Search Results

Search found 7625 results on 305 pages for 'duane fields'.

Page 47/305 | < Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >

  • Overlaying several CLR reference fields with each other in explicit struct?

    - by thr
    Edit: I'm well aware of that this works very well with value types, my specific question is about using this for reference types. I've been tinkering around with structs in .NET/C#, and I just found out that you can do this: using System; using System.Runtime.InteropServices; namespace ConsoleApplication1 { class Foo { } class Bar { } [StructLayout(LayoutKind.Explicit)] struct Overlaid { [FieldOffset(0)] public object AsObject; [FieldOffset(0)] public Foo AsFoo; [FieldOffset(0)] public Bar AsBar; } class Program { static void Main(string[] args) { var overlaid = new Overlaid(); overlaid.AsObject = new Bar(); Console.WriteLine(overlaid.AsBar); overlaid.AsObject = new Foo(); Console.WriteLine(overlaid.AsFoo); Console.ReadLine(); } } } Basically circumventing having to do dynamic casting during runtime by using a struct that has an explicit field layout and then accessing the object inside as it's correct type. Now my question is: Can this lead to memory leaks somehow, or any other undefined behavior inside the CLR? Or is this a fully supported convention that is usable without any issues? I'm aware that this is one of the darker corners of the CLR, and that this technique is only a viable option in very few specific cases.

    Read the article

  • how to make the two class fields(not referring any other table) as composite key in hibernate?

    - by M Sach
    i want to make pgId and pgName both as composite key where both pgId anf pgName are assgined values. i am not sure how should i go about it? on net i get examples where composite key column refering to column of some other table but not this kind of scenario? @Entity @Table(name = "PersonDetails") public class PersonDetailsData implements Serializable { private static final long serialVersionUID = 1L; @Id @Basic private int pgId; @Basic(optional = true) @Column(nullable = true) private int orgId; @Basic(optional = true) @Column(nullable = true) private String pgName; public PersonWikiDetailsData() { } public int getPpId() { return ppId; } public void setPpId(int ppId) { this.ppId = ppId; } public String getSpaceName() { return spaceName; } public void setSpaceName(String spaceName) { this.spaceName = spaceName; } }

    Read the article

  • how to compare two tables fields name with another value in mysql?

    - by I Like PHP
    I have two tables table_school school_open_time|school_close_time|school_day 8:00 AM | 9:00PM | Monday 10:00 AM | 7:00PM | Wednesday table_college college_open_time|college_close_time|college_day 10:00 AM | 8:00PM | Monday 10:00 AM | 9:00PM | Tuesday 10:00 AM | 5:00PM | Wednesday Now I want to select school_open_time school_close time, college_open_time and college_close_time according to today (means college_day=school_day=today), and also if there is no row for a specific day in any of one table then it display blank field ( LEFT JOIN , I think I can use). Please suggest me best and optimized query for this. UPDATE: if there is no open time and close time for school then college_open_time and college_close_time has to be returned( not to be filled in database,just return) as school_open_time and school_close_time. and there always must be college_open_time and college_close_time for a given day MORE UPDATE: i m using below query SELECT college_open_time,college_close_time ,school_open_time, school_close_time FROM tbl_college LEFT JOIN tbl_school ON school_owner_id=college_owner_id WHERE college_owner_id='".$_session['user_id']."' AND college_day='".date('l',time())."'"; it return single row (left hand having some value and right hand having blank value) when there is no row of a given day in table_school, BUT display seven rows with same value on left hand side(college_open_time, college_close_time) and 6 blank row on right hand side (school_open_time and school_close_time) i need only one row when both table have a row of a given day but using above query take only first row of corresponding table_school where school_owner_id is 50(let), it not see the condition that school_day name should be given day

    Read the article

  • Syntax error in INSERT INTO statement in c# oledb?

    - by sameer
    I am having a table called SubMaster_Accounts, which contains 9 fields. In which I want to insert data to some fields and i want to store some other fields as NULL. I tried to write the query using query string, The sql query works perfectly when i insert the data for all the fields, but when i insert data as NULL to some of the fields it shows syntax error in Insert command. The fields which i want to insert as NULL are not constraints. How can i do it? This is my query string. insert into SubMaster_Account ([SMcode], [MSname], [Sname], [Openbalrs], [Openbalrs1], [Openbalmet], [Openbalmet1], [Creditdays], [Sdesc]) values ('" + SMcode + "','" + MSname + "','" + Sname + "'," + Openbalrs + ",'" + Openbalrs1 + "'," + Openbalmet + ",'" + Openbalmet1 + "'," + Creditdays + ",'" + Sdesc + "')

    Read the article

  • MySQL: How to copy rows, but change a few fields?

