacturer</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Manufacturer & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Model</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Model & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Based</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & SysType & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Operating System</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & WKOS & " " & CSD & " " & Architecture & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Operating System Install Date</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & InstallDate & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>UserName</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & UserName & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Workstation Name</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & WKID & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Domain</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Domain & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Drive</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & SysDrive & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Directory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & SysDir & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Windows Directory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & WinDir & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>ShadowStorage Allocated Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Allocated & " MB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>ShadowStorage Used Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & UsedSpace & " MB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>ShadowStorage Max Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & MaxSpace & " MB</i></td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>General Hardware Information</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>CPU</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & cputype & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Memory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & TotalMemory & " MB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Total HDD Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & TotalHDSpace & " GB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Free HDD Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & FreeHDSpace & " GB</i></td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>General Video Card Information</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Video Card</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & VideoCard & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Resolution</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Resolution & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Memory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & VideoMemory & " MB</i></td></tr>" 'This section lists all the current services and their status. fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>Current Service Information</h3></b></TD></TR>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#f0f0f0'>" fileOutput.WriteLine " <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine " <TR><TD width='70%' align='center' bgcolor='#e0e0e0'><b>Service Name</b></td><TD width='30%' align='center' bgcolor='#e0e0e0'><b>Service State</b></td><tr>" Set colRunningServices = objWMIService.ExecQuery("Select * from Win32_Service") For Each objService in colRunningServices fileOutput.WriteLine " <TR><TD align='left' bgcolor='#f0f0f0'>" & objService.DisplayName & "</TD><td bgcolor=#f0f0f0 align=center><i>" & objService.State & "</i></td></tr>" wscript.echo " <TR><TD align='left' bgcolor='#f0f0f0'>" & objService.DisplayName & "</TD><td bgcolor=#f0f0f0 align=center><i>" & objService.State & "</i></td></tr>" Next fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" 'This section lists all the current running processes and some information. fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>Current Process Information</h3></b></TD></TR>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#f0f0f0'>" fileOutput.WriteLine " <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine " <TR><TD width='10%' align='center' bgcolor='#e0e0e0'><b>PID</b></td><TD width='35%' align='center' bgcolor='#e0e0e0'><b>Process Name</b></td><TD width='40%' align='center' bgcolor='#e0e0e0'><b>Owner</b></td><TD width='15%' align='center' bgcolor='#e0e0e0'><b>Memory</b></td></tr>" Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process") For Each objProcess in colProcessList colProperties = objProcess.GetOwner(strNameOfUser,strUserDomain) fileOutput.WriteLine " <TR><TD align='center' bgcolor='#f0f0f0'>" & objProcess.Handle & "</td><TD align='center' bgcolor='#f0f0f0'>" & objProcess.Name & "</td><TD align='center' bgcolor='#f0f0f0'>" & strUserDomain & "\" & strNameOfUser & "</td><TD align='center' bgcolor='#f0f0f0'>" & objProcess.WorkingSetSize/1024 & " kb</td><tr>" Next fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" 'This section lists all the currently installed software on the machine. fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><i>Installed Software</i></b></TD></TR>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#f0f0f0'>" Set colSoftware = objWMIService.ExecQuery ("Select * from Win32_Product") For Each objSoftware in colSoftware fileOutput.WriteLine" <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine" <tr><td width=30% align=center bgcolor='#e0e0e0'><b>Name</b></td><td width=30% align=center bgcolor='#e0e0e0'><b>Vendor</b></td><td width=30% align=center bgcolor='#e0e0e0'><b>Version</b></td></tr>" fileOutput.WriteLine" <tr><td align=center bgcolor=#f0f0f0>" & objSoftware.Name & "</td><td align=center bgcolor=#f0f0f0>" & objSoftware.Vendor & "</td><td align=center bgcolor=#f0f0f0>" & objSoftware.Version & "</td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine" </table>" Next fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " <p><small></small></p>" fileOutput.WriteLine " </center>" fileOutput.WriteLine " </body>" fileOutput.WriteLine "<html>" fileOutput.close WScript.Quit

    Read the article

< Previous Page | 457 458 459 460 461