Search Results

Search found 20397 results on 816 pages for 'ny and nj sun developer days'.

Page 47/816 | < Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >

  • Notification 7 Days Before Payment PHP No Error Message

    - by user1858672
    So I have PHP script running on cron daily. It is suppose to check the date and send an email if it is 7 days before any payments as a reminder. I haven't used PHP in a long time so sorry if the way I did it was ridiculous or something. Thanks a lot. I would say what the problem is but I don't get any error message or anything.. <?php mysqli_connect("xxxxxx", "xxxxxxx", "xxxxxxxxx") or die(mysqli_error()); mysqli_select_db("xxxxxxxxx") or die(mysqli_error()); //Retrieve original payment dates and enter them into an array $result = mysqli_query("SELECT DateCreated FROM UserTable"); $payment_dates = mysqli_fetch_array($result); //Puts original payment date into month-day format $md_payment_dates = substr($payment_dates, 5); //Gets todays date in m-d format and adds 7 days to it $due_date = mktime(0, 0, 0, date("m"), date("d")+7); //Checks if any payment days match today's date. If there are none it script will stop. if (count(preg_grep($due_date, $md_payment_dates)) > 0) { //Retrieves usernames of users that have an invoice due. $users_to_pay = mysqli_fetch_array("SELECT Username IN UserTable WHERE DateCreated = $date"); //Notifies you via email $to = "[email protected]"; $subject = "7 Day Payment Reminder"; $message = "Hi, <br /> The following owe a payment in 7 days : " + $users_to_pay ".<br/> Their payments are due on " + $md_payment_dates " of this year."; mail($to, $subject, $message); exit(); }else{ exit(); } ?>

    Read the article

  • Developer hardware autonomy in a managed desktop environment [closed]

    - by Troy Hunt
    I’m looking for some feedback on how developer PCs are managed within environments that have a strict managed desktop policy (normally large corporations). For example, many corporate environments control the installation of software and the deployment of patches and virus updates through a centralised channel. This usually means also dictating the OS version and architecture (32 bit versus 64 bit) which will likely also mean standardised hardware configurations. I’m particularly interested in feedback from developers who work in this sort of environment but have a high degree of autonomy over their machines. This might mean choosing your own hardware vendor, OS type and version and perhaps how the machines are built and maintained. I have several specific questions: How do you satisfy the needs of security, governance etc whilst maintaining your autonomy? For example, how do you address concerns about keeping virus definitions and OS patches up to date? Do you have a process for gaining exemption from standard desktop builds and if so, what do you need to demonstrate in order to get this? How have you justified this need to the decision makers? Essentially, what is the benefit to your role as a developer by having this degree of autonomy? Thanks very much everyone. Update: There's a great post from Jean-Paul Boodhoo which addresses the developer tool component of the quesiton here: http://blog.jpboodhoo.com/TheFallacyOfTheStandardizedDeveloperMachineimage.aspx

    Read the article

  • Sun Java Realtime System on VirtualMachine / cloud

    - by portoalet
    Just wondering if anybody can run/compile application for Sun Java Realtime system on a VM such as VMWare or on the Cloud such as on Amazon EC2 ? I know it is not ideal running Realtime java on a virtualized infrastructure, but it makes things easier. (Otherwise I just have to install SLES SP2 on physical hardware.)

    Read the article

  • Legacy Java code use of com.sun.net.ssl.internal.ssl.Provider()

    - by Dan
    I am working with some code from back in 2003. There is a reference to the following class: new com.sun.net.ssl.internal.ssl.Provider() It is causing an error: Access restriction: The type Provider is not accessible due to restriction on required library /Library/Java/JavaVirtualMachines/1.7.0.jdk/Contents/Home/jre/lib/jsse.jar Does anyone have any suggestions for a suitable alternative to using this class?

    Read the article

  • where has sun mysql database manager gone???

    - by opensas
    If I recall correctly, there where at least to desktop programas from sun which were very useful for handling mysql databases... Now, all I can find is some mysql workbench which is only useful for designing data... Both programs I'm talking about allowed you to manage servers, create database, create tables, index, perform querys, edit data, etc... unfortunately I don't even recall there names... Any idea where I can find them? thanks a lot

    Read the article

  • Regex validate dates like "Sun, 20 Jun 10"

    - by Trindaz
    Hi, I'm working on a regular expression that will only return true when a date string is in a format something like 'ddd, dd mmm yy'. Valid matches would be values like "Sun, 20 Jun 10" or "Mon, 21 Jun 10" but not "Sunday, 20 Jun 10" or "20 Jun 10". This will be used with mb_ereg in PHP. My attempts so far have only got me half way there. Any help appreciated! Thanks, Dave

    Read the article

  • Deploying EAR file in Sun App Server having problem with proxy server setttings

    - by Nick Long
    When I am deploying certain vendor EAR file to Sun App Server, I encountered a connection timeout errror. I thought the reason might be proxy settings need to be defined so I actually defined the following -Dhttp.proxyHost=hostname -Dhttp.proxyPassword=password -Dhttp.proxyPort=8080 -Dhttp.proxyUser=username After setting these and restart domain then redeploy I encountered 407 error. Anyone have any idea what could be the issue here?

    Read the article

  • Running a lot of jobs with sun grid engine

    - by R S
    I want to run a very large number (~30000) of jobs with Sun Grid Engine. I can theoretically, perform 30000 times the "qsub" command to submit jobs. However, I am afraid that will be too much. Is there a better way to do it? (i.e. from a file) Or otherwise, do you think it will work nonetheless? Thank you

    Read the article

  • Sun's JVM instruction speed table

    - by Pindatjuh
    Is there a benchmark available how much relative time each instruction costs in a single-thread, average-case scenario (either with or without JIT compiler), for the JVM (any version) by Sun? If there is not a benchmark already available, how can I get this information? E.g.: TIME iload_1 1 iadd 12 getfield 40 etc. Where getfield is equivalent to 40 iload_1 instructions.

    Read the article

  • LFD always stops working after ~30 days, until I give /etc/csf/csf.pl -r

    - by gus
    When I give /etc/csf/csf.pl -r , I see lots of lines flushing, then I begin to get the notification emails again, (several emails per day), for example: Time: Wed Sep 12 08:39:47 2012 +0800 IP: 221.13.104.162 (CN/China/-) Failures: 5 (sshd) Interval: 300 seconds Blocked: Permanent Block Log entries: Sep 12 08:39:25 MyHost sshd[9677]: Failed password for root from 221.13.104.162 port 51106 ssh2 Sep 12 08:39:28 MyHost sshd[9712]: Failed password for root from 221.13.104.162 port 51690 ssh2 Sep 12 08:39:32 MyHost sshd[9739]: Failed password for root from 221.13.104.162 port 52128 ssh2 Sep 12 08:39:36 MyHost sshd[9778]: Failed password for root from 221.13.104.162 port 52670 ssh2 Sep 12 08:39:40 MyHost sshd[9821]: Failed password for root from 221.13.104.162 port 53155 ssh2 And then after about 30 days, the emails stop coming, it is as if something has filled up, and requires flushing again. I don't know much about CSF/LFD, but I would have imagined that this would work in a FIFO manner, so it should be able to run indefinitely within finite space. My /etc/csf/version.txt says 4.83 My cat /proc/version says Linux version 2.6.18-028stab066.8 (root@rhel5-64-build) (gcc version 4.1.2 20070626 (Red Hat 4.1.2-14)) #1 SMP Fri Nov 27 20:19:25 MSK 2009

    Read the article

  • Time Machine/iMac loses all trace of external hard drive after a few days

    - by Bill
    First time posting, also a Mac newbie (recent windows convert) so I'm hoping I can get some help here :) I have a Hitachi Deskstar drive in an external casing that I got from ebuyer. (its one of those unknown fairly cheapish enclosures) connected via firewire. I hook it up and it works fine, but then at some point over the next week or so I'll realise that my last update was 3 days ago or so. At this point the Mac will not recognise the drive as existing and the only thing to do is switch off and on the external enclosure. It then works fine for a while. If I had to guess I'm assuming its powering down or something when the Mac goes into standby? Is there anyway to solve this?

    Read the article

  • find directories in the current directory, older than 5 days and archive them

    - by user197284
    This is basic questions. I need to find folders in the current working directory(not recursively) and if they are older than 5 days archive them. zip or tar.gz is fine. I can find the folders with following commands find ./ -maxdepth 1 -type d -mtime +5 And i know i can pass this output of the find using xargs. But i do not know how to archive with folder name intact. That is the directory test1 should be archived to test1.zip and directory "test2" should be archived to "test2.zip". Any inputs are welcome. Regards

    Read the article

  • Time Machine/iMac loses all trace of external hard drive after a few days

    - by Bill
    Hey guys, First time posting, also a Mac newbie (recent windows convert) so I'm hoping I can get some help here :) I have a Hitachi Deskstar drive in an external casing that I got from ebuyer. (its one of those unknown fairly cheapish enclosures) connected via firewire. I hook it up and it works fine, but then at some point over the next week or so I'll realise that my last update was 3 days ago or so. At this point the Mac will not recognise the drive as existing and the only thing to do is switch off and on the external enclosure. It then works fine for a while. If I had to guess I'm assuming its powering down or something when the Mac goes into standby? Is there anyway to solve this?

    Read the article

  • PHP AJAX mysql event calendar - UI for events spanning multiple days

    - by play
    I have built a PHP calendar system and have pretty much everything done but not sure how to deal with a UI issue involving how the events that stretched out over a couple of days. I want to be able to stretch an event that stretches over couple of days in a div that spans those days in the calendar. Basically I would like to know how to achieve what these guys have achieved with the event that stretches out from 21st to 22nd with the yellow div background. I have been trying to see how I can do it with PHP but I feel like I might be trying the wrong thing. Perhaps this is done with javascript?

    Read the article

  • Find cheapest price for X number of days

    - by user76152
    Hey 'FLow. I have a technical challenge for you regarding an algorithm. Lets say I have this list of days and prices: List<ReservationPrice> prices = new List<ReservationPrice>(); prices.Add(new ReservationPrice { NumberOfDays = 1, Price = 1000 }); prices.Add(new ReservationPrice { NumberOfDays = 2, Price = 1200 }); prices.Add(new ReservationPrice { NumberOfDays = 3, Price = 2500 }); prices.Add(new ReservationPrice { NumberOfDays = 4, Price = 3100 }); prices.Add(new ReservationPrice { NumberOfDays = 7, Price = 4000 }); What I would like to able to do now is: give me the best price from the list based on a number of days. So if ask for 3 days the best price from the list is from child one (1000) and two (1200), but there are of course different combinations you would have to try out at first. How would an algorithm that found the best price from this list look like ? Thank you!

    Read the article

  • How to create a language these days?

    - by Mike
    I need to get around to writing that programming language I've been meaning to write. How do you kids do it these days? I've been out of the loop for over a decade; are you doing it any differently now than we did back in the pre-internet, pre-windows days? You know, back when "real" coders coded in C, used the command line, and quibbled over which shell was superior? Just to clarify, I mean, not how do you DESIGN a language (that I can figure out fairly easily) but how do you build the compiler and standard libraries and so forth? What tools do you kids use these days?

    Read the article

  • Select past date from database x days from now

    - by Pr0no
    Consider the following table daterange _date trading_day ------------------------ 2011-08-01 1 2011-07-31 0 2011-07-30 0 2011-07-29 1 2011-07-28 1 2011-07-27 1 2011-07-26 1 2011-07-25 1 2011-07-24 0 2011-07-23 0 2011-07-22 1 2011-07-21 1 2011-07-20 1 2011-07-19 1 2011-07-18 1 2011-07-17 0 I'm in need of a query that returns a _date, x days before a given _date. When counting back, _days with trading_day = 0 should be ignored. A few examples: input | output -------------------------+------------ 1 day before 2011-07-19 | 2011-07-18 2 days before 2011-08-01 | 2011-07-28 (trading_day = 0 don't count) 3 days before 2011-07-29 | 2001-07-26 The first one is easy: SELECT _date FROM daterange WHERE trading_day = 0 AND _date < '2011-07-19' LIMIT 1 But I don't know how to query for the other examples. Do you?

    Read the article

  • Oracle’s New Memory-Optimized x86 Servers: Getting the Most Out of Oracle Database In-Memory

    - by Josh Rosen, x86 Product Manager-Oracle
    With the launch of Oracle Database In-Memory, it is now possible to perform real-time analytics operations on your business data as it exists at that moment – in the DRAM of the server – and immediately return completely current and consistent data. The Oracle Database In-Memory option dramatically accelerates the performance of analytics queries by storing data in a highly optimized columnar in-memory format.  This is a truly exciting advance in database technology.As Larry Ellison mentioned in his recent webcast about Oracle Database In-Memory, queries run 100 times faster simply by throwing a switch.  But in order to get the most from the Oracle Database In-Memory option, the underlying server must also be memory-optimized. This week Oracle announced new 4-socket and 8-socket x86 servers, the Sun Server X4-4 and Sun Server X4-8, both of which have been designed specifically for Oracle Database In-Memory.  These new servers use the fastest Intel® Xeon® E7 v2 processors and each subsystem has been designed to be the best for Oracle Database, from the memory, I/O and flash technologies right down to the system firmware.Amongst these subsystems, one of the most important aspects we have optimized with the Sun Server X4-4 and Sun Server X4-8 are their memory subsystems.  The new In-Memory option makes it possible to select which parts of the database should be memory optimized.  You can choose to put a single column or table in memory or, if you can, put the whole database in memory.  The more, the better.  With 3 TB and 6 TB total memory capacity on the Sun Server X4-4 and Sun Server X4-8, respectively, you can memory-optimize more, if not your entire database.   Sun Server X4-8 CMOD with 24 DIMM slots per socket (up to 192 DIMM slots per server) But memory capacity is not the only important factor in selecting the best server platform for Oracle Database In-Memory.  As you put more of your database in memory, a critical performance metric known as memory bandwidth comes into play.  The total memory bandwidth for the server will dictate the rate in which data can be stored and retrieved from memory.  In order to achieve real-time analysis of your data using Oracle Database In-Memory, even under heavy load, the server must be able to handle extreme memory workloads.  With that in mind, the Sun Server X4-8 was designed with the maximum possible memory bandwidth, providing over a terabyte per second of total memory bandwidth.  Likewise, the Sun Server X4-4 also provides extreme memory bandwidth in an even more compact form factor with over half a terabyte per second, providing customers with scalability and choice depending on the size of the database.Beyond the memory subsystem, Oracle’s Sun Server X4-4 and Sun Server X4-8 systems provide other key technologies that enable Oracle Database to run at its best.  The Sun Server X4-4 allows for up 4.8 TB of internal, write-optimized PCIe flash while the Sun Server X4-8 allows for up to 6.4 TB of PCIe flash.  This enables dramatic acceleration of data inserts and updates to Oracle Database.  And with the new elastic computing capability of Oracle’s new x86 servers, server performance can be adapted to your specific Oracle Database workload to ensure that every last bit of processing power is utilized.Because Oracle designs and tests its x86 servers specifically for Oracle workloads, we provide the highest possible performance and reliability when running Oracle Database.  To learn more about Sun Server X4-4 and Sun Server X4-8, you can find more details including data sheets and white papers here. Josh Rosen is a Principal Product Manager for Oracle’s x86 servers, focusing on Oracle’s operating systems and software.  He previously spent more than a decade as a developer and architect of system management software. Josh has worked on system management for many of Oracle's hardware products ranging from the earliest blade systems to the latest Oracle x86 servers. 

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

< Previous Page | 43 44 45 46 47 48 49 50 51 52 53 54  | Next Page >