    - by Andrew
    I have a large number of rows that I would like to copy, but I need to change one field. I can select the rows that I want to copy: select * from Table where Event_ID = "120" Now I want to copy all those rows and create new rows while setting the Event_ID to 155. How can I accomplish this?

    Read the article

  • How can I make my password fields always empty?

    - by ggfan
    I have a form field where users can change their passwords, but if they set their settings to remember passwords, their password shows up. Is there a way to make the field always empty? So that they always have to type their password. <label for="oldpassword" class="styled">Old password:</label> <input type="password" id="oldpassword" name="oldpassword"/><br />

    Read the article

  • MySQL - Combine two fields to create a unix timestamp?

    - by Dan
    Hi, I'm trying to retrieve a UNIX timestamp from a query by combining a date and a time field in the table, however it keeps returning as zero. SELECT *, UNIX_TIMESTAMP(startdate starttime) AS start, UNIX_TIMESTAMP(enddate endtime) AS end FROM mytable; Can anyone help me out? Thanks.

    Read the article

  • DB fields not showing up in association custom queries?

    - by Kevin
    I have a notification list that the user can select different show options for different kinds of notifications along with how many results are returned. I'm keeping them in the user model because I want the custom sort to stay with the user between sessions. Here is the association in my user model: has_many :notifications, :class_name => "Notification", :foreign_key => "user_id", :conditions => ["won = ? and lost = ? and paid = ?", self.prefs_won, self.prefs_lost, self.prefs_paid], :limit => self.prefs_results.to_s But when I use the above code, Rails throws me an "unknown method" error for self.prefs_won. It is definitely a field in my database and set as a boolean value, but Rails can't find it... what's the problem?

    Read the article

  • Rails - Update a single attribute : link with custom action or form with hidden fields?

    - by MrRuru
    Let's say I have a User model, with a facebook_uid field corresponding to the user's facebook id. I want to allow the user to unlink his facebook account. Do do so, I need to set this attribute to nil. I currently see 2 ways of doing this First way : create a custom action and link to it # app/controllers/users_controller.rb def unlink_facebook_account @user = User.find params[:id] # Authorization checks go here @user.facebook_uid = nil @user.save # Redirection go here end # config/routes.rb ressources :users do get 'unlink_fb', :on => :member, :as => unlink_fb end # in a view = link_to "Unlink your facebook account", unlink_fb_path(@user) Second way : create a form to the existing update action # app/views/user/_unlink_fb_form.html.haml = form_for @user, :method => "post" do |f| = f.hidden_field :facebook_uid, :value => nil = f.submit "Unlink Facebook account" I'm not a big fan of either way. In the first one, I have to add a new action for something that the update controller already can do. In the second one, I cannot set the facebook_uid to nil without customizing the update action, and I cannot have a link instead of a button without adding some javascript. Still, what would you recommend as the best and most elegant solution for this context? Did I miss a third alternative?

    Read the article

  • How do I compare 2 fields and return the lowest value of each record?

    - by BigRob
    I'm slowly learning access to make a database of products and suppliers for my parents' business. What i've got is a table of products indexed by our product reference and 2 more tables for 2 different suppliers that contains the suppliers product reference and price that links with our reference. I've made a query that performs a left outer join such that it returns a table of our products with each supplier's reference and price, i.e: Ref | Product Name | Supplier 1 Ref | Supplier 1 Price | Supplier 2 Ref | Supplier 2 Price Here's the query I used: SELECT Catalog.Ref, Catalog.[Product Name], Catalog.Price, [D Products].[Supplier Ref], [D Products].Cost, [GS Products].[Supplier Ref], [GS Products].Cost FROM ([Catalog] LEFT JOIN [D Products] ON Catalog.Ref = [D Products].Ref) LEFT JOIN [GS Products] ON Catalog.Ref = [GS Products].Ref; Not all products are available from both suppliers, hence the outer join. What I want to do (with a query?) is to take the table produced by the query above and simply show the product reference, cheapest supplier reference and cheapest supplier price, i.e: Ref | Cheapest Suppplier Ref | Cheapest Supplier Price Unfortunately my SQL knowledge isn't quite good enough to figure this out, but if anyone can help i'd really appreciate it. Thanks, Rob

    Read the article

  • Java reflection Method invocations yield result faster than Fields?

    - by omerkudat
    I was microbenchmarking some code (please be nice) and came across this puzzle: when reading a field using reflection, invoking the getter Method is faster than reading the Field. Simple test class: private static final class Foo { public Foo(double val) { this.val = val; } public double getVal() { return val; } public final double val; // only public for demo purposes } We have two reflections: Method m = Foo.class.getDeclaredMethod("getVal", null); Field f = Foo.class.getDeclaredField("val"); Now I call the two reflections in a loop, invoke on the Method, and get on the Field. A first run is done to warm up the VM, a second run is done with 10M iterations. The Method invocation is consistently 30% faster, but why? Note that getDeclaredMethod and getDeclaredField are not called in the loop. They are called once and executed on the same object in the loop. I also tried some minor variations: made the field non-final, transitive, non-public, etc. All of these combinations resulted in statistically similar performance. Edit: This is on WinXP, Intel Core2 Duo, Sun JavaSE build 1.6.0_16-b01, running under jUnit4 and Eclipse.

