Search Results

Search found 69140 results on 2766 pages for 'design time'.

Page 470/2766 | < Previous Page | 466 467 468 469 470 471 472 473 474 475 476 477  | Next Page >

  • Determining cause of random latency/loading issues

    - by Sherwin Flight
    I'm not sure exactly what details to post in regards to my issue, because I'm not sure what is relevant. Prior to the end of September my websites all loaded quickly, in almost all cases. Loading time wasn't usually more than a few seconds. However, since the end of September I noticed a big increase in page loading times. In some cases pages were taking 30 seconds or more to load. I do have a remote monitoring service monitoring some of the sites as well, and the image below shows the response times over the past month. The response times shown at the beginning of this graph were what the usual response times were prior to this issue occurring. You can see that there has been a significant increase in response times from the beginning to the end of this graph. The thing is, the problem is not happening 100% of the time. If I click through the site, or even just keep refreshing the page, about 25% of the time the pages load quickly, the remaining 75% of the time they load slowly. Sometimes the pages take so long to load that they time out, and don't load at all. I have contacted my hosting provider, and they said things at their end was fine. I don't believe the problem is my home internet provider, because all other websites load without a problem. The server is located in Texas, USA. This also raises another interesting point. My remote monitor checks my site from two locations, California, USA, and London, England. As you can see in the chart below the response time is actually shorter when checked from London, which doesn't seem to make sense, since the server is physically closer to the California monitoring location. I would have expected the London monitoring location to have higher response times since they are physically farther away. I should also point out that in some traceroute test I've done it seem like the first connection to the server seems to take the longest, then after that the rest of the page loads quickly. Below is a little chart showing the times for the first connection to the server. So, what could be causing this problem, and what steps can I take to resolve it or at least narrow down the problem? Sending the request to the server was very quick, and receiving the reply back seems pretty quick, but the WAIT time is really long. So it connects, sends the request, but then waits close to 30 seconds before it starts receiving data back. I am also aware that there are things I can do to speed up page loading times, like reducing the number of css/js files used on a page, compressing images, etc. This is not really what the source of the problem is though, because nothing has really changed on the site since before the problem started, and other sites on the same server are loading slowly as well. Any help or advice is much appreciated.

    Read the article

  • How to create pulsating value from 0..1..0..1..0 etc for a given duration?

    - by pollux
    Hi I'm working on some code where I have a Time object with a member time. Time.time gives me the time since my application started in seconds (float value). Now I want to create a pulsating value between 0 and 1 and then from 1 to 0 again, which continues doing thins untill the application stops. I was thinking to use sin() but don't know what to pass to it as paramters to create this pulsing value. How would I create this pulsating value? Kind regards, Pollux

    Read the article

  • data from few MySQL tables sorted by ASC

    - by Andrew
    In the dbase I 've few tables named as aaa_9xxx, aaa_9yyy, aaa_9zzz. I want to find all data with a specified DATE and show it with the TIME ASC. First, I must find a tables in the dbase: $STH_1a = $DBH->query("SELECT table_name FROM information_schema.tables WHERE table_name LIKE 'aaa\_9%' "); foreach($STH_1a as $row) { $table_name_s1[] = $row['table_name']; } Second, I must find a data wit a concrete date and show it with TIME ASC: foreach($table_name_s1 as $table_name_1) { $STH_1a2 = $DBH->query("SELECT * FROM `$table_name_1` WHERE date = '2011-11-11' ORDER BY time ASC "); while ($row = $STH_1a2->fetch(PDO::FETCH_ASSOC)) { echo " ".$table_name_1."-".$row['time']."-".$row['ei_name']." <br>"; } } .. but it shows the data sorted by tables name, then by TIME ASC. I must to have all this data (from all tables) sorted by TIME ASC. Thank You dev-null-dweller, Andrew Stubbs and Jaison Erick for your help. I test the Erick solution : foreach($STH_1a as $row) { $stmts[] = sprintf('SELECT * FROM %s WHERE date="%s"', $row['table_name'], '2011-11-11'); } $stmt = implode("\nUNION\n", $stmts); $stmt .= "\nORDER BY time ASC"; $STH_1a2 = $DBH->query($stmt); while ($row_1a2 = $STH_1a2->fetch(PDO::FETCH_ASSOC)) { echo " ".$row['table_name']."-".$row_1a2['time']."-".$row_1a2['ei_name']." <br>"; } it's working but I've problem with 'table_name' - it's always the LAST table name. //---------------------------------------------------------------------- end the ending solution with all fixes, thanks all for your help, :)) foreach($STH_1a as $row) { $stmts[] = sprintf("SELECT *, '%s' AS table_name FROM %s WHERE date='%s'", $row['table_name'], $row['table_name'], '2011-11- 11'); } $stmt = implode("\nUNION\n", $stmts); $stmt .= "\nORDER BY time ASC"; $STH_1a2 = $DBH->query($stmt); while ($row_1a2 = $STH_1a2->fetch(PDO::FETCH_ASSOC)) { echo " ".$row_1a2['table_name']."-".$row_1a2['time']."-".$row_1a2['ei_name']." <br>"; }

    Read the article

  • run php script continuously ..

    - by nicky
    i have a database in sql which have entries of time there are more than 1000 entries of time . i want to extract time and run a php script exactly at that time.. i have tried to run a php script continuously which check the time but my server doent allo to run more than 60 seconds

    Read the article

  • PHP MySQL Select multiple tables

    - by Jordan Pagaduan
    Is it posibble to select 3 tables at a time in 1 database? Table 1: employee -- employee_id -- first_name -- last_name -- middle_name -- birthdate -- address -- gender -- image -- salary Table 2: logs -- log_id -- full_name -- employee_id -- date -- time -- status Table 2: logout -- log_id -- full_name -- employee_id -- date -- time -- status I wanted to get the value of employee table where $id of selected. Then the $id also get the value of log.time, log.date, logout.time, and logout.date. I already try using UNION but nothing happens.

    Read the article

  • How do I find difference between times in different timezones in Python?

    - by JasonA
    Hi All, I am trying to calculate difference(in seconds) between two date/times formatted as following: 2010-05-11 17:07:33 UTC 2010-05-11 17:07:33 EDT time1 = '2010-05-11 17:07:33 UTC' time2 = '2010-05-11 17:07:33 EDT' delta = time.mktime(time.strptime(time1,"%Y-%m-%d %H:%M:%S %Z"))-\ time.mktime(time.strptime(time2, "%Y-%m-%d %H:%M:%S %Z")) The problem I got is EDT is not recognized, the specific error is "ValueError: time data '2010-05-11 17:07:33 EDT' does not match format '%Y-%m-%d %H:%M:%S %Z'" Thanks,

    Read the article

  • C# equivalent of typeof for fields

    - by rwallace
    With reflection, you can look up a class from a string at run time, but you can also say typeof(Foo) and get compile time type checking, auto completion etc. If what you want is a field not a class, you can look it up from a string at runtime, but if you want compile time type checking etc., is there anyway to say something like fieldof(Foo.Bar)? I know the name of both the class and the field in advance, and I want to be able to refer to the field at compile time rather than with a run-time string lookup.

    Read the article

  • Is it possible to run dhcpd3 as non-root user in a chroot jail?

