Search Results

Search found 57603 results on 2305 pages for 'asp net compiler'.

Page 465/2305 | < Previous Page | 461 462 463 464 465 466 467 468 469 470 471 472  | Next Page >

  • protobuf-net: Issues deserializing DataMember fields in lieu of read-only property

    - by Paul Smith
    I'm having issues deserializing certain properties of ORM-generated entities using protobuf-net. I suspect something in the way the ORM manages serialization attributes on read-only properties (uses public backing fields with DataMember attributes & [de]serializes) those instead of the corresponding read-only property, which has an IgnoreDataMember attribute). Guid properties might have issues of their own, but the field vs. property thing is my working theory now. Here's a simplified example of the code. Say I have a class, Account with an AccountID read-only guid, and an AccountName read-write string. I serialize & immediately deserialize a clone. In this scenario I get one of two results (depending on the entity, haven't isolated the specific commonality yet). The deserialized clone either: ...has a different AccountID from the original, or ...throws an Incorrect wire-type deserializing Guid exception while deserializing. Here's example usage... Account acct = new Account() { AccountName = "Bob's Checking" }; Debug.WriteLine(acct.AccountID.ToString()); using (MemoryStream ms = new MemoryStream()) { ProtoBuf.Serializer.Serialize<Account>(ms, acct); Debug.WriteLine(Encoding.UTF8.GetString(ms.GetBuffer())); ms.Position = 0; Account clone = ProtoBuf.Serializer.Deserialize<Account>(ms); Debug.WriteLine(clone.AccountID.ToString()); } And here's an example ORM'd class (simplified; hopefully haven't removed the cause of the issue in the process). Uses a shell game to deserialize read-only properties by exposing the backing field ("can't write" essentially becomes "shouldn't write," but we can scan code for instances of assigning to these fields, so the hack works for our purposes): [DataContract()] [Serializable()] public partial class Account { public Account() { _accountID = Guid.NewGuid(); } [XmlAttribute("AccountID")] [DataMember(Name = "AccountID", Order = 0)] public Guid _accountID; /// <summary> /// A read-only property; XML, JSON and DataContract serializers all seem /// to correctly recognize the public backing field when deserializing: /// </summary> [IgnoreDataMember] [XmlIgnore] public Guid AccountID { get { return this._accountID; } } [IgnoreDataMember] protected string _accountName; [DataMember(Name = "AccountName", Order = 1)] [XmlAttribute] public string AccountName { get { return this._accountName; } set { this._accountName = value; } } } XML, JSON and DataContract serializers all seem to serialize / deserialize matching object graphs here, so this attribute arrangement apparently causes those serializers to correctly assign to the public backing field when deserializing. I've tried protobuf-net with lists vs. single instances, different prefix styles, etc., but always either get the 'incorrect wire type ... Guid' exception, or the Guid property (field) not deserializing correctly. So the specific questions are, is there a quick workaround for this, and/or is there an explanation for both of outcomes 1 & 2 above, and/or can protobuf-net somehow be corralled into behaving like WCF in cases like this (i.e. follow the same DataMember/IgnoreDataMember semantics)? We hope not to have to create a protobuf dependency directly in the entity layer; if that's the case, we'll probably create proxy DTO entities with all public properties having protobuf attributes. (This is a subjective issue I have with all declarative serialization models; it's a ubiquitous pattern, but IMO, "normal" should be to have objects and serialization contracts decoupled.) Thanks!