    Read the article

  • MySQL datetime fields and daylight savings time -- how do I reference the "extra" hour?

    - by Aaron
    I'm using the America/New York timezone. In the Fall we "fall back" an hour -- effectively "gaining" one hour at 2am. At the transition point the following happens: it's 01:59:00 -04:00 then 1 minute later it becomes: 01:00:00 -05:00 So if you simply say "1:30am" it's ambiguous as to whether or not you're referring to the first time 1:30 rolls around or the second. I'm trying to save scheduling data to a MySQL database and can't determine how to save the times properly. Here's the problem: "2009-11-01 00:30:00" is stored internally as 2009-11-01 00:30:00 -04:00 "2009-11-01 01:30:00" is stored internally as 2009-11-01 01:30:00 -05:00 This is fine and fairly expected. But how do I save anything to 01:30:00 -04:00? The documentation does not show any support for specifying the offset and, accordingly, when I've tried specifying the offset it's been duly ignored. The only solutions I've thought of involve setting the server to a timezone that doesn't use daylight savings time and doing the necessary transformations in my scripts (I'm using PHP for this). But that doesn't seem like it should be necessary. Many thanks for any suggestions.

    Read the article

  • CSS - How to align 2 fields into 1 row?

    - by user1809157
    I'm newbie in css. My jsfiddle here http://jsfiddle.net/PAHdH/ <div> <label>Name: </label><p>John</p> <label>Age: </label><p>35</p> <label>Level: </label><p>60</p> <label>Score: </label><p>5000</p> </div> label{ display: inline-block; float: left; clear: left; width: 150px; text-align: left; color:black; } p {margin-bottom:2px; padding:0;} ? I would like to change to Name: John Age: 35 Level: 60 Score: 5000 It should be like a table with 4 columns.

    Read the article

  • SharePoint.DesignFactory.ContentFiles–building WCM sites

    - by svdoever
    One of the use cases where we use the SharePoint.DesignFactory.ContentFiles tooling is in building SharePoint Publishing (WCM) solutions for SharePoint 2007, SharePoint 2010 and Office365. Publishing solutions are often solutions that have one instance, the publishing site (possibly with subsites), that in most cases need to go through DTAP. If you dissect a publishing site, in most case you have the following findings: The publishing site spans a site collection The branding of the site is specified in the root site, because: Master pages live in the root site (/_catalogs/masterpage) Page layouts live in the root site (/_catalogs/masterpage) The style library lives in the root site ( /Style Library) and contains images, css, javascript, xslt transformations for your CQWP’s, … Preconfigured web parts live in the root site (/_catalogs/wp) The root site and subsites contains a document library called Pages (or your language-specific version of it) containing publishing pages using the page layouts and master pages The site collection contains content types, fields and lists When using the SharePoint.DesignFactory.ContentFiles tooling it is very easy to create, test, package and deploy the artifacts that can be uploaded to the SharePoint content database. This can be done in a fast and simple way without the need to create and deploy WSP packages. If we look at the above list of artifacts we can use SharePoint.DesignFactory.ContentFiles for master pages, page layouts, the style library, web part configurations, and initial publishing pages (these are normally made through the SharePoint web UI). Some artifacts like content types, fields and lists in the above list can NOT be handled by SharePoint.DesignFactory.ContentFiles, because they can’t be uploaded to the SharePoint content database. The good thing is that these artifacts are the artifacts that don’t change that much in the development of a SharePoint Publishing solution. There are however multiple ways to create these artifacts: Use paper script: create them manually in each of the environments based on documentation Automate the creation of the artifacts using (PowerShell) script Develop a WSP package to create these artifacts I’m not a big fan of the third option (see my blog post Thoughts on building deployable and updatable SharePoint solutions). It is a lot of work to create content types, fields and list definitions using all kind of XML files, and it is not allowed to modify these artifacts when in use. I know… SharePoint 2010 has some content type upgrade possibilities, but I think it is just too cumbersome. The first option has the problem that content types and fields get ID’s, and that these ID’s must be used by the metadata on for example page layouts. No problem for SharePoint.DesignFactory.ContentFiles, because it supports deploy-time resolving of these ID’s using PowerShell. For example consider the following metadata definition for the page layout contactpage-wcm.aspx.properties.ps1: Metadata page layout # This script must return a hashtable @{ name=value; ... } of field name-value pairs # for the content file that this script applies to. # On deployment to SharePoint, these values are written as fields in the corresponding list item (if any) # Note that fields must exist; they can be updated but not created or deleted. # This script is called right after the file is deployed to SharePoint.   # You can use the script parameters and arbitrary PowerShell code to interact with SharePoint. # e.g. to calculate properties and values at deployment time.   param([string]$SourcePath, [string]$RelativeUrl, $Context) @{     "ContentTypeId" = $Context.GetContentTypeID('GeneralPage');     "MasterPageDescription" = "Cloud Aviator Contact pagelayout (wcm - don't use)";     "PublishingHidden" = "1";     "PublishingAssociatedContentType" = $Context.GetAssociatedContentTypeInfo('GeneralPage') } The PowerShell functions GetContentTypeID and GetAssociatedContentTypeInfo can at deploy-time resolve the required information from the server we are deploying to. I personally prefer the second option: automate creation through PowerShell, because there are PowerShell scripts available to export content types and fields. An example project structure for a typical SharePoint WCM site looks like: Note that this project uses DualLayout. So if you build Publishing sites using SharePoint, checkout out the completely free SharePoint.DesignFactory.ContentFiles tooling and start flying!