    - by Lenain
    Hi everyone. I would like to run dhcpd3 from a chroot jail on Debian Lenny. At the moment, I can run it as root from my jail. Now I want to do this as non-root user (as "-u blah -t /path/to/jail" Bind option). If I start my process like this : start-stop-daemon --chroot /home/jails/dhcp --chuid dhcp \ --start --pidfile /home/jails/dhcp/var/run/dhcp.pid --exec /usr/sbin/dhcpd3 I get stuck with these errors : Internet Systems Consortium DHCP Server V3.1.1 Copyright 2004-2008 Internet Systems Consortium. All rights reserved. For info, please visit http://www.isc.org/sw/dhcp/ unable to create icmp socket: Operation not permitted Wrote 0 deleted host decls to leases file. Wrote 0 new dynamic host decls to leases file. Wrote 0 leases to leases file. Open a socket for LPF: Operation not permitted strace : brk(0) = 0x911b000 fcntl64(0, F_GETFD) = 0 fcntl64(1, F_GETFD) = 0 fcntl64(2, F_GETFD) = 0 access("/etc/suid-debug", F_OK) = -1 ENOENT (No such file or directory) access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory) mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb775d000 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory) open("/etc/ld.so.cache", O_RDONLY) = -1 ENOENT (No such file or directory) open("/lib/tls/i686/cmov/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/tls/i686/cmov", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/tls/i686/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/tls/i686", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/tls/cmov/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/tls/cmov", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/tls/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/tls", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/i686/cmov/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i686/cmov", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/i686/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i686", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/cmov/libc.so.6", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/cmov", 0xbfc2ac84) = -1 ENOENT (No such file or directory) open("/lib/libc.so.6", O_RDONLY) = 3 read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\260e\1\0004\0\0\0t"..., 512) = 512 fstat64(3, {st_mode=S_IFREG|0755, st_size=1294572, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb775c000 mmap2(NULL, 1300080, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xb761e000 mmap2(0xb7756000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x138) = 0xb7756000 mmap2(0xb7759000, 9840, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xb7759000 close(3) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb761d000 set_thread_area({entry_number:-1 - 6, base_addr:0xb761d6b0, limit:1048575, seg_32bit:1, contents:0, read_exec_only:0, limit_in_pages:1, seg_not_present:0, useable:1}) = 0 mprotect(0xb7756000, 4096, PROT_READ) = 0 open("/dev/null", O_RDWR) = 3 close(3) = 0 brk(0) = 0x911b000 brk(0x913c000) = 0x913c000 socket(PF_FILE, SOCK_DGRAM, 0) = 3 fcntl64(3, F_SETFD, FD_CLOEXEC) = 0 connect(3, {sa_family=AF_FILE, path="/dev/log"...}, 110) = 0 time(NULL) = 1284760816 open("/etc/localtime", O_RDONLY) = 4 fstat64(4, {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 fstat64(4, {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb761c000 read(4, "TZif2\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\f\0\0\0\f\0\0\0\0\0"..., 4096) = 2945 _llseek(4, -28, [2917], SEEK_CUR) = 0 read(4, "\nCET-1CEST,M3.5.0,M10.5.0/3\n"..., 4096) = 28 close(4) = 0 munmap(0xb761c000, 4096) = 0 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Intern"..., 73, MSG_NOSIGNAL) = 73 write(2, "Internet Systems Consortium DHCP "..., 46Internet Systems Consortium DHCP Server V3.1.1) = 46 write(2, "\n"..., 1 ) = 1 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Copyri"..., 75, MSG_NOSIGNAL) = 75 write(2, "Copyright 2004-2008 Internet Syst"..., 48Copyright 2004-2008 Internet Systems Consortium.) = 48 write(2, "\n"..., 1 ) = 1 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: All ri"..., 47, MSG_NOSIGNAL) = 47 write(2, "All rights reserved."..., 20All rights reserved.) = 20 write(2, "\n"..., 1 ) = 1 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: For in"..., 77, MSG_NOSIGNAL) = 77 write(2, "For info, please visit http://www"..., 50For info, please visit http://www.isc.org/sw/dhcp/) = 50 write(2, "\n"..., 1 ) = 1 socket(PF_FILE, SOCK_STREAM, 0) = 4 fcntl64(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(4, {sa_family=AF_FILE, path="/var/run/nscd/socket"...}, 110) = -1 ENOENT (No such file or directory) close(4) = 0 socket(PF_FILE, SOCK_STREAM, 0) = 4 fcntl64(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(4, {sa_family=AF_FILE, path="/var/run/nscd/socket"...}, 110) = -1 ENOENT (No such file or directory) close(4) = 0 open("/etc/nsswitch.conf", O_RDONLY) = 4 fstat64(4, {st_mode=S_IFREG|0644, st_size=475, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb761c000 read(4, "# /etc/nsswitch.conf\n#\n# Example "..., 4096) = 475 read(4, ""..., 4096) = 0 close(4) = 0 munmap(0xb761c000, 4096) = 0 open("/lib/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) open("/usr/lib/tls/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/tls/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/tls/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/tls/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/tls/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/tls/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/tls/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/tls", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/tls/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/tls/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/tls/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/tls/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/tls/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/tls/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/tls/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/tls", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/i486-linux-gnu/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/lib/i486-linux-gnu", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/tls/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/tls/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/tls/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/tls/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/tls/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/tls/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/tls/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/tls", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/i686/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/i686/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/i686/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/i686", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/cmov/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu/cmov", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/usr/lib/i486-linux-gnu/libnss_db.so.2", O_RDONLY) = -1 ENOENT (No such file or directory) stat64("/usr/lib/i486-linux-gnu", 0xbfc2ad5c) = -1 ENOENT (No such file or directory) open("/lib/libnss_files.so.2", O_RDONLY) = 4 read(4, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\320\30\0\0004\0\0\0\250"..., 512) = 512 fstat64(4, {st_mode=S_IFREG|0644, st_size=38408, ...}) = 0 mmap2(NULL, 41624, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 4, 0) = 0xb7612000 mmap2(0xb761b000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 4, 0x8) = 0xb761b000 close(4) = 0 open("/etc/services", O_RDONLY|O_CLOEXEC) = 4 fcntl64(4, F_GETFD) = 0x1 (flags FD_CLOEXEC) fstat64(4, {st_mode=S_IFREG|0644, st_size=18480, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7611000 read(4, "# Network services, Internet styl"..., 4096) = 4096 read(4, "9/tcp\t\t\t\t# Quick Mail Transfer Pr"..., 4096) = 4096 read(4, "note\t1352/tcp\tlotusnotes\t# Lotus "..., 4096) = 4096 read(4, "tion\nafs3-kaserver\t7004/udp\nafs3-"..., 4096) = 4096 read(4, "backup\t2989/tcp\t\t\t# Afmbackup sys"..., 4096) = 2096 read(4, ""..., 4096) = 0 close(4) = 0 munmap(0xb7611000, 4096) = 0 time(NULL) = 1284760816 open("/etc/protocols", O_RDONLY|O_CLOEXEC) = 4 fstat64(4, {st_mode=S_IFREG|0644, st_size=2626, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7611000 read(4, "# Internet (IP) protocols\n#\n# Upd"..., 4096) = 2626 close(4) = 0 munmap(0xb7611000, 4096) = 0 socket(PF_INET, SOCK_RAW, IPPROTO_ICMP) = -1 EPERM (Operation not permitted) time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: unable"..., 80, MSG_NOSIGNAL) = 80 write(2, "unable to create icmp socket: Ope"..., 53unable to create icmp socket: Operation not permitted) = 53 write(2, "\n"..., 1 ) = 1 open("/etc/dhcp3/dhcpd.conf", O_RDONLY) = 4 lseek(4, 0, SEEK_END) = 1426 lseek(4, 0, SEEK_SET) = 0 read(4, "#----------------------------\n# G"..., 1426) = 1426 close(4) = 0 mmap2(NULL, 401408, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb75b0000 mmap2(NULL, 401408, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb754e000 mmap2(NULL, 401408, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb74ec000 brk(0x916f000) = 0x916f000 close(3) = 0 socket(PF_FILE, SOCK_DGRAM, 0) = 3 fcntl64(3, F_SETFD, FD_CLOEXEC) = 0 connect(3, {sa_family=AF_FILE, path="/dev/log"...}, 110) = 0 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Inter"..., 74, MSG_NOSIGNAL) = 74 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Copyr"..., 76, MSG_NOSIGNAL) = 76 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: All r"..., 48, MSG_NOSIGNAL) = 48 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: For i"..., 78, MSG_NOSIGNAL) = 78 open("/var/lib/dhcp3/dhcpd.leases", O_RDONLY) = 4 lseek(4, 0, SEEK_END) = 126 lseek(4, 0, SEEK_SET) = 0 read(4, "# The format of this file is docu"..., 126) = 126 close(4) = 0 open("/var/lib/dhcp3/dhcpd.leases", O_WRONLY|O_CREAT|O_APPEND, 0666) = 4 fstat64(4, {st_mode=S_IFREG|0644, st_size=126, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb74eb000 fstat64(4, {st_mode=S_IFREG|0644, st_size=126, ...}) = 0 _llseek(4, 126, [126], SEEK_SET) = 0 time(NULL) = 1284760816 time(NULL) = 1284760816 open("/var/lib/dhcp3/dhcpd.leases.1284760816", O_WRONLY|O_CREAT|O_TRUNC, 0664) = 5 fcntl64(5, F_GETFL) = 0x1 (flags O_WRONLY) fstat64(5, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0 mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb74ea000 _llseek(5, 0, [0], SEEK_CUR) = 0 close(4) = 0 munmap(0xb74eb000, 4096) = 0 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Wrote"..., 70, MSG_NOSIGNAL) = 70 write(2, "Wrote 0 deleted host decls to lea"..., 42Wrote 0 deleted host decls to leases file.) = 42 write(2, "\n"..., 1 ) = 1 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Wrote"..., 74, MSG_NOSIGNAL) = 74 write(2, "Wrote 0 new dynamic host decls to"..., 46Wrote 0 new dynamic host decls to leases file.) = 46 write(2, "\n"..., 1 ) = 1 time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Wrote"..., 58, MSG_NOSIGNAL) = 58 write(2, "Wrote 0 leases to leases file."..., 30Wrote 0 leases to leases file.) = 30 write(2, "\n"..., 1 ) = 1 write(5, "# The format of this file is docu"..., 126) = 126 fsync(5) = 0 unlink("/var/lib/dhcp3/dhcpd.leases~") = 0 link("/var/lib/dhcp3/dhcpd.leases", "/var/lib/dhcp3/dhcpd.leases~") = 0 rename("/var/lib/dhcp3/dhcpd.leases.1284760816", "/var/lib/dhcp3/dhcpd.leases") = 0 socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP) = 4 ioctl(4, SIOCGIFCONF, {0 - 64, NULL}) = 0 ioctl(4, SIOCGIFCONF, {64, {{"lo", {AF_INET, inet_addr("127.0.0.1")}}, {"eth0", {AF_INET, inet_addr("192.168.0.10")}}}}) = 0 ioctl(4, SIOCGIFFLAGS, {ifr_name="lo", ifr_flags=IFF_UP|IFF_LOOPBACK|IFF_RUNNING}) = 0 ioctl(4, SIOCGIFFLAGS, {ifr_name="eth0", ifr_flags=IFF_UP|IFF_BROADCAST|IFF_RUNNING|IFF_MULTICAST}) = 0 ioctl(4, SIOCGIFHWADDR, {ifr_name="eth0", ifr_hwaddr=00:c0:26:87:55:c0}) = 0 socket(PF_PACKET, SOCK_PACKET, 768) = -1 EPERM (Operation not permitted) time(NULL) = 1284760816 stat64("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2945, ...}) = 0 send(3, "Sep 18 00:00:16 dhcpd: Open "..., 74, MSG_NOSIGNAL) = 74 write(2, "Open a socket for LPF: Operation "..., 46Open a socket for LPF: Operation not permitted) = 46 write(2, "\n"..., 1 ) = 1 exit_group(1) = ? I understand that dhcpd wants to create sockets on port 67... but I don't know how to authorize that through the chroot. Any idea?

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • Hanging of host network connections when starting KVM guest on bridge

    - by Chris Phillips
    Hi, I've a KVM system upon which I'm running a network bridge directly between all VM's and a bond0 (eth0, eth1) on the host OS. As such, all machines are presented on the same subnet, available outside of the box. The bond is doing mode 1 active / passive, with an arp_ip_target set to the default gateway, which has caused some issues in itself, but I can't see the bond configs mattering here myself. I'm seeing odd things most times when I stop and start a guest on the platform, in that on the host I lose network connectivity (icmp, ssh) for about 30 seconds. I don't lose connectivity on the other already running VM's though... they can always ping the default GW, but the host can't. I say "about 30 seconds" but from some tests it actually seems to be 28 seconds usually (or at least, I lose 28 pings...) and I'm wondering if this somehow relates to the bridge config. I'm not running STP on the bridge at all, and the forwarding delay is set to 1 second, path cost on the bond0 lowered to 10 and port priority of bond0 also lowered to 1. As such I don't think that the bridge should ever be able to think that bond0 is not connected just fine (as continued guest connectivity implies) yet the IP of the host, which is on the bridge device (... could that matter?? ) becomes unreachable. I'm fairly sure it's about the bridged networking, but at the same time as this happens when a VM is started there are clearly loads of other things also happening so maybe I'm way off the mark. Lack of connectivity: # ping 10.20.11.254 PING 10.20.11.254 (10.20.11.254) 56(84) bytes of data. 64 bytes from 10.20.11.254: icmp_seq=1 ttl=255 time=0.921 ms 64 bytes from 10.20.11.254: icmp_seq=2 ttl=255 time=0.541 ms type=1700 audit(1293462808.589:325): dev=vnet6 prom=256 old_prom=0 auid=42949672 95 ses=4294967295 type=1700 audit(1293462808.604:326): dev=vnet7 prom=256 old_prom=0 auid=42949672 95 ses=4294967295 type=1700 audit(1293462808.618:327): dev=vnet8 prom=256 old_prom=0 auid=42949672 95 ses=4294967295 kvm: 14116: cpu0 unimplemented perfctr wrmsr: 0x186 data 0x130079 kvm: 14116: cpu0 unimplemented perfctr wrmsr: 0xc1 data 0xffdd694a kvm: 14116: cpu0 unimplemented perfctr wrmsr: 0x186 data 0x530079 64 bytes from 10.20.11.254: icmp_seq=30 ttl=255 time=0.514 ms 64 bytes from 10.20.11.254: icmp_seq=31 ttl=255 time=0.551 ms 64 bytes from 10.20.11.254: icmp_seq=32 ttl=255 time=0.437 ms 64 bytes from 10.20.11.254: icmp_seq=33 ttl=255 time=0.392 ms brctl output of relevant bridge: # brctl showstp brdev brdev bridge id 8000.b2e1378d1396 designated root 8000.b2e1378d1396 root port 0 path cost 0 max age 19.99 bridge max age 19.99 hello time 1.99 bridge hello time 1.99 forward delay 0.99 bridge forward delay 0.99 ageing time 299.95 hello timer 0.50 tcn timer 0.00 topology change timer 0.00 gc timer 0.04 flags vnet5 (3) port id 8003 state forwarding designated root 8000.b2e1378d1396 path cost 100 designated bridge 8000.b2e1378d1396 message age timer 0.00 designated port 8003 forward delay timer 0.00 designated cost 0 hold timer 0.00 flags vnet0 (2) port id 8002 state forwarding designated root 8000.b2e1378d1396 path cost 100 designated bridge 8000.b2e1378d1396 message age timer 0.00 designated port 8002 forward delay timer 0.00 designated cost 0 hold timer 0.00 flags bond0 (1) port id 0001 state forwarding designated root 8000.b2e1378d1396 path cost 10 designated bridge 8000.b2e1378d1396 message age timer 0.00 designated port 0001 forward delay timer 0.00 designated cost 0 hold timer 0.00 flags I do see the new port listed as learning, but in line with the forward delay, only for 1 or 2 seconds when polling the brctl output on a loop. All pointers, tips or stabs in the dark appreciated.

    Read the article

  • Parallel processing slower than sequential?

    - by zebediah49
    EDIT: For anyone who stumbles upon this in the future: Imagemagick uses a MP library. It's faster to use available cores if they're around, but if you have parallel jobs, it's unhelpful. Do one of the following: do your jobs serially (with Imagemagick in parallel mode) set MAGICK_THREAD_LIMIT=1 for your invocation of the imagemagick binary in question. By making Imagemagick use only one thread, it slows down by 20-30% in my test cases, but meant I could run one job per core without issues, for a significant net increase in performance. Original question: While converting some images using ImageMagick, I noticed a somewhat strange effect. Using xargs was significantly slower than a standard for loop. Since xargs limited to a single process should act like a for loop, I tested that, and found it to be about the same. Thus, we have this demonstration. Quad core (AMD Athalon X4, 2.6GHz) Working entirely on a tempfs (16g ram total; no swap) No other major loads Results: /media/ramdisk/img$ time for f in *.bmp; do echo $f ${f%bmp}png; done | xargs -n 2 -P 1 convert -auto-level real 0m3.784s user 0m2.240s sys 0m0.230s /media/ramdisk/img$ time for f in *.bmp; do echo $f ${f%bmp}png; done | xargs -n 2 -P 2 convert -auto-level real 0m9.097s user 0m28.020s sys 0m0.910s /media/ramdisk/img$ time for f in *.bmp; do echo $f ${f%bmp}png; done | xargs -n 2 -P 10 convert -auto-level real 0m9.844s user 0m33.200s sys 0m1.270s Can anyone think of a reason why running two instances of this program takes more than twice as long in real time, and more than ten times as long in processor time to complete the same task? After that initial hit, more processes do not seem to have as significant of an effect. I thought it might have to do with disk seeking, so I did that test entirely in ram. Could it have something to do with how Convert works, and having more than one copy at once means it cannot use processor cache as efficiently or something? EDIT: When done with 1000x 769KB files, performance is as expected. Interesting. /media/ramdisk/img$ time for f in *.bmp; do echo $f ${f%bmp}png; done | xargs -n 2 -P 1 convert -auto-level real 3m37.679s user 5m6.980s sys 0m6.340s /media/ramdisk/img$ time for f in *.bmp; do echo $f ${f%bmp}png; done | xargs -n 2 -P 1 convert -auto-level real 3m37.152s user 5m6.140s sys 0m6.530s /media/ramdisk/img$ time for f in *.bmp; do echo $f ${f%bmp}png; done | xargs -n 2 -P 2 convert -auto-level real 2m7.578s user 5m35.410s sys 0m6.050s /media/ramdisk/img$ time for f in *.bmp; do echo $f ${f%bmp}png; done | xargs -n 2 -P 4 convert -auto-level real 1m36.959s user 5m48.900s sys 0m6.350s /media/ramdisk/img$ time for f in *.bmp; do echo $f ${f%bmp}png; done | xargs -n 2 -P 10 convert -auto-level real 1m36.392s user 5m54.840s sys 0m5.650s