    Read the article

  • Insufficient Permissions Problems with MSDeploy and TFS Build 2010

    - by jdanforth
    I ran into these problems on a TFS 2010 RC setup where I wanted to deploy a web site as part of the nightly build: C:\Program Files (x86)\MSBuild\Microsoft\VisualStudio\v10.0\Web\Microsoft.Web.Publishing.targets (3481): Web deployment task failed.(An error occurred when reading the IIS Configuration File 'MACHINE/REDIRECTION'. The identity performing the operation was 'NT AUTHORITY\NETWORK SERVICE'.)  An error occurred when reading the IIS Configuration File 'MACHINE/REDIRECTION'. The identity performing the operation was 'NT AUTHORITY\NETWORK SERVICE'. Filename: \\?\C:\Windows\system32\inetsrv\config\redirection.config Error: Cannot read configuration file due to insufficient permissions  As you can see I’m running the build service as NETWORK SERVICE which is quite usual. The first thing I did then was to give NETWORK SERVICE read access to the whole directory where redirection.config is sitting; C:\Windows\system32\inetsrv\config. That gave me a new error: C:\Program Files (x86)\MSBuild\Microsoft\VisualStudio\v10.0\Web\Microsoft.Web.Publishing.targets (3481): Web deployment task failed. (Attempted to perform an unauthorized operation.) The reason for this problem was that NETWORK SERVICE didn’t have write permission to the place where I’ve told MSDeploy to put the web site physically on the disk. Once I’d given the NETWORK SERVICE the right permissions, MSDeploy completed as expected! NOTE! I’ve not had this problem with TFS 2010 RTM, so it might be just a RC issue!

    Read the article

  • Windows 7 Phone Database – Querying with Views and Filters

    - by SeanMcAlinden
    I’ve just added a feature to Rapid Repository to greatly improve how the Windows 7 Phone Database is queried for performance (This is in the trunk not in Release V1.0). The main concept behind it is to create a View Model class which would have only the minimum data you need for a page. This View Model is then stored and retrieved rather than the whole list of entities. Another feature of the views is that they can be pre-filtered to even further improve performance when querying. You can download the source from the Microsoft Codeplex site http://rapidrepository.codeplex.com/. Setting up a view Lets say you have an entity that stores lots of data about a game result for example: GameScore entity public class GameScore : IRapidEntity {     public Guid Id { get; set; }     public string GamerId {get;set;}     public string Name { get; set; }     public Double Score { get; set; }     public Byte[] ThumbnailAvatar { get; set; }     public DateTime DateAdded { get; set; } }   On your page you want to display a list of scores but you only want to display the score and the date added, you create a View Model for displaying just those properties. GameScoreView public class GameScoreView : IRapidView {     public Guid Id { get; set; }     public Double Score { get; set; }     public DateTime DateAdded { get; set; } }   Now you have the view model, the first thing to do is set up the view at application start up. This is done using the following syntax. View Setup public MainPage() {     RapidRepository<GameScore>.AddView<GameScoreView>(x => new GameScoreView { DateAdded = x.DateAdded, Score = x.Score }); } As you can see, using a little bit of lambda syntax, you put in the code for constructing a single view, this is used internally for mapping an entity to a view. *Note* you do not need to map the Id property, this is done automatically, a view model id will always be the same as it’s corresponding entity.   Adding Filters One of the cool features of the view is that you can add filters to limit the amount of data stored in the view, this will dramatically improve performance. You can add multiple filters using the fluent syntax if required. In this example, lets say that you will only ever show the scores for the last 10 days, you could add a filter like the following: Add single filter public MainPage() {     RapidRepository<GameScore>.AddView<GameScoreView>(x => new GameScoreView { DateAdded = x.DateAdded, Score = x.Score })         .AddFilter(x => x.DateAdded > DateTime.Now.AddDays(-10)); } If you wanted to further limit the data, you could also say only scores above 100: Add multiple filters public MainPage() {     RapidRepository<GameScore>.AddView<GameScoreView>(x => new GameScoreView { DateAdded = x.DateAdded, Score = x.Score })         .AddFilter(x => x.DateAdded > DateTime.Now.AddDays(-10))         .AddFilter(x => x.Score > 100); }   Querying the view model So the important part is how to query the data. This is done using the repository, there is a method called Query which accepts the type of view as a generic parameter (you can have multiple View Model types per entity type) You can either use the result of the query method directly or perform further querying on the result is required. Querying the View public void DisplayScores() {     RapidRepository<GameScore> repository = new RapidRepository<GameScore>();     List<GameScoreView> scores = repository.Query<GameScoreView>();       // display logic } Further Filtering public void TodaysScores() {     RapidRepository<GameScore> repository = new RapidRepository<GameScore>();     List<GameScoreView> todaysScores = repository.Query<GameScoreView>().Where(x => x.DateAdded > DateTime.Now.AddDays(-1)).ToList();       // display logic }   Retrieving the actual entity Retrieving the actual entity can be done easily by using the GetById method on the repository. Say for example you allow the user to click on a specific score to get further information, you can use the Id populated in the returned View Model GameScoreView and use it directly on the repository to retrieve the full entity. Get Full Entity public void GetFullEntity(Guid gameScoreViewId) {     RapidRepository<GameScore> repository = new RapidRepository<GameScore>();     GameScore fullEntity = repository.GetById(gameScoreViewId);       // display logic } Synchronising The View If you are upgrading from Rapid Repository V1.0 and are likely to have data in the repository already, you will need to perform a synchronisation to ensure the views and entities are fully in sync. You can either do this as a one off during the application upgrade or if you are a little more cautious, you could run this at each application start up. Synchronise the view public void MyUpgradeTasks() {     RapidRepository<GameScore>.SynchroniseView<GameScoreView>(); } It’s worth noting that in normal operation, the view keeps itself in sync with the entities so this is only really required if you are upgrading from V1.0 to V2.0 when it gets released shortly.   Summary I really hope you like this feature, it will be great for performance and I believe supports good practice by promoting the use of View Models for specific pages. I’m hoping to produce a beta for this over the next few days, I just want to add some more tests and hopefully iron out any bugs. I would really appreciate any thoughts on this feature and would really love to know of any bugs you find. You can download the source from the following : http://rapidrepository.codeplex.com/ Kind Regards, Sean McAlinden.