    Read the article

  • A couple of nice features when using OracleTextSearch

    - by kyle.hatlestad
    If you have your UCM/URM instance configured to use the Oracle 11g database as the search engine, you can be using OracleTextSearch as the search definition. OracleTextSearch uses the advanced features of Oracle Text for indexing and searching. This includes the ability to specify metadata fields to be optimized for the search index, fast rebuilding, and index optimization. If you are on 10g of UCM, then you'll need to load the OracleTextSearch component that is available in the CS10gR35UpdateBundle component on the support site (patch #6907073). If you are on 11g, no component is needed. Then you specify the search indexer name with the configuration flag of SearchIndexerEngineName=OracleTextSearch. Please see the docs for other configuration settings and setup instructions. So I thought I would highlight a couple of other unique features available with OracleTextSearch. The first is the Drill Down feature. This feature allows you to specify specific metadata fields that will break down the results of that field based on the total results. So in the above graphic, you can see how it broke down the extensions and gives a count for each. Then you just need to click on that link to then drill into that result. This setting is perfect for option list fields and ones with a distinct set of values possible. By default, it will use the fields Type, Security Group, and Account (if enabled). But you can also specify your own fields. In 10g, you can use the following configuration entry: DrillDownFields=xWebsiteObjectType,dExtension,dSecurityGroup,dDocType And in 11g, you can specify it through the Configuration Manager applet. Simply click on the Advanced Search Design, highlight the field to filter, click Edit, and check 'Is a filter category'. The other feature you get with OracleTextSearch are search snippets. These snippets show the occurrence of the search term in context of their usage. This is very similar to how Google displays its results. If you are on 10g, this is enabled by default. If you are on 11g, you need to turn on the feature. The following configuration entry will enable it: OracleTextDisableSearchSnippet=false Once enabled, you can add the snippets to your search results. Go to Change View -> Customize and add a new search result view. In the Available Fields in the Special section, select Snippet and move it to the Main or Additional Information. If you want to include the snippets with the Classic results, you can add the idoc variable of <$srfDocSnippet$> to display them. One caveat is that this can effect search performance on large collections. So plan the infrastructure accordingly.