    Read the article

  • SQL SERVER – Top 10 “Ease of Use” Features of expressor Studio

    - by pinaldave
    expressor Studio is new data integration platform that is being marketed as the most easy to use tool of its kind.  But “easy to use” can be a relative term – an expert can find a very complex system easy, but a beginner might be stumped.  A recent article online discussed exactly what makes expressor Studio so easy use, and here is my view on this subject. Simple Installation There is one pop-up for one .exe file, and nothing more.  You can’t get much simpler than this.  It is also in the familiar Windows design, so there should be no surprises. No 3rd party software dependency Have you ever tried to download software, only to be slowed down by the need to download a compatible system to run the program, and another to read the user manual, and so on?  expressor Studio was designed specifically to avoid this problem. Microsoft Office Like Ribbon Bar and Menus As mentioned before, everything is in the familiar Windows design, from the pop up windows to the tool bars and menus.  There should be no learning curve for using this program, or even simply trying to navigate around a new system. General Development Design Interface This software has been designed to be simple and straightforward.  Projects can be arranged in a simple “tree” design, that is totally collapsible and can easy be added to or “trimmed” with a click of a button.  It was meant to be logical and easy to follow. Integrated Contextual Help This is a fancy way of saying that you can practically yell “help!” if you do get stuck on something.  Solving a problem is as simple as highlighting and hitting F1 for contextual help. Visual Indicators and Messages Wouldn’t it be nice to know exactly where something has gone wrong before trying to complete a project.  expressor Studio has a built in system to catch mistakes and highlight them in a bright color, flash a warning message, and even disable functions before you can continue – and possibly lose hours of work. Property Inputs and Selectors Every operator will have a list of requirements that need to be filled in.  But don’t worry; you won’t have to make stuff up to fill in the boxes.  Each one will have a drop-down menu with options to choose from – but not too many as to be confusing. Connection Wizards Configuring connections can be the hardest part of a project.  But not with the expressor Studioconnection wizard.  A familiar, Windows-style menu will walk you through connections so quickly you’ll forget what trouble it used to be. Templates With large, complex projects, a majority of your time is often spent simply setting up the files and inputting data.  But expressor Studio allows you to create one file and then save it as a template, saving you hours of boring data input. Extension Manager Let’s say that you need a little more functionality or some new features on your program. A lot of software requires you to download complex plug-ins that need to be decompressed and installed.  However, expressor Studio has extended its system to an Extension Manager, which allows for quick and easy installation of the functionality you need, without the need to download and decompress. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • Windows Azure Use Case: Agility

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Agility in this context is defined as the ability to quickly develop and deploy an application. In theory, the speed at which your organization can develop and deploy an application on available hardware is identical to what you could deploy in a distributed environment. But in practice, this is not always the case. Having an option to use a distributed environment can be much faster for the deployment and even the development process. Implementation: When an organization designs code, they are essentially becoming a Software-as-a-Service (SaaS) provider to their own organization. To do that, the IT operations team becomes the Infrastructure-as-a-Service (IaaS) to the development teams. From there, the software is developed and deployed using an Application Lifecycle Management (ALM) process. A simplified view of an ALM process is as follows: Requirements Analysis Design and Development Implementation Testing Deployment to Production Maintenance In an on-premise environment, this often equates to the following process map: Requirements Business requirements formed by Business Analysts, Developers and Data Professionals. Analysis Feasibility studies, including physical plant, security, manpower and other resources. Request is placed on the work task list if approved. Design and Development Code written according to organization’s chosen methodology, either on-premise or to multiple development teams on and off premise. Implementation Code checked into main branch. Code forked as needed. Testing Code deployed to on-premise Testing servers. If no server capacity available, more resources procured through standard budgeting and ordering processes. Manual and automated functional, load, security, etc. performed. Deployment to Production Server team involved to select platform and environments with available capacity. If no server capacity available, standard budgeting and procurement process followed. If no server capacity available, systems built, configured and put under standard organizational IT control. Systems configured for proper operating systems, patches, security and virus scans. System maintenance, HA/DR, backups and recovery plans configured and put into place. Maintenance Code changes evaluated and altered according to need. In a distributed computing environment like Windows Azure, the process maps a bit differently: Requirements Business requirements formed by Business Analysts, Developers and Data Professionals. Analysis Feasibility studies, including budget, security, manpower and other resources. Request is placed on the work task list if approved. Design and Development Code written according to organization’s chosen methodology, either on-premise or to multiple development teams on and off premise. Implementation Code checked into main branch. Code forked as needed. Testing Code deployed to Azure. Manual and automated functional, load, security, etc. performed. Deployment to Production Code deployed to Azure. Point in time backup and recovery plans configured and put into place.(HA/DR and automated backups already present in Azure fabric) Maintenance Code changes evaluated and altered according to need. This means that several steps can be removed or expedited. It also means that the business function requesting the application can be held directly responsible for the funding of that request, speeding the process further since the IT budgeting process may not be involved in the Azure scenario. An additional benefit is the “Azure Marketplace”, In effect this becomes an app store for Enterprises to select pre-defined code and data applications to mesh or bolt-in to their current code, possibly saving development time. Resources: Whitepaper download- What is ALM?  http://go.microsoft.com/?linkid=9743693  Whitepaper download - ALM and Business Strategy: http://go.microsoft.com/?linkid=9743690  LiveMeeting Recording on ALM and Windows Azure (registration required, but free): http://www.microsoft.com/uk/msdn/visualstudio/contact-us.aspx?sbj=Developing with Windows Azure (ALM perspective) - 10:00-11:00 - 19th Jan 2011

    Read the article

  • Kanban Tools Review

    - by GeekAgilistMercenary
    The first two sessions on Sunday were Collaboration and why it is so hard and the following, which was a perfect following session was on Kanban.  While in that second session two online Saas Style Tools were mentioned; AgileZen and Leankit.  I decided right then and there that I would throw together some first impressions and setup some sample projects.  I did this by setting up an account and creating the projects. Agile Zen Account Creation Setting up the initial account required an e-mail verification, which is understandable.  Within a few seconds it was mailed out and I was logged in. Setting Up the Kanban Board The initial setup of the board was pretty easy.  I maybe clicked around an extra few times, but overall everything I needed to use the tool was immediately available.  The representation of everything was very similar to what one expects in a real Kanban Board too.  This is a HUGE plus, especially if a team is smart and places this tool in a centrally viewable area to allow for visibility. Each of the board items is just like a post it, being blue, grey, green, pink, or one of another few colors.  Dragging them onto each swim lane on the board was flawless, making changes through the work super easy and intuitive. The other thing I really liked about AgileZen is that the Kanban Board had the swim lanes setup immediately.  One can change them, but when you know you immediately need a Ready Lane, Working Lane, and a Complete Lane it is nice to just have them right in front of you in the interface.  In addition, the Backlog is simply a little tab on the left hand side.  This is perfect for the Backlog Queue.  Out of the way, with the focus on the primary items. Once  I got the items onto the board I was easily able to get back to the actual work at hand versus playing around with the tool.  The fact that it was so easy to use, fast and easy UX, and overall a great layout put me back to work on things I needed to do versus sitting a playing with the tool.  That, in the end is the key to using these tools. LeanKit Kanban Account Creation Setting up the account got me straight into the online tool.  This I thought was pretty cool. Setting Up the Kanban Board Setting up the Kanban Board within Leankit was a bit of trouble.  There were multiple UX issues in regard to process and intuitiveness.  The Leankit basically forces one to design the whole board first, making no assumptions about how the board should look.  The swim lanes in my humble opinion should be setup immediately without any manipulation with the most common lanes;  ready, working, and complete. The other UX hiccup that I had a problem with is that as soon as I managed to get the swim lanes into place, I wanted to remove the redundant Backlog Lane.  The Backlog Lane, or Backlog Bucket should be somewhere that I accidentally added as a lane.  Then on top of that I screwed up and added an item inside the lane, which then prevented me from deleting the lane.  I had to go back out of the lane manipulation, remove the item, and then remove the excess lane.  Summary Leankit wasn't a bad interface, it just wasn't as good as AgileZen.  The AgileZen interface was just better UX design overall.  AgileZen also presents a much better user interface graphical design all together.  It is much closer to what the Kanban Board would look like if it were a physical Kanban Board.  Since one of the HUGE reasons for Kanban is to increase visibility, the fact the design is similar to what a real Kanban Board is actually a pretty big deal. This is an image (click for larger) that shows the two Kanban Boards side by side.  The one on the left is AgileZen and the right is Leankit. Original Entry

