Search Results

Search found 32116 results on 1285 pages for 'object object mapping'.

Page 462/1285 | < Previous Page | 458 459 460 461 462 463 464 465 466 467 468 469  | Next Page >

  • JAX-WS MarshalException with custom JAX-B bindings: Unable to marshal type "java.lang.String" as an

    - by MoneyMark
    I seem to be having an issue with Jax-WS and Jax-b playing nicely together. I need to consume a web-service, which has a predefined WSDL. When executing the generated client I am receiving the following error: javax.xml.ws.WebServiceException: javax.xml.bind.MarshalException - with linked exception: [com.sun.istack.SAXException2: unable to marshal type "java.lang.String" as an element because it is missing an @XmlRootElement annotation] This started occurring when I used an external custom binding file to map needlessly complex types to java.lang.string. Here is an excerpt from my binding file: <?xml version="1.0" encoding="UTF-8"?> <bindings xmlns="http://java.sun.com/xml/ns/jaxb" version="2.0" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"> <bindings schemaLocation="http://localhost:7777/GESOR/services/RegistryUpdatePort?wsdl#types?schema1" node="/xs:schema"> <bindings node="//xs:element[@name='StwrdCompany']//xs:complexType//xs:sequence//xs:element[@name='company_name']"> <property> <baseType name="java.lang.String" /> </property> </bindings> <bindings node="//xs:element[@name='StwrdCompany']//xs:complexType//xs:sequence//xs:element[@name='address1']"> <property> <baseType name="java.lang.String" /> </property> </bindings> <bindings node="//xs:element[@name='StwrdCompany']//xs:complexType//xs:sequence//xs:element[@name='address2']"> <property> <baseType name="java.lang.String" /> </property> </bindings> ...more fields </bindings> </bindings> When executing wsimport against the provided WSDL, StwrdCompany is generated with the following variables declared: @XmlRootElement(name = "StwrdCompany") public class StwrdCompany { @XmlElementRef(name = "company_name", type = JAXBElement.class) protected String companyName; @XmlElementRef(name = "address1", type = JAXBElement.class) protected String address1; @XmlElementRef(name = "address2", type = JAXBElement.class) ... more fields ... getters/setters @XmlAccessorType(XmlAccessType.FIELD) @XmlType(name = "", propOrder = { "value" }) public static class CompanyName { @XmlValue protected String value; @XmlAttribute protected Boolean updateToNULL; /** * Gets the value of the value property. * * @return * possible object is * {@link String } * */ public String getValue() { return value; } /** * Sets the value of the value property. * * @param value * allowed object is * {@link String } * */ public void setValue(String value) { this.value = value; } /** * Gets the value of the updateToNULL property. * * @return * possible object is * {@link Boolean } * */ public boolean isUpdateToNULL() { if (updateToNULL == null) { return false; } else { return updateToNULL; } } /** * Sets the value of the updateToNULL property. * * @param value * allowed object is * {@link Boolean } * */ public void setUpdateToNULL(Boolean value) { this.updateToNULL = value; } ... more inner classes } } Finally, here is the associated snippet from the WSDL that seems to be causing such grief. <xs:element name="StwrdCompany"> <xs:complexType> <xs:sequence> <xs:element maxOccurs="1" minOccurs="0" name="company_name" nillable="true"> <xs:complexType> <xs:simpleContent> <xs:extension base="xs:string"> <xs:attribute default="false" name="updateToNULL" type="xs:boolean"/> </xs:extension> </xs:simpleContent> </xs:complexType> </xs:element> <xs:element maxOccurs="1" minOccurs="0" name="address1" nillable="true"> <xs:complexType> <xs:simpleContent> <xs:extension base="xs:string"> <xs:attribute default="false" name="updateToNULL" type="xs:boolean"/> </xs:extension> </xs:simpleContent> </xs:complexType> </xs:element> ... more fields in the same format <xs:element maxOccurs="1" minOccurs="0" name="p_source_timestamp" nillable="false" type="xs:string"/> </xs:sequence> <xs:attribute name="company_xid" type="xs:string"/> </xs:complexType> </xs:element> The reason for the custom binding is so I can map user input from a pojo into the StwrdCompany object more easily, whether it be direct instantiation or through the use of Dozer for bean mapping. I was unable to successfully map between the objects without the custom binding. Finally, one other thing I tried was setting a globalBinding definition: <globalBindings generateValueClass="false"></globalBindings> This caused the server to through an argument mismatch exception since the Soap Message was using xs:string xml types instead of passing the defined complex types, so I abandoned that idea. Any insight into what is causing the MarshalException or how to go about solving the issue of calling the webservice and mapping these objects more easily, is greatly appreciated. I've been searching for days and I sadly think I am stumped.

    Read the article

  • "Randomly" occurring errors...

    - by ClarkeyBoy
    Hi, My website has a setup whereby when the application starts a module called SiteContent is "created". This runs a clearup function which basically deletes any irrelevant data from the database, in case any has been left in there from previously run functions. The module has instances of Manager classes - namely RangeManager, CollectionManager, DesignManager. There are others but I will just use these as an example. Each Manager class contains an array of items - items may be of type Range, Collection or Design, whichever one is relevant. Data for each range is then read into an instance of Range, Collection or Design. I know this is basically duplicating data - not very efficient but its my final year project at the moment so I can always change it to use Linq or something similar later, when I am not pressured by the one month deadline. I have a form which, on clicking the Save button, saves data by calling SiteContent.RangeManager.Create(vars) or SiteContent.RangeManager.Update(Range As Range, vars) (or the equivalent for other manager classes, whichever one happens to be relevant). These functions call a stored procedure to insert or update in the relevant table. Classes Range, Collection and Design all have attributes such as Name, Description, Display and several others. When the Create or Update function is called, the Manager loops through all the other items to check if an item with the same name already exists. The Update function ensures that it does not compare the item being updated to itself. A custom exception (ItemAlreadyExistsException) is thrown if another item with the same name is found. For some weird reason, if I go into a Range, Collection or Design in edit mode, change something and try to update it, it occasionally doesnt update the item. When I say occasionally I mean every 3 - 4 page loads, sometimes more. I see absolutely no pattern in when or why it occurs. I have a try-catch statement which catches ItemAlreadyExistsException, and outputs "An item with this name already exists" when caught. Occasionally it will output this; other times it will not. Does anyone have any idea why this could happen? Maybe a mistake which someone has made and solved before? I used to have regular expressions in place that the names were compared to - I believe it was [a-zA-Z]{1, 100} (between 1 and 100 lower- or upper-case characters). For some reason the customer who I am developing the site for used to get errors saying its not in the correct format. Yet he could try the same text 5 minutes later and it would work fine. I am thinking this could well be the same problem, since both problems occur at random. Many thanks in advance. Regards, Richard Clarke Edit: After much time spent narrowing down the code, I have decided to wait till my brother, who has been a programmer for at least 8 years more than I have, to come down over Easter and get him to have a look at it. If he cant solve it then I will zip the files up and put them somewhere for people to access and have a go at. I narrowed it down literally to the minimum number of files possible, and it still occurs. It seems to be about every 10th time. Having said that, I force the manager classes to refresh every 10 page loads or 5 minutes (whichever one is sooner). I may look into this - this could be causing a problem. Basically each Manager contains an array of an object. This array is populated using data from the database. The Update function takes an instance of the item and the new values to be set for the object. If it happens to be a page load where the array is reset (ie the data is loaded freshly from the database) then the object instance with the same ID wont be the same instance as the one being passed in. This explains the fact that it throws an ItemAlreadyExistsException now and then. It all makes sense now the more I think about it. If I were to pass in the ID of the object to be altered, rather than the object itself, then it should work perfectly. I will answer the question if I solve it..

    Read the article

  • WCF – interchangeable data-contract types

    - by nmarun
    In a WSDL based environment, unlike a CLR-world, we pass around the ‘state’ of an object and not the reference of an object. Well firstly, what does ‘state’ mean and does this also mean that we can send a struct where a class is expected (or vice-versa) as long as their ‘state’ is one and the same? Let’s see. So I have an operation contract defined as below: 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract] 5: Employee SaveEmployee(Employee employee); 6: } 7:  8: [ServiceBehavior] 9: public class LearnWcfService : ILearnWcfServiceExtend 10: { 11: public Employee SaveEmployee(Employee employee) 12: { 13: employee.EmployeeId = 123; 14: return employee; 15: } 16: } Quite simplistic operation there (which translates to ‘absolutely no business value’). Now, the data contract Employee mentioned above is a struct. 1: public struct Employee 2: { 3: public int EmployeeId { get; set; } 4:  5: public string FName { get; set; } 6: } After compilation and consumption of this service, my proxy (in the Reference.cs file) looks like below (I’ve ignored the rest of the details just to avoid unwanted confusion): 1: public partial struct Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged I call the service with the code below: 1: private static void CallWcfService() 2: { 3: Employee employee = new Employee { FName = "A" }; 4: Console.WriteLine("IsValueType: {0}", employee.GetType().IsValueType); 5: Console.WriteLine("IsClass: {0}", employee.GetType().IsClass); 6: Console.WriteLine("Before calling the service: {0} - {1}", employee.EmployeeId, employee.FName); 7: employee = LearnWcfServiceClient.SaveEmployee(employee); 8: Console.WriteLine("Return from the service: {0} - {1}", employee.EmployeeId, employee.FName); 9: } The output is: I now change my Employee type from a struct to a class in the proxy class and run the application: 1: public partial class Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged { The output this time is: The state of an object implies towards its composition, the properties and the values of these properties and not based on whether it is a reference type (class) or a value type (struct). And as shown above, we’re actually passing an object by its state and not by reference. Continuing on the same topic of ‘type-interchangeability’, WCF treats two data contracts as equivalent if they have the same ‘wire-representation’. We can do so using the DataContract and DataMember attributes’ Name property. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: public int Id { get; set; } 6:  7: [DataMember] 8: public string FirstName { get; set; } 9: } 10:  11: [DataContract(Name="Person")] 12: public class Employee 13: { 14: [DataMember(Name = "Id")] 15: public int EmployeeId { get; set; } 16:  17: [DataMember(Name="FirstName")] 18: public string FName { get; set; } 19: } I’ve created two data contracts with the exact same wire-representation. Just remember that the names and the types of data members need to match to be considered equivalent. The question then arises as to what gets generated in the proxy class. Despite us declaring two data contracts (Person and Employee), only one gets emitted – Person. This is because we’re saying that the Employee type has the same wire-representation as the Person type. Also that the signature of the SaveEmployee operation gets changed on the proxy side: 1: [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")] 2: [System.ServiceModel.ServiceContractAttribute(ConfigurationName="ServiceProxy.ILearnWcfServiceExtend")] 3: public interface ILearnWcfServiceExtend 4: { 5: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployee", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployeeResponse")] 6: ClientApplication.ServiceProxy.Person SaveEmployee(ClientApplication.ServiceProxy.Person employee); 7: } But, on the service side, the SaveEmployee still accepts and returns an Employee data contract. 1: [ServiceBehavior] 2: public class LearnWcfService : ILearnWcfServiceExtend 3: { 4: public Employee SaveEmployee(Employee employee) 5: { 6: employee.EmployeeId = 123; 7: return employee; 8: } 9: } Despite all these changes, our output remains the same as the last one: This is type-interchangeability at work! Here’s one more thing to ponder about. Our Person type is a struct and Employee type is a class. Then how is it that the Person type got emitted as a ‘class’ in the proxy? It’s worth mentioning that WSDL describes a type called Employee and does not say whether it is a class or a struct (see the SOAP message below): 1: <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 2: xmlns:tem="http://tempuri.org/" 3: xmlns:ser="http://schemas.datacontract.org/2004/07/ServiceApplication"> 4: <soapenv:Header/> 5: <soapenv:Body> 6: <tem:SaveEmployee> 7: <!--Optional:--> 8: <tem:employee> 9: <!--Optional:--> 10: <ser:EmployeeId>?</ser:EmployeeId> 11: <!--Optional:--> 12: <ser:FName>?</ser:FName> 13: </tem:employee> 14: </tem:SaveEmployee> 15: </soapenv:Body> 16: </soapenv:Envelope> There are some differences between how ‘Add Service Reference’ and the svcutil.exe generate the proxy class, but turns out both do some kind of reflection and determine the type of the data contract and emit the code accordingly. So since the Employee type is a class, the proxy ‘Person’ type gets generated as a class. In fact, reflecting on svcutil.exe application, you’ll see that there are a couple of places wherein a flag actually determines a type as a class or a struct. One example is in the ExportISerializableDataContract method in the System.Runtime.Serialization.CodeExporter class. Seems like these flags have a say in deciding whether the type gets emitted as a struct or a class. This behavior is different if you use the WSDL tool though. WSDL tool does not do any kind of reflection of the data contract / serialized type, it emits the type as a class by default. You can check this using the two command lines below:   Note to self: Remember ‘state’ and type-interchangeability when traversing through the WSDL planet!

    Read the article

  • Silverlight Recruiting Application Part 4 - Navigation and Modules

    After our brief intermission (and the craziness of Q1 2010 release week), we're back on track here and today we get to dive into how we are going to navigate through our applications as well as how to set up our modules. That way, as I start adding the functionality- adding Jobs and Applicants, Interview Scheduling, and finally a handy Dashboard- you'll see how everything is communicating back and forth. This is all leading up to an eventual webinar, in which I'll dive into this process and give a honest look at the current story for MVVM vs. Code-Behind applications. (For a look at the future with SL4 and a little thing called MEF, check out what Ross is doing over at his blog!) Preamble... Before getting into really talking about this app, I've done a little bit of work ahead of time to create a ton of files that I'll need. Since the webinar is going to cover the Dashboard, it's not here, but otherwise this is a look at what the project layout looks like (and remember, this is both projects since they share the .Web): So as you can see, from an architecture perspective, the code-behind app is much smaller and more streamlined- aka a better fit for the one man shop that is me. Each module in the MVVM app has the same setup, which is the Module class and corresponding Views and ViewModels. Since the code-behind app doesn't need a go-between project like Infrastructure, each MVVM module is instead replaced by a single Silverlight UserControl which will contain all the logic for each respective bit of functionality. My Very First Module Navigation is going to be key to my application, so I figured the first thing I would setup is my MenuModule. First step here is creating a Silverlight Class Library named MenuModule, creatingthe View and ViewModel folders, and adding the MenuModule.cs class to handle module loading. The most important thing here is that my MenuModule inherits from IModule, which runs an Initialize on each module as it is created that, in my case, adds the views to the correct regions. Here's the MenuModule.cs code: public class MenuModule : IModule { private readonly IRegionManager regionManager; private readonly IUnityContainer container; public MenuModule(IUnityContainer container, IRegionManager regionmanager) { this.container = container; this.regionManager = regionmanager; } public void Initialize() { var addMenuView = container.Resolve<MenuView>(); regionManager.Regions["MenuRegion"].Add(addMenuView); } } Pretty straightforward here... We inject a container and region manager from Prism/Unity, then upon initialization we grab the view (out of our Views folder) and add it to the region it needs to live in. Simple, right? When the MenuView is created, the only thing in the code-behind is a reference to the set the MenuViewModel as the DataContext. I'd like to achieve MVVM nirvana and have zero code-behind by placing the viewmodel in the XAML, but for the reasons listed further below I can't. Navigation - MVVM Since navigation isn't the biggest concern in putting this whole thing together, I'm using the Button control to handle different options for loading up views/modules. There is another reason for this- out of the box, Prism has command support for buttons, which is one less custom command I had to work up for the functionality I would need. This comes from the Microsoft.Practices.Composite.Presentation assembly and looks as follows when put in code: <Button x:Name="xGoToJobs" Style="{StaticResource menuStyle}" Content="Jobs" cal:Click.Command="{Binding GoModule}" cal:Click.CommandParameter="JobPostingsView" /> For quick reference, 'menuStyle' is just taking care of margins and spacing, otherwise it looks, feels, and functions like everyone's favorite Button. What MVVM's this up is that the Click.Command is tying to a DelegateCommand (also coming fromPrism) on the backend. This setup allows you to tie user interaction to a command you setup in your viewmodel, which replaces the standard event-based setup you'd see in the code-behind app. Due to databinding magic, it all just works. When we get looking at the DelegateCommand in code, it ends up like this: public class MenuViewModel : ViewModelBase { private readonly IRegionManager regionManager; public DelegateCommand<object> GoModule { get; set; } public MenuViewModel(IRegionManager regionmanager) { this.regionManager = regionmanager; this.GoModule = new DelegateCommand<object>(this.goToView); } public void goToView(object obj) { MakeMeActive(this.regionManager, "MainRegion", obj.ToString()); } } Another for reference, ViewModelBase takes care of iNotifyPropertyChanged and MakeMeActive, which switches views in the MainRegion based on the parameters. So our public DelegateCommand GoModule ties to our command on the view, that in turn calls goToView, and the parameter on the button is the name of the view (which we pass with obj.ToString()) to activate. And how do the views get the names I can pass as a string? When I called regionManager.Regions[regionname].Add(view), there is an overload that allows for .Add(view, "viewname"), with viewname being what I use to activate views. You'll see that in action next installment, just wanted to clarify how that works. With this setup, I create two more buttons in my MenuView and the MenuModule is good to go. Last step is to make sure my MenuModule loads in my Bootstrapper: protected override IModuleCatalog GetModuleCatalog() { ModuleCatalog catalog = new ModuleCatalog(); // add modules here catalog.AddModule(typeof(MenuModule.MenuModule)); return catalog; } Clean, simple, MVVM-delicious. Navigation - Code-Behind Keeping with the history of significantly shorter code-behind sections of this series, Navigation will be no different. I promise. As I explained in a prior post, due to the one-project setup I don't have to worry about the same concerns so my menu is part of MainPage.xaml. So I can cheese-it a bit, though, since I've already got three buttons all set I'm just copying that code and adding three click-events instead of the command/commandparameter setup: <!-- Menu Region --> <StackPanel Grid.Row="1" Orientation="Vertical"> <Button x:Name="xJobsButton" Content="Jobs" Style="{StaticResource menuStyleCB}" Click="xJobsButton_Click" /> <Button x:Name="xApplicantsButton" Content="Applicants" Style="{StaticResource menuStyleCB}" Click="xApplicantsButton_Click" /> <Button x:Name="xSchedulingModule" Content="Scheduling" Style="{StaticResource menuStyleCB}" Click="xSchedulingModule_Click" /> </StackPanel> Simple, easy to use events, and no extra assemblies required! Since the code for loading each view will be similar, we'll focus on JobsView for now.The code-behind with this setup looks something like... private JobsView _jobsView; public MainPage() { InitializeComponent(); } private void xJobsButton_Click(object sender, RoutedEventArgs e) { if (MainRegion.Content.GetType() != typeof(JobsView)) { if (_jobsView == null) _jobsView = new JobsView(); MainRegion.Content = _jobsView; } } What am I doing here? First, for each 'view' I create a private reference which MainPage will hold on to. This allows for a little bit of state-maintenance when switching views. When a button is clicked, first we make sure the 'view' typeisn't active (why load it again if it is already at center stage?), then we check if the view has been created and create if necessary, then load it up. Three steps to switching views and is easy as pie. Part 4 Results The end result of all this is that I now have a menu module (MVVM) and a menu section (code-behind) that load their respective views. Since I'm using the same exact XAML (except with commands/events depending on the project), the end result for both is again exactly the same and I'll show a slightly larger image to show it off: Next time, we add the Jobs Module and wire up RadGridView and a separate edit page to handle adding and editing new jobs. That's when things get fun. And somewhere down the line, I'll make the menu look slicker. :) Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • How-to tell the ViewCriteria a user chose in an af:query component

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The af:query component defines a search form for application users to enter search conditions for a selected View Criteria. A View Criteria is a named where clauses that you can create declaratively on the ADF Business Component View Object. A default View Criteria that allows users to search in all attributes exists by default and exposed in the Data Controls panel. To create an ADF Faces search form, expand the View Object node that contains the View Criteria definition in the Data Controls panel. Drag the View Criteria that should be displayed as the default criteria onto the page and choose Query in the opened context menu. One of the options within the Query option is to create an ADF Query Panel with Table, which displays the result set in a table view, which can have additional column filters defined. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} To intercept the user query for modification, or just to know about the selected View Criteria, you override the QueryListener property on the af:query component of the af:table component. Overriding the QueryListener on the table makes sense if the table allows users to further filter the result set using column filters.To override the default QueryListener, copy the existing string referencing the binding layer to the clipboard and then select Edit from the field context menu (press the arrow icon to open it) to selecte or create a new managed bean and method to handle the query event.  The code below is from a managed bean with custom query listener handlers defined for the af:query component and the af:table component. The default listener entry copied to the clipboard was "#{bindings.ImplicitViewCriteriaQuery.processQuery}"  public void onQueryList(QueryEvent queryEvent) {   // The generated QueryListener replaced by this method   //#{bindings.ImplicitViewCriteriaQuery.processQuery}        QueryDescriptor qdes = queryEvent.getDescriptor();          //print or log selected View Criteria   System.out.println("NAME "+qdes.getName());           //call default Query Event        invokeQueryEventMethodExpression("      #{bindings.ImplicitViewCriteriaQuery.processQuery}",queryEvent);  } public void onQueryTable(QueryEvent queryEvent) {   // The generated QueryListener replaced by this method   //#{bindings.ImplicitViewCriteriaQuery.processQuery}   QueryDescriptor qdes = queryEvent.getDescriptor();   //print or log selected View Criteria   System.out.println("NAME "+qdes.getName());                   invokeQueryEventMethodExpression(     "#{bindings.ImplicitViewCriteriaQuery.processQuery}",queryEvent); } private void invokeQueryEventMethodExpression(                        String expression, QueryEvent queryEvent){   FacesContext fctx = FacesContext.getCurrentInstance();   ELContext elctx = fctx.getELContext();   ExpressionFactory efactory   fctx.getApplication().getExpressionFactory();     MethodExpression me =     efactory.createMethodExpression(elctx,expression,                                     Object.class,                                     new Class[]{QueryEvent.class});     me.invoke(elctx, new Object[]{queryEvent}); } Of course, this code also can be used as a starting point for other query manipulations and also works with saved custom criterias. To read more about the af:query component, see: http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_query.html

    Read the article

  • Amazon Web Services (AWS) Plug-in for Oracle Enterprise Manager

    - by Anand Akela
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Contributed by Sunil Kunisetty and Daniel Chan Introduction and ArchitectureAs more and more enterprises deploy some of their non-critical workload on Amazon Web Services (AWS), it’s becoming critical to monitor those public AWS resources along side with their on-premise resources. Oracle recently announced Oracle Enterprise Manager Plug-in for Amazon Web Services (AWS) allows you to achieve that goal. The on-premise Oracle Enterprise Manager (EM12c) acts as a single tool to get a comprehensive view of your public AWS resources as well as your private cloud resources.  By deploying the plug-in within your Cloud Control environment, you gain the following management features: Monitor EBS, EC2 and RDS instances on Amazon Web Services Gather performance metrics and configuration details for AWS instances Raise alerts and violations based on thresholds set on monitoring Generate reports based on the gathered data Users of this Plug-in can leverage the rich Enterprise Manager features such as system promotion, incident generation based on thresholds, integration with 3rd party ticketing applications etc. AWS Monitoring via this Plug-in is enabled via Amazon CloudWatch API and the users of this Plug-in are responsible for supplying credentials for accessing AWS and the CloudWatch API. This Plug-in can only be deployed on an EM12C R2 platform and agent version should be at minimum 12c R2.Here is a pictorial view of the overall architecture: Amazon Elastic Block Store (EBS) Amazon Elastic Compute Cloud (EC2) Amazon Relational Database Service (RDS) Here are a few key features: Rich and exhaustive list of metrics. Metrics can be gathered from an Agent running outside AWS. Critical configuration information. Custom Home Pages with charts and AWS configuration information. Generate incidents based on thresholds set on monitoring data. Discovery and Monitoring AWS instances can be added to EM12C either via the EM12c User Interface (UI) or the EM12c Command Line Interface ( EMCLI)  by providing the AWS credentials (Secret Key and Access Key Id) as well as resource specific properties as target properties. Here is a quick mapping of target types and properties for each AWS resources AWS Resource Type Target Type Resource specific properties EBS Resource Amazon EBS Service CloudWatch base URI, EC2 Base URI, Period, Volume Id, Proxy Server and Port EC2 Resource Amazon EC2 Service CloudWatch base URI, EC2 Base URI, Period, Instance  Id, Proxy Server and Port RDS Resource Amazon RDS Service CloudWatch base URI, RDS Base URI, Period, Instance  Id, Proxy Server and Port Proxy server and port are optional and are only needed if the agent is within the firewall. Here is an emcli example to add an EC2 target. Please read the Installation and Readme guide for more details and step-by-step instructions to deploy  the plugin and adding the AWS the instances. ./emcli add_target \       -name="<target name>" \       -type="AmazonEC2Service" \       -host="<host>" \       -properties="ProxyHost=<proxy server>;ProxyPort=<proxy port>;EC2_BaseURI=http://ec2.<region>.amazonaws.com;BaseURI=http://monitoring.<region>.amazonaws.com;InstanceId=<EC2 instance Id>;Period=<data point periond>"  \     -subseparator=properties="=" ./emcli set_monitoring_credential \                 -set_name="AWSKeyCredentialSet"  \                 -target_name="<target name>"  \                 -target_type="AmazonEC2Service" \                 -cred_type="AWSKeyCredential"  \                 -attributes="AccessKeyId:<access key id>;SecretKey:<secret key>" Emcli utility is found under the ORACLE_HOME of EM12C install. Once the instance is discovered, the target will show up under the ‘All Targets’ list under “Amazon EC2 Service’. Once the instances are added, one can navigate to the custom homepages for these resource types. The custom home pages not only include critical metrics, but also vital configuration parameters and incidents raised for these instances.  By mapping the configuration parameters as instance properties, we can slice-and-dice and group various AWS instance by leveraging the EM12C Config search feature. The following configuration properties and metrics are collected for these Resource types. Resource Type Configuration Properties Metrics EBS Resource Volume Id, Volume Type, Device Name, Size, Availability Zone Response: Status Utilization: QueueLength, IdleTime Volume Statistics: ReadBrandwith, WriteBandwidth, ReadThroughput, WriteThroughput Operation Statistics: ReadSize, WriteSize, ReadLatency, WriteLatency EC2 Resource Instance ID, Owner Id, Root Device type, Instance Type. Availability Zone Response: Status CPU Utilization: CPU Utilization Disk I/O:  DiskReadBytes, DiskWriteBytes, DiskReadOps, DiskWriteOps, DiskReadRate, DiskWriteRate, DiskIOThroughput, DiskReadOpsRate, DiskWriteOpsRate, DiskOperationThroughput Network I/O : NetworkIn, NetworkOut, NetworkInRate, NetworkOutRate, NetworkThroughput RDS Resource Instance ID, Database Engine Name, Database Engine Version, Database Instance Class, Allocated Storage Size, Availability Zone Response: Status Disk I/O:  ReadIOPS, WriteIOPS, ReadLatency, WriteLatency, ReadThroughput, WriteThroughput DB Utilization:  BinLogDiskUsage, CPUUtilization, DatabaseConnections, FreeableMemory, ReplicaLag, SwapUsage Custom Home Pages As mentioned above, we have custom home pages for these target types that include basic configuration information,  last 24 hours availability, top metrics and the incidents generated. Here are few snapshots. EBS Instance Home Page: EC2 Instance Home Page: RDS Instance Home Page: Further Reading: 1)      AWS Plugin download 2)      Installation and  Read Me. 3)      Screenwatch on SlideShare 4)      Extensibility Programmer's Guide 5)      Amazon Web Services

    Read the article

  • Java EE 6 and NoSQL/MongoDB on GlassFish using JPA and EclipseLink 2.4 (TOTD #175)

    - by arungupta
    TOTD #166 explained how to use MongoDB in your Java EE 6 applications. The code in that tip used the APIs exposed by the MongoDB Java driver and so requires you to learn a new API. However if you are building Java EE 6 applications then you are already familiar with Java Persistence API (JPA). Eclipse Link 2.4, scheduled to release as part of Eclipse Juno, provides support for NoSQL databases by mapping a JPA entity to a document. Their wiki provides complete explanation of how the mapping is done. This Tip Of The Day (TOTD) will show how you can leverage that support in your Java EE 6 applications deployed on GlassFish 3.1.2. Before we dig into the code, here are the key concepts ... A POJO is mapped to a NoSQL data source using @NoSQL or <no-sql> element in "persistence.xml". A subset of JPQL and Criteria query are supported, based upon the underlying data store Connection properties are defined in "persistence.xml" Now, lets lets take a look at the code ... Download the latest EclipseLink 2.4 Nightly Bundle. There is a Installer, Source, and Bundle - make sure to download the Bundle link (20120410) and unzip. Download GlassFish 3.1.2 zip and unzip. Install the Eclipse Link 2.4 JARs in GlassFish Remove the following JARs from "glassfish/modules": org.eclipse.persistence.antlr.jar org.eclipse.persistence.asm.jar org.eclipse.persistence.core.jar org.eclipse.persistence.jpa.jar org.eclipse.persistence.jpa.modelgen.jar org.eclipse.persistence.moxy.jar org.eclipse.persistence.oracle.jar Add the following JARs from Eclipse Link 2.4 nightly build to "glassfish/modules": org.eclipse.persistence.antlr_3.2.0.v201107111232.jar org.eclipse.persistence.asm_3.3.1.v201107111215.jar org.eclipse.persistence.core.jpql_2.4.0.v20120407-r11132.jar org.eclipse.persistence.core_2.4.0.v20120407-r11132.jar org.eclipse.persistence.jpa.jpql_2.0.0.v20120407-r11132.jar org.eclipse.persistence.jpa.modelgen_2.4.0.v20120407-r11132.jar org.eclipse.persistence.jpa_2.4.0.v20120407-r11132.jar org.eclipse.persistence.moxy_2.4.0.v20120407-r11132.jar org.eclipse.persistence.nosql_2.4.0.v20120407-r11132.jar org.eclipse.persistence.oracle_2.4.0.v20120407-r11132.jar Start MongoDB Download latest MongoDB from here (2.0.4 as of this writing). Create the default data directory for MongoDB as: sudo mkdir -p /data/db/sudo chown `id -u` /data/db Refer to Quickstart for more details. Start MongoDB as: arungup-mac:mongodb-osx-x86_64-2.0.4 <arungup> ->./bin/mongod./bin/mongod --help for help and startup optionsMon Apr  9 12:56:02 [initandlisten] MongoDB starting : pid=3124 port=27017 dbpath=/data/db/ 64-bit host=arungup-mac.localMon Apr  9 12:56:02 [initandlisten] db version v2.0.4, pdfile version 4.5Mon Apr  9 12:56:02 [initandlisten] git version: 329f3c47fe8136c03392c8f0e548506cb21f8ebfMon Apr  9 12:56:02 [initandlisten] build info: Darwin erh2.10gen.cc 9.8.0 Darwin Kernel Version 9.8.0: Wed Jul 15 16:55:01 PDT 2009; root:xnu-1228.15.4~1/RELEASE_I386 i386 BOOST_LIB_VERSION=1_40Mon Apr  9 12:56:02 [initandlisten] options: {}Mon Apr  9 12:56:02 [initandlisten] journal dir=/data/db/journalMon Apr  9 12:56:02 [initandlisten] recover : no journal files present, no recovery neededMon Apr  9 12:56:02 [websvr] admin web console waiting for connections on port 28017Mon Apr  9 12:56:02 [initandlisten] waiting for connections on port 27017 Check out the JPA/NoSQL sample from SVN repository. The complete source code built in this TOTD can be downloaded here. Create Java EE 6 web app Create a Java EE 6 Maven web app as: mvn archetype:generate -DarchetypeGroupId=org.codehaus.mojo.archetypes -DarchetypeArtifactId=webapp-javaee6 -DgroupId=model -DartifactId=javaee-nosql -DarchetypeVersion=1.5 -DinteractiveMode=false Copy the model files from the checked out workspace to the generated project as: cd javaee-nosqlcp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/model src/main/java Copy "persistence.xml" mkdir src/main/resources cp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/META-INF ./src/main/resources Add the following dependencies: <dependency> <groupId>org.eclipse.persistence</groupId> <artifactId>org.eclipse.persistence.jpa</artifactId> <version>2.4.0-SNAPSHOT</version> <scope>provided</scope></dependency><dependency> <groupId>org.eclipse.persistence</groupId> <artifactId>org.eclipse.persistence.nosql</artifactId> <version>2.4.0-SNAPSHOT</version></dependency><dependency> <groupId>org.mongodb</groupId> <artifactId>mongo-java-driver</artifactId> <version>2.7.3</version></dependency> The first one is for the EclipseLink latest APIs, the second one is for EclipseLink/NoSQL support, and the last one is the MongoDB Java driver. And the following repository: <repositories> <repository> <id>EclipseLink Repo</id> <url>http://www.eclipse.org/downloads/download.php?r=1&amp;nf=1&amp;file=/rt/eclipselink/maven.repo</url> <snapshots> <enabled>true</enabled> </snapshots> </repository>  </repositories> Copy the "Test.java" to the generated project: mkdir src/main/java/examplecp -r ~/code/workspaces/org.eclipse.persistence.example.jpa.nosql.mongo/src/example/Test.java ./src/main/java/example/ This file contains the source code to CRUD the JPA entity to MongoDB. This sample is explained in detail on EclipseLink wiki. Create a new Servlet in "example" directory as: package example;import java.io.IOException;import java.io.PrintWriter;import javax.servlet.ServletException;import javax.servlet.annotation.WebServlet;import javax.servlet.http.HttpServlet;import javax.servlet.http.HttpServletRequest;import javax.servlet.http.HttpServletResponse;/** * @author Arun Gupta */@WebServlet(name = "TestServlet", urlPatterns = {"/TestServlet"})public class TestServlet extends HttpServlet { protected void processRequest(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { response.setContentType("text/html;charset=UTF-8"); PrintWriter out = response.getWriter(); try { out.println("<html>"); out.println("<head>"); out.println("<title>Servlet TestServlet</title>"); out.println("</head>"); out.println("<body>"); out.println("<h1>Servlet TestServlet at " + request.getContextPath() + "</h1>"); try { Test.main(null); } catch (Exception ex) { ex.printStackTrace(); } out.println("</body>"); out.println("</html>"); } finally { out.close(); } } @Override protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); } @Override protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException { processRequest(request, response); }} Build the project and deploy it as: mvn clean packageglassfish3/bin/asadmin deploy --force=true target/javaee-nosql-1.0-SNAPSHOT.war Accessing http://localhost:8080/javaee-nosql/TestServlet shows the following messages in the server.log: connecting(EISLogin( platform=> MongoPlatform user name=> "" MongoConnectionSpec())) . . .Connected: User: Database: 2.7  Version: 2.7 . . .Executing MappedInteraction() spec => null properties => {mongo.collection=CUSTOMER, mongo.operation=INSERT} input => [DatabaseRecord( CUSTOMER._id => 4F848E2BDA0670307E2A8FA4 CUSTOMER.NAME => AMCE)]. . .Data access result: [{TOTALCOST=757.0, ORDERLINES=[{DESCRIPTION=table, LINENUMBER=1, COST=300.0}, {DESCRIPTION=balls, LINENUMBER=2, COST=5.0}, {DESCRIPTION=rackets, LINENUMBER=3, COST=15.0}, {DESCRIPTION=net, LINENUMBER=4, COST=2.0}, {DESCRIPTION=shipping, LINENUMBER=5, COST=80.0}, {DESCRIPTION=handling, LINENUMBER=6, COST=55.0},{DESCRIPTION=tax, LINENUMBER=7, COST=300.0}], SHIPPINGADDRESS=[{POSTALCODE=L5J1H7, PROVINCE=ON, COUNTRY=Canada, CITY=Ottawa,STREET=17 Jane St.}], VERSION=2, _id=4F848E2BDA0670307E2A8FA8,DESCRIPTION=Pingpong table, CUSTOMER__id=4F848E2BDA0670307E2A8FA7, BILLINGADDRESS=[{POSTALCODE=L5J1H8, PROVINCE=ON, COUNTRY=Canada, CITY=Ottawa, STREET=7 Bank St.}]}] You'll not see any output in the browser, just the output in the console. But the code can be easily modified to do so. Once again, the complete Maven project can be downloaded here. Do you want to try accessing relational and non-relational (aka NoSQL) databases in the same PU ?

    Read the article

  • Metro: Introduction to the WinJS ListView Control

    - by Stephen.Walther
    The goal of this blog entry is to provide a quick introduction to the ListView control – just the bare minimum that you need to know to start using the control. When building Metro style applications using JavaScript, the ListView control is the primary control that you use for displaying lists of items. For example, if you are building a product catalog app, then you can use the ListView control to display the list of products. The ListView control supports several advanced features that I plan to discuss in future blog entries. For example, you can group the items in a ListView, you can create master/details views with a ListView, and you can efficiently work with large sets of items with a ListView. In this blog entry, we’ll keep things simple and focus on displaying a list of products. There are three things that you need to do in order to display a list of items with a ListView: Create a data source Create an Item Template Declare the ListView Creating the ListView Data Source The first step is to create (or retrieve) the data that you want to display with the ListView. In most scenarios, you will want to bind a ListView to a WinJS.Binding.List object. The nice thing about the WinJS.Binding.List object is that it enables you to take a standard JavaScript array and convert the array into something that can be bound to the ListView. It doesn’t matter where the JavaScript array comes from. It could be a static array that you declare or you could retrieve the array as the result of an Ajax call to a remote server. The following JavaScript file – named products.js – contains a list of products which can be bound to a ListView. (function () { "use strict"; var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44 }, { name: "Oranges", price: 1.99 }, { name: "Wine", price: 8.55 }, { name: "Apples", price: 2.44 }, { name: "Steak", price: 1.99 }, { name: "Eggs", price: 2.44 }, { name: "Mushrooms", price: 1.99 }, { name: "Yogurt", price: 2.44 }, { name: "Soup", price: 1.99 }, { name: "Cereal", price: 2.44 }, { name: "Pepsi", price: 1.99 } ]); WinJS.Namespace.define("ListViewDemos", { products: products }); })(); The products variable represents a WinJS.Binding.List object. This object is initialized with a plain-old JavaScript array which represents an array of products. To avoid polluting the global namespace, the code above uses the module pattern and exposes the products using a namespace. The list of products is exposed to the world as ListViewDemos.products. To learn more about the module pattern and namespaces in WinJS, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/22/metro-namespaces-and-modules.aspx Creating the ListView Item Template The ListView control does not know how to render anything. It doesn’t know how you want each list item to appear. To get the ListView control to render something useful, you must create an Item Template. Here’s what our template for rendering an individual product looks like: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> This template displays the product name and price from the data source. Normally, you will declare your template in the same file as you declare the ListView control. In our case, both the template and ListView are declared in the default.html file. To learn more about templates, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/27/metro-using-templates.aspx Declaring the ListView The final step is to declare the ListView control in a page. Here’s the markup for declaring a ListView: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> You declare a ListView by adding the data-win-control to an HTML DIV tag. The data-win-options attribute is used to set two properties of the ListView. The ListView is associated with its data source with the itemDataSource property. Notice that the data source is ListViewDemos.products.dataSource and not just ListViewDemos.products. You need to associate the ListView with the dataSoure property. The ListView is associated with its item template with the help of the itemTemplate property. The ID of the item template — #productTemplate – is used to select the template from the page. Here’s what the complete version of the default.html page looks like: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> </body> </html> Notice that the page above includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The page above also contains a Template control which contains the ListView item template. Finally, the page includes the declaration of the ListView control. Summary The goal of this blog entry was to describe the minimal set of steps which you must complete to use the WinJS ListView control to display a simple list of items. You learned how to create a data source, declare an item template, and declare a ListView control.

    Read the article

  • Lock statement vs Monitor.Enter method.

    - by Vokinneberg
    I suppose it is an interesting code example. We have a class, let's call it Test with Finalize method. In Main method here is two code blocks where i am using lock statement and Monitor.Enter call. Also i have two instances of class Test here. The experiment is pretty simple - nulling Test variable within locking block and try to collect it manually with GC.Collect method call. So, to see the Finilaze call i am calling GC.WaitForPendingFinalizers method. Everything is very simple as you can see. By defenition of lock statement it's opens by compiler to try{...}finally{..} block with Minitor.Enter call inside of try block and Monitor.Exit in finally block. I've tryed to implement try-finally block manually. I've expected the same behaviour in both cases. in case of using lock and in case of unsing Monitor.Enter. But, surprize, surprize - it is different as you can see below. public class Test : IDisposable { private string name; public Test(string name) { this.name = name; } ~Test() { Console.WriteLine(string.Format("Finalizing class name {0}.", name)); } } class Program { static void Main(string[] args) { var test1 = new Test("Test1"); var test2 = new Test("Tesst2"); lock (test1) { test1 = null; Console.WriteLine("Manual collect 1."); GC.Collect(); GC.WaitForPendingFinalizers(); Console.WriteLine("Manual collect 2."); GC.Collect(); } var lockTaken = false; System.Threading.Monitor.Enter(test2, ref lockTaken); try { test2 = null; Console.WriteLine("Manual collect 3."); GC.Collect(); GC.WaitForPendingFinalizers(); Console.WriteLine("Manual collect 4."); GC.Collect(); } finally { System.Threading.Monitor.Exit(test2); } Console.ReadLine(); } } Output of this example is Manual collect 1. Manual collect 2. Manual collect 3. Finalizing class name Test2. Manual collect 4. And null reference exception in last finally block because test2 is null reference. I've was surprised and disasembly my code into IL. So, here is IL dump of Main method. .entrypoint .maxstack 2 .locals init ( [0] class ConsoleApplication2.Test test1, [1] class ConsoleApplication2.Test test2, [2] bool lockTaken, [3] bool <>s__LockTaken0, [4] class ConsoleApplication2.Test CS$2$0000, [5] bool CS$4$0001) L_0000: nop L_0001: ldstr "Test1" L_0006: newobj instance void ConsoleApplication2.Test::.ctor(string) L_000b: stloc.0 L_000c: ldstr "Tesst2" L_0011: newobj instance void ConsoleApplication2.Test::.ctor(string) L_0016: stloc.1 L_0017: ldc.i4.0 L_0018: stloc.3 L_0019: ldloc.0 L_001a: dup L_001b: stloc.s CS$2$0000 L_001d: ldloca.s <>s__LockTaken0 L_001f: call void [mscorlib]System.Threading.Monitor::Enter(object, bool&) L_0024: nop L_0025: nop L_0026: ldnull L_0027: stloc.0 L_0028: ldstr "Manual collect." L_002d: call void [mscorlib]System.Console::WriteLine(string) L_0032: nop L_0033: call void [mscorlib]System.GC::Collect() L_0038: nop L_0039: call void [mscorlib]System.GC::WaitForPendingFinalizers() L_003e: nop L_003f: ldstr "Manual collect." L_0044: call void [mscorlib]System.Console::WriteLine(string) L_0049: nop L_004a: call void [mscorlib]System.GC::Collect() L_004f: nop L_0050: nop L_0051: leave.s L_0066 L_0053: ldloc.3 L_0054: ldc.i4.0 L_0055: ceq L_0057: stloc.s CS$4$0001 L_0059: ldloc.s CS$4$0001 L_005b: brtrue.s L_0065 L_005d: ldloc.s CS$2$0000 L_005f: call void [mscorlib]System.Threading.Monitor::Exit(object) L_0064: nop L_0065: endfinally L_0066: nop L_0067: ldc.i4.0 L_0068: stloc.2 L_0069: ldloc.1 L_006a: ldloca.s lockTaken L_006c: call void [mscorlib]System.Threading.Monitor::Enter(object, bool&) L_0071: nop L_0072: nop L_0073: ldnull L_0074: stloc.1 L_0075: ldstr "Manual collect." L_007a: call void [mscorlib]System.Console::WriteLine(string) L_007f: nop L_0080: call void [mscorlib]System.GC::Collect() L_0085: nop L_0086: call void [mscorlib]System.GC::WaitForPendingFinalizers() L_008b: nop L_008c: ldstr "Manual collect." L_0091: call void [mscorlib]System.Console::WriteLine(string) L_0096: nop L_0097: call void [mscorlib]System.GC::Collect() L_009c: nop L_009d: nop L_009e: leave.s L_00aa L_00a0: nop L_00a1: ldloc.1 L_00a2: call void [mscorlib]System.Threading.Monitor::Exit(object) L_00a7: nop L_00a8: nop L_00a9: endfinally L_00aa: nop L_00ab: call string [mscorlib]System.Console::ReadLine() L_00b0: pop L_00b1: ret .try L_0019 to L_0053 finally handler L_0053 to L_0066 .try L_0072 to L_00a0 finally handler L_00a0 to L_00aa I does not see any difference between lock statement and Monitor.Enter call. So, why i steel have a reference to the instance of test1 in case of lock, and object is not collected by GC, but in case of using Monitor.Enter it is collected and finilized?

    Read the article

  • Tuesday + 3 = Friday? C++ Programming Problem

    - by lampshade
    Looking at the main function, we can see that I've Hard Coded the "Monday" into my setDay public function. It is easy to grab a day of the week from the user using a c-string (as I did in setDay), but how would I ask the user to add n to the day that is set, "Monday" and come up with "Thursday"? It is hard because typdef enum { INVALID, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY} doesn't interpret 9 is 0 and/or 10 as 1. #include <iostream> using std::cout; using std::endl; class DayOfTheWeek //class is encapsulation of functions and members that manipulate the data. { public: DayOfTheWeek(); // Constructor virtual ~DayOfTheWeek(); // Destructor void setDay(const char * day); // Function to set the day void printDay() const; // Function to Print the day. const char * getDay() const; // Function to get the day. const char * plusOneDay(); // Next day function const char * minusOneDay(); // Previous day function const char * addDays(int addValue); // function that adds days based on parameter value private: char * day; // variable for the days of the week. }; DayOfTheWeek::DayOfTheWeek() : day(0) { // Usually I would allocate pointer member variables // Here in the construction of the Object } const char * DayOfTheWeek::getDay() const { return day; // we can get the day simply by returning it. } const char * DayOfTheWeek::minusOneDay() { if ( strcmp( day, "Monday" ) == 0) { cout << "The day before " << day << " is "; return "Sunday"; } else if ( strcmp( day, "Tuesday" ) == 0 ) { cout << "The day before " << day << " is "; return "Monday"; } else if ( strcmp( day, "Wednesday" ) == 0 ) { cout << "The day before " << day << " is "; return "Tuesday"; } else if ( strcmp( day, "Thursday" ) == 0 ) { cout << "The day before " << day << " is "; return "Wednesday"; } else if ( strcmp( day, "Friday" ) == 0 ) { cout << "The day before " << day << " is "; return "Thursday"; } else if ( strcmp( day, "Saturday" ) == 0 ) { cout << "The day before " << day << " is "; return "Friday"; } else if ( strcmp( day, "Sunday" ) == 0 ) { cout << "The day before " << day << " is "; return "Saturday"; } else { cout << "'" << day << "'"; return "is an invalid day of the week!"; } } const char * DayOfTheWeek::plusOneDay() { if ( strcmp( day, "Monday" ) == 0) { cout << "The day after " << day << " is "; return "Tuesday"; } else if ( strcmp( day, "Tuesday" ) == 0 ) { cout << "The day after " << day << " is "; return "Wednesday"; } else if ( strcmp( day, "Wednesday" ) == 0 ) { cout << "The day after " << day << " is "; return "Thursday"; } else if ( strcmp( day, "Thursday" ) == 0 ) { cout << "The day after " << day << " is "; return "Friday"; } else if ( strcmp( day, "Friday" ) == 0 ) { cout << "The day after " << day << " is "; return "Saturday"; } else if ( strcmp( day, "Saturday" ) == 0 ) { cout << "The day after " << day << " is "; return "Sunday"; } else if ( strcmp( day, "Sunday" ) == 0 ) { cout << "The day after " << day << " is "; return "Monday"; } else { cout << "'" << day << "'"; return " is an invalid day of the week!"; } } const char * DayOfTheWeek::addDays(int addValue) { if ( addValue < 0 ) { if ( strcmp( day, "Monday" ) == 0) { cout << day << " - " << -addValue << " = "; return "Friday"; } else if ( strcmp( day, "Tuesday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Saturday"; } else if ( strcmp( day, "Wednesday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Sunday"; } else if ( strcmp( day, "Thursday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Monday"; } else if ( strcmp( day, "Friday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Tuesday"; } else if ( strcmp( day, "Saturday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Wednesday"; } else if ( strcmp( day, "Sunday" ) == 0 ) { cout << day << " - " << -addValue << " = "; return "Thursday"; } else { cout << "'" << day << "' "; return "is an invalid day of the week! "; } } else // if our parameter is greater than 0 (positive) { if ( strcmp( day, "Monday" ) == 0) { cout << day << " + " << addValue << " = "; return "Thursday"; } else if ( strcmp( day, "Tuesday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Friday"; } else if ( strcmp( day, "Wednesday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Saturday"; } else if ( strcmp( day, "Thursday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Sunday"; } else if ( strcmp( day, "Friday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Monday"; } else if ( strcmp( day, "Saturday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Tuesday"; } else if ( strcmp( day, "Sunday" ) == 0 ) { cout << day << " + " << addValue << " = "; return "Wednesday"; } else { cout << "'" << day << "' "; return "is an invalid day of the week! "; } } } void DayOfTheWeek::printDay() const { cout << "The Value of the " << day; } void DayOfTheWeek::setDay(const char * day) { if (day) {// Here I am allocating the object member char day pointer this->day = new char[strlen(day)+1]; size_t length = strlen(day)+1; // +1 for trailing null char strcpy_s(this->day , length , day); // copying c-strings } else day = NULL; // If their was a problem with the parameter 'day' } DayOfTheWeek::~DayOfTheWeek() { delete day; // Free the memory allocated in SetDay } int main() { DayOfTheWeek MondayObject; // declare an object MondayObject.setDay("Monday"); // Call our public function 'setDay' to set a day of the week MondayObject.printDay(); // Call our public function 'printDay' to print the day we set cout << " object is " << MondayObject.getDay() << endl; // Print the value of the object cout << MondayObject.plusOneDay() << endl; cout << MondayObject.minusOneDay() << endl; cout << MondayObject.addDays(3) << endl; MondayObject.printDay(); cout << " object is still " << MondayObject.getDay() << endl; // Print the value of the object cout << MondayObject.addDays(-3) << endl; return 0; }

    Read the article

  • Accessing a Service from within an XNA Content Pipeline Extension

    - by David Wallace
    I need to allow my content pipeline extension to use a pattern similar to a factory. I start with a dictionary type: public delegate T Mapper<T>(MapFactory<T> mf, XElement d); public class MapFactory<T> { Dictionary<string, Mapper<T>> map = new Dictionary<string, Mapper<T>>(); public void Add(string s, Mapper<T> m) { map.Add(s, m); } public T Get(XElement xe) { if (xe == null) throw new ArgumentNullException( "Invalid document"); var key = xe.Name.ToString(); if (!map.ContainsKey(key)) throw new ArgumentException( key + " is not a valid key."); return map[key](this, xe); } public IEnumerable<T> GetAll(XElement xe) { if (xe == null) throw new ArgumentNullException( "Invalid document"); foreach (var e in xe.Elements()) { var val = e.Name.ToString(); if (map.ContainsKey(val)) yield return map[val](this, e); } } } Here is one type of object I want to store: public partial class TestContent { // Test type public string title; // Once test if true public bool once; // Parameters public Dictionary<string, object> args; public TestContent() { title = string.Empty; args = new Dictionary<string, object>(); } public TestContent(XElement xe) { title = xe.Name.ToString(); args = new Dictionary<string, object>(); xe.ParseAttribute("once", once); } } XElement.ParseAttribute is an extension method that works as one might expect. It returns a boolean that is true if successful. The issue is that I have many different types of tests, each of which populates the object in a way unique to the specific test. The element name is the key to MapFactory's dictionary. This type of test, while atypical, illustrates my problem. public class LogicTest : TestBase { string opkey; List<TestBase> items; public override bool Test(BehaviorArgs args) { if (items == null) return false; if (items.Count == 0) return false; bool result = items[0].Test(args); for (int i = 1; i < items.Count; i++) { bool other = items[i].Test(args); switch (opkey) { case "And": result &= other; if (!result) return false; break; case "Or": result |= other; if (result) return true; break; case "Xor": result ^= other; break; case "Nand": result = !(result & other); break; case "Nor": result = !(result | other); break; default: result = false; break; } } return result; } public static TestContent Build(MapFactory<TestContent> mf, XElement xe) { var result = new TestContent(xe); string key = "Or"; xe.GetAttribute("op", key); result.args.Add("key", key); var names = mf.GetAll(xe).ToList(); if (names.Count() < 2) throw new ArgumentException( "LogicTest requires at least two entries."); result.args.Add("items", names); return result; } } My actual code is more involved as the factory has two dictionaries, one that turns an XElement into a content type to write and another used by the reader to create the actual game objects. I need to build these factories in code because they map strings to delegates. I have a service that contains several of these factories. The mission is to make these factory classes available to a content processor. Neither the processor itself nor the context it uses as a parameter have any known hooks to attach an IServiceProvider or equivalent. Any ideas?

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #035

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Row Overflow Data Explanation  In SQL Server 2005 one table row can contain more than one varchar(8000) fields. One more thing, the exclusions has exclusions also the limit of each individual column max width of 8000 bytes does not apply to varchar(max), nvarchar(max), varbinary(max), text, image or xml data type columns. Comparison Index Fragmentation, Index De-Fragmentation, Index Rebuild – SQL SERVER 2000 and SQL SERVER 2005 An old but like a gold article. Talks about lots of concepts related to Index and the difference from earlier version to the newer version. I strongly suggest that everyone should read this article just to understand how SQL Server has moved forward with the technology. Improvements in TempDB SQL Server 2005 had come up with quite a lots of improvements and this blog post describes them and explains the same. If you ask me what is my the most favorite article from early career. I must point out to this article as when I wrote this one I personally have learned a lot of new things. Recompile All The Stored Procedure on Specific TableI prefer to recompile all the stored procedure on the table, which has faced mass insert or update. sp_recompiles marks stored procedures to recompile when they execute next time. This blog post explains the same with the help of a script.  2008 SQLAuthority Download – SQL Server Cheatsheet You can download and print this cheat sheet and use it for your personal reference. If you have any suggestions, please let me know and I will see if I can update this SQL Server cheat sheet. Difference Between DBMS and RDBMS What is the difference between DBMS and RDBMS? DBMS – Data Base Management System RDBMS – Relational Data Base Management System or Relational DBMS High Availability – Hot Add Memory Hot Add CPU and Hot Add Memory are extremely interesting features of the SQL Server, however, personally I have not witness them heavily used. These features also have few restriction as well. I blogged about them in detail. 2009 Delete Duplicate Rows I have demonstrated in this blog post how one can identify and delete duplicate rows. Interesting Observation of Logon Trigger On All Servers – Solution The question I put forth in my previous article was – In single login why the trigger fires multiple times; it should be fired only once. I received numerous answers in thread as well as in my MVP private news group. Now, let us discuss the answer for the same. The answer is – It happens because multiple SQL Server services are running as well as intellisense is turned on. Blog post demonstrates how we can do the same with the help of SQL scripts. Management Studio New Features I have selected my favorite 5 features and blogged about it. IntelliSense for Query Editing Multi Server Query Query Editor Regions Object Explorer Enhancements Activity Monitors Maximum Number of Index per Table One of the questions I asked in my user group was – What is the maximum number of Index per table? I received lots of answers to this question but only two answers are correct. Let us now take a look at them in this blog post. 2010 Default Statistics on Column – Automatic Statistics on Column The truth is, Statistics can be in a table even though there is no Index in it. If you have the auto- create and/or auto-update Statistics feature turned on for SQL Server database, Statistics will be automatically created on the Column based on a few conditions. Please read my previously posted article, SQL SERVER – When are Statistics Updated – What triggers Statistics to Update, for the specific conditions when Statistics is updated. 2011 T-SQL Scripts to Find Maximum between Two Numbers In this blog post there are two different scripts listed which demonstrates way to find the maximum number between two numbers. I need your help, which one of the script do you think is the most accurate way to find maximum number? Find Details for Statistics of Whole Database – DMV – T-SQL Script I was recently asked is there a single script which can provide all the necessary details about statistics for any database. This question made me write following script. I was initially planning to use sp_helpstats command but I remembered that this is marked to be deprecated in future. 2012 Introduction to Function SIGN SIGN Function is very fundamental function. It will return the value 1, -1 or 0. If your value is negative it will return you negative -1 and if it is positive it will return you positive +1. Let us start with a simple small example. Template Browser – A Very Important and Useful Feature of SSMS Templates are like a quick cheat sheet or quick reference. Templates are available to create objects like databases, tables, views, indexes, stored procedures, triggers, statistics, and functions. Templates are also available for Analysis Services as well. The template scripts contain parameters to help you customize the code. You can Replace Template Parameters dialog box to insert values into the script. An invalid floating point operation occurred If you run any of the above functions they will give you an error related to invalid floating point. Honestly there is no workaround except passing the function appropriate values. SQRT of a negative number will give you result in real numbers which is not supported at this point of time as well LOG of a negative number is not possible (because logarithm is the inverse function of an exponential function and the exponential function is NEVER negative). Validating Spatial Object with IsValidDetailed Function SQL Server 2012 has introduced the new function IsValidDetailed(). This function has made my life very easy. In simple words, this function will check if the spatial object passed is valid or not. If it is valid it will give information that it is valid. If the spatial object is not valid it will return the answer that it is not valid and the reason for the same. This makes it very easy to debug the issue and make the necessary correction. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • java: List wrapper where get()/set() is allowed but add/remove is not

    - by Jason S
    I need to wrap a List<T> with some class that allows calls to set/get but does not allow add/remove calls, so that the list remains "stuck" at a fixed length. I think I have a thin wrapper class (below) that will work, but I'm not 100% positive. Did I miss anything obvious? import java.util.Collection; import java.util.Iterator; import java.util.List; import java.util.ListIterator; class RestrictedListWrapper<T> implements List<T> { static <T> T fail() throws UnsupportedOperationException { throw new UnsupportedOperationException(); } static private class IteratorWrapper<T> implements ListIterator<T> { final private ListIterator<T> iter; private IteratorWrapper(ListIterator<T> iter) { this.iter = iter; } static public <T> RestrictedListWrapper.IteratorWrapper<T> wrap(ListIterator<T> target) { return new RestrictedListWrapper.IteratorWrapper<T>(target); } @Override public void add(T e) { fail(); } @Override public boolean hasNext() { return this.iter.hasNext(); } @Override public boolean hasPrevious() { return this.iter.hasPrevious(); } @Override public T next() { return this.iter.next(); } @Override public int nextIndex() { return this.iter.nextIndex(); } @Override public T previous() { return this.iter.previous(); } @Override public int previousIndex() { return this.iter.previousIndex(); } @Override public void remove() { fail(); } @Override public void set(T e) { this.iter.set(e); } } final private List<T> list; private RestrictedListWrapper(List<T> list) { this.list = list; } static public <T> RestrictedListWrapper<T> wrap(List<T> target) { return new RestrictedListWrapper<T>(target); } @Override public boolean add(T arg0) { return fail(); } @Override public void add(int index, T element) { fail(); } @Override public boolean addAll(Collection<? extends T> arg0) { return fail(); } @Override public boolean addAll(int arg0, Collection<? extends T> arg1) { return fail(); } /** * clear() allows setting all members of the list to null */ @Override public void clear() { ListIterator<T> it = this.list.listIterator(); while (it.hasNext()) { it.set(null); it.next(); } } @Override public boolean contains(Object o) { return this.list.contains(o); } @Override public boolean containsAll(Collection<?> c) { return this.list.containsAll(c); } @Override public T get(int index) { return this.list.get(index); } @Override public int indexOf(Object o) { return this.list.indexOf(o); } @Override public boolean isEmpty() { return false; } @Override public Iterator<T> iterator() { return listIterator(); } @Override public int lastIndexOf(Object o) { return this.list.lastIndexOf(o); } @Override public ListIterator<T> listIterator() { return IteratorWrapper.wrap(this.list.listIterator()); } @Override public ListIterator<T> listIterator(int index) { return IteratorWrapper.wrap(this.list.listIterator(index)); } @Override public boolean remove(Object o) { return fail(); } @Override public T remove(int index) { fail(); return fail(); } @Override public boolean removeAll(Collection<?> c) { return fail(); } @Override public boolean retainAll(Collection<?> c) { return fail(); } @Override public T set(int index, T element) { return this.list.set(index, element); } @Override public int size() { return this.list.size(); } @Override public List<T> subList(int fromIndex, int toIndex) { return new RestrictedListWrapper<T>(this.list.subList(fromIndex, toIndex)); } @Override public Object[] toArray() { return this.list.toArray(); } @Override public <T> T[] toArray(T[] a) { return this.list.toArray(a); } }

    Read the article

  • migrating webclient to WCF; WCF client serializes parametername of method

    - by Wouter
    I'm struggling with migrating from webservice/webclient architecture to WCF architecture. The object are very complex, with lots of nested xsd's and different namespaces. Proxy classes are generated by adding a Web Reference to an original wsdl with 30+ webmethods and using xsd.exe for generating the missing SOAPFault objects. My pilot WCF Service consists of only 1 webmethod which matches the exact syntax of one of the original methods: 1 object as parameter, returning 1 other object as result value. I greated a WCF Interface using those proxy classes, using attributes: XMLSerializerFormat and ServiceContract on the interface, OperationContract on one method from original wsdl specifying Action, ReplyAction, all with the proper namespaces. I create incoming client messages using SoapUI; I generated a project from the original WSDL files (causing the SoapUI project to have 30+ methods) and created one new Request at the one implemented WebMethod, changed the url to my wcf webservice and send the message. Because of the specified (Reply-)Action in the OperationContractAttribute, the message is actually received and properly deserialized into an object. To get this far (40 hours of googling), a lot of frustration led me to using a custom endpoint in which the WCF 'wrapped tags' are removed, the namespaces for nested types are corrected, and the generated wsdl get's flattened (for better compatibility with other tools then MS VisualStudio). Interface code is this: [XmlSerializerFormat(Use = OperationFormatUse.Literal, Style = OperationFormatStyle.Document, SupportFaults = true)] [ServiceContract(Namespace = Constants.NamespaceStufZKN)] public interface IOntvangAsynchroon { [OperationContract(Action = Constants.NamespaceStufZKN + "/zakLk01", ReplyAction = Constants.NamespaceStufZKN + "/zakLk01", Name = "zakLk01")] [FaultContract(typeof(Fo03Bericht), Namespace = Constants.NamespaceStuf)] Bv03Bericht zakLk01([XmlElement("zakLk01", Namespace = Constants.NamespaceStufZKN)] ZAKLk01 zakLk011); When I use a Webclient in code to send a message, everything works. My problem is, when I use a WCF client. I use ChannelFactory< IOntvangAsynchroon to send a message. But the generated xml looks different: it includes the parametername of the method! It took me a lot of time to figure this one out, but here's what happens: Correct xml (stripped soap envelope): <soap:Body> <zakLk01 xmlns="http://www.egem.nl/StUF/sector/zkn/0310"> <stuurgegevens> <berichtcode xmlns="http://www.egem.nl/StUF/StUF0301">Bv01</berichtcode> <zender xmlns="http://www.egem.nl/StUF/StUF0301"> <applicatie>ONBEKEND</applicatie> </zender> </stuurgegevens> <parameters> </parameters> </zakLk01> </soap:Body> Bad xml: <soap:Body> <zakLk01 xmlns="http://www.egem.nl/StUF/sector/zkn/0310"> <zakLk011> <stuurgegevens> <berichtcode xmlns="http://www.egem.nl/StUF/StUF0301">Bv01</berichtcode> <zender xmlns="http://www.egem.nl/StUF/StUF0301"> <applicatie>ONBEKEND</applicatie> </zender> </stuurgegevens> <parameters> </parameters> </zakLk011> </zakLk01> </soap:Body> Notice the 'zakLk011' element? It is the name of the parameter of the method in my interface! So NOW it is zakLk011, but it when my parameter name was 'zakLk01', the xml seemed to contain some magical duplicate of the tag above, but without namespace. Of course, you can imagine me going crazy over what was happening before finding out it was the parametername! I know have actually created a WCF Service, at which I cannot send messages using a WCF Client anymore. For clarity: The method does get invoked using the WCF Client on my webservice, but the parameter object is empty. Because I'm using a custom endpoint to log the incoming xml, I can see the message is received fine, but just with the wrong syntax! WCF client code: ZAKLk01 stufbericht = MessageFactory.CreateZAKLk01(); ChannelFactory<IOntvangAsynchroon> factory = new ChannelFactory<IOntvangAsynchroon>(new BasicHttpBinding(), new EndpointAddress("http://localhost:8193/Roxit/Link/zkn0310")); factory.Endpoint.Behaviors.Add(new LinkEndpointBehavior()); IOntvangAsynchroon client = factory.CreateChannel(); client.zakLk01(stufbericht); I am not using a generated client, i just reference the webservice like i am lot's of times. Can anyone please help me? I can't google anything on this...

    Read the article

  • Cisco VPN Client Behind ASA 5505

    - by fdf33
    I'm trying to get connected to another ASA via Cisco VPN Client. I am behind an ASA 5505 myself and I am tryihng to VPN to a 5510. I get the message: Secure VPN Connection terminated locally by the Client. Reason 412: The remote peer is no longer responding. I can connect to the other ASA if I use a normal cheap Linksys. Here's the version of my ASA: Result of the command: "sh ver" Cisco Adaptive Security Appliance Software Version 8.4(1) Any help would be great. Thanks running-config : Saved : Written by enable_15 at 23:12:32.378 UTC Fri Jul 1 2011 ! ASA Version 8.4(1) ! hostname aaaasa domain-name aaa.local enable password xxxxxxxxxxxxxxx encrypted passwd xxxxxxxxxxxxxxxxxxxx encrypted names ! interface Vlan1 nameif inside security-level 100 ip address 192.168.1.254 255.255.255.0 ! interface Vlan2 nameif outside security-level 0 ip address xxx.xxx.xxx.xxx 255.255.254.0 ! interface Vlan5 no nameif security-level 50 ip address 172.16.0.254 255.255.255.0 ! interface Vlan500 no nameif security-level 100 ip address 10.10.10.1 255.255.255.0 ! interface Ethernet0/0 switchport access vlan 2 ! interface Ethernet0/1 ! interface Ethernet0/2 ! interface Ethernet0/3 ! interface Ethernet0/4 ! interface Ethernet0/5 ! interface Ethernet0/6 ! interface Ethernet0/7 ! boot system disk0:/asa841-k8.bin ftp mode passive dns domain-lookup inside dns domain-lookup outside dns server-group DefaultDNS name-server 4.2.2.2 domain-name aaa.local same-security-traffic permit inter-interface same-security-traffic permit intra-interface object network obj_any subnet 0.0.0.0 0.0.0.0 object network A_93.97.168.1 host 93.97.168.1 object network rdp host 192.168.1.2 object network NETWORK_OBJ_192.168.1.0_24 subnet 192.168.1.0 255.255.255.0 access-list 101 extended permit tcp any host 192.168.1.2 eq 3389 access-list 101 extended permit icmp any any echo-reply access-list 101 extended permit icmp any any source-quench access-list 101 extended permit icmp any any time-exceeded access-list 101 extended permit icmp any any unreachable access-list 102 extended permit ip any any pager lines 24 logging enable logging asdm informational mtu inside 1500 mtu outside 1492 ip local pool VPNPool 192.168.2.200-192.168.2.210 mask 255.255.255.0 icmp unreachable rate-limit 1 burst-size 1 asdm image disk0:/asdm-641.bin no asdm history enable arp timeout 14400 ! object network rdp nat (inside,outside) static interface service tcp 3389 3389 ! nat (inside,outside) after-auto source dynamic any interface access-group 101 in interface outside access-group 102 out interface outside ! router ospf 1 network 192.168.1.0 255.255.255.0 area 0 log-adj-changes ! route outside 0.0.0.0 0.0.0.0 93.97.168.1 1 timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute timeout tcp-proxy-reassembly 0:01:00 dynamic-access-policy-record DfltAccessPolicy http server enable http 192.168.1.0 255.255.255.0 inside no snmp-server location no snmp-server contact snmp-server enable traps snmp authentication linkup linkdown coldstart crypto ipsec ikev2 ipsec-proposal DES protocol esp encryption des protocol esp integrity sha-1 md5 crypto ipsec ikev2 ipsec-proposal 3DES protocol esp encryption 3des protocol esp integrity sha-1 md5 crypto ipsec ikev2 ipsec-proposal AES protocol esp encryption aes protocol esp integrity sha-1 md5 crypto ipsec ikev2 ipsec-proposal AES192 protocol esp encryption aes-192 protocol esp integrity sha-1 md5 crypto ipsec ikev2 ipsec-proposal AES256 protocol esp encryption aes-256 protocol esp integrity sha-1 md5 crypto dynamic-map SYSTEM_DEFAULT_CRYPTO_MAP 65535 set ikev2 ipsec-proposal AES256 AES192 AES 3DES DES crypto map outside_map 65535 ipsec-isakmp dynamic SYSTEM_DEFAULT_CRYPTO_MAP crypto map outside_map interface outside crypto ca trustpoint ASDM_TrustPoint0 enrollment self subject-name CN=ciscoasa proxy-ldc-issuer crl configure crypto ca certificate chain ASDM_TrustPoint0 certificate 8877d64d 30820248 308201b1 a0030201 02020488 77d64d30 0d06092a 864886f7 0d010105 05003036 3111300f 06035504 03130863 6973636f 61736131 21301f06 092a8648 86f70d01 09021612 63697363 6f617361 2e6e6a64 2e6c6f63 616c301e 170d3131 30353231 30383533 34325a17 0d323130 35313830 38353334 325a3036 3111300f 06035504 03130863 6973636f 61736131 21301f06 092a8648 86f70d01 09021612 63697363 6f617361 2e6e6a64 2e6c6f63 616c3081 9f300d06 092a8648 86f70d01 01010500 03818d00 30818902 818100ea 1aa95141 480e616c efee6816 a96d6511 313b6776 cd3dd57b cd84b4d2 5e108aee 7c980086 4d92e2eb b6c7bf66 4585af0a ccbf153a db9270be c6f5c67b db9dd8d1 2f78d033 3348b056 df4be0da 70e08953 53adf294 9db6c020 597d250f bf448b43 b90179c8 ff0b15d8 744632d9 31c1945f 0b11e258 b4c1d224 692efff4 7b2f5102 03010001 a3633061 300f0603 551d1301 01ff0405 30030101 ff300e06 03551d0f 0101ff04 04030201 86301f06 03551d23 04183016 8014493c 19db183a ab1af9e9 b1e44ad4 2a408b3c 89d1301d 0603551d 0e041604 14493c19 db183aab 1af9e9b1 e44ad42a 408b3c89 d1300d06 092a8648 86f70d01 01050500 03818100 1dd1760a fdd15941 4803fb9a cd6f44a7 2e275854 a1c0fbe1 d19f2cc9 182d43ef a547f854 8df96d15 3ea79c62 cf3fcb1c 5820360b c607dbfc 4de8bb16 19f727e9 b928a085 665816d8 138e4a35 ed610950 7910dd4a 0b1a9dd9 0e26f1c8 b78bc0cc cbf19eb2 4c4c3931 45199ea5 249e3266 661e44fd 7a00d376 dcfc6e4e d43f10b8 quit crypto isakmp nat-traversal 30 crypto ikev2 policy 1 encryption aes-256 integrity sha group 5 prf sha lifetime seconds 86400 crypto ikev2 policy 10 encryption aes-192 integrity sha group 5 prf sha lifetime seconds 86400 crypto ikev2 policy 20 encryption aes integrity sha group 5 prf sha lifetime seconds 86400 crypto ikev2 policy 30 encryption 3des integrity sha group 5 prf sha lifetime seconds 86400 crypto ikev2 policy 40 encryption des integrity sha group 5 prf sha lifetime seconds 86400 crypto ikev2 enable outside client-services port 443 crypto ikev2 remote-access trustpoint ASDM_TrustPoint0 telnet timeout 5 ssh 192.168.1.0 255.255.255.0 inside ssh timeout 5 console timeout 0 dhcpd auto_config outside ! dhcpd address 192.168.1.5-192.168.1.36 inside dhcpd dns 4.2.2.2 interface inside dhcpd enable inside ! threat-detection basic-threat threat-detection statistics host number-of-rate 3 threat-detection statistics port threat-detection statistics protocol threat-detection statistics access-list threat-detection statistics tcp-intercept rate-interval 30 burst-rate 400 average-rate 200 ntp server 82.219.4.31 source outside prefer ssl trust-point ASDM_TrustPoint0 outside webvpn enable outside anyconnect image disk0:/anyconnect-win-2.4.1012-k9.pkg 1 anyconnect profiles AnyConnectVPN_client_profile disk0:/AnyConnectVPN_client_profile.xml anyconnect profiles SSLAnyConnectVPN_client_profile disk0:/SSLAnyConnectVPN_client_profile.xml anyconnect enable tunnel-group-list enable group-policy GroupPolicy_AnyConnectVPN internal group-policy GroupPolicy_AnyConnectVPN attributes wins-server none dns-server value 4.2.2.2 vpn-tunnel-protocol ikev2 ssl-client ssl-clientless default-domain value aaa.local webvpn url-list none anyconnect profiles value AnyConnectVPN_client_profile type user group-policy GroupPolicy_SSLAnyConnectVPN internal group-policy GroupPolicy_SSLAnyConnectVPN attributes wins-server none dns-server value 4.2.2.2 vpn-tunnel-protocol ikev2 ssl-client default-domain value aaa.local webvpn anyconnect profiles value SSLAnyConnectVPN_client_profile type user username testuser password xxxxxxxxxxxxxxxxx encrypted privilege 0 username testuser attributes vpn-group-policy GroupPolicy_AnyConnectVPN tunnel-group SSLPOL type remote-access tunnel-group SSLPOL general-attributes default-group-policy GroupPolicy_AnyConnectVPN tunnel-group SSLAnyConnectVPN type remote-access tunnel-group SSLAnyConnectVPN general-attributes address-pool VPNPool default-group-policy GroupPolicy_SSLAnyConnectVPN tunnel-group SSLAnyConnectVPN webvpn-attributes group-alias SSLAnyConnectVPN enable ! class-map inspection_default match default-inspection-traffic ! ! policy-map type inspect dns preset_dns_map parameters message-length maximum 512 policy-map global_policy class inspection_default inspect dns preset_dns_map inspect esmtp inspect ftp inspect h323 h225 inspect h323 ras inspect ip-options inspect netbios inspect rsh inspect rtsp inspect sip inspect skinny inspect sqlnet inspect sunrpc inspect tftp inspect xdmcp ! service-policy global_policy global prompt hostname context call-home profile CiscoTAC-1 no active destination address http https://tools.cisco.com/its/service/oddce/services/DDCEService destination address email [email protected] destination transport-method http subscribe-to-alert-group diagnostic subscribe-to-alert-group environment subscribe-to-alert-group inventory periodic monthly subscribe-to-alert-group configuration periodic monthly subscribe-to-alert-group telemetry periodic daily Cryptochecksum:94a65341aa27d3929d5e92a32ba22120 : end

    Read the article

  • Custom Model Binding of IEnumerable Properties in ASP.Net MVC 2

    - by Doug Lampe
    MVC 2 provides a GREAT feature for dealing with enumerable types.  Let's say you have an object with a parent/child relationship and you want to allow users to modify multiple children at the same time.  You can simply use the following syntax for any indexed enumerables (arrays, generic lists, etc.) and then your values will bind to your enumerable model properties. 1: <% using (Html.BeginForm("TestModelParameter", "Home")) 2: { %> 3: < table > 4: < tr >< th >ID</th><th>Name</th><th>Description</th></tr> 5: <% for (int i = 0; i < Model.Items.Count; i++) 6: { %> 7: < tr > 8: < td > 9: <%= i %> 10: </ td > 11: < td > 12: <%= Html.TextBoxFor(m => m.Items[i].Name) %> 13: </ td > 14: < td > 15: <%= Model.Items[i].Description %> 16: </ td > 17: </ tr > 18: <% } %> 19: </ table > 20: < input type ="submit" /> 21: <% } %> Then just update your model either by passing it into your action method as a parameter or explicitly with UpdateModel/TryUpdateModel. 1: public ActionResult TestTryUpdate() 2: { 3: ContainerModel model = new ContainerModel(); 4: TryUpdateModel(model); 5:   6: return View("Test", model); 7: } 8:   9: public ActionResult TestModelParameter(ContainerModel model) 10: { 11: return View("Test", model); 12: } Simple right?  Well, not quite.  The problem is the DefaultModelBinder and how it sets properties.  In this case our model has a property that is a generic list (Items).  The first bad thing the model binder does is create a new instance of the list.  This can be fixed by making the property truly read-only by removing the set accessor.  However this won't help because this behaviour continues.  As the model binder iterates through the items to "set" their values, it creates new instances of them as well.  This means you lose any information not passed via the UI to your controller so in the examplel above the "Description" property would be blank for each item after the form posts. One solution for this is custom model binding.  I have put together a solution which allows you to retain the structure of your model.  Model binding is a somewhat advanced concept so you may need to do some additional research to really understand what is going on here, but the code is fairly simple.  First we will create a binder for the parent object which will retain the state of the parent as well as some information on which children have already been bound. 1: public class ContainerModelBinder : DefaultModelBinder 2: { 3: /// <summary> 4: /// Gets an instance of the model to be used to bind child objects. 5: /// </summary> 6: public ContainerModel Model { get; private set; } 7:   8: /// <summary> 9: /// Gets a list which will be used to track which items have been bound. 10: /// </summary> 11: public List<ItemModel> BoundItems { get; private set; } 12:   13: public ContainerModelBinder() 14: { 15: BoundItems = new List<ItemModel>(); 16: } 17:   18: protected override object CreateModel(ControllerContext controllerContext, ModelBindingContext bindingContext, Type modelType) 19: { 20: // Set the Model property so child binders can find children. 21: Model = base.CreateModel(controllerContext, bindingContext, modelType) as ContainerModel; 22:   23: return Model; 24: } 25: } Next we will create the child binder and have it point to the parent binder to get instances of the child objects.  Note that this only works if there is only one property of type ItemModel in the parent class since the property to find the item in the parent is hard coded. 1: public class ItemModelBinder : DefaultModelBinder 2: { 3: /// <summary> 4: /// Gets the parent binder so we can find objects in the parent's collection 5: /// </summary> 6: public ContainerModelBinder ParentBinder { get; private set; } 7: 8: public ItemModelBinder(ContainerModelBinder containerModelBinder) 9: { 10: ParentBinder = containerModelBinder; 11: } 12:   13: protected override object CreateModel(ControllerContext controllerContext, ModelBindingContext bindingContext, Type modelType) 14: { 15: // Find the item in the parent collection and add it to the bound items list. 16: ItemModel item = ParentBinder.Model.Items.FirstOrDefault(i => !ParentBinder.BoundItems.Contains(i)); 17: ParentBinder.BoundItems.Add(item); 18: 19: return item; 20: } 21: } Finally, we will register these binders in Global.asax.cs so they will be used to bind the classes. 1: protected void Application_Start() 2: { 3: AreaRegistration.RegisterAllAreas(); 4:   5: ContainerModelBinder containerModelBinder = new ContainerModelBinder(); 6: ModelBinders.Binders.Add(typeof(ContainerModel), containerModelBinder); 7: ModelBinders.Binders.Add(typeof(ItemModel), new ItemModelBinder(containerModelBinder)); 8:   9: RegisterRoutes(RouteTable.Routes); 10: } I'm sure some of my fellow geeks will comment that this could be done more efficiently by simply rewriting some of the methods of the default model binder to get the same desired behavior.  I like my method shown here because it extends the binder class instead of modifying it so it minimizes the potential for unforseen problems. In a future post (if I ever get around to it) I will explore creating a generic version of these binders.

    Read the article

  • How to Achieve OC4J RMI Load Balancing

    - by fip
    This is an old, Oracle SOA and OC4J 10G topic. In fact this is not even a SOA topic per se. Questions of RMI load balancing arise when you developed custom web applications accessing human tasks running off a remote SOA 10G cluster. Having returned from a customer who faced challenges with OC4J RMI load balancing, I felt there is still some confusions in the field how OC4J RMI load balancing work. Hence I decide to dust off an old tech note that I wrote a few years back and share it with the general public. Here is the tech note: Overview A typical use case in Oracle SOA is that you are building web based, custom human tasks UI that will interact with the task services housed in a remote BPEL 10G cluster. Or, in a more generic way, you are just building a web based application in Java that needs to interact with the EJBs in a remote OC4J cluster. In either case, you are talking to an OC4J cluster as RMI client. Then immediately you must ask yourself the following questions: 1. How do I make sure that the web application, as an RMI client, even distribute its load against all the nodes in the remote OC4J cluster? 2. How do I make sure that the web application, as an RMI client, is resilient to the node failures in the remote OC4J cluster, so that in the unlikely case when one of the remote OC4J nodes fail, my web application will continue to function? That is the topic of how to achieve load balancing with OC4J RMI client. Solutions You need to configure and code RMI load balancing in two places: 1. Provider URL can be specified with a comma separated list of URLs, so that the initial lookup will land to one of the available URLs. 2. Choose a proper value for the oracle.j2ee.rmi.loadBalance property, which, along side with the PROVIDER_URL property, is one of the JNDI properties passed to the JNDI lookup.(http://docs.oracle.com/cd/B31017_01/web.1013/b28958/rmi.htm#BABDGFBI) More details below: About the PROVIDER_URL The JNDI property java.name.provider.url's job is, when the client looks up for a new context at the very first time in the client session, to provide a list of RMI context The value of the JNDI property java.name.provider.url goes by the format of a single URL, or a comma separate list of URLs. A single URL. For example: opmn:ormi://host1:6003:oc4j_instance1/appName1 A comma separated list of multiple URLs. For examples:  opmn:ormi://host1:6003:oc4j_instanc1/appName, opmn:ormi://host2:6003:oc4j_instance1/appName, opmn:ormi://host3:6003:oc4j_instance1/appName When the client looks up for a new Context the very first time in the client session, it sends a query against the OPMN referenced by the provider URL. The OPMN host and port specifies the destination of such query, and the OC4J instance name and appName are actually the “where clause” of the query. When the PROVIDER URL reference a single OPMN server Let's consider the case when the provider url only reference a single OPMN server of the destination cluster. In this case, that single OPMN server receives the query and returns a list of the qualified Contexts from all OC4Js within the cluster, even though there is a single OPMN server in the provider URL. A context represent a particular starting point at a particular server for subsequent object lookup. For example, if the URL is opmn:ormi://host1:6003:oc4j_instance1/appName, then, OPMN will return the following contexts: appName on oc4j_instance1 on host1 appName on oc4j_instance1 on host2, appName on oc4j_instance1 on host3,  (provided that host1, host2, host3 are all in the same cluster) Please note that One OPMN will be sufficient to find the list of all contexts from the entire cluster that satisfy the JNDI lookup query. You can do an experiment by shutting down appName on host1, and observe that OPMN on host1 will still be able to return you appname on host2 and appName on host3. When the PROVIDER URL reference a comma separated list of multiple OPMN servers When the JNDI propery java.naming.provider.url references a comma separated list of multiple URLs, the lookup will return the exact same things as with the single OPMN server: a list of qualified Contexts from the cluster. The purpose of having multiple OPMN servers is to provide high availability in the initial context creation, such that if OPMN at host1 is unavailable, client will try the lookup via OPMN on host2, and so on. After the initial lookup returns and cache a list of contexts, the JNDI URL(s) are no longer used in the same client session. That explains why removing the 3rd URL from the list of JNDI URLs will not stop the client from getting the EJB on the 3rd server. About the oracle.j2ee.rmi.loadBalance Property After the client acquires the list of contexts, it will cache it at the client side as “list of available RMI contexts”.  This list includes all the servers in the destination cluster. This list will stay in the cache until the client session (JVM) ends. The RMI load balancing against the destination cluster is happening at the client side, as the client is switching between the members of the list. Whether and how often the client will fresh the Context from the list of Context is based on the value of the  oracle.j2ee.rmi.loadBalance. The documentation at http://docs.oracle.com/cd/B31017_01/web.1013/b28958/rmi.htm#BABDGFBI list all the available values for the oracle.j2ee.rmi.loadBalance. Value Description client If specified, the client interacts with the OC4J process that was initially chosen at the first lookup for the entire conversation. context Used for a Web client (servlet or JSP) that will access EJBs in a clustered OC4J environment. If specified, a new Context object for a randomly-selected OC4J instance will be returned each time InitialContext() is invoked. lookup Used for a standalone client that will access EJBs in a clustered OC4J environment. If specified, a new Context object for a randomly-selected OC4J instance will be created each time the client calls Context.lookup(). Please note the regardless of the setting of oracle.j2ee.rmi.loadBalance property, the “refresh” only occurs at the client. The client can only choose from the "list of available context" that was returned and cached from the very first lookup. That is, the client will merely get a new Context object from the “list of available RMI contexts” from the cache at the client side. The client will NOT go to the OPMN server again to get the list. That also implies that if you are adding a node to the server cluster AFTER the client’s initial lookup, the client would not know it because neither the server nor the client will initiate a refresh of the “list of available servers” to reflect the new node. About High Availability (i.e. Resilience Against Node Failure of Remote OC4J Cluster) What we have discussed above is about load balancing. Let's also discuss high availability. This is how the High Availability works in RMI: when the client use the context but get an exception such as socket is closed, it knows that the server referenced by that Context is problematic and will try to get another unused Context from the “list of available contexts”. Again, this list is the list that was returned and cached at the very first lookup in the entire client session.

    Read the article

  • Anatomy of a .NET Assembly - PE Headers

    - by Simon Cooper
    Today, I'll be starting a look at what exactly is inside a .NET assembly - how the metadata and IL is stored, how Windows knows how to load it, and what all those bytes are actually doing. First of all, we need to understand the PE file format. PE files .NET assemblies are built on top of the PE (Portable Executable) file format that is used for all Windows executables and dlls, which itself is built on top of the MSDOS executable file format. The reason for this is that when .NET 1 was released, it wasn't a built-in part of the operating system like it is nowadays. Prior to Windows XP, .NET executables had to load like any other executable, had to execute native code to start the CLR to read & execute the rest of the file. However, starting with Windows XP, the operating system loader knows natively how to deal with .NET assemblies, rendering most of this legacy code & structure unnecessary. It still is part of the spec, and so is part of every .NET assembly. The result of this is that there are a lot of structure values in the assembly that simply aren't meaningful in a .NET assembly, as they refer to features that aren't needed. These are either set to zero or to certain pre-defined values, specified in the CLR spec. There are also several fields that specify the size of other datastructures in the file, which I will generally be glossing over in this initial post. Structure of a PE file Most of a PE file is split up into separate sections; each section stores different types of data. For instance, the .text section stores all the executable code; .rsrc stores unmanaged resources, .debug contains debugging information, and so on. Each section has a section header associated with it; this specifies whether the section is executable, read-only or read/write, whether it can be cached... When an exe or dll is loaded, each section can be mapped into a different location in memory as the OS loader sees fit. In order to reliably address a particular location within a file, most file offsets are specified using a Relative Virtual Address (RVA). This specifies the offset from the start of each section, rather than the offset within the executable file on disk, so the various sections can be moved around in memory without breaking anything. The mapping from RVA to file offset is done using the section headers, which specify the range of RVAs which are valid within that section. For example, if the .rsrc section header specifies that the base RVA is 0x4000, and the section starts at file offset 0xa00, then an RVA of 0x401d (offset 0x1d within the .rsrc section) corresponds to a file offset of 0xa1d. Because each section has its own base RVA, each valid RVA has a one-to-one mapping with a particular file offset. PE headers As I said above, most of the header information isn't relevant to .NET assemblies. To help show what's going on, I've created a diagram identifying all the various parts of the first 512 bytes of a .NET executable assembly. I've highlighted the relevant bytes that I will refer to in this post: Bear in mind that all numbers are stored in the assembly in little-endian format; the hex number 0x0123 will appear as 23 01 in the diagram. The first 64 bytes of every file is the DOS header. This starts with the magic number 'MZ' (0x4D, 0x5A in hex), identifying this file as an executable file of some sort (an .exe or .dll). Most of the rest of this header is zeroed out. The important part of this header is at offset 0x3C - this contains the file offset of the PE signature (0x80). Between the DOS header & PE signature is the DOS stub - this is a stub program that simply prints out 'This program cannot be run in DOS mode.\r\n' to the console. I will be having a closer look at this stub later on. The PE signature starts at offset 0x80, with the magic number 'PE\0\0' (0x50, 0x45, 0x00, 0x00), identifying this file as a PE executable, followed by the PE file header (also known as the COFF header). The relevant field in this header is in the last two bytes, and it specifies whether the file is an executable or a dll; bit 0x2000 is set for a dll. Next up is the PE standard fields, which start with a magic number of 0x010b for x86 and AnyCPU assemblies, and 0x20b for x64 assemblies. Most of the rest of the fields are to do with the CLR loader stub, which I will be covering in a later post. After the PE standard fields comes the NT-specific fields; again, most of these are not relevant for .NET assemblies. The one that is is the highlighted Subsystem field, and specifies if this is a GUI or console app - 0x20 for a GUI app, 0x30 for a console app. Data directories & section headers After the PE and COFF headers come the data directories; each directory specifies the RVA (first 4 bytes) and size (next 4 bytes) of various important parts of the executable. The only relevant ones are the 2nd (Import table), 13th (Import Address table), and 15th (CLI header). The Import and Import Address table are only used by the startup stub, so we will look at those later on. The 15th points to the CLI header, where the CLR-specific metadata begins. After the data directories comes the section headers; one for each section in the file. Each header starts with the section's ASCII name, null-padded to 8 bytes. Again, most of each header is irrelevant, but I've highlighted the base RVA and file offset in each header. In the diagram, you can see the following sections: .text: base RVA 0x2000, file offset 0x200 .rsrc: base RVA 0x4000, file offset 0xa00 .reloc: base RVA 0x6000, file offset 0x1000 The .text section contains all the CLR metadata and code, and so is by far the largest in .NET assemblies. The .rsrc section contains the data you see in the Details page in the right-click file properties page, but is otherwise unused. The .reloc section contains address relocations, which we will look at when we study the CLR startup stub. What about the CLR? As you can see, most of the first 512 bytes of an assembly are largely irrelevant to the CLR, and only a few bytes specify needed things like the bitness (AnyCPU/x86 or x64), whether this is an exe or dll, and the type of app this is. There are some bytes that I haven't covered that affect the layout of the file (eg. the file alignment, which determines where in a file each section can start). These values are pretty much constant in most .NET assemblies, and don't affect the CLR data directly. Conclusion To summarize, the important data in the first 512 bytes of a file is: DOS header. This contains a pointer to the PE signature. DOS stub, which we'll be looking at in a later post. PE signature PE file header (aka COFF header). This specifies whether the file is an exe or a dll. PE standard fields. This specifies whether the file is AnyCPU/32bit or 64bit. PE NT-specific fields. This specifies what type of app this is, if it is an app. Data directories. The 15th entry (at offset 0x168) contains the RVA and size of the CLI header inside the .text section. Section headers. These are used to map between RVA and file offset. The important one is .text, which is where all the CLR data is stored. In my next post, we'll start looking at the metadata used by the CLR directly, which is all inside the .text section.

    Read the article

  • Android - Create a custom multi-line ListView bound to an ArrayList

    - by Bill Osuch
    The Android HelloListView tutorial shows how to bind a ListView to an array of string objects, but you'll probably outgrow that pretty quickly. This post will show you how to bind the ListView to an ArrayList of custom objects, as well as create a multi-line ListView. Let's say you have some sort of search functionality that returns a list of people, along with addresses and phone numbers. We're going to display that data in three formatted lines for each result, and make it clickable. First, create your new Android project, and create two layout files. Main.xml will probably already be created by default, so paste this in: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"  android:orientation="vertical"  android:layout_width="fill_parent"   android:layout_height="fill_parent">  <TextView   android:layout_height="wrap_content"   android:text="Custom ListView Contents"   android:gravity="center_vertical|center_horizontal"   android:layout_width="fill_parent" />   <ListView    android:id="@+id/ListView01"    android:layout_height="wrap_content"    android:layout_width="fill_parent"/> </LinearLayout> Next, create a layout file called custom_row_view.xml. This layout will be the template for each individual row in the ListView. You can use pretty much any type of layout - Relative, Table, etc., but for this we'll just use Linear: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"  android:orientation="vertical"  android:layout_width="fill_parent"   android:layout_height="fill_parent">   <TextView android:id="@+id/name"   android:textSize="14sp"   android:textStyle="bold"   android:textColor="#FFFF00"   android:layout_width="wrap_content"   android:layout_height="wrap_content"/>  <TextView android:id="@+id/cityState"   android:layout_width="wrap_content"   android:layout_height="wrap_content"/>  <TextView android:id="@+id/phone"   android:layout_width="wrap_content"   android:layout_height="wrap_content"/> </LinearLayout> Now, add an object called SearchResults. Paste this code in: public class SearchResults {  private String name = "";  private String cityState = "";  private String phone = "";  public void setName(String name) {   this.name = name;  }  public String getName() {   return name;  }  public void setCityState(String cityState) {   this.cityState = cityState;  }  public String getCityState() {   return cityState;  }  public void setPhone(String phone) {   this.phone = phone;  }  public String getPhone() {   return phone;  } } This is the class that we'll be filling with our data, and loading into an ArrayList. Next, you'll need a custom adapter. This one just extends the BaseAdapter, but you could extend the ArrayAdapter if you prefer. public class MyCustomBaseAdapter extends BaseAdapter {  private static ArrayList<SearchResults> searchArrayList;    private LayoutInflater mInflater;  public MyCustomBaseAdapter(Context context, ArrayList<SearchResults> results) {   searchArrayList = results;   mInflater = LayoutInflater.from(context);  }  public int getCount() {   return searchArrayList.size();  }  public Object getItem(int position) {   return searchArrayList.get(position);  }  public long getItemId(int position) {   return position;  }  public View getView(int position, View convertView, ViewGroup parent) {   ViewHolder holder;   if (convertView == null) {    convertView = mInflater.inflate(R.layout.custom_row_view, null);    holder = new ViewHolder();    holder.txtName = (TextView) convertView.findViewById(R.id.name);    holder.txtCityState = (TextView) convertView.findViewById(R.id.cityState);    holder.txtPhone = (TextView) convertView.findViewById(R.id.phone);    convertView.setTag(holder);   } else {    holder = (ViewHolder) convertView.getTag();   }      holder.txtName.setText(searchArrayList.get(position).getName());   holder.txtCityState.setText(searchArrayList.get(position).getCityState());   holder.txtPhone.setText(searchArrayList.get(position).getPhone());   return convertView;  }  static class ViewHolder {   TextView txtName;   TextView txtCityState;   TextView txtPhone;  } } (This is basically the same as the List14.java API demo) Finally, we'll wire it all up in the main class file: public class CustomListView extends Activity {     @Override     public void onCreate(Bundle savedInstanceState) {         super.onCreate(savedInstanceState);         setContentView(R.layout.main);                 ArrayList<SearchResults> searchResults = GetSearchResults();                 final ListView lv1 = (ListView) findViewById(R.id.ListView01);         lv1.setAdapter(new MyCustomBaseAdapter(this, searchResults));                 lv1.setOnItemClickListener(new OnItemClickListener() {          @Override          public void onItemClick(AdapterView<?> a, View v, int position, long id) {           Object o = lv1.getItemAtPosition(position);           SearchResults fullObject = (SearchResults)o;           Toast.makeText(ListViewBlogPost.this, "You have chosen: " + " " + fullObject.getName(), Toast.LENGTH_LONG).show();          }          });     }         private ArrayList<SearchResults> GetSearchResults(){      ArrayList<SearchResults> results = new ArrayList<SearchResults>();            SearchResults sr1 = new SearchResults();      sr1.setName("John Smith");      sr1.setCityState("Dallas, TX");      sr1.setPhone("214-555-1234");      results.add(sr1);            sr1 = new SearchResults();      sr1.setName("Jane Doe");      sr1.setCityState("Atlanta, GA");      sr1.setPhone("469-555-2587");      results.add(sr1);            sr1 = new SearchResults();      sr1.setName("Steve Young");      sr1.setCityState("Miami, FL");      sr1.setPhone("305-555-7895");      results.add(sr1);            sr1 = new SearchResults();      sr1.setName("Fred Jones");      sr1.setCityState("Las Vegas, NV");      sr1.setPhone("612-555-8214");      results.add(sr1);            return results;     } } Notice that we first get an ArrayList of SearchResults objects (normally this would be from an external data source...), pass it to the custom adapter, then set up a click listener. The listener gets the item that was clicked, converts it back to a SearchResults object, and does whatever it needs to do. Fire it up in the emulator, and you should wind up with something like this:

    Read the article

  • Prevent your Silverlight XAP file from caching in your browser.

    - by mbcrump
    If you work with Silverlight daily then you have run into this problem. Your XAP file has been cached in your browser and you have to empty your browser cache to resolve it. If your using Google Chrome then you typically do the following: Go to Options –> Clear Browsing History –> Empty the Cache and finally click Clear Browsing data. As you can see, this is a lot of unnecessary steps. It is even worse when you have a customer that says, “I can’t see the new features you just implemented!” and you realize it’s a cached xap problem.  I have been struggling with a way to prevent my XAP file from caching inside of a browser for a while now and decided to implement the following solution. If the Visual Studio Debugger is attached then add a unique query string to the source param to force the XAP file to be refreshed. If the Visual Studio Debugger is not attached then add the source param as Visual Studio generates it. This is also in case I forget to remove the above code in my production environment. I want the ASP.NET code to be inline with my .ASPX page. (I do not want a separate code behind .cs page or .vb page attached to the .aspx page.) Below is an example of the hosting code generated when you create a new Silverlight project. As a quick refresher, the hard coded param name = “source” specifies the location of your XAP file.  <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <param name="source" value="ClientBin/SilverlightApplication2.xap"/> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We are going to use a little bit of inline ASP.NET to generate the param name = source dynamically to prevent the XAP file from caching. Lets look at the completed solution: <form id="form1" runat="server" style="height:100%"> <div id="silverlightControlHost"> <object data="data:application/x-silverlight-2," type="application/x-silverlight-2" width="100%" height="100%"> <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) //Debugger Attached - Refresh the XAP file. param = "<param name=\"source\" value=\"" + strSourceFile + "?" + DateTime.Now.Ticks + "\" />"; else { //Production Mode param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; } Response.Write(param); %> <param name="onError" value="onSilverlightError" /> <param name="background" value="white" /> <param name="minRuntimeVersion" value="4.0.50826.0" /> <param name="autoUpgrade" value="true" /> <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50826.0" style="text-decoration:none"> <img src="http://go.microsoft.com/fwlink/?LinkId=161376" alt="Get Microsoft Silverlight" style="border-style:none"/> </a> </object><iframe id="_sl_historyFrame" style="visibility:hidden;height:0px;width:0px;border:0px"></iframe></div> </form> We add the location to our XAP file to strSourceFile and if the debugger is attached then it will append DateTime.Now.Ticks to the XAP file source and force the browser to download the .XAP. If you view the page source of your Silverlight Application then you can verify it worked properly by looking at the param name = “source” tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap?634299001187160148" /> If the debugger is not attached then it will use the standard source tag as shown below. <param name="source" value="ClientBin/SilverlightApplication2.xap"/> At this point you may be asking, How do I prevent my XAP file from being cached on my production app? Well, you have two easy options: 1) I really don’t recommend this approach but you can force the XAP to be refreshed everytime with the following code snippet.  <param name="source" value="ClientBin/SilverlightApplication2.xap?<%=Guid.NewGuid().ToString() %>"/> NOTE: You could also substitute the “Guid.NewGuid().ToString() for anything that create a random field. (I used DateTime.Now.Ticks earlier). 2) Another solution that I like even better involves checking the XAP Creation Date and appending it to the param name = source. This method was described by Lars Holm Jenson. <% string strSourceFile = @"ClientBin/SilverlightApplication2.xap"; string param; if (System.Diagnostics.Debugger.IsAttached) param = "<param name=\"source\" value=\"" + strSourceFile + "\" />"; else { string xappath = HttpContext.Current.Server.MapPath(@"") + @"\" + strSourceFile; DateTime xapCreationDate = System.IO.File.GetLastWriteTime(xappath); param = "<param name=\"source\" value=\"" + strSourceFile + "?ignore=" + xapCreationDate.ToString() + "\" />"; } Response.Write(param); %> As you can see, this problem has been solved. It will work with all web browsers and stubborn proxy servers that are caching your .XAP. If you enjoyed this article then check out my blog for others like this. You may also want to subscribe to my blog or follow me on Twitter.   Subscribe to my feed

    Read the article

  • SortedDictionary and SortedList

    - by Simon Cooper
    Apart from Dictionary<TKey, TValue>, there's two other dictionaries in the BCL - SortedDictionary<TKey, TValue> and SortedList<TKey, TValue>. On the face of it, these two classes do the same thing - provide an IDictionary<TKey, TValue> interface where the iterator returns the items sorted by the key. So what's the difference between them, and when should you use one rather than the other? (as in my previous post, I'll assume you have some basic algorithm & datastructure knowledge) SortedDictionary We'll first cover SortedDictionary. This is implemented as a special sort of binary tree called a red-black tree. Essentially, it's a binary tree that uses various constraints on how the nodes of the tree can be arranged to ensure the tree is always roughly balanced (for more gory algorithmical details, see the wikipedia link above). What I'm concerned about in this post is how the .NET SortedDictionary is actually implemented. In .NET 4, behind the scenes, the actual implementation of the tree is delegated to a SortedSet<KeyValuePair<TKey, TValue>>. One example tree might look like this: Each node in the above tree is stored as a separate SortedSet<T>.Node object (remember, in a SortedDictionary, T is instantiated to KeyValuePair<TKey, TValue>): class Node { public bool IsRed; public T Item; public SortedSet<T>.Node Left; public SortedSet<T>.Node Right; } The SortedSet only stores a reference to the root node; all the data in the tree is accessed by traversing the Left and Right node references until you reach the node you're looking for. Each individual node can be physically stored anywhere in memory; what's important is the relationship between the nodes. This is also why there is no constructor to SortedDictionary or SortedSet that takes an integer representing the capacity; there are no internal arrays that need to be created and resized. This may seen trivial, but it's an important distinction between SortedDictionary and SortedList that I'll cover later on. And that's pretty much it; it's a standard red-black tree. Plenty of webpages and datastructure books cover the algorithms behind the tree itself far better than I could. What's interesting is the comparions between SortedDictionary and SortedList, which I'll cover at the end. As a side point, SortedDictionary has existed in the BCL ever since .NET 2. That means that, all through .NET 2, 3, and 3.5, there has been a bona-fide sorted set class in the BCL (called TreeSet). However, it was internal, so it couldn't be used outside System.dll. Only in .NET 4 was this class exposed as SortedSet. SortedList Whereas SortedDictionary didn't use any backing arrays, SortedList does. It is implemented just as the name suggests; two arrays, one containing the keys, and one the values (I've just used random letters for the values): The items in the keys array are always guarenteed to be stored in sorted order, and the value corresponding to each key is stored in the same index as the key in the values array. In this example, the value for key item 5 is 'z', and for key item 8 is 'm'. Whenever an item is inserted or removed from the SortedList, a binary search is run on the keys array to find the correct index, then all the items in the arrays are shifted to accomodate the new or removed item. For example, if the key 3 was removed, a binary search would be run to find the array index the item was at, then everything above that index would be moved down by one: and then if the key/value pair {7, 'f'} was added, a binary search would be run on the keys to find the index to insert the new item, and everything above that index would be moved up to accomodate the new item: If another item was then added, both arrays would be resized (to a length of 10) before the new item was added to the arrays. As you can see, any insertions or removals in the middle of the list require a proportion of the array contents to be moved; an O(n) operation. However, if the insertion or removal is at the end of the array (ie the largest key), then it's only O(log n); the cost of the binary search to determine it does actually need to be added to the end (excluding the occasional O(n) cost of resizing the arrays to fit more items). As a side effect of using backing arrays, SortedList offers IList Keys and Values views that simply use the backing keys or values arrays, as well as various methods utilising the array index of stored items, which SortedDictionary does not (and cannot) offer. The Comparison So, when should you use one and not the other? Well, here's the important differences: Memory usage SortedDictionary and SortedList have got very different memory profiles. SortedDictionary... has a memory overhead of one object instance, a bool, and two references per item. On 64-bit systems, this adds up to ~40 bytes, not including the stored item and the reference to it from the Node object. stores the items in separate objects that can be spread all over the heap. This helps to keep memory fragmentation low, as the individual node objects can be allocated wherever there's a spare 60 bytes. In contrast, SortedList... has no additional overhead per item (only the reference to it in the array entries), however the backing arrays can be significantly larger than you need; every time the arrays are resized they double in size. That means that if you add 513 items to a SortedList, the backing arrays will each have a length of 1024. To conteract this, the TrimExcess method resizes the arrays back down to the actual size needed, or you can simply assign list.Capacity = list.Count. stores its items in a continuous block in memory. If the list stores thousands of items, this can cause significant problems with Large Object Heap memory fragmentation as the array resizes, which SortedDictionary doesn't have. Performance Operations on a SortedDictionary always have O(log n) performance, regardless of where in the collection you're adding or removing items. In contrast, SortedList has O(n) performance when you're altering the middle of the collection. If you're adding or removing from the end (ie the largest item), then performance is O(log n), same as SortedDictionary (in practice, it will likely be slightly faster, due to the array items all being in the same area in memory, also called locality of reference). So, when should you use one and not the other? As always with these sort of things, there are no hard-and-fast rules. But generally, if you: need to access items using their index within the collection are populating the dictionary all at once from sorted data aren't adding or removing keys once it's populated then use a SortedList. But if you: don't know how many items are going to be in the dictionary are populating the dictionary from random, unsorted data are adding & removing items randomly then use a SortedDictionary. The default (again, there's no definite rules on these sort of things!) should be to use SortedDictionary, unless there's a good reason to use SortedList, due to the bad performance of SortedList when altering the middle of the collection.

    Read the article

  • Varnish default.vcl grace period

    - by Vladimir
    These are my settings for a grace period (/etc/varnish/default.vcl) sub vcl_recv { .... set req.grace = 360000s; ... } sub vcl_fetch { ... set beresp.grace = 360000s; ... } I tested Varnish using localhost and nodejs as a server. I started localhost, the site was up. Then I disconnected server and the site got disconnected in less than 2 min. It says: Error 503 Service Unavailable Service Unavailable Guru Meditation: XID: 1890127100 Varnish cache server Could you tell me what could be the problem? sub vcl_fetch { if (beresp.ttl < 120s) { ##std.log("Adjusting TTL"); set beresp.ttl = 36000s; ##120s; } # Do not cache the object if the backend application does not want us to. if (beresp.http.Cache-Control ~ "(no-cache|no-store|private|must-revalidate)") { return(hit_for_pass); } # Do not cache the object if the status is not in the 200s if (beresp.status >= 300) { # Remove the Set-Cookie header #remove beresp.http.Set-Cookie; return(hit_for_pass); } # # Everything below here should be cached # # Remove the Set-Cookie header ####remove beresp.http.Set-Cookie; # Set the grace time ## set beresp.grace = 1s; //change this to minutes in case of app shutdown set beresp.grace = 360000s; ## 10 hour - reduce if it has negative impact # Static assets - browser caches tpiphem for a long time. if (req.url ~ "\.(css|js|.js|jpg|jpeg|gif|ico|png)\??\d*$") { /* Remove Expires from backend, it's not long enough */ unset beresp.http.expires; /* Set the clients TTL on this object */ set beresp.http.cache-control = "public, max-age=31536000"; /* marker for vcl_deliver to reset Age: */ set beresp.http.magicmarker = "1"; } else { set beresp.http.Cache-Control = "private, max-age=0, must-revalidate"; set beresp.http.Pragma = "no-cache"; } if (req.url ~ "\.(css|js|min|)\??\d*$") { set beresp.do_gzip = true; unset beresp.http.expires; set beresp.http.cache-control = "public, max-age=31536000"; set beresp.http.expires = beresp.ttl; set beresp.http.age = "0"; } ##do not duplicate these settings if (req.url ~ ".css") { set beresp.do_gzip = true; unset beresp.http.expires; set beresp.http.cache-control = "public, max-age=31536000"; set beresp.http.expires = beresp.ttl; set beresp.http.age = "0"; } if (req.url ~ ".js") { set beresp.do_gzip = true; unset beresp.http.expires; set beresp.http.cache-control = "public, max-age=31536000"; set beresp.http.expires = beresp.ttl; set beresp.http.age = "0"; } if (req.url ~ ".min") { set beresp.do_gzip = true; unset beresp.http.expires; set beresp.http.cache-control = "public, max-age=31536000"; set beresp.http.expires = beresp.ttl; set beresp.http.age = "0"; } ## If the request to the backend returns a code other than 200, restart the loop ## If the number of restarts reaches the value of the parameter max_restarts, ## the request will be error'ed. max_restarts defaults to 4. This prevents ## an eternal loop in the event that, e.g., the object does not exist at all. if (beresp.status != 200 && beresp.status != 403 && beresp.status != 404) { return(restart); } if (beresp.status == 302) { return(deliver); } # Never cache posts if (req.url ~ "\/post\/" || req.url ~ "\/submit\/" || req.url ~ "\/ask\/" || req.url ~ "\/add\/") { return(hit_for_pass); } ##check this setting to ensure that it does not cause issues for browsers with no gzip if (beresp.http.content-type ~ "text") { set beresp.do_gzip = true; } if (beresp.http.Set-Cookie) { return(deliver); } ##if (req.url == "/index.html") { set beresp.do_esi = true; ##} ## check if this is needed or should be used # return(deliver); the object return(deliver); } sub vcl_recv { ##avoid leeching of images call hot_link; set req.grace = 360000s; ##2m ## if one backend is down - use another if (req.restarts == 0) { set req.backend = cache_director; ##we can specify individual VMs } else if (req.restarts == 1) { set req.backend = cache_director; } ## post calls should not be cached - add cookie for these requests if using micro-caching # Pass requests that are not GET or HEAD if (req.request != "GET" && req.request != "HEAD") { return(pass); ## return(pass) goes to backend - not cache } # Don't cache the result of a redirect if (req.http.Referer ~ "redir" || req.http.Origin ~ "jumpto") { return(pass); } # Don't cache the result of a redirect (asking for logon) if (req.http.Referer ~ "post" || req.http.Referer ~ "submit" || req.http.Referer ~ "add" || req.http.Referer ~ "ask") { return(pass); } # Never cache posts - ensure that we do not use these strings in our URLs' that need to be cached if (req.url ~ "\/post\/" || req.url ~ "\/submit\/" || req.url ~ "\/ask\/" || req.url ~ "\/add\/") { return(pass); } ## if (req.http.Authorization || req.http.Cookie) { if (req.http.Authorization) { /* Not cacheable by default */ return (pass); } # Handle compression correctly. Different browsers send different # "Accept-Encoding" headers, even though they mostly all support the same # compression mechanisms. By consolidating these compression headers into # a consistent format, we can reduce the size of the cache and get more hits. # @see: http:// varnish.projects.linpro.no/wiki/FAQ/Compression if (req.http.Accept-Encoding) { if (req.url ~ "\.(jpg|png|gif|gz|tgz|bz2|tbz|mp3|ogg|ico)$") { # No point in compressing these remove req.http.Accept-Encoding; } else if (req.http.Accept-Encoding ~ "gzip") { # If the browser supports it, we'll use gzip. set req.http.Accept-Encoding = "gzip"; } else if (req.http.Accept-Encoding ~ "deflate") { # Next, try deflate if it is supported. set req.http.Accept-Encoding = "deflate"; } else { # Unknown algorithm. Remove it and send unencoded. unset req.http.Accept-Encoding; } } # lookup graphics, css, js & ico files in the cache if (req.url ~ "\.(png|gif|jpg|jpeg|css|.js|ico)$") { return(lookup); } ##added on 0918 - check if it causes issues with user specific content if (req.request == "GET" && req.http.cookie) { return(lookup); } # Pipe requests that are non-RFC2616 or CONNECT which is weird. if (req.request != "GET" && req.request != "HEAD" && req.request != "PUT" && req.request != "POST" && req.request != "TRACE" && req.request != "OPTIONS" && req.request != "DELETE") { ##closing connection and calling pipe return(pipe); } ##purge content via localhost only if (req.request == "PURGE") { if (!client.ip ~ purge) { error 405 "Not allowed."; } return(lookup); } ## do we need this? ## return(lookup); }

    Read the article

  • How can I connect to a mail server using SMTP over SSL using Python?

    - by jakecar
    Hello, So I have been having a hard time sending email from my school's email address. It is SSL and I could only find this code online by Matt Butcher that works with SSL: import smtplib, socket version = "1.00" all = ['SMTPSSLException', 'SMTP_SSL'] SSMTP_PORT = 465 class SMTPSSLException(smtplib.SMTPException): """Base class for exceptions resulting from SSL negotiation.""" class SMTP_SSL (smtplib.SMTP): """This class provides SSL access to an SMTP server. SMTP over SSL typical listens on port 465. Unlike StartTLS, SMTP over SSL makes an SSL connection before doing a helo/ehlo. All transactions, then, are done over an encrypted channel. This class is a simple subclass of the smtplib.SMTP class that comes with Python. It overrides the connect() method to use an SSL socket, and it overrides the starttles() function to throw an error (you can't do starttls within an SSL session). """ certfile = None keyfile = None def __init__(self, host='', port=0, local_hostname=None, keyfile=None, certfile=None): """Initialize a new SSL SMTP object. If specified, `host' is the name of the remote host to which this object will connect. If specified, `port' specifies the port (on `host') to which this object will connect. `local_hostname' is the name of the localhost. By default, the value of socket.getfqdn() is used. An SMTPConnectError is raised if the SMTP host does not respond correctly. An SMTPSSLError is raised if SSL negotiation fails. Warning: This object uses socket.ssl(), which does not do client-side verification of the server's cert. """ self.certfile = certfile self.keyfile = keyfile smtplib.SMTP.__init__(self, host, port, local_hostname) def connect(self, host='localhost', port=0): """Connect to an SMTP server using SSL. `host' is localhost by default. Port will be set to 465 (the default SSL SMTP port) if no port is specified. If the host name ends with a colon (`:') followed by a number, that suffix will be stripped off and the number interpreted as the port number to use. This will override the `port' parameter. Note: This method is automatically invoked by __init__, if a host is specified during instantiation. """ # MB: Most of this (Except for the socket connection code) is from # the SMTP.connect() method. I changed only the bare minimum for the # sake of compatibility. if not port and (host.find(':') == host.rfind(':')): i = host.rfind(':') if i >= 0: host, port = host[:i], host[i+1:] try: port = int(port) except ValueError: raise socket.error, "nonnumeric port" if not port: port = SSMTP_PORT if self.debuglevel > 0: print>>stderr, 'connect:', (host, port) msg = "getaddrinfo returns an empty list" self.sock = None for res in socket.getaddrinfo(host, port, 0, socket.SOCK_STREAM): af, socktype, proto, canonname, sa = res try: self.sock = socket.socket(af, socktype, proto) if self.debuglevel > 0: print>>stderr, 'connect:', (host, port) self.sock.connect(sa) # MB: Make the SSL connection. sslobj = socket.ssl(self.sock, self.keyfile, self.certfile) except socket.error, msg: if self.debuglevel > 0: print>>stderr, 'connect fail:', (host, port) if self.sock: self.sock.close() self.sock = None continue break if not self.sock: raise socket.error, msg # MB: Now set up fake socket and fake file classes. # Thanks to the design of smtplib, this is all we need to do # to get SSL working with all other methods. self.sock = smtplib.SSLFakeSocket(self.sock, sslobj) self.file = smtplib.SSLFakeFile(sslobj); (code, msg) = self.getreply() if self.debuglevel > 0: print>>stderr, "connect:", msg return (code, msg) def setkeyfile(self, keyfile): """Set the absolute path to a file containing a private key. This method will only be effective if it is called before connect(). This key will be used to make the SSL connection.""" self.keyfile = keyfile def setcertfile(self, certfile): """Set the absolute path to a file containing a x.509 certificate. This method will only be effective if it is called before connect(). This certificate will be used to make the SSL connection.""" self.certfile = certfile def starttls(): """Raises an exception. You cannot do StartTLS inside of an ssl session. Calling starttls() will return an SMTPSSLException""" raise SMTPSSLException, "Cannot perform StartTLS within SSL session." And then my code: import ssmtplib conn = ssmtplib.SMTP_SSL('HOST') conn.login('USERNAME','PW') conn.ehlo() conn.sendmail('FROM_EMAIL', 'TO_EMAIL', "MESSAGE") conn.close() And got this error: /Users/Jake/Desktop/Beth's Program/ssmtplib.py:116: DeprecationWarning: socket.ssl() is deprecated. Use ssl.wrap_socket() instead. sslobj = socket.ssl(self.sock, self.keyfile, self.certfile) Traceback (most recent call last): File "emailer.py", line 5, in conn = ssmtplib.SMTP_SSL('HOST') File "/Users/Jake/Desktop/Beth's Program/ssmtplib.py", line 79, in init smtplib.SMTP.init(self, host, port, local_hostname) File "/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/smtplib.py", line 239, in init (code, msg) = self.connect(host, port) File "/Users/Jake/Desktop/Beth's Program/ssmtplib.py", line 131, in connect self.sock = smtplib.SSLFakeSocket(self.sock, sslobj) AttributeError: 'module' object has no attribute 'SSLFakeSocket' Thank you!

    Read the article

  • WebSocket Applications using Java: JSR 356 Early Draft Now Available (TOTD #183)

    - by arungupta
    WebSocket provide a full-duplex and bi-directional communication protocol over a single TCP connection. JSR 356 is defining a standard API for creating WebSocket applications in the Java EE 7 Platform. This Tip Of The Day (TOTD) will provide an introduction to WebSocket and how the JSR is evolving to support the programming model. First, a little primer on WebSocket! WebSocket is a combination of IETF RFC 6455 Protocol and W3C JavaScript API (still a Candidate Recommendation). The protocol defines an opening handshake and data transfer. The API enables Web pages to use the WebSocket protocol for two-way communication with the remote host. Unlike HTTP, there is no need to create a new TCP connection and send a chock-full of headers for every message exchange between client and server. The WebSocket protocol defines basic message framing, layered over TCP. Once the initial handshake happens using HTTP Upgrade, the client and server can send messages to each other, independent from the other. There are no pre-defined message exchange patterns of request/response or one-way between client and and server. These need to be explicitly defined over the basic protocol. The communication between client and server is pretty symmetric but there are two differences: A client initiates a connection to a server that is listening for a WebSocket request. A client connects to one server using a URI. A server may listen to requests from multiple clients on the same URI. Other than these two difference, the client and server behave symmetrically after the opening handshake. In that sense, they are considered as "peers". After a successful handshake, clients and servers transfer data back and forth in conceptual units referred as "messages". On the wire, a message is composed of one or more frames. Application frames carry payload intended for the application and can be text or binary data. Control frames carry data intended for protocol-level signaling. Now lets talk about the JSR! The Java API for WebSocket is worked upon as JSR 356 in the Java Community Process. This will define a standard API for building WebSocket applications. This JSR will provide support for: Creating WebSocket Java components to handle bi-directional WebSocket conversations Initiating and intercepting WebSocket events Creation and consumption of WebSocket text and binary messages The ability to define WebSocket protocols and content models for an application Configuration and management of WebSocket sessions, like timeouts, retries, cookies, connection pooling Specification of how WebSocket application will work within the Java EE security model Tyrus is the Reference Implementation for JSR 356 and is already integrated in GlassFish 4.0 Promoted Builds. And finally some code! The API allows to create WebSocket endpoints using annotations and interface. This TOTD will show a simple sample using annotations. A subsequent blog will show more advanced samples. A POJO can be converted to a WebSocket endpoint by specifying @WebSocketEndpoint and @WebSocketMessage. @WebSocketEndpoint(path="/hello")public class HelloBean {     @WebSocketMessage    public String sayHello(String name) {         return "Hello " + name + "!";     }} @WebSocketEndpoint marks this class as a WebSocket endpoint listening at URI defined by the path attribute. The @WebSocketMessage identifies the method that will receive the incoming WebSocket message. This first method parameter is injected with payload of the incoming message. In this case it is assumed that the payload is text-based. It can also be of the type byte[] in case the payload is binary. A custom object may be specified if decoders attribute is specified in the @WebSocketEndpoint. This attribute will provide a list of classes that define how a custom object can be decoded. This method can also take an optional Session parameter. This is injected by the runtime and capture a conversation between two endpoints. The return type of the method can be String, byte[] or a custom object. The encoders attribute on @WebSocketEndpoint need to define how a custom object can be encoded. The client side is an index.jsp with embedded JavaScript. The JSP body looks like: <div style="text-align: center;"> <form action="">     <input onclick="say_hello()" value="Say Hello" type="button">         <input id="nameField" name="name" value="WebSocket" type="text"><br>    </form> </div> <div id="output"></div> The code is relatively straight forward. It has an HTML form with a button that invokes say_hello() method and a text field named nameField. A div placeholder is available for displaying the output. Now, lets take a look at some JavaScript code: <script language="javascript" type="text/javascript"> var wsUri = "ws://localhost:8080/HelloWebSocket/hello";     var websocket = new WebSocket(wsUri);     websocket.onopen = function(evt) { onOpen(evt) };     websocket.onmessage = function(evt) { onMessage(evt) };     websocket.onerror = function(evt) { onError(evt) };     function init() {         output = document.getElementById("output");     }     function say_hello() {      websocket.send(nameField.value);         writeToScreen("SENT: " + nameField.value);     } This application is deployed as "HelloWebSocket.war" (download here) on GlassFish 4.0 promoted build 57. So the WebSocket endpoint is listening at "ws://localhost:8080/HelloWebSocket/hello". A new WebSocket connection is initiated by specifying the URI to connect to. The JavaScript API defines callback methods that are invoked when the connection is opened (onOpen), closed (onClose), error received (onError), or a message from the endpoint is received (onMessage). The client API has several send methods that transmit data over the connection. This particular script sends text data in the say_hello method using nameField's value from the HTML shown earlier. Each click on the button sends the textbox content to the endpoint over a WebSocket connection and receives a response based upon implementation in the sayHello method shown above. How to test this out ? Download the entire source project here or just the WAR file. Download GlassFish4.0 build 57 or later and unzip. Start GlassFish as "asadmin start-domain". Deploy the WAR file as "asadmin deploy HelloWebSocket.war". Access the application at http://localhost:8080/HelloWebSocket/index.jsp. After clicking on "Say Hello" button, the output would look like: Here are some references for you: WebSocket - Protocol and JavaScript API JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) Subsequent blogs will discuss the following topics (not necessary in that order) ... Binary data as payload Custom payloads using encoder/decoder Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API Capturing WebSocket on-the-wire messages

    Read the article

  • tile_static, tile_barrier, and tiled matrix multiplication with C++ AMP

    - by Daniel Moth
    We ended the previous post with a mechanical transformation of the C++ AMP matrix multiplication example to the tiled model and in the process introduced tiled_index and tiled_grid. This is part 2. tile_static memory You all know that in regular CPU code, static variables have the same value regardless of which thread accesses the static variable. This is in contrast with non-static local variables, where each thread has its own copy. Back to C++ AMP, the same rules apply and each thread has its own value for local variables in your lambda, whereas all threads see the same global memory, which is the data they have access to via the array and array_view. In addition, on an accelerator like the GPU, there is a programmable cache, a third kind of memory type if you'd like to think of it that way (some call it shared memory, others call it scratchpad memory). Variables stored in that memory share the same value for every thread in the same tile. So, when you use the tiled model, you can have variables where each thread in the same tile sees the same value for that variable, that threads from other tiles do not. The new storage class for local variables introduced for this purpose is called tile_static. You can only use tile_static in restrict(direct3d) functions, and only when explicitly using the tiled model. What this looks like in code should be no surprise, but here is a snippet to confirm your mental image, using a good old regular C array // each tile of threads has its own copy of locA, // shared among the threads of the tile tile_static float locA[16][16]; Note that tile_static variables are scoped and have the lifetime of the tile, and they cannot have constructors or destructors. tile_barrier In amp.h one of the types introduced is tile_barrier. You cannot construct this object yourself (although if you had one, you could use a copy constructor to create another one). So how do you get one of these? You get it, from a tiled_index object. Beyond the 4 properties returning index objects, tiled_index has another property, barrier, that returns a tile_barrier object. The tile_barrier class exposes a single member, the method wait. 15: // Given a tiled_index object named t_idx 16: t_idx.barrier.wait(); 17: // more code …in the code above, all threads in the tile will reach line 16 before a single one progresses to line 17. Note that all threads must be able to reach the barrier, i.e. if you had branchy code in such a way which meant that there is a chance that not all threads could reach line 16, then the code above would be illegal. Tiled Matrix Multiplication Example – part 2 So now that we added to our understanding the concepts of tile_static and tile_barrier, let me obfuscate rewrite the matrix multiplication code so that it takes advantage of tiling. Before you start reading this, I suggest you get a cup of your favorite non-alcoholic beverage to enjoy while you try to fully understand the code. 01: void MatrixMultiplyTiled(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: static const int TS = 16; 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M,N,vC); 07: parallel_for_each(c.grid.tile< TS, TS >(), 08: [=] (tiled_index< TS, TS> t_idx) restrict(direct3d) 09: { 10: int row = t_idx.local[0]; int col = t_idx.local[1]; 11: float sum = 0.0f; 12: for (int i = 0; i < W; i += TS) { 13: tile_static float locA[TS][TS], locB[TS][TS]; 14: locA[row][col] = a(t_idx.global[0], col + i); 15: locB[row][col] = b(row + i, t_idx.global[1]); 16: t_idx.barrier.wait(); 17: for (int k = 0; k < TS; k++) 18: sum += locA[row][k] * locB[k][col]; 19: t_idx.barrier.wait(); 20: } 21: c[t_idx.global] = sum; 22: }); 23: } Notice that all the code up to line 9 is the same as per the changes we made in part 1 of tiling introduction. If you squint, the body of the lambda itself preserves the original algorithm on lines 10, 11, and 17, 18, and 21. The difference being that those lines use new indexing and the tile_static arrays; the tile_static arrays are declared and initialized on the brand new lines 13-15. On those lines we copy from the global memory represented by the array_view objects (a and b), to the tile_static vanilla arrays (locA and locB) – we are copying enough to fit a tile. Because in the code that follows on line 18 we expect the data for this tile to be in the tile_static storage, we need to synchronize the threads within each tile with a barrier, which we do on line 16 (to avoid accessing uninitialized memory on line 18). We also need to synchronize the threads within a tile on line 19, again to avoid the race between lines 14, 15 (retrieving the next set of data for each tile and overwriting the previous set) and line 18 (not being done processing the previous set of data). Luckily, as part of the awesome C++ AMP debugger in Visual Studio there is an option that helps you find such races, but that is a story for another blog post another time. May I suggest reading the next section, and then coming back to re-read and walk through this code with pen and paper to really grok what is going on, if you haven't already? Cool. Why would I introduce this tiling complexity into my code? Funny you should ask that, I was just about to tell you. There is only one reason we tiled our extent, had to deal with finding a good tile size, ensure the number of threads we schedule are correctly divisible with the tile size, had to use a tiled_index instead of a normal index, and had to understand tile_barrier and to figure out where we need to use it, and double the size of our lambda in terms of lines of code: the reason is to be able to use tile_static memory. Why do we want to use tile_static memory? Because accessing tile_static memory is around 10 times faster than accessing the global memory on an accelerator like the GPU, e.g. in the code above, if you can get 150GB/second accessing data from the array_view a, you can get 1500GB/second accessing the tile_static array locA. And since by definition you are dealing with really large data sets, the savings really pay off. We have seen tiled implementations being twice as fast as their non-tiled counterparts. Now, some algorithms will not have performance benefits from tiling (and in fact may deteriorate), e.g. algorithms that require you to go only once to global memory will not benefit from tiling, since with tiling you already have to fetch the data once from global memory! Other algorithms may benefit, but you may decide that you are happy with your code being 150 times faster than the serial-version you had, and you do not need to invest to make it 250 times faster. Also algorithms with more than 3 dimensions, which C++ AMP supports in the non-tiled model, cannot be tiled. Also note that in future releases, we may invest in making the non-tiled model, which already uses tiling under the covers, go the extra step and use tile_static memory on your behalf, but it is obviously way to early to commit to anything like that, and we certainly don't do any of that today. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

< Previous Page | 458 459 460 461 462 463 464 465 466 467 468 469  | Next Page >