    Read the article

  • Automating Form Login

    - by Greg_Gutkin
    Introduction A common task in configuring a web application for proxying in Pagelet Producer is setting up form autologin. PP provides a wizard-like tool for detecting the login form fields, but this is usually only the first step in configuring this feature. If the generated configuration doesn't seem to work, some additional manual modifications will be needed to complete the setup. This article will try to guide you through this process while steering you away from common pitfalls. For the purposes of this article, let's assume the following characteristics about your environment: Web Application Base URL: http://host/app (configured as Resource Source URL in PP) Pagelet Producer Base URL: http://pp/pagelets Form Field Auto-Detection Form Autologin is configured in the PP Admin UI under resource_name/Autologin/Form Login. First, you'll enter the URL to the login form under "Login Form Identification". This will enable the admin wizard to connect to and display the login page. Caution: RedirectsMake sure the entered URL matches what you see in the browser's address bar, when the application login page is displayed. For example, even though you may be able to reach the login page by simply typing http://host/app, the URL you end up on may change to http://host/app/login via browser redirect(s).The second URL is the one you will want to use. Caution: External Login ServersThe login page may actually come from a different server than the application you are trying to proxy. For example, you may notice that the login page URL changes to http://hostB/appB. This is common when external SSO products are involved. There are two ways of dealing with this situation. One is to configure Pagelet Producer to participate in SSO. This approach is out of scope of this article and is discussed in a separate whitepaper (TODO add link). The second approach is to use the autologin feature to provide stored credentials to the SSO login form. Since the login form URL is not an extension of the application base URL (PP resource URL), you will need to add a new PP resource for the SSO server and configure the login form on that resource instead of the original application resource. One side benefit of this additional resource is that it can reused for other applications relying on the same SSO server for login. After entering the login page URL (make sure dropdown says "URL"), click "Automatically Detect Form Fields". This will bring up the web app's login page in a new browser window. Fill it out and submit it as you would normally. If everything goes right, Pagelet Producer will intercept the submitted values and fill out all the needed configuration data in the Admin UI. If the login form window doesn't close or configuration data doesn't get filled in, you may have not entered the login page URL correctly. Review the two cautionary notes above and make any necessary changes. If the form fields got filled automatically, it's time to save the configuration and test it out. If you can access a protected area of the backend application via a proxied PP URL without filling out its login form, then you are pretty much done with login form configuration. The only other step you will need to complete before declaring this aspect of configuration production ready is configuring form field source. You may skip to that section below. Manual Login Form Identification Let's take a closer look at Login Form Identification. This determines how Pagelet Producer recognizes login forms as such. URL The most efficient way of detecting login forms is by looking at the page URL. This method can only be used under the following conditions: Login page URL must be different from the post login application URLs. Login page URL must stay constant regardless of the path it takes to reach the page. For example, reaching the login page by going to the application base URL or to a specific protected URL must result in a redirect to the same login page URL (query string excluded). If only the query string parameters change, just leave out the query string from the configured login page URL. If either of these conditions is not fullfilled, you must switch to the RegEx approach below. RegEx If the login page URL is not uniform enough across all scenarios or is indistinguishable from other page locations, PP can be configured to recognize it by looking at the page markup itself. This is accomplished by changing the dropdown to "RegEx". If regular expressions scare you, take comfort from the fact that in most cases you won't need to enter any special regex characters. Let's look at an example: Say you have a login form that looks like <form id='loginForm' action='login?from=pageA' > <input id='user'> <input id='pass'> </form> Since this form has an id attribute, you can be reasonably sure that this login form can be uniquely identified across the web application by this snippet: "id='loginForm'". (Unless, of course your backend web application contains login forms to other apps). Since no wildcards are needed to find this snippet, you can just enter it as is into the RegEx field - no special regular expression characters needed! If the web developer who created the form wasn't kind enough to provide a unique id, you will need to look for other snippets of the page to uniquely identify it. It could be the action URL, an input field id, or some other markup fragment. You should abstain from using UI text as an identifier it may change in translated versions of the page and prevent the login page logic from working for international users. You may need to turn to regular expression wildcard syntax if no simple matches work. For more information on regular expression, refer to the Resources section. Form Submit Location Now we'll look at the form submit location. If the captured URL contains query string parameters that will likely change from one form submission to the next, you will need to change its type to RegEx. This type will tell Pagelet Producer to parse the login page for the action URL and submit to the value found. The regular expression needs to point at the actual action URL with its first grouping expression. Taking the example form definition above, the form submit location regex would be: action='(.*?)' The parentheses are used to identify the actual action URL, while the rest of the expression provides the context for finding it. Expression .*? is a so-called reluctant wildcard that matches any character excluding the single quote that follows. See Resources section below for further information on regular expressions. Manual Form Field Detection If the Admin UI form field detection wizard fails to populate login form configuration page, you will have to enter the fields by hand. Use a built-in browser developer tool or addon (e.g. Firebug) to inspect the form element and its children input elements. For each input element (including hidden elements), create an entry under Form Fields. Change its Source according to the next section. Form Field Source Change the source of any of the fields not exposed to the users of the login form (i.e. hidden fields) to "Generated". This means Pagelet Producer will just use the values returned by the web app rather than supplying values it stored. For fields that contain sensitive data or vary from user to user (e.g. username & password), change the source to User (Credential) Vault. Logging Support To help you troubleshoot you autologin configuration, PP provides some useful logging support. To turn on detailed logging for the autologin feature, navigate to Settings in Admin UI. Under Logging, change the log level for AutoLogin to Finest. Known Limitations Autologin feature may not work as expected if login form fields (not just the values, but the DOM elements themselves) are generated dynamically by client side JavaScript. Resources RegEx RegEx Reference from Java RegEx Test Tool

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Filling in PDF Forms with ASP.NET and iTextSharp