    Read the article

  • Netflix, jQuery, JSONP, and OData

    - by Latest Microsoft Blogs
    At the last MIX conference, Netflix announced that they are exposing their catalog of movie information using the OData protocol. This is great news! This means that you can take advantage of all of the advanced OData querying features against a live Read More......(read more)

    Read the article

  • Using Unity – Part 3

    - by nmarun
    The previous blog was about registering and invoking different types dynamically. In this one I’d like to show how Unity manages/disposes the instances – say hello to Lifetime Managers. When a type gets registered, either through the config file or when RegisterType method is explicitly called, the default behavior is that the container uses a transient lifetime manager. In other words, the unity container creates a new instance of the type when Resolve or ResolveAll method is called. Whereas, when you register an existing object using the RegisterInstance method, the container uses a container controlled lifetime manager - a singleton pattern. It does this by storing the reference of the object and that means so as long as the container is ‘alive’, your registered instance does not go out of scope and will be disposed only after the container either goes out of scope or when the code explicitly disposes the container. Let’s see how we can use these and test if something is a singleton or a transient instance. Continuing on the same solution used in the previous blogs, I have made the following changes: First is to add typeAlias elements for TransientLifetimeManager type: 1: <typeAlias alias="transient" type="Microsoft.Practices.Unity.TransientLifetimeManager, Microsoft.Practices.Unity"/> You then need to tell what type(s) you want to be transient by nature: 1: <type type="IProduct" mapTo="Product2"> 2: <lifetime type="transient" /> 3: </type> 4: <!--<type type="IProduct" mapTo="Product2" />--> The lifetime element’s type attribute matches with the alias attribute of the typeAlias element. Now since ‘transient’ is the default behavior, you can have a concise version of the same as line 4 shows. Also note that I’ve changed the mapTo attribute from ‘Product’ to ‘Product2’. I’ve done this to help understand the transient nature of the instance of the type Product2. By making this change, you are basically saying when a type of IProduct needs to be resolved, Unity should create an instance of Product2 by default. 1: public string WriteProductDetails() 2: { 3: return string.Format("Name: {0}<br/>Category: {1}<br/>Mfg Date: {2}<br/>Hash Code: {3}", 4: Name, Category, MfgDate.ToString("MM/dd/yyyy hh:mm:ss tt"), GetHashCode()); 5: } Again, the above change is purely for the purpose of making the example more clear to understand. The display will show the full date and also displays the hash code of the current instance. The GetHashCode() method returns an integer when an instance gets created – a new integer for every instance. When you run the application, you’ll see something like the below: Now when you click on the ‘Get Product2 Instance’ button, you’ll see that the Mfg Date (which is set in the constructor) and the Hash Code are different from the one created on page load. This proves to us that a new instance is created every single time. To make this a singleton, we need to add a type alias for the ContainerControlledLifetimeManager class and then change the type attribute of the lifetime element to singleton. 1: <typeAlias alias="singleton" type="Microsoft.Practices.Unity.ContainerControlledLifetimeManager, Microsoft.Practices.Unity"/> 2: ... 3: <type type="IProduct" mapTo="Product2"> 4: <lifetime type="singleton" /> 5: </type> Running the application now gets me the following output: Click on the button below and you’ll see that the Mfg Date and the Hash code remain unchanged => the unity container is storing the reference the first time it is created and then returns the same instance every time the type needs to be resolved. Digging more deeper into this, Unity provides more than the two lifetime managers. ExternallyControlledLifetimeManager – maintains a weak reference to type mappings and instances. Unity returns the same instance as long as the some code is holding a strong reference to this instance. For this, you need: 1: <typeAlias alias="external" type="Microsoft.Practices.Unity.ExternallyControlledLifetimeManager, Microsoft.Practices.Unity"/> 2: ... 3: <type type="IProduct" mapTo="Product2"> 4: <lifetime type="external" /> 5: </type> PerThreadLifetimeManager – Unity returns a unique instance of an object for each thread – so this effectively is a singleton behavior on a  per-thread basis. 1: <typeAlias alias="perThread" type="Microsoft.Practices.Unity.PerThreadLifetimeManager, Microsoft.Practices.Unity"/> 2: ... 3: <type type="IProduct" mapTo="Product2"> 4: <lifetime type="perThread" /> 5: </type> One thing to note about this is that if you use RegisterInstance method to register an existing object, this instance will be returned for every thread, making this a purely singleton behavior. Needless to say, this type of lifetime management is useful in multi-threaded applications (duh!!). I hope this blog provided some basics on lifetime management of objects resolved in Unity and in the next blog, I’ll talk about Injection. Please see the code used here.