    Read the article

  • Installation problem Ubuntu 12.04 Crashing hardware error

    - by user93640
    I am running on Ubuntu 8.04 for quite some time without many problems. About almost a year ago or so I have been trying to upgrade to 10.04 LTS, but without any success. Each time when trying to upgrade or even newly install the installation process crashed after about an hour or so (I forgot exactly how long). Now I wanted to try Ubuntu 12.04 (not even installing, but I only selected "Try Ubuntu without installing") and I got similar errors. I did not try to install it, because of earlier experience with 10.04 when after I also lost 8.04 and had to install from scratch again (after which it worked). I get the following screen (as I am not allowed to upload photos here the text): 26.767262] [Hardware Error]: CPU 0: Machine Check Exception: 0 Bank 5: b200001804000e0f 26.767279] [Hardware Error]: TSC 0 26.767287] [Hardware Error]: PROCESSOR 0:6f6 TIME 1349017924 SOCKET 0 APIC 0 microcode 44 26.767297] [Hardware Error]: Run the above through 'mcelog --ascii' 26.767307] [Hardware Error]: CPU 1: Machine Check Exception: 0 Bank 1: b200000000000175 26.767316] [Hardware Error]: TSC 0 26.767323] [Hardware Error]: PROCESSOR 0:6f6 TIME 1349017924 SOCKET 0 APIC 1 microcode 44 26.767331] [Hardware Error]: Run the above through 'mcelog --ascii' 26.767339] [Hardware Error]: CPU 1: Machine Check Exception: 0 Bank 5: b200003000000e0f 26.767348] [Hardware Error]: TSC 0 26.767354] [Hardware Error]: PROCESSOR 0:6f6 TIME 1349017924 SOCKET 0 APIC 1 microcode 44 26.767363] [Hardware Error]: Run the above through 'mcelog --ascii' 26.767371] [Hardware Error]: CPU 1: Machine Check Exception: 4 Bank 1: b200000000000175 26.767379] [Hardware Error]: TSC 1bf231e65f 26.767386] [Hardware Error]: PROCESSOR 0:6f6 TIME 1349017951 SOCKET 0 APIC 1 microcode 44 26.767395] [Hardware Error]: Run the above through 'mcelog --ascii' 26.767403] [Hardware Error]: CPU 1: Machine Check Exception: 4 Bank 5: b200003008000e0f 26.767413] [Hardware Error]: TSC 1bf231e65f 26.767421] [Hardware Error]: PROCESSOR 0:6f6 TIME 1349017951 SOCKET 0 APIC 1 microcode 44 26.767429] [Hardware Error]: Run the above through 'mcelog --ascii' 26.767437] [Hardware Error]: CPU 0: Machine Check Exception: 5 Bank 5: b200001806000e0f 26.767447] [Hardware Error]: RIP |INEXACT| 60:<00000000c1018b5c> {mwait_idle+0x7c/0x1d0} 26.767464] [Hardware Error]: TSC 1bf231e674 26.767471] [Hardware Error]: PROCESSOR 0:6f6 TIME 1349017951 SOCKET 0 APIC 0 microcode 44 26.767480] [Hardware Error]: Run the above through 'mcelog --ascii' 26.767487] [Hardware Error]: Machine check: Processor context corrupt 26.767495] Kernel panic - not syncing: Fatal Machine check 26.767505] Pid: 579, comm: debconf-communi Tainted: G M 3.2.0.29-generic-pae #46-Ubuntu 26.767515] Call Trace: 26.767525] [<c158f812>] ? printk+0x2d/0x2f 26.767534] [<c158f6e0>] panic+0x5c/0x161 26.767542] [<c10247ef>] mce_panic.part.14+0x13f/0x170 26.767551] [<c1024872>] mce_panic+0x52/0x90 26.767558] [<c1024a18>] mce_reign+0x168/0x170 26.767565] [<c1024bb5>] mce_end+0x105/0x110 26.767572] [<c10252db>] do_machine_check+0x32b/0x4f0 26.767581] [<c1024fb0>] ? mce_log+0x120/0x120 26.767590] [<c15a5e47>] error_code+0x67/0x6c 26.767602] panic occurred, switching back to text console 26.768498] Rebooting in 30 seconds.. For information, I have also tried earlier Arch Linux. I can install it, but when I try to install a window manager (LXDE) again I got similar errors. Fedora also crashes when installing and also Mandriva did not work for me. Therefore I think something deep in the machine might be wrong. But as stated above I can (clean) install 8.04 and also 9.10 can be installed without problems. Also updates for 8.04 can be installed. My machine is dual boot with XP next to it on a different partition. My HW: Memory : 2.0 GiB; Processor 0: Intel(R) Core(TM)2 CPU 6320 @ 1.86GHz; Processor 1: Intel(R) Core(TM)2 CPU 6320 @ 1.86GHz; How can I install Ubuntu 12.04? Last option would be to completely format my machine and install everything from scratch, but even I am not sure if that would solve it in the end. Can anybody help me out?

    Read the article

  • 2012 Oracle Fusion Innovation Awards - Part 2

    - by Michelle Kimihira
    Author: Moazzam Chaudry Continuing from Friday's blog on 2012 Oracle Fusion Innovation Awards, this blog (Part 2) will provide more details around the customers. It was a tremendous honor to be in single room of winners. We only wish we could have had more time to share stories from all the winners.  We received great insight from all the innovative solutions that our customers deploy and would like to share them broadly, so that others can benefit from best practices. There was a customer panel session joined by Ingersoll Rand, Nike and Motability and here is what was discussed: Barry Bonar, Enterprise Architect from Ingersoll Rand shared details around their solution, comprised of Oracle Exalogic, Oracle WebLogic Server and Oracle SOA Suite. This combined solutoin enabled their business transformation to increase decision-making, speed and efficiency, resulting in 40% reduced IT spend, 41X Faster response time and huge cost savings. Ashok Balakrishnan, Architect from Nike shared how they leveraged Oracle Coherence to analyze their digital "footprint" of activities. This helps them compete, collaborate and compare athletic data over time. Lastly, Ashley Doodly, Head of IT from Motability shared details around their solution compromised of Oracle SOA Suite, Service Bus, ADF, Coherence, BO and E-Business Suite. This solution helped Motability achieve 100% ROI within the first few months, performance in seconds vs. 10's of minutes and tremendous improvement in throughput that increased up to 50%.  This year's winners by category are: Oracle Exalogic Customer Results using Fusion Middleware Netshoes ATG on Exalogic: 6X Reduced H/W foot print, 6.2X increased throughput and 3 weeks time to market Claro Part of America Movil, running mission critical Java Application on Exalogic with 35X Faster Java response time, 5X Throughput Underwriters Laboratories Exalogic as an Apps Consolidation platform to power tremendous growth Ingersoll Rand EBS on Exalogic: Up to 40% Reduction in overall IT budget, 3x reduced foot print Oracle Cloud Application Foundation Customer Results using Fusion Middleware  Mazda Motor Corporation Tuxedo ART Batch runtime environment to migrate their batch apps on new open environment and reduce main frame cost. HOTELBEDS Technology Open Source to WebLogic transformation Globalia Corporation Introduced Oracle Coherence to fully reengineer DTH system and provide multiple business and technical benefits Nike Nike+, digital sports platform, has 8M users and is expecting an 5X increase in users, many of who will carry multiple devices that frequently sync data with the Digital Sport platform Comcast Corporation The solution is expected to increase availability, continuity, performance, and simplify and make the code at the application layer more flexible. Oracle SOA and Oracle BPM Customer Results using Fusion Middleware NTT Docomo Network traffic solution based on Oracle event processing and coherence - massive in scale: 12M users (50M in future) - 800,000 events/sec. Schneider National, Inc. SOA/B2B/ADF/Data Integration to orchestrate key order processes across Siebel, OTM & EBS.  Platform runs 60M trans/day and  50 million composite SOA instances per day across 10G and 11G Amadeus Oracle BPM solution: Business Rules and processes vary across local (80), regional (~10) and corporate approval process. Up to 10 levels of approval. Plans to deploy across 20+ markets Navitar SOA solution integrates a fully non-Oracle legacy application/ERP environment using Oracle’s SOA Suite and Oracle AIA Foundation Pack. Motability Uses SOA Suite to synchronize data across the systems and to manage the vehicle remarketing process Oracle WebCenter Customer Results using Fusion Middleware  News Limited Single platform running websites for 50% of Australia's newspapers University of Louisville “Facebook for Medicine”: Oracle Webcenter platform and Oracle BIEE to analyze patient test data and uncover potential health issues. Expecting annualized ROI of 277% China Mobile Jiangsu Company portal (25k users) to drive collaboration & productivity Life Technologies Portal for remotely monitoring & repairing biotech instruments LA Dept. of Water & Power Oracle WebCenter Portal to power ladwp.com on desktop and mobile for 1.6million users Oracle Identity Management Customer Results using Fusion Middleware Education Testing Service Identity Management platform for provisioning & SSO of 6 million GRE, GMAT, TOEFL customers Avea Oracle Identity Manager allowing call center personnel to quickly change Identity Profile to handle varying call loads based on a user self service interface. Decreased Admin Cost by 30% Oracle Data Integration Customer Results using Fusion Middleware Raymond James Near real-time integration for improved systems (throughput & performance) and enhanced operational flexibility in a 24 X 7 environment Wm Morrison Supermarkets Electronic Point of Sale integration handling over 80 million transactions a day in near real time (15 min intervals) Oracle Application Development Framework and Oracle Fusion Development Customer Results using Fusion Middleware Qualcomm Incorporated Solution providing  immediate business value enabling a self-service model necessary for growing the new customer base, an increase in customer satisfaction, reduced “time-to-deliver” Micros Systems, Inc. ADF, SOA Suite, WebCenter  enables services that include managing distribution of hotel rooms availability and rates to channels such as Hotel Web-site, Expedia, etc. Marfin Egnatia Bank A new web 2.0 UI provides a much richer experience through the ADF solution with the end result being one of boosting end-user productivity    Business Analytics (Oracle BI, Oracle EPM, Oracle Exalytics) Customer Results using Fusion Middleware INC Research Self-service customer portal delivering 5–10% of the overall revenue - expected to grow fast with the BI solution Experian Reduction in Time to Complete the Financial Close Process Hologic Inc Solution, saving months of decision-making uncertainty! We look forward to seeing many more innovative nominations. The nominatation process for 2013 begins in April 2013.    Additional Information: Blog: Oracle WebCenter Award Winners Blog: Oracle Identity Management Winners Blog: Oracle Exalogic Winners Blog: SOA, BPM and Data Integration will be will feature award winners in its respective areas this week Subscribe to our regular Fusion Middleware Newsletter Follow us on Twitter and Facebook

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • InSync12 and Australia Visits: UX is Global, Regional, Everywhere!

    - by ultan o'broin
    I attended the Australian Oracle User Group (AUSOUG) and Quest International User Group's InSync12 event in Melbourne, Australia: the user group conference for Oracle products in the ANZ region. I demoed Oracle Fusion Applications and then presented how Oracle crafted the world class Fusion Apps user experience (UX). I explained about the Oracle user experience design pattern strategy of uptake for all apps, not just Fusion, and what our UX pattern externalization strategy means for customers, partners, and ADF developers. A great conference, lots of energy, the InSync12 highlights for me were Oracle's Senior Vice President Cliff Godwin’s fast-moving Oracle E-Business Suite (EBS) roadshow with the killer Oracle Endeca user experience uptake, and Oracle ADF product outreachmeister Chris Muir’s (@chriscmuir) session on Oracle ADF Mobile solution and his hands-on mobile app development showing how existing ADF/JDev skills can build a secure, code once-deploy-to-many-device hybrid app solution in minutes. Cliff Godwin shows off the Oracle Endeca integration with Oracle E-Business Suite. Chris Muir talked the talk and then walked the walked with Oracle ADF Mobile. Applications UX was mixing it up with the crowd at InSync12 too, showing off cool mobile UX solutions, gathering data for future innovations, and engaging with EBS, JD Edwards, and PeopleSoft apps customers and partners. User conferences such as InSync12 are an important part of our Oracle Applications UX user-centered design process, giving real apps users the opportunity to make real inputs and a way for us to watch and to listen to their needs and wants and get views on current and emerging UX too. Eric Stilan (@icondaddy) of Applications UX uses an iPad to gather feedback on the latest UX designs from conference attendees. While in Melbourne, I also visited impressive Oracle partner, Callista for a major ADF and UX pow-wow, and was the er, star of a very proactive event hosted by another partner Park Lane Information Technology (coordinated by Bambi Price (@bambiprice) of ODTUG) where I explained what UX is about, and how partner and customers can engage, participate and deploy that Applications UX scientific insight to advantage for their entire business. I also paired up with Oracle Australia in Sydney to visit key customers while there, and back at Oracle in Melbourne I spoke with sales consultants and account managers about regional opportunities and UX strategy, and came away with an understanding of what makes the Oracle market tick in Australia. Mobile worker solution development and user experience is hot news in Australia, and this was a great opportunity to team up with Chris Muir and show how the alignment of the twin stars of UX design patterns and ADF technology enables developers to make great-looking, usable apps that really sparkle. Our UX design patterns--or functional (UI) patterns, to use the developer world language--means that developers now have not only a great tool set to build apps on Oracle ADF/FMW but proven, tested usability solutions to solve common problems they can apply in the IDE too. In all, a whirlwind UX visit, packed with events and delivery opportunities, and all too short a time in the wonderful city of Melbourne. I need to get back there soon! For those who need a reminder, there's a website explaining how to get involved with, and participate in, Applications User Experience (including the Oracle Usability Advisory Board) events and programs. Thank you to AUSOUG, Quest, InSync, Callista, Park Lane IT, everyone at Oracle Australia, Chris Muir, and all the other people who came together to make this a productive visit. Stay tuned for more UX developments and engagements in the region on the Oracle VoX blog and Usable Apps website too!

    Read the article

  • How to convert my backup.cmd into something I can run in Linux?

    - by blade19899
    Back in the day when i was using windows(and a noob at everything IT) i liked batch scripting so much that i wrote a lot of them and one i am pretty proud of that is my backup.cmd(see below). I am pretty basic with the linux bash sudo/apt-get/sl/ls/locate/updatedb/etc... I don't really know the full power of the terminal. If you see the code below can i get it to work under (Ubuntu)linux :) by rewriting some of the windows code with the linux equivalent (btw:this works under xp/vista/7 | dutch/english) @echo off title back it up :home cls echo ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ» echo º º echo º typ A/B for the options º echo º º echo ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ͹ echo º º echo º "A"=backup options º echo º º echo º "B"=HARDDISK Options º echo º º echo º º echo ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍŒ set /p selection=Choose: Goto %selection% :A cls echo ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ» echo º º echo º typ 1 to start that backup º echo º º echo ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ͹ echo º º echo º "A"=backup options º echo º È1=Documents,Pictures,Music,Videos,Downloads º echo º º echo º "B"=HARDDISK Options º echo º º echo ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍŒ set /p selection=Choose: Goto %selection% :B cls echo ÉÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ» echo º º echo º typ HD to start the disk check º echo º º echo ÌÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍ͹ echo º º echo º "A"=backup options º echo º º echo º "B"=HARDDISK Options º echo º ÈHD=find and repair bad sectors º echo º º echo ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍŒ set /p selection=Choose: Goto %selection% :1 cls if exist "%userprofile%\desktop" (set desk=desktop) else (set desk=Bureaublad) if exist "%userprofile%\documents" (set docs=documents) else (set docs=mijn documenten) if exist "%userprofile%\pictures" (set pics=pictures) else (echo cant find %userprofile%\pictures) if exist "%userprofile%\music" (set mus=music) else (echo cant find %userprofile%\music) if exist "%userprofile%\Videos" (set vids=videos) else (echo cant find %userprofile%\videos) if exist "%userprofile%\Downloads" (set down=downloads) else (echo cant find %userprofile%\Downloads) cls echo. examples (D:\) (D:\Backup) (D:\Backup\18-4-2011) echo. echo. if there is no "D:\backup" folder then the folder will be created echo. set drive= set /p drive=storage: echo start>>backup.log echo Name:%username%>>backup.log echo Date:%date%>>backup.log echo Time:%time%>>backup.log echo ========================================%docs%===========================================>>backup.log echo %docs% echo Source:"%userprofile%\%docs%" echo Destination:"%drive%\%username%\%docs%" echo %time%>>backup.log xcopy "%userprofile%\%docs%" "%drive%\%username%\%docs%" /E /I>>Backup.log echo 20%% cls echo ========================================"%pics%"=========================================>>backup.log echo "%pics%" echo Source:"%userprofile%\%pics%" echo Destination:"%drive%\%username%\%pics%" echo %time%>>backup.log xcopy "%userprofile%\%pics%" "%drive%\%username%\%pics%" /E /I>>Backup.log echo 40%% cls echo ========================================"%mus%"=========================================>>backup.log echo "%mus%" echo Source:"%userprofile%\%mus%" echo Destination:"%drive%\%username%\%mus%" echo %time%>>backup.log xcopy "%userprofile%\%mus%" "%drive%\%username%\%mus%" /E /I>>Backup.log echo 60%% cls echo ========================================"%vids%"========================================>>backup.log echo %vids% echo Source:"%userprofile%\%vids%" echo Destination:"%drive%\%username%\%vids%" echo %time%>>backup.log xcopy "%userprofile%\%vids%" "%drive%\%username%\%vids%" /E /I>>Backup.log echo 80%% cls echo ========================================"%down%"========================================>>backup.log echo "%down%" echo Source:"%userprofile%\%down%" echo Destination:"%drive%\%username%\%down%" echo %time%>>backup.log xcopy "%userprofile%\%down%" "%drive%\%username%\%down%" /E /I>>Backup.log echo end>>backup.log echo %username% %date% %time%>>backup.log echo 100%% cls echo backup Compleet copy "backup.log" "%drive%\%username%" del "backup.log" pushd "%drive%\%username%" echo close backup.log to continue with backup script "backup.log" echo press any key to retun to the main menu pause>nul goto :home :HD echo finds and repairs bad sectors echo typ in harddisk letter (C: D: E:) set HD= set /p HD=Hard Disk: chkdsk %HD% /F /R /X pause goto :home

    Read the article

  • WPF: Timers

    - by Ilya Verbitskiy
    I believe, once your WPF application will need to execute something periodically, and today I would like to discuss how to do that. There are two possible solutions. You can use classical System.Threading.Timer class or System.Windows.Threading.DispatcherTimer class, which is the part of WPF. I have created an application to show you how to use the API.     Let’s take a look how you can implement timer using System.Threading.Timer class. First of all, it has to be initialized.   1: private Timer timer; 2:   3: public MainWindow() 4: { 5: // Form initialization code 6: 7: timer = new Timer(OnTimer, null, Timeout.InfiniteTimeSpan, Timeout.InfiniteTimeSpan); 8: }   Timer’s constructor accepts four parameters. The first one is the callback method which is executed when timer ticks. I will show it to you soon. The second parameter is a state which is passed to the callback. It is null because there is nothing to pass this time. The third parameter is the amount of time to delay before the callback parameter invokes its methods. I use System.Threading.Timeout helper class to represent infinite timeout which simply means the timer is not going to start at the moment. And the final fourth parameter represents the time interval between invocations of the methods referenced by callback. Infinite timeout timespan means the callback method will be executed just once. Well, the timer has been created. Let’s take a look how you can start the timer.   1: private void StartTimer(object sender, RoutedEventArgs e) 2: { 3: timer.Change(TimeSpan.Zero, new TimeSpan(0, 0, 1)); 4:   5: // Disable the start buttons and enable the reset button. 6: }   The timer is started by calling its Change method. It accepts two arguments: the amount of time to delay before the invoking the callback method and the time interval between invocations of the callback. TimeSpan.Zero means we start the timer immediately and TimeSpan(0, 0, 1) tells the timer to tick every second. There is one method hasn’t been shown yet. This is the callback method OnTimer which does a simple task: it shows current time in the center of the screen. Unfortunately you cannot simple write something like this:   1: clock.Content = DateTime.Now.ToString("hh:mm:ss");   The reason is Timer runs callback method on a separate thread, and it is not possible to access GUI controls from a non-GUI thread. You can avoid the problem using System.Windows.Threading.Dispatcher class.   1: private void OnTimer(object state) 2: { 3: Dispatcher.Invoke(() => ShowTime()); 4: } 5:   6: private void ShowTime() 7: { 8: clock.Content = DateTime.Now.ToString("hh:mm:ss"); 9: }   You can build similar application using System.Windows.Threading.DispatcherTimer class. The class represents a timer which is integrated into the Dispatcher queue. It means that your callback method is executed on GUI thread and you can write a code which updates your GUI components directly.   1: private DispatcherTimer dispatcherTimer; 2:   3: public MainWindow() 4: { 5: // Form initialization code 6:   7: dispatcherTimer = new DispatcherTimer { Interval = new TimeSpan(0, 0, 1) }; 8: dispatcherTimer.Tick += OnDispatcherTimer; 9: } Dispatcher timer has nicer and cleaner API. All you need is to specify tick interval and Tick event handler. The you just call Start method to start the timer.   private void StartDispatcher(object sender, RoutedEventArgs e) { dispatcherTimer.Start(); // Disable the start buttons and enable the reset button. } And, since the Tick event handler is executed on GUI thread, the code which sets the actual time is straightforward.   1: private void OnDispatcherTimer(object sender, EventArgs e) 2: { 3: ShowTime(); 4: } We’re almost done. Let’s take a look how to stop the timers. It is easy with the Dispatcher Timer.   1: dispatcherTimer.Stop(); And slightly more complicated with the Timer. You should use Change method again.   1: timer.Change(Timeout.InfiniteTimeSpan, Timeout.InfiniteTimeSpan); What is the best way to add timer into an application? The Dispatcher Timer has simple interface, but its advantages are disadvantages at the same time. You should not use it if your Tick event handler executes time-consuming operations. It freezes your window which it is executing the event handler method. You should think about using System.Threading.Timer in this case. The code is available on GitHub.

    Read the article

  • How to store a shmup level?

    - by pek
    I am developing a 2D shmup (i.e. Aero Fighters) and I was wondering what are the various ways to store a level. Assuming that enemies are defined in their own xml file, how would you define when an enemy spawns in the level? Would it be based on time? Updates? Distance? Currently I do this based on "level time" (the amount of time the level is running - pausing doesn't update the time). Here is an example (the serialization was done by XNA): <?xml version="1.0" encoding="utf-8"?> <XnaContent xmlns:level="pekalicious.xanor.XanorContentShared.content.level"> <Asset Type="level:Level"> <Enemies> <Enemy> <EnemyType>data/enemies/smallenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>60</NumberOfSpawns> <SpawnOffset>PT0.2S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT0S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/secondenemy</EnemyType> <SpawnTime>PT20S</SpawnTime> <NumberOfSpawns>10</NumberOfSpawns> <SpawnOffset>PT0.5S</SpawnOffset> </Enemy> <Enemy> <EnemyType>data/enemies/boss1</EnemyType> <SpawnTime>PT30S</SpawnTime> <NumberOfSpawns>1</NumberOfSpawns> <SpawnOffset>PT0S</SpawnOffset> </Enemy> </Enemies> </Asset> </XnaContent> Each Enemy element is basically a wave of specific enemy types. The type is defined in EnemyType while SpawnTime is the "level time" this wave should appear. NumberOfSpawns and SpawnOffset is the number of enemies that will show up and the time it takes between each spawn respectively. This could be a good idea or there could be better ones out there. I'm not sure. I would like to see some opinions and ideas. I have two problems with this: spawning an enemy correctly and creating a level editor. The level editor thing is an entirely different problem (which I will probably post in the future :P). As for spawning correctly, the problem lies in the fact that I have a variable update time and so I need to make sure I don't miss an enemy spawn because the spawn offset is too small, or because the update took a little more time. I kinda fixed it for the most part, but it seems to me that the problem is with how I store the level. So, any ideas? Comments? Thank you in advance.

    Read the article

  • Countdown of Top 10 Reasons to Never Ever Use a Pie Chart

    - by Tony Wolfram
      Pie charts are evil. They represent much of what is wrong with the poor design of many websites and software applications. They're also innefective, misleading, and innacurate. Using a pie chart as your graph of choice to visually display important statistics and information demonstrates either a lack of knowledge, laziness, or poor design skills. Figure 1: A floating, tilted, 3D pie chart with shadow trying (poorly)to show usage statistics within a graphics application.   Of course, pie charts in and of themselves are not evil. This blog is really about designers making poor decisions for all the wrong reasons. In order for a pie chart to appear on a web page, somebody chose it over the other alternatives, and probably thought they were doing the right thing. They weren't. Using a pie chart is almost always a bad design decision. Figure 2: Pie Chart from an Oracle Reports User Guide   A pie chart does not do the job of effectively displaying information in an elegant visual form.  Being circular, they use up too much space while not allowing their labels to line up. Bar charts, line charts, and tables do a much better job. Expert designers, statisticians, and business analysts have documented their many failings, and strongly urge software and report designers not to use them. It's obvious to them that the pie chart has too many inherent defects to ever be used effectively. Figure 3: Demonstration of how comparing data between multiple pie charts is difficult.   Yet pie charts are still used frequently in today's software applications, financial reports, and websites, often on the opening page as a symbol of how the data inside is represented. In an attempt to get a flashy colorful graphic to break up boring text, designers will often settle for a pie chart that looks like pac man, a colored spinning wheel, or a 3D floating alien space ship.     Figure 4: Best use of a pie chart I've found yet.   Why is the pie chart so popular? Through its constant use and iconic representation as the classic chart, the idea persists that it must be a good choice, since everyone else is still using it. Like a virus or an urban legend, no amount of vaccine or debunking will slow down the use of pie charts, which seem to be resistant to logic and common sense. Even the new iPad from Apple showcases the pie chart as one of its options.     Figure 5: Screen shot of new iPad showcasing pie charts. Regardless of the futility in trying to rid the planet of this often used poor design choice, I now present to you my top 10 reasons why you should never, ever user a pie chart again.    Number 10 - Pie Charts Just Don't Work When Comparing Data Number 9 - You Have A Better Option: The Sorted Horizontal Bar Chart Number 8 - The Pie Chart is Always Round Number 7 - Some Genius Will Make It 3D Number 6 - Legends and Labels are Hard to Align and Read Number 5 - Nobody Has Ever Made a Critical Decision Using a Pie Chart Number 4 - It Doesn't Scale Well to More Than 2 Items Number 3 - A Pie Chart Causes Distortions and Errors Number 2 - Everyone Else Uses Them: Debunking the "Urban Legend" of Pie Charts Number 1 - Pie Charts Make You Look Stupid and Lazy  

    Read the article

  • Where can you find the Oracle Applications User Experience team in the next several months?

    - by mvaughan
    By Misha Vaughan, Applications User ExperienceNovember is one of my favorite times of year at Oracle. The blast of OpenWorld work is over, and it’s time to get down to business and start taking our messages and our work on the road out to the user groups. We’re in the middle of planning all of that right now, so we decided to provide a snapshot of where you can see us and hear about the Oracle Applications User Experience – whether it’s Fusion Applications, PeopleSoft, or what we’re planning for the next-generation of Oracle Applications.On the road with Apps UX...In December, you can find us at UKOUG 2012 in Birmingham, UK: UKOUG, UK Oracle User Group Conference 2012?December 3 – 5, 2012?ICC, Birmingham, UKIn March, we will be at Alliance 2013 in Indianapolis, and our fingers are crossed for OBUG Connect 2013 in Antwerp:? Alliance 2013March 17 - 20, 2013 ?Indianapolis, IndianaOBUG Benelux Connect 2013?March 26, 2013?Antwerp, Belgium?? In April, you will see us at COLLABORATE13 in Denver:? Collaborate13April 7 - April 11, 2013 ?Denver, Colorado?? And in June, we round out the kick-off to summer at OHUG 2013 in Dallas and Kscope13 in New Orleans:? OHUG 2013June 9 -13, 2013?Dallas, Texas ODTUG Kscope13?June 23-27, 2013 ?New Orleans, LA? The Labs & DemosAs always, a hallmark of our team is our mobile usability labs. If you haven’t seen them, they are a great way for customers and partners to get a peek at what Oracle is working on next, and a chance for you to provide your candid perspective. Based on the interest and enthusiasm from customers last year at Collaborate, we are adding more demo-stations to our user group presence in the year ahead. If you want to see some of the work we are doing first-hand but don’t have a lot of time, the demo stations are a great way to get a quick update on the latest wow-factor we are researching. I can promise that you will see whatever we think is new and interesting at the demo stations first. Oracle OpenWorld 2012 Apps UX DemostationFor Applications DevelopersMore and more, I get asked the question, “How do I build an application that looks like a Fusion?” My answer is Fusion Applications Design Patterns. You can find out more about how Fusion Applications developers can leverage ADF and the user experience best practices we developed for Fusion at sessions lead by Ultan O’Broin, Director of Global User Experience, in the year ahead. Ultan O'Broin, On Fusion Design Patterns Building mobile applications are also top of mind these days. If you want to understand how Oracle is approaching this strategy, check out our session on Mobile user experience design patterns with Mobile ADF.  In many cases, this will be presented by Lynn Rampoldi-Hnilo, Senior Manager of Mobile User Experiences, and in a few cases our ever-ready traveler Ultan O’Broin will be on deck. Lynn Rampoldi-Hnilo, on Mobile User Experience Design PatternsApplications User ExperiencesFusion Applications continues to evolve, and you will see the new face of Fusion Applications at our executive sessions in the year ahead, which are led by vice president Jeremy Ashley or a hand-picked presenter, such as one of our Fusion User Experience Advocates.  Edward Roske, CEO InterRel Consulting & Fusion User Experience AdvocateAs always, our strategy is to take our lessons learned and spread them across the Applications product lines. A great example is the enhancements coming in the PeopleSoft user experience, which you can hear about from Harris Kravatz, Senior Manager, PeopleSoft User Experience. Fusion Applications ExtensibilityWe can’t talk about Fusion Applications without talking about how to make it look like your business. If tailoring Fusion applications is a question in your mind, and it should be, you should hit one of these sessions. These sessions will be lead by our own Killian Evers, Senior Director, Tim Dubois, User Experience Architect, and some well-trained Fusion User Experience Advocates.Find out moreIf you want to stay on top of where and when we will be, you can always sign up for our newsletter or check out the events page of usableapps.

    Read the article

  • Sun Ray Hardware Last Order Dates & Extension of Premier Support for Desktop Virtualization Software

    - by Adam Hawley
    In light of the recent announcement  to end new feature development for Oracle Virtual Desktop Infrastructure Software (VDI), Oracle Sun Ray Software (SRS), Oracle Virtual Desktop Client (OVDC) Software, and Oracle Sun Ray Client hardware (3, 3i, and 3 Plus), there have been questions and concerns regarding what this means in terms of customers with new or existing deployments.  The following updates clarify some of these commonly asked questions. Extension of Premier Support for Software Though there will be no new feature additions to these products, customers will have access to maintenance update releases for Oracle Virtual Desktop Infrastructure and Sun Ray Software, including Oracle Virtual Desktop Client and Sun Ray Operating Software (SROS) until Premier Support Ends.  To ensure that customer investments for these products are protected, Oracle  Premier Support for these products has been extended by 3 years to following dates: Sun Ray Software - November 2017 Oracle Virtual Desktop Infrastructure - March 2017 Note that OVDC support is also extended to the above dates since OVDC is licensed by default as part the SRS and VDI products.   As a reminder, this only affects the products listed above.  Oracle Secure Global Desktop and Oracle VM VirtualBox will continue to be enhanced with new features from time-to-time and, as a result, they are not affected by the changes detailed in this message. The extension of support means that customers under a support contract will still be able to file service requests through Oracle Support, and Oracle will continue to provide the utmost level of support to our customers as expected,  until the published Premier Support end date.  Following the end of Premier Support, Sustaining Support remains an 'indefinite' period of time.   Sun Ray 3 Series Clients - Last Order Dates For Sun Ray Client hardware, customers can continue to purchase Sun Ray Client devices until the following last order dates: Product Marketing Part Number Last Order Date Last Ship Date Sun Ray 3 Plus TC3-P0Z-00, TC3-PTZ-00 (TAA) September 13, 2013 February 28, 2014 Sun Ray 3 Client TC3-00Z-00 February 28, 2014 August 31, 2014 Sun Ray 3i Client TC3-I0Z-00 February 28, 2014 August 31, 2014 Payflex Smart Cards X1403A-N, X1404A-N February 28, 2014 August 31, 2014 Note the difference in the Last Order Date for the Sun Ray 3 Plus (September 13, 2013) compared to the other products that have a Last Order Date of February 28, 2014. The rapidly approaching date for Sun Ray 3 Plus is due to a supplier phasing-out production of a key component of the 3 Plus.   Given September 13 is unfortunately quite soon, we strongly encourage you to place your last time buy as soon as possible to maximize Oracle's ability fulfill your order. Keep in mind you can schedule shipments to be delivered as late as the end of February 2014, but the last day to order is September 13, 2013. Customers wishing to purchase other models - Sun Ray 3 Clients and/or Sun Ray 3i Clients - have additional time (until February 28, 2014) to assess their needs and to allow fulfillment of last time orders.  Please note that availability of supply cannot be absolutely guaranteed up to the last order dates and we strongly recommend placing last time buys as early as possible.  Warranty replacements for Sun Ray Client hardware for customers covered by Oracle Hardware Systems Support contracts will be available beyond last order dates, per Oracle's policy found on Oracle.com here.  Per that policy, Oracle intends to provide replacement hardware for up to 5 years beyond the last ship date, but hardware may not be available beyond the 5 year period after the last ship date for reasons beyond Oracle's control. In any case, by design, Sun Ray Clients have an extremely long lifespan  and mean time between failures (MTBF) - much longer than PCs, and over the years we have continued to see first- and second generations of Sun Rays still in daily use.  This is no different for the Sun Ray 3, 3i, and 3 Plus.   Because of this, and in addition to Oracle's continued support for SRS, VDI, and SROS, Sun Ray and Oracle VDI deployments can continue to expand and exist as a viable solution for some time in the future. Continued Availability of Product Licenses and Support Oracle will continue to offer all existing software licenses, and software and hardware support including: Product licenses and Premier Support for Sun Ray Software and Oracle Virtual Desktop Infrastructure Premier Support for Operating Systems (for Sun Ray Operating Software maintenance upgrades/support)  Premier Support for Systems (for Sun Ray Operating Software maintenance upgrades/support and hardware warranty) Support renewals For More Information For more information, please refer to the following documents for specific dates and policies associated with the support of these products: Document 1478170.1 - Oracle Desktop Virtualization Software and Hardware Lifetime Support Schedule Document 1450710.1 - Sun Ray Client Hardware Lifetime schedule Document 1568808.1 - Document Support Policies for Discontinued Oracle Virtual Desktop Infrastructure, Sun Ray Software and Hardware and Oracle Virtual Desktop Client Development For Sales Orders and Questions Please contact your Oracle Sales Representative or Saurabh Vijay ([email protected])

    Read the article

  • How Do You Actually Model Data?

    Since the 1970’s Developers, Analysts and DBAs have been able to represent concepts and relations in the form of data through the use of generic symbols.  But what is data modeling?  The first time I actually heard this term I could not understand why anyone would want to display a computer on a fashion show runway. Hey, what do you expect? At that time I was a freshman in community college, and obviously this was a long time ago.  I have since had the chance to learn what data modeling truly is through using it. Data modeling is a process of breaking down information and/or requirements in to common categories called objects. Once objects start being defined then relationships start to form based on dependencies found amongst other existing objects.  Currently, there are several tools on the market that help data designer actually map out objects and their relationships through the use of symbols and lines.  These diagrams allow for designs to be review from several perspectives so that designers can ensure that they have the optimal data design for their project and that the design is flexible enough to allow for potential changes and/or extension in the future. Additionally these basic models can always be further refined to show different levels of details depending on the target audience through the use of three different types of models. Conceptual Data Model(CDM)Conceptual Data Models include all key entities and relationships giving a viewer a high level understanding of attributes. Conceptual data model are created by gathering and analyzing information from various sources pertaining to a project during the typical planning phase of a project. Logical Data Model (LDM)Logical Data Models are conceptual data models that have been expanded to include implementation details pertaining to the data that it will store. Additionally, this model typically represents an origination’s business requirements and business rules by defining various attribute data types and relationships regarding each entity. This additional information can be directly translated to the Physical Data Model which reduces the actual time need to implement it. Physical Data Model(PDMs)Physical Data Model are transformed Logical Data Models that include the necessary tables, columns, relationships, database properties for the creation of a database. This model also allows for considerations regarding performance, indexing and denormalization that are applied through database rules, data integrity. Further expanding on why we actually use models in modern application/database development can be seen in the benefits that data modeling provides for data modelers and projects themselves, Benefits of Data Modeling according to Applied Information Science Abstraction that allows data designers remove concepts and ideas form hard facts in the form of data. This gives the data designers the ability to express general concepts and/or ideas in a generic form through the use of symbols to represent data items and the relationships between the items. Transparency through the use of data models allows complex ideas to be translated in to simple symbols so that the concept can be understood by all viewpoints and limits the amount of confusion and misunderstanding. Effectiveness in regards to tuning a model for acceptable performance while maintaining affordable operational costs. In addition it allows systems to be built on a solid foundation in terms of data. I shudder at the thought of a world without data modeling, think about it? Data is everywhere in our lives. Data modeling allows for optimizing a design for performance and the reduction of duplication. If one was to design a database without data modeling then I would think that the first things to get impacted would be database performance due to poorly designed database and there would be greater chances of unnecessary data duplication that would also play in to the excessive query times because unneeded records would need to be processed. You could say that a data designer designing a database is like a box of chocolates. You will never know what kind of database you will get until after it is built.

    Read the article

< Previous Page | 466 467 468 469 470 471 472 473 474 475 476 477  | Next Page >