    The Portable Document Format (PDF) is a popular file format for documents. PDF files are a popular document format for two primary reasons: first, because the PDF standard is an open standard, there are many vendors that provide PDF readers across virtually all operating systems, and many proprietary programs, such as Microsoft Word, include a "Save as PDF" option. Consequently, PDFs server as a sort of common currency of exchange. A person writing a document using Microsoft Word for Windows can save the document as a PDF, which can then be read by others whether or not they are using Windows and whether or not they have Microsoft Word installed. Second, PDF files are self-contained. Each PDF file includes its complete text, fonts, images, input fields, and other content. This means that even complicated documents with many images, an intricate layout, and with user interface elements like textboxes and checkboxes can be encapsulated in a single PDF file. Due to their ubiquity and layout capabilities, it's not uncommon for a websites to use PDF technology. For example, when purchasing goods at an online store you may be offered the ability to download an invoice as a PDF file. PDFs also support form fields, which are user interface elements like textboxes, checkboxes, comboboxes, and the like. These form fields can be entered by a user viewing the PDF or, with a bit of code, they can be entered programmatically. This article is the first in a multi-part series that examines how to programmatically work with PDF files from an ASP.NET application using iTextSharp, a .NET open source library for PDF generation. This installment shows how to use iTextSharp to open an existing PDF document with form fields, fill those form fields with user-supplied values, and then save the combined output to a new PDF file. Read on to learn more! Read More >

    Read the article

  • Accounts in Work Items after migration to TFS 2010 and to new domain

    - by Clara Oscura
    Lately I’ve been doing some tests on migrating our TFS 2008 installation to TFS 2010, coupled with a machine and domain change. One particular topic that was tricky is user accounts. We installed first a new machine with TFS 2010 and then migrated the projects in the old server. The work items were migrated with the projects. Great, but if I try to edit one of the old work items I cannot save it anymore because some fields contain old user names (ex. OLDDOMAIN\user) which are not known in the new domain (it should be NEWDOMAIN\user). The errors look like this: When I correct the ‘Assigned To’ field value, I get another error regarding another field: Before TFS 2010, we had TFSUsers power tool. It allow you to map an old user name to a new user name. This is not available anymore because WI fields with user accounts are now synchronized with AD display names changes (explained here). The correct way to go about this in TFS 2010 is to use TFSConfig Identities before adding the new domain accounts into the TFS groups (documented here). So, too late for us. I’ve found a (tedious) workaround to change those old account in work items in order to allow people to keep working with them. 1. Install TFS 2010 power tools 2. Export WIT from your project (VS | Tools | Process Editor | Work Item Types). Save the definition, for example: Original_MyProject_Task.xml 3. Copy the xml (NoReadOnly_MyProject_Task.xml) and edit it. From the field definition of ‘Activated By’, ‘Closed By’ and ‘Resolved By’, remove the following:        <WHENNOTCHANGED field="System.State">           <READONLY />         </WHENNOTCHANGED> 4. Import WIT in VS. Choose the new file (NoReadOnly_MyProject_Task.xml) and import it in MyProject 5. Open all tasks in Excel (flat list). Display the following columns: Asssigned To Activated By Closed By Resolved By Change the user accounts to the new ones (I usually sort each column alphabetically to make it easier). 6. Publish. If you get a conflict on a field, tough luck. You will have to manually choose “Local version” for each work item. I told you it was a tedious process. 7. Import original WIT (Original_MyProject_Task.xml) in MyProject. We only changed the WI definition so that we could change some fields. The original definition should be put back. And what about these other fields? Created By Authorized As These fields are not editable by definition (VS | Tools | Process Editor | Work Item Fields Explorer), even if they are not marked as read-only in the WIT. You can leave the old values. It doesn’t seem to matter to TFS. The other four fields are editable by definition, so only the WIT readonly rule prevents us from changing them. Technorati Tags: TFS,Team Foundation Server 2010,Work Item,Domain change