    Read the article

  • jQuery and Windows Azure

    - by Latest Microsoft Blogs
    The goal of this blog entry is to describe how you can host a simple Ajax application created with jQuery in the Windows Azure cloud. In this blog entry, I make no assumptions. I assume that you have never used Windows Azure and I am going to walk through Read More......(read more)

    Read the article

  • URL Parts available to URL Rewrite Rules

    - by OWScott
    URL Rewrite is a powerful URL rewriting tool available for IIS7 and newer.  Your rewriting options are almost unlimited, giving you the ability to optimize URLs for search engine optimization (SEO), support multiple domain names on a single site, hiding complex paths and much more. URL Rewrite allows you to use any Server Variable as conditions, and with URL Rewrite 2.0, you can also update them on the fly.  To see all variables available to your site, see this post. An understanding of the parts of a complete URL are essential to working with URL Rewrite, so I’ll include the basics here.  Ruslan Yakushev’s configuration reference was my authoritative source for this. Take this URL for example: The URL is http://www.bing.com/search?q=IIS+url+rewrite The parts of the URL are: http(s)://<host>:<port>/<path>?<querystring> Part Example Server Variable http(s) http SERVER_PORT_SECURE or HTTPS = on/off <host> www.bing.com HTTP_HOST <port> Default is 80 SERVER_PORT <path> search The rule pattern in URL Rewrite <path> /search PATH_INFO <querystring> q=IIS+url+rewrite QUERY_STRING entire URL path with querystring /search?q=IIS+url+rewrite REQUEST_URI It’s important to note that /, : and ? aren’t included in some of the server variables. Understanding which slashes are included is important to creating successful rules.

    Read the article

  • C# Proposal: Compile Time Static Checking Of Dynamic Objects

    - by Paulo Morgado
    C# 4.0 introduces a new type: dynamic. dynamic is a static type that bypasses static type checking. This new type comes in very handy to work with: The new languages from the dynamic language runtime. HTML Document Object Model (DOM). COM objects. Duck typing … Because static type checking is bypassed, this: dynamic dynamicValue = GetValue(); dynamicValue.Method(); is equivalent to this: object objectValue = GetValue(); objectValue .GetType() .InvokeMember( "Method", BindingFlags.InvokeMethod, null, objectValue, null); Apart from caching the call site behind the scenes and some dynamic resolution, dynamic only looks better. Any typing error will only be caught at run time. In fact, if I’m writing the code, I know the contract of what I’m calling. Wouldn’t it be nice to have the compiler do some static type checking on the interactions with these dynamic objects? Imagine that the dynamic object that I’m retrieving from the GetValue method, besides the parameterless method Method also has a string read-only Property property. This means that, from the point of view of the code I’m writing, the contract that the dynamic object returned by GetValue implements is: string Property { get; } void Method(); Since it’s a well defined contract, I could write an interface to represent it: interface IValue { string Property { get; } void Method(); } If dynamic allowed to specify the contract in the form of dynamic(contract), I could write this: dynamic(IValue) dynamicValue = GetValue(); dynamicValue.Method(); This doesn’t mean that the value returned by GetValue has to implement the IValue interface. It just enables the compiler to verify that dynamicValue.Method() is a valid use of dynamicValue and dynamicValue.OtherMethod() isn’t. If the IValue interface already existed for any other reason, this would be fine. But having a type added to an assembly just for compile time usage doesn’t seem right. So, dynamic could be another type construct. Something like this: dynamic DValue { string Property { get; } void Method(); } The code could now be written like this; DValue dynamicValue = GetValue(); dynamicValue.Method(); The compiler would never generate any IL or metadata for this new type construct. It would only thee used for compile type static checking of dynamic objects. As a consequence, it makes no sense to have public accessibility, so it would not be allowed. Once again, if the IValue interface (or any other type definition) already exists, it can be used in the dynamic type definition: dynamic DValue : IValue, IEnumerable, SomeClass { string Property { get; } void Method(); } Another added benefit would be IntelliSense. I’ve been getting mixed reactions to this proposal. What do you think? Would this be useful?

    Read the article

  • TinyFluidGrid – a clean and lightweight css framework

    - by Guy Harwood
    I've been using the 960 Grid system for a while on some of my personal projects and if like me you are no css ninja its convenient for sidestepping the usual nightmare of a good cross browser layout, and allows you to move on to the nitty gritty code and functionality. I just stumbled across a new layout generator that looks rather snazzy and has the functionality to back it up.  TinyFluidGrid generates exactly that – a tiny fluid grid! Worth a look.

    Read the article

  • ComboBox Control using silverlight

    - by Aamir Hasan
    DropDown.zip (135.33 kb) LiveDemo Introduction In this article i am  going to explore some of the features of the ComboBox.ComboBox makes the collection visible and allows users to pick an item from the collection.After its first initialization, no matter if you bind a new datasource with fewer or more elements, the dropdown persists its original height.One workaround is the following:1. store the Properties from the original ComboBox2. delete the ComboBox removing it from its container3. create a new ComboBox and place it in the container4. recover the stores Properties5. bind the new DataSource to the newly created combobox Creating Silverlight ProjectCreate a new Silverlight 3 Project in VS 2008. Name it as ComboBoxtSample. Simple Data BindingAdd System.Windows.Control.Data reference to the Silverlight project. Silverlight UserControl Add a new page to display Bus data using DataGrid. Following shows Bus column XAML snippet:The ComboBox element represents a ComboBox control in XAML.  <ComboBox></ComboBox>ComboBox XAML        <StackPanel Orientation="Vertical">            <ComboBox Width="120" Height="30" x:Name="DaysDropDownList" DisplayMemberPath="Name">                <!--<ComboBox.ItemTemplate>                    <DataTemplate>                        <StackPanel Orientation="Horizontal">                            <TextBlock Text="{Binding Path=Name}" FontWeight="Bold"></TextBlock>                            <TextBlock Text=", "></TextBlock>                            <TextBlock Text="{Binding Path=ID}"></TextBlock>                        </StackPanel>                    </DataTemplate>                </ComboBox.ItemTemplate>-->            </ComboBox>        </StackPanel>   The following code below is an example implementation Combobox control support data binding     1 By setting the DisplayMemberPath property you can specify which data item in your data you want displayed in the ComboBox.    2 Setting the SelectedIndex allows you to specify which item in the ComboBox you want selected. Business Object public class Bus { public string Name { get; set; } public float Price { get; set; } }   Data Binding private List populatedlistBus() { listBus = new List(); listBus.Add(new Bus() {Name = "Bus 1", Price = 55f }); listBus.Add(new Bus() { Name = "Bus 2", Price = 55.7f }); listBus.Add(new Bus() { Name = "Bus 3", Price = 2f }); listBus.Add(new Bus() { Name = "Bus 4", Price = 6f }); listBus.Add(new Bus() { Name = "Bus 5", Price = 9F }); listBus.Add(new Bus() { Name = "Bus 6", Price = 10.1f }); return listBus; }   The following line of code sets the ItemsSource property of a ComboBox. DaysDropDownList.ItemsSource = populatedlistBus(); Output I hope you enjoyed this simple Silverlight example Conclusion In this article, we saw how data binding works in ComboBox.You learnt how to work with the ComboBox control in Silverlight.

    Read the article

  • What is Inversion of control and why we need it?

    - by Jalpesh P. Vadgama
    Most of programmer need inversion of control pattern in today’s complex real time application world. So I have decided to write a blog post about it. This blog post will explain what is Inversion of control and why we need it. We are going to take a real world example so it would be better to understand. The problem- Why we need inversion of control? Before giving definition of Inversion of control let’s take a simple real word example to see why we need inversion of control. Please have look on the following code. public class class1 { private class2 _class2; public class1() { _class2=new class2(); } } public class class2 { //Some implementation of class2 } I have two classes “Class1” and “Class2”.  If you see the code in that I have created a instance of class2 class in the class1 class constructor. So the “class1” class is dependent on “class2”. I think that is the biggest issue in real world scenario as if we change the “class2” class then we might need to change the “class1” class also. Here there is one type of dependency between this two classes that is called Tight Coupling. Tight coupling will have lots of problem in real world applications as things are tends to be change in future so we have to change all the tight couple classes that are dependent of each other. To avoid this kind of issue we need Inversion of control. What is Inversion of Control? According to the wikipedia following is a definition of Inversion of control. “In software engineering, Inversion of Control (IoC) is an object-oriented programming practice where the object coupling is bound at run time by an assembler object and is typically not known at compile time using static analysis.” So if you read the it carefully it says that we should have object coupling at run time not compile time where it know what object it will create, what method it will call or what feature it will going to use for that. We need to use same classes in such way so that it will not tight couple with each other. There are multiple way to implement Inversion of control. You can refer wikipedia link for knowing multiple ways of implementing Inversion of control. In future posts we are going to see all the different way of implementing Inversion of control.

    Read the article

  • Amazon CloudFront Cache Invalidation – Fill out the Survey!

    - by joelvarty
    Amazon have come up with a survey regarding how cache can be invalidated on object stored in their CloudFront servers. http://survey.amazonwebservices.com/survey/s?s=1369   This is a key feature for Agility CMS, and for a lot of other applications. If it’s important to you, I suggest you spend a few minutes and fill it out. more later - joel

    Read the article

  • Programmatically reuse Dynamics CRM 4 icons

    - by gperera
    The team that wrote the dynamics crm sdk help rocks! I wanted to display the same crm icons on our time tracking application for consistency, so I opened up the sdk help file, searched for 'icon', ignored all the sitemap/isv config entries since I know I want to get these icons programatically, about half way down the search results I see 'organizationui', sure enough that contains the 16x16 (gridicon), 32x32 (outlookshortcuticon) and 66x48 (largeentityicon) icons!To get all the entities, execute a retrieve multiple request. RetrieveMultipleRequest request = new RetrieveMultipleRequest{    Query = new QueryExpression    {        EntityName = "organizationui",        ColumnSet = new ColumnSet(new[] { "objecttypecode", "formxml", "gridicon" }),    }}; var response = sdk.Execute(request) as RetrieveMultipleResponse;Now you have all the entities and icons, here's the tricky part, all the custom entities in crm store the icons inside gridicon, outlookshortcuticon and largeentityicon attributes, the built-in entity icons are stored inside the /_imgs/ folder with the format of /_imgs/ico_16_xxxx.gif (gridicon), with xxxx being the entity type code. The entity type code is not stored inside an attribute of organizationui, however you can get it by looking at the formxml attribute objecttypecode xml attribute. response.BusinessEntityCollection.BusinessEntities.ToList()    .Cast<organizationui>().ToList()    .ForEach(a =>    {        try        {            // easy way to check if it's a custom entity            if (!string.IsNullOrEmpty(a.gridicon))            {                byte[] gif = Convert.FromBase64String(a.gridicon);            }            else            {                // built-in entity                if (!string.IsNullOrEmpty(a.formxml))                {                    int start = a.formxml.IndexOf("objecttypecode=\"") + 16;                    int end = a.formxml.IndexOf("\"", start);                     // found the entity type code                    string code = a.formxml.Substring(start, end - start);                    string url = string.Format("/_imgs/ico_16_{0}.gif", code);Enjoy!

    Read the article

  • Analysis of nopCommerce

    - by chanva
    More and more medium-sized and small enterprises would like eCommerce website to sell their products or services.  Free and open source project should be the first choice.  I found out the nopCommerce is a good option, you could see the detailed analysis.

    Read the article

  • RSS feeds in Orchard

    - by Latest Microsoft Blogs
    When we added RSS to Orchard , we wanted to make it easy for any module to expose any contents as a feed. We also wanted the rendering of the feed to be handled by Orchard in order to minimize the amount of work from the module developer. A typical example Read More......(read more)

    Read the article

  • RSS feeds in Orchard

    - by Bertrand Le Roy
    When we added RSS to Orchard, we wanted to make it easy for any module to expose any contents as a feed. We also wanted the rendering of the feed to be handled by Orchard in order to minimize the amount of work from the module developer. A typical example of such feed exposition is of course blog feeds. We have an IFeedManager interface for which you can get the built-in implementation through dependency injection. Look at the BlogController constructor for an example: public BlogController( IOrchardServices services, IBlogService blogService, IBlogSlugConstraint blogSlugConstraint, IFeedManager feedManager, RouteCollection routeCollection) { If you look a little further in that same controller, in the Item action, you’ll see a call to the Register method of the feed manager: _feedManager.Register(blog); This in reality is a call into an extension method that is specialized for blogs, but we could have made the two calls to the actual generic Register directly in the action instead, that is just an implementation detail: feedManager.Register(blog.Name, "rss", new RouteValueDictionary { { "containerid", blog.Id } }); feedManager.Register(blog.Name + " - Comments", "rss", new RouteValueDictionary { { "commentedoncontainer", blog.Id } }); What those two effective calls are doing is to register two feeds: one for the blog itself and one for the comments on the blog. For each call, the name of the feed is provided, then we have the type of feed (“rss”) and some values to be injected into the generic RSS route that will be used later to route the feed to the right providers. This is all you have to do to expose a new feed. If you’re only interested in exposing feeds, you can stop right there. If on the other hand you want to know what happens after that under the hood, carry on. What happens after that is that the feedmanager will take care of formatting the link tag for the feed (see FeedManager.GetRegisteredLinks). The GetRegisteredLinks method itself will be called from a specialized filter, FeedFilter. FeedFilter is an MVC filter and the event we’re interested in hooking into is OnResultExecuting, which happens after the controller action has returned an ActionResult and just before MVC executes that action result. In other words, our feed registration has already been called but the view is not yet rendered. Here’s the code for OnResultExecuting: model.Zones.AddAction("head:after", html => html.ViewContext.Writer.Write( _feedManager.GetRegisteredLinks(html))); This is another piece of code whose execution is differed. It is saying that whenever comes time to render the “head” zone, this code should be called right after. The code itself is rendering the link tags. As a result of all that, here’s what can be found in an Orchard blog’s head section: <link rel="alternate" type="application/rss+xml"     title="Tales from the Evil Empire"     href="/rss?containerid=5" /> <link rel="alternate" type="application/rss+xml"     title="Tales from the Evil Empire - Comments"     href="/rss?commentedoncontainer=5" /> The generic action that these two feeds point to is Index on FeedController. That controller has three important dependencies: an IFeedBuilderProvider, an IFeedQueryProvider and an IFeedItemProvider. Different implementations of these interfaces can provide different formats of feeds, such as RSS and Atom. The Match method enables each of the competing providers to provide a priority for themselves based on arbitrary criteria that can be found on the FeedContext. This means that a provider can be selected based not only on the desired format, but also on the nature of the objects being exposed as a feed or on something even more arbitrary such as the destination device (you could imagine for example giving shorter text only excerpts of posts on mobile devices, and full HTML on desktop). The key here is extensibility and dynamic competition and collaboration from unknown and loosely coupled parts. You’ll find this pattern pretty much everywhere in the Orchard architecture. The RssFeedBuilder implementation of IFeedBuilderProvider is also a regular controller with a Process action that builds a RssResult, which is itself a thin ActionResult wrapper around an XDocument. Let’s get back to the FeedController’s Index action. After having called into each known feed builder to get its priority on the currently requested feed, it will select the one with the highest priority. The next thing it needs to do is to actually fetch the data for the feed. This again is a collaborative effort from a priori unknown providers, the implementations of IFeedQueryProvider. There are several implementations by default in Orchard, the choice of which is again done through a Match method. ContainerFeedQuery for example chimes in when a “containerid” parameter is found in the context (see URL in the link tag above): public FeedQueryMatch Match(FeedContext context) { var containerIdValue = context.ValueProvider.GetValue("containerid"); if (containerIdValue == null) return null; return new FeedQueryMatch { FeedQuery = this, Priority = -5 }; } The actual work is done in the Execute method, which finds the right container content item in the Orchard database and adds elements for each of them. In other words, the feed query provider knows how to retrieve the list of content items to add to the feed. The last step is to translate each of the content items into feed entries, which is done by implementations of IFeedItemBuilder. There is no Match method this time. Instead, all providers are called with the collection of items (or more accurately with the FeedContext, but this contains the list of items, which is what’s relevant in most cases). Each provider can then choose to pick those items that it knows how to treat and transform them into the format requested. This enables the construction of heterogeneous feeds that expose content items of various types into a single feed. That will be extremely important when you’ll want to expose a single feed for all your site. So here are feeds in Orchard in a nutshell. The main point here is that there is a fair number of components involved, with some complexity in implementation in order to allow for extreme flexibility, but the part that you use to expose a new feed is extremely simple and light: declare that you want your content exposed as a feed and you’re done. There are cases where you’ll have to dive in and provide new implementations for some or all of the interfaces involved, but that requirement will only arise as needed. For example, you might need to create a new feed item builder to include your custom content type but that effort will be extremely focused on the specialized task at hand. The rest of the system won’t need to change. So what do you think?

    Read the article

  • Transactions in LINQ to SQL applications

    - by nikolaosk
    In this post I would like to talk about LINQ to SQL and transactions.When I have a LINQ to SQL class I always get asked this question, "How does LINQ treat Transactions?". When we use the DeleteOnSubmit() method or the InsertOnSubmit() method, all of those commands at some point are translated into T-SQL commands and then are executed against the database. All of those commands live in transactions and they follow the basic rules of transaction processing. They do succeed together or fail together...(read more)

    Read the article

  • Visual Studio IntelliSense for URL Rewrite

    - by OWScott
    Visual Studio doesn’t have IntelliSense support for URL Rewrite by default.  This isn’t a show stopper since it doesn’t result in stop errors. However, it’s nice to have full IntelliSense support and to get rid of the warnings for URL Rewrite rules. RuslanY has released a Visual Studio schema update for URL Rewrite 2.0 which is available as a free quick download.  The installation instructions (they are quick and easy) can be found here, which also include the schema for URL Rewrite 1.1.   The install takes effect immediately without restarting Visual Studio. A side question commonly comes up.  Can you get URL Rewrite support for Visual Studio Web Server (aka Cassini).  The answer is no.  To get URL Rewrite support in your development environment, use IIS7.  You can set your Visual Studio projects to use IIS7 though, so you can have full debug, F5 or Ctrl-F5 support for IIS.

    Read the article

< Previous Page | 461 462 463 464 465 466 467 468 469 470 471 472  | Next Page >