    Read the article

  • SharePoint logging to a list

    - by Norgean
    I recently worked in an environment with several servers. Locating the correct SharePoint log file for error messages, or development trace calls, is cumbersome. And once the solution hit the cloud, it got even worse, as we had no access to the log files at all. Obviously we are not the only ones with this problem, and the current trend seems to be to log to a list. This had become an off-hour project, so rather than do the sensible thing and find a ready-made solution, I decided to do it the hard way. So! Fire up Visual Studio, create yet another empty SharePoint solution, and start to think of some requirements. Easy on/offI want to be able to turn list-logging on and off.Easy loggingFor me, this means being able to use string.Format.Easy filteringLet's have the possibility to add some filtering columns; category and severity, where severity can be "verbose", "warning" or "error". Easy on/off Well, that's easy. Create a new web feature. Add an event receiver, and create the list on activation of the feature. Tear the list down on de-activation. I chose not to create a new content type; I did not feel that it would give me anything extra. I based the list on the generic list - I think a better choice would have been the announcement type. Approximately: public void CreateLog(SPWeb web)         {             var list = web.Lists.TryGetList(LogListName);             if (list == null)             {                 var listGuid = web.Lists.Add(LogListName, "Logging for the masses", SPListTemplateType.GenericList);                 list = web.Lists[listGuid];                 list.Title = LogListTitle;                 list.Update();                 list.Fields.Add(Category, SPFieldType.Text, false);                 var stringColl = new StringCollection();                 stringColl.AddRange(new[]{Error, Information, Verbose});                 list.Fields.Add(Severity, SPFieldType.Choice, true, false, stringColl);                 ModifyDefaultView(list);             }         }Should be self explanatory, but: only create the list if it does not already exist (d'oh). Best practice: create it with a Url-friendly name, and, if necessary, give it a better title. ...because otherwise you'll have to look for a list with a name like "Simple_x0020_Log". I've added a couple of fields; a field for category, and a 'severity'. Both to make it easier to find relevant log messages. Notice that I don't have to call list.Update() after adding the fields - this would cause a nasty error (something along the lines of "List locked by another user"). The function for deleting the log is exactly as onerous as you'd expect:         public void DeleteLog(SPWeb web)         {             var list = web.Lists.TryGetList(LogListTitle);             if (list != null)             {                 list.Delete();             }         } So! "All" that remains is to log. Also known as adding items to a list. Lots of different methods with different signatures end up calling the same function. For example, LogVerbose(web, message) calls LogVerbose(web, null, message) which again calls another method which calls: private static void Log(SPWeb web, string category, string severity, string textformat, params object[] texts)         {             if (web != null)             {                 var list = web.Lists.TryGetList(LogListTitle);                 if (list != null)                 {                     var item = list.AddItem(); // NOTE! NOT list.Items.Add… just don't, mkay?                     var text = string.Format(textformat, texts);                     if (text.Length > 255) // because the title field only holds so many chars. Sigh.                         text = text.Substring(0, 254);                     item[SPBuiltInFieldId.Title] = text;                     item[Degree] = severity;                     item[Category] = category;                     item.Update();                 }             } // omitted: Also log to SharePoint log.         } By adding a params parameter I can call it as if I was doing a Console.WriteLine: LogVerbose(web, "demo", "{0} {1}{2}", "hello", "world", '!'); Ok, that was a silly example, a better one might be: LogError(web, LogCategory, "Exception caught when updating {0}. exception: {1}", listItem.Title, ex); For performance reasons I use list.AddItem rather than list.Items.Add. For completeness' sake, let us include the "ModifyDefaultView" function that I deliberately skipped earlier.         private void ModifyDefaultView(SPList list)         {             // Add fields to default view             var defaultView = list.DefaultView;             var exists = defaultView.ViewFields.Cast<string>().Any(field => String.CompareOrdinal(field, Severity) == 0);               if (!exists)             {                 var field = list.Fields.GetFieldByInternalName(Severity);                 if (field != null)                     defaultView.ViewFields.Add(field);                 field = list.Fields.GetFieldByInternalName(Category);                 if (field != null)                     defaultView.ViewFields.Add(field);                 defaultView.Update();                   var sortDoc = new XmlDocument();                 sortDoc.LoadXml(string.Format("<Query>{0}</Query>", defaultView.Query));                 var orderBy = (XmlElement) sortDoc.SelectSingleNode("//OrderBy");                 if (orderBy != null && sortDoc.DocumentElement != null)                     sortDoc.DocumentElement.RemoveChild(orderBy);                 orderBy = sortDoc.CreateElement("OrderBy");                 sortDoc.DocumentElement.AppendChild(orderBy);                 field = list.Fields[SPBuiltInFieldId.Modified];                 var fieldRef = sortDoc.CreateElement("FieldRef");                 fieldRef.SetAttribute("Name", field.InternalName);                 fieldRef.SetAttribute("Ascending", "FALSE");                 orderBy.AppendChild(fieldRef);                   fieldRef = sortDoc.CreateElement("FieldRef");                 field = list.Fields[SPBuiltInFieldId.ID];                 fieldRef.SetAttribute("Name", field.InternalName);                 fieldRef.SetAttribute("Ascending", "FALSE");                 orderBy.AppendChild(fieldRef);                 defaultView.Query = sortDoc.DocumentElement.InnerXml;                 //defaultView.Query = "<OrderBy><FieldRef Name='Modified' Ascending='FALSE' /><FieldRef Name='ID' Ascending='FALSE' /></OrderBy>";                 defaultView.Update();             }         } First two lines are easy - see if the default view includes the "Severity" column. If it does - quit; our job here is done.Adding "severity" and "Category" to the view is not exactly rocket science. But then? Then we build the sort order query. Through XML. The lines are numerous, but boring. All to achieve the CAML query which is commented out. The major benefit of using the dom to build XML, is that you may get compile time errors for spelling mistakes. I say 'may', because although the compiler will not let you forget to close a tag, it will cheerfully let you spell "Name" as "Naem". Whichever you prefer, at the end of the day the view will sort by modified date and ID, both descending. I added the ID as there may be several items with the same time stamp. So! Simple logging to a list, with sensible a view, and with normal functionality for creating your own filterings. I should probably have added some more views in code, ready filtered for "only errors", "errors and warnings" etc. And it would be nice to block verbose logging completely, but I'm not happy with the alternatives. (yetanotherfeature or an admin page seem like overkill - perhaps just removing it as one of the choices, and not log if it isn't there?) Before you comment - yes, try-catches have been removed for clarity. There is nothing worse than having a logging function that breaks your site!

    Read the article

  • how to architect this to make it unit testable

    - by SOfanatic
    I'm currently working on a project where I'm receiving an object via web service (WSDL). The overall process is the following: Receive object - add/delete/update parts (or all) of it - and return the object with the changes made. The thing is that sometimes these changes are complicated and there is some logic involved, other databases, other web services, etc. so to facilitate this I'm creating a custom object that mimics the original one but has some enhanced functionality to make some things easier. So I'm trying to have this process: Receive original object - convert/copy it to custom object - add/delete/update - convert/copy it back to original object - return original object. Example: public class Row { public List<Field> Fields { get; set; } public string RowId { get; set; } public Row() { this.Fields = new List<Field>(); } } public class Field { public string Number { get; set; } public string Value { get; set; } } So for example, one of the "actions" to perform on this would be to find all Fields in a Row that match a Value equal to something, and update them with some other value. I have a CustomRow class that represents the Row class, how can I make this class unit testable? Do I have to create an interface ICustomRow to mock it in the unit test? If one of the actions is to sum all of the Values in the Fields that have a Number equal to 10, like this function, how can design the custom class to facilitate unit tests. Sample function: public int Sum(FieldNumber number) { return row.Fields.Where(x => x.FieldNumber.Equals(number)).Sum(x => x.FieldValue); } Am I approaching this the wrong way?

    Read the article

  • Javascript phsyics in a 2d space

    - by eroo
    So, I am working on teaching myself Canvas (HTML5) and have most of a simple game engine coded up. It is a 2d representation of a space scene (planets, stars, celestial bodies, etc). My default "Sprite" class has a frame listener like such: "baseClass" contains a function that allows inheritance and applies "a" to "this.a". So, "var aTest = new Sprite({foo: 'bar'});" would make "aTest.foo = 'bar'". This is how I expose my objects to each other. { Sprite = baseClass.extend({ init: function(a){ baseClass.init(this, a); this.fields = new Array(); // list of fields of gravity one is in. Not sure if this is a good idea. this.addFL(function(tick){ // this will change to be independent of framerate soon. // and this is where I need help // gobjs is an array of all the Sprite objects in the "world". for(i = 0; i < gobjs.length; i++){ // Make sure its got setup correctly, make sure it -wants- gravity, and make sure it's not -this- sprite. if(typeof(gobjs[i].a) != undefined && !gobjs[i].a.ignoreGravity && gobjs[i].id != this.id){ // Check if it's within a certain range (obviously, gravity doesn't work this way... But I plan on having a large "space" area, // And I can't very well have all objects accounted for at all times, can I? if(this.distanceTo(gobjs[i]) < this.s.size*10 && gobjs[i].fields.indexOf(this.id) == -1){ gobjs[i].fields.push(this.id); } } } for(i = 0; i < this.fields.length; i++){ distance = this.distanceTo(gobjs[this.fields[i]]); angletosun = this.angleTo(gobjs[this.fields[i]])*(180/Math.PI); // .angleTo works very well, returning the angle in radians, which I convert to degrees here. // I have no idea what should happen here, although through trial and error (and attempting to read Maths papers on gravity (eeeeek!)), this sort of mimics gravity. // angle is its orientation, currently I assign a constant velocity to one of my objects, and leave the other static (it ignores gravity, but still emits it). this.a.angle = angletosun+(75+(distance*-1)/5); //todo: omg learn math if(this.distanceTo(gobjs[this.fields[i]]) > gobjs[this.fields[i]].a.size*10) this.fields.splice(i); // out of range, stop effecting. } }); } }); } Thanks in advance. The real trick is that one line: { this.a.angle = angletosun+(75+(distance*-1)/5); } This is more a physics question than Javascript, but I've searched and searched and read way to many wiki articles on orbital mathematics. It gets over my head very quickly. Edit: There is a weirdness with the SO formatting; forgives me, I is noobie.

    Read the article

< Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >