Search Results

Search found 3421 results on 137 pages for 'certificate chain'.

Page 48/137 | < Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >

  • How do I chain forms in Access? (pass values between them)

    - by jeff porter
    Hello, I'm using Access 2007 and have a data model like this... Passenger - Bookings - Destinations So 1 Passenger can have Many Bookings, each for 1 Destinations. My problem... I can create a form to allow the entry of Passenger details, but I then want to add a NEXT button to take me to a form to enter the details of the Booking (i.e. just a simple drop list of the Destinations). I've added the NEXT button and it has the events of RunCommand SaveRecord OpenForm Destination_form BUT, I cant work out how to pass accross to the new form the primary key of the passenger that was just entered (PassengerID). I'd really like to have just one form, and that allow the entry of the Passenger details and the selection of a Destination, that then creates the entries in the 2 Tables (Passenger & Bookings), but I can't get that to work either. Can anyone help me out please? Thanks Jeff Porter

    Read the article

  • HTTPS with Self-Signed Certificate Issues... Solution or better way?

    - by stormin986
    All I need to do is download some basic text-based and image files from a web server that has a self-signed SSL certificate. I have been trying to figure out how to use HttpClient to do this, but getting the SSL to work is a nightmare that seems to be way too much trouble for such a simple task. Is there a better way to perform these file downloads? Perhaps through a WebView or Browser feature? Reinventing the wheel of making a simple HTTPS GET request is a major pain, and is significantly holding up my development schedule. ** Updated title to more accurately reflect question / solution **

    Read the article

  • Where are AnkhSVN CA certificates stored?

    - by Roger Lipscombe
    My Subversion repository is available over HTTPS. I've got a self-signed CA root certificate, and the server uses a certificate signed with that. The CA root certificate is stored in Trusted Root Certification Authorities, which means that (for example) Internet Explorer recognises it. AnkhSVN, on the other hand, reports "There are some problems with this server's certificate". So: what is AnkhSVN using as its certificate store? It doesn't appear to be the Windows one. And how do I put my CA root certificate in there?

    Read the article

  • Can a rake task know about the other tasks in the invocation chain?

    - by andrewdotnich
    Rake (like make) is able to have many targets/tasks specified on invocation. Is it possible for a rake task to access the list of tasks the user invoked, in order to do its job? Scenario: Consider a Rake-based build tool. A help task would like to know what tasks were also specified in order to print their usage and halt the build process. The benefit of this as opposed to rake-style parameter passing are cleaner syntax (rake help build instead of rake help task=build) and chaining (rake help build run_tests would print usage for both).

    Read the article

  • SSL Certificated Validity

    - by Haluk
    Hi, I'm using an SSL certificate from geotrust. I just ordered and installed it this weekend. However when I try to access my website using https, firefox (and the other browsers as well) the browser warns that the certificate expired a few days ago. I guess there could be two reasons: I made a mistake during the installation of the certificate Geotrust did not sign the certificate properly. First I want to rule out the second reason considering my browser tells me the certificate expired a few days ago. This does not make sense at all. Is there a way to extract the expiration date from the certificate? Thanks!

    Read the article

  • Ext JS - Can I 'chain' methods on a field ??

    - by dwfresh
    HI, I am just trying to set a field value and disable it at the same time. Can this be done in ext js? The docs are very weak on this subject. something like this generates errors: myForm.getForm().findField('start_date').setValue('').setDisabled(true); I'm used to JQuery which does this sort of thing nicely but haven't had luck with Ext. Thanks for any help.

    Read the article

  • How can I make subversion reset the stored passwords/users and remember my authentication credential

    - by NicDumZ
    Hello folks! Background: I used to have everything working just fine on my fresh install: $ svn co https://domain:443/ test1 Error validating server certificate for 'https://domain:443': - The certificate is not issued by a trusted authority. Use the fingerprint to validate the certificate manually! Certificate information: - Hostname: **REMOVED** - Valid: **REMOVED** - Issuer: **REMOVED** - Fingerprint: **checked with issuer and REMOVED** (R)eject, accept (t)emporarily or accept (p)ermanently? p Authentication realm: <https://domain:443> Subversion repository Password for 'nicdumz-machine-hostname': Authentication realm: <https://domain:443> Subversion repository Username: nicdumz Password for 'nicdumz': # proceeds to checkout correctly $ svn co https://domain:443/ test2 # checkouts nicely, without asking for my password. At some point I needed to commit stuff using a different account. So I did that $ svn ci --username other.user Authentication realm: <https://domain:443> Subversion repository Password for 'other.user': # works fine But since then, everytime I want to commit as 'nicdumz' (default user, all repos have been checked-out with that user), it prompts me for my password: $ svn ci Authentication realm: <https://domain:443> Subversion repository Password for 'nicdumz': Hey come on, why :) The same happens if I want a fresh checkout, since read-access is also protected. So I tried fixing the issue by myself. I read around that ~/.subversion/auth was storing credentials, so I removed it from the way: $ cd ~/.subversion $ mv auth oldauth $ mkdir auth It seemed to work at first, because svn had forgotten about certificate validation: $ svn co https://domain:443/ test3 Error validating server certificate for 'https://domain:443': - The certificate is not issued by a trusted authority. Use the fingerprint to validate the certificate manually! Certificate information: - Hostname: **REMOVED** - Valid: **REMOVED** - Issuer: **REMOVED** - Fingerprint: **checked with issuer and REMOVED** (R)eject, accept (t)emporarily or accept (p)ermanently? p Authentication realm: <https://domain:443> Subversion repository Password for 'nicdumz-machine-hostname': Authentication realm: <https://domain:443> Subversion repository Username: nicdumz Password for 'nicdumz': # proceeds to checkout correctly $ svn up Authentication realm: <https://domain:443> Subversion repository Password for 'nicdumz': What? how is this happening? If you have suggestions to investigate more about the behaviour, I am very interested. If I'm correct, there is no way to do a verbose svn up or anything of the like, so I'm not sure should I go for investigation. Oh, and for what it's worth: $ svn --version svn, version 1.6.6 (r40053) compiled Oct 26 2009, 06:19:08 Copyright (C) 2000-2009 CollabNet. Subversion is open source software, see http://subversion.tigris.org/ This product includes software developed by CollabNet (http://www.Collab.Net/). The following repository access (RA) modules are available: * ra_neon : Module for accessing a repository via WebDAV protocol using Neon. - handles 'http' scheme - handles 'https' scheme * ra_svn : Module for accessing a repository using the svn network protocol. - with Cyrus SASL authentication - handles 'svn' scheme * ra_local : Module for accessing a repository on local disk. - handles 'file' scheme * ra_serf : Module for accessing a repository via WebDAV protocol using serf. - handles 'http' scheme - handles 'https' scheme

    Read the article

  • IPsec tunnel to Android device not created even though there is an IKE SA

    - by Quentin Swain
    I'm trying to configure a VPN tunnel between an Android device running 4.1 and a Fedora 17 Linux box running strongSwan 5.0. The device reports that it is connected and strongSwan statusall returns that there is an IKE SA, but doesn't display a tunnel. I used the instructions for iOS in the wiki to generate certificates and configure strongSwan. Since Android uses a modified version of racoon this should work and since the connection is partly established I think I am on the right track. I don't see any errors about not being able to create the tunnel. This is the configuration for the strongSwan connection conn android2 keyexchange=ikev1 authby=xauthrsasig xauth=server left=96.244.142.28 leftsubnet=0.0.0.0/0 leftfirewall=yes leftcert=serverCert.pem right=%any rightsubnet=10.0.0.0/24 rightsourceip=10.0.0.2 rightcert=clientCert.pem ike=aes256-sha1-modp1024 auto=add This is the output of strongswan statusall Status of IKE charon daemon (strongSwan 5.0.0, Linux 3.3.4-5.fc17.x86_64, x86_64): uptime: 20 minutes, since Oct 31 10:27:31 2012 malloc: sbrk 270336, mmap 0, used 198144, free 72192 worker threads: 8 of 16 idle, 7/1/0/0 working, job queue: 0/0/0/0, scheduled: 7 loaded plugins: charon aes des sha1 sha2 md5 random nonce x509 revocation constraints pubkey pkcs1 pkcs8 pgp dnskey pem openssl fips-prf gmp xcbc cmac hmac attr kernel-netlink resolve socket-default stroke updown xauth-generic Virtual IP pools (size/online/offline): android-hybrid: 1/0/0 android2: 1/1/0 Listening IP addresses: 96.244.142.28 Connections: android-hybrid: %any...%any IKEv1 android-hybrid: local: [C=CH, O=strongSwan, CN=vpn.strongswan.org] uses public key authentication android-hybrid: cert: "C=CH, O=strongSwan, CN=vpn.strongswan.org" android-hybrid: remote: [%any] uses XAuth authentication: any android-hybrid: child: dynamic === dynamic TUNNEL android2: 96.244.142.28...%any IKEv1 android2: local: [C=CH, O=strongSwan, CN=vpn.strongswan.org] uses public key authentication android2: cert: "C=CH, O=strongSwan, CN=vpn.strongswan.org" android2: remote: [C=CH, O=strongSwan, CN=client] uses public key authentication android2: cert: "C=CH, O=strongSwan, CN=client" android2: remote: [%any] uses XAuth authentication: any android2: child: 0.0.0.0/0 === 10.0.0.0/24 TUNNEL Security Associations (1 up, 0 connecting): android2[3]: ESTABLISHED 10 seconds ago, 96.244.142.28[C=CH, O=strongSwan, CN=vpn.strongswan.org]...208.54.35.241[C=CH, O=strongSwan, CN=client] android2[3]: Remote XAuth identity: android android2[3]: IKEv1 SPIs: 4151e371ad46b20d_i 59a56390d74792d2_r*, public key reauthentication in 56 minutes android2[3]: IKE proposal: AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024 The output of ip -s xfrm policy src ::/0 dst ::/0 uid 0 socket in action allow index 3851 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use - src ::/0 dst ::/0 uid 0 socket out action allow index 3844 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use - src ::/0 dst ::/0 uid 0 socket in action allow index 3835 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use - src ::/0 dst ::/0 uid 0 socket out action allow index 3828 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use - src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 socket in action allow index 3819 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use 2012-10-31 13:29:39 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 socket out action allow index 3812 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use 2012-10-31 13:29:22 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 socket in action allow index 3803 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use 2012-10-31 13:29:20 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 socket out action allow index 3796 priority 0 ptype main share any flag (0x00000000) lifetime config: limit: soft 0(bytes), hard 0(bytes) limit: soft 0(packets), hard 0(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:29:08 use 2012-10-31 13:29:20 So a xfrm policy isn't being created for the connection, even though there is an SA between device and strongswan. Executing ip -s xfrm policy on the android device results in the following output: src 0.0.0.0/0 dst 10.0.0.2/32 uid 0 dir in action allow index 40 priority 2147483648 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:08 use - tmpl src 96.244.142.28 dst 25.239.33.30 proto esp spi 0x00000000(0) reqid 0(0x00000000) mode tunnel level required share any enc-mask 00000000 auth-mask 00000000 comp-mask 00000000 src 10.0.0.2/32 dst 0.0.0.0/0 uid 0 dir out action allow index 33 priority 2147483648 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:08 use - tmpl src 25.239.33.30 dst 96.244.142.28 proto esp spi 0x00000000(0) reqid 0(0x00000000) mode tunnel level required share any enc-mask 00000000 auth-mask 00000000 comp-mask 00000000 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 dir 4 action allow index 28 priority 0 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:04 use 2012-10-31 13:42:08 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 dir 3 action allow index 19 priority 0 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:04 use 2012-10-31 13:42:08 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 dir 4 action allow index 12 priority 0 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:04 use 2012-10-31 13:42:06 src 0.0.0.0/0 dst 0.0.0.0/0 uid 0 dir 3 action allow index 3 priority 0 share any flag (0x00000000) lifetime config: limit: soft (INF)(bytes), hard (INF)(bytes) limit: soft (INF)(packets), hard (INF)(packets) expire add: soft 0(sec), hard 0(sec) expire use: soft 0(sec), hard 0(sec) lifetime current: 0(bytes), 0(packets) add 2012-10-31 13:42:04 use 2012-10-31 13:42:07 Logs from charon: 00[DMN] Starting IKE charon daemon (strongSwan 5.0.0, Linux 3.3.4-5.fc17.x86_64, x86_64) 00[KNL] listening on interfaces: 00[KNL] em1 00[KNL] 96.244.142.28 00[KNL] fe80::224:e8ff:fed2:18b2 00[CFG] loading ca certificates from '/etc/strongswan/ipsec.d/cacerts' 00[CFG] loaded ca certificate "C=CH, O=strongSwan, CN=strongSwan CA" from '/etc/strongswan/ipsec.d/cacerts/caCert.pem' 00[CFG] loading aa certificates from '/etc/strongswan/ipsec.d/aacerts' 00[CFG] loading ocsp signer certificates from '/etc/strongswan/ipsec.d/ocspcerts' 00[CFG] loading attribute certificates from '/etc/strongswan/ipsec.d/acerts' 00[CFG] loading crls from '/etc/strongswan/ipsec.d/crls' 00[CFG] loading secrets from '/etc/strongswan/ipsec.secrets' 00[CFG] loaded RSA private key from '/etc/strongswan/ipsec.d/private/clientKey.pem' 00[CFG] loaded IKE secret for %any 00[CFG] loaded EAP secret for android 00[CFG] loaded EAP secret for android 00[DMN] loaded plugins: charon aes des sha1 sha2 md5 random nonce x509 revocation constraints pubkey pkcs1 pkcs8 pgp dnskey pem openssl fips-prf gmp xcbc cmac hmac attr kernel-netlink resolve socket-default stroke updown xauth-generic 08[NET] waiting for data on sockets 16[LIB] created thread 16 [15338] 16[JOB] started worker thread 16 11[CFG] received stroke: add connection 'android-hybrid' 11[CFG] conn android-hybrid 11[CFG] left=%any 11[CFG] leftsubnet=(null) 11[CFG] leftsourceip=(null) 11[CFG] leftauth=pubkey 11[CFG] leftauth2=(null) 11[CFG] leftid=(null) 11[CFG] leftid2=(null) 11[CFG] leftrsakey=(null) 11[CFG] leftcert=serverCert.pem 11[CFG] leftcert2=(null) 11[CFG] leftca=(null) 11[CFG] leftca2=(null) 11[CFG] leftgroups=(null) 11[CFG] leftupdown=ipsec _updown iptables 11[CFG] right=%any 11[CFG] rightsubnet=(null) 11[CFG] rightsourceip=96.244.142.3 11[CFG] rightauth=xauth 11[CFG] rightauth2=(null) 11[CFG] rightid=%any 11[CFG] rightid2=(null) 11[CFG] rightrsakey=(null) 11[CFG] rightcert=(null) 11[CFG] rightcert2=(null) 11[CFG] rightca=(null) 11[CFG] rightca2=(null) 11[CFG] rightgroups=(null) 11[CFG] rightupdown=(null) 11[CFG] eap_identity=(null) 11[CFG] aaa_identity=(null) 11[CFG] xauth_identity=(null) 11[CFG] ike=aes256-sha1-modp1024 11[CFG] esp=aes128-sha1-modp2048,3des-sha1-modp1536 11[CFG] dpddelay=30 11[CFG] dpdtimeout=150 11[CFG] dpdaction=0 11[CFG] closeaction=0 11[CFG] mediation=no 11[CFG] mediated_by=(null) 11[CFG] me_peerid=(null) 11[CFG] keyexchange=ikev1 11[KNL] getting interface name for %any 11[KNL] %any is not a local address 11[KNL] getting interface name for %any 11[KNL] %any is not a local address 11[CFG] left nor right host is our side, assuming left=local 11[CFG] loaded certificate "C=CH, O=strongSwan, CN=vpn.strongswan.org" from 'serverCert.pem' 11[CFG] id '%any' not confirmed by certificate, defaulting to 'C=CH, O=strongSwan, CN=vpn.strongswan.org' 11[CFG] added configuration 'android-hybrid' 11[CFG] adding virtual IP address pool 'android-hybrid': 96.244.142.3/32 13[CFG] received stroke: add connection 'android2' 13[CFG] conn android2 13[CFG] left=96.244.142.28 13[CFG] leftsubnet=0.0.0.0/0 13[CFG] leftsourceip=(null) 13[CFG] leftauth=pubkey 13[CFG] leftauth2=(null) 13[CFG] leftid=(null) 13[CFG] leftid2=(null) 13[CFG] leftrsakey=(null) 13[CFG] leftcert=serverCert.pem 13[CFG] leftcert2=(null) 13[CFG] leftca=(null) 13[CFG] leftca2=(null) 13[CFG] leftgroups=(null) 13[CFG] leftupdown=ipsec _updown iptables 13[CFG] right=%any 13[CFG] rightsubnet=10.0.0.0/24 13[CFG] rightsourceip=10.0.0.2 13[CFG] rightauth=pubkey 13[CFG] rightauth2=xauth 13[CFG] rightid=(null) 13[CFG] rightid2=(null) 13[CFG] rightrsakey=(null) 13[CFG] rightcert=clientCert.pem 13[CFG] rightcert2=(null) 13[CFG] rightca=(null) 13[CFG] rightca2=(null) 13[CFG] rightgroups=(null) 13[CFG] rightupdown=(null) 13[CFG] eap_identity=(null) 13[CFG] aaa_identity=(null) 13[CFG] xauth_identity=(null) 13[CFG] ike=aes256-sha1-modp1024 13[CFG] esp=aes128-sha1-modp2048,3des-sha1-modp1536 13[CFG] dpddelay=30 13[CFG] dpdtimeout=150 13[CFG] dpdaction=0 13[CFG] closeaction=0 13[CFG] mediation=no 13[CFG] mediated_by=(null) 13[CFG] me_peerid=(null) 13[CFG] keyexchange=ikev0 13[KNL] getting interface name for %any 13[KNL] %any is not a local address 13[KNL] getting interface name for 96.244.142.28 13[KNL] 96.244.142.28 is on interface em1 13[CFG] loaded certificate "C=CH, O=strongSwan, CN=vpn.strongswan.org" from 'serverCert.pem' 13[CFG] id '96.244.142.28' not confirmed by certificate, defaulting to 'C=CH, O=strongSwan, CN=vpn.strongswan.org' 13[CFG] loaded certificate "C=CH, O=strongSwan, CN=client" from 'clientCert.pem' 13[CFG] id '%any' not confirmed by certificate, defaulting to 'C=CH, O=strongSwan, CN=client' 13[CFG] added configuration 'android2' 13[CFG] adding virtual IP address pool 'android2': 10.0.0.2/32 08[NET] received packet: from 208.54.35.241[32235] to 96.244.142.28[500] 15[CFG] looking for an ike config for 96.244.142.28...208.54.35.241 15[CFG] candidate: %any...%any, prio 2 15[CFG] candidate: 96.244.142.28...%any, prio 5 15[CFG] found matching ike config: 96.244.142.28...%any with prio 5 01[JOB] next event in 29s 999ms, waiting 15[IKE] received NAT-T (RFC 3947) vendor ID 15[IKE] received draft-ietf-ipsec-nat-t-ike-02 vendor ID 15[IKE] received draft-ietf-ipsec-nat-t-ike-02\n vendor ID 15[IKE] received draft-ietf-ipsec-nat-t-ike-00 vendor ID 15[IKE] received XAuth vendor ID 15[IKE] received Cisco Unity vendor ID 15[IKE] received DPD vendor ID 15[IKE] 208.54.35.241 is initiating a Main Mode IKE_SA 15[IKE] IKE_SA (unnamed)[1] state change: CREATED => CONNECTING 15[CFG] selecting proposal: 15[CFG] proposal matches 15[CFG] received proposals: IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_256/HMAC_MD5_96/PRF_HMAC_MD5/MODP_1024, IKE:AES_CBC_128/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_128/HMAC_MD5_96/PRF_HMAC_MD5/MODP_1024, IKE:3DES_CBC/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:3DES_CBC/HMAC_MD5_96/PRF_HMAC_MD5/MODP_1024, IKE:DES_CBC/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:DES_CBC/HMAC_MD5_96/PRF_HMAC_MD5/MODP_1024 15[CFG] configured proposals: IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024, IKE:AES_CBC_128/AES_CBC_192/AES_CBC_256/3DES_CBC/CAMELLIA_CBC_128/CAMELLIA_CBC_192/CAMELLIA_CBC_256/HMAC_MD5_96/HMAC_SHA1_96/HMAC_SHA2_256_128/HMAC_SHA2_384_192/HMAC_SHA2_512_256/AES_XCBC_96/AES_CMAC_96/PRF_HMAC_MD5/PRF_HMAC_SHA1/PRF_HMAC_SHA2_256/PRF_HMAC_SHA2_384/PRF_HMAC_SHA2_512/PRF_AES128_XCBC/PRF_AES128_CMAC/MODP_2048/MODP_2048_224/MODP_2048_256/MODP_1536/MODP_4096/MODP_8192/MODP_1024/MODP_1024_160 15[CFG] selected proposal: IKE:AES_CBC_256/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024 15[NET] sending packet: from 96.244.142.28[500] to 208.54.35.241[32235] 04[NET] sending packet: from 96.244.142.28[500] to 208.54.35.241[32235] 15[MGR] checkin IKE_SA (unnamed)[1] 15[MGR] check-in of IKE_SA successful. 08[NET] received packet: from 208.54.35.241[32235] to 96.244.142.28[500] 08[NET] waiting for data on sockets 07[MGR] checkout IKE_SA by message 07[MGR] IKE_SA (unnamed)[1] successfully checked out 07[NET] received packet: from 208.54.35.241[32235] to 96.244.142.28[500] 07[LIB] size of DH secret exponent: 1023 bits 07[IKE] remote host is behind NAT 07[IKE] sending cert request for "C=CH, O=strongSwan, CN=strongSwan CA" 07[ENC] generating NAT_D_V1 payload finished 07[NET] sending packet: from 96.244.142.28[500] to 208.54.35.241[32235] 07[MGR] checkin IKE_SA (unnamed)[1] 07[MGR] check-in of IKE_SA successful. 04[NET] sending packet: from 96.244.142.28[500] to 208.54.35.241[32235] 08[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 10[IKE] ignoring certificate request without data 10[IKE] received end entity cert "C=CH, O=strongSwan, CN=client" 10[CFG] looking for XAuthInitRSA peer configs matching 96.244.142.28...208.54.35.241[C=CH, O=strongSwan, CN=client] 10[CFG] candidate "android-hybrid", match: 1/1/2/2 (me/other/ike/version) 10[CFG] candidate "android2", match: 1/20/5/1 (me/other/ike/version) 10[CFG] selected peer config "android2" 10[CFG] certificate "C=CH, O=strongSwan, CN=client" key: 2048 bit RSA 10[CFG] using trusted ca certificate "C=CH, O=strongSwan, CN=strongSwan CA" 10[CFG] checking certificate status of "C=CH, O=strongSwan, CN=client" 10[CFG] ocsp check skipped, no ocsp found 10[CFG] certificate status is not available 10[CFG] certificate "C=CH, O=strongSwan, CN=strongSwan CA" key: 2048 bit RSA 10[CFG] reached self-signed root ca with a path length of 0 10[CFG] using trusted certificate "C=CH, O=strongSwan, CN=client" 10[IKE] authentication of 'C=CH, O=strongSwan, CN=client' with RSA successful 10[ENC] added payload of type ID_V1 to message 10[ENC] added payload of type SIGNATURE_V1 to message 10[IKE] authentication of 'C=CH, O=strongSwan, CN=vpn.strongswan.org' (myself) successful 10[IKE] queueing XAUTH task 10[IKE] sending end entity cert "C=CH, O=strongSwan, CN=vpn.strongswan.org" 10[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 04[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 10[IKE] activating new tasks 10[IKE] activating XAUTH task 10[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 04[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 01[JOB] next event in 3s 999ms, waiting 10[MGR] checkin IKE_SA android2[1] 10[MGR] check-in of IKE_SA successful. 08[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 08[NET] waiting for data on sockets 12[MGR] checkout IKE_SA by message 12[MGR] IKE_SA android2[1] successfully checked out 12[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 12[MGR] checkin IKE_SA android2[1] 12[MGR] check-in of IKE_SA successful. 08[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 16[MGR] checkout IKE_SA by message 16[MGR] IKE_SA android2[1] successfully checked out 16[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 08[NET] waiting for data on sockets 16[IKE] XAuth authentication of 'android' successful 16[IKE] reinitiating already active tasks 16[IKE] XAUTH task 16[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 04[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 16[MGR] checkin IKE_SA android2[1] 01[JOB] next event in 3s 907ms, waiting 16[MGR] check-in of IKE_SA successful. 08[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 09[MGR] checkout IKE_SA by message 09[MGR] IKE_SA android2[1] successfully checked out 09[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] .8rS 09[IKE] IKE_SA android2[1] established between 96.244.142.28[C=CH, O=strongSwan, CN=vpn.strongswan.org]...208.54.35.241[C=CH, O=strongSwan, CN=client] 09[IKE] IKE_SA android2[1] state change: CONNECTING => ESTABLISHED 09[IKE] scheduling reauthentication in 3409s 09[IKE] maximum IKE_SA lifetime 3589s 09[IKE] activating new tasks 09[IKE] nothing to initiate 09[MGR] checkin IKE_SA android2[1] 09[MGR] check-in of IKE_SA successful. 09[MGR] checkout IKE_SA 09[MGR] IKE_SA android2[1] successfully checked out 09[MGR] checkin IKE_SA android2[1] 09[MGR] check-in of IKE_SA successful. 01[JOB] next event in 3s 854ms, waiting 08[NET] waiting for data on sockets 08[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 14[MGR] checkout IKE_SA by message 14[MGR] IKE_SA android2[1] successfully checked out 14[NET] received packet: from 208.54.35.241[35595] to 96.244.142.28[4500] 14[IKE] processing INTERNAL_IP4_ADDRESS attribute 14[IKE] processing INTERNAL_IP4_NETMASK attribute 14[IKE] processing INTERNAL_IP4_DNS attribute 14[IKE] processing INTERNAL_IP4_NBNS attribute 14[IKE] processing UNITY_BANNER attribute 14[IKE] processing UNITY_DEF_DOMAIN attribute 14[IKE] processing UNITY_SPLITDNS_NAME attribute 14[IKE] processing UNITY_SPLIT_INCLUDE attribute 14[IKE] processing UNITY_LOCAL_LAN attribute 14[IKE] processing APPLICATION_VERSION attribute 14[IKE] peer requested virtual IP %any 14[CFG] assigning new lease to 'android' 14[IKE] assigning virtual IP 10.0.0.2 to peer 'android' 14[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 14[MGR] checkin IKE_SA android2[1] 14[MGR] check-in of IKE_SA successful. 04[NET] sending packet: from 96.244.142.28[4500] to 208.54.35.241[35595] 08[NET] waiting for data on sockets 01[JOB] got event, queuing job for execution 01[JOB] next event in 91ms, waiting 13[MGR] checkout IKE_SA 13[MGR] IKE_SA android2[1] successfully checked out 13[MGR] checkin IKE_SA android2[1] 13[MGR] check-in of IKE_SA successful. 01[JOB] got event, queuing job for execution 01[JOB] next event in 24s 136ms, waiting 15[MGR] checkout IKE_SA 15[MGR] IKE_SA android2[1] successfully checked out 15[MGR] checkin IKE_SA android2[1] 15[MGR] check-in of IKE_SA successful.

    Read the article

  • Linux policy routing - packets not coming back

    - by Bugsik
    i am trying to set up policy routing on my home server. My network looks like this: Host routed VPN gateway Internet link through VPN 192.168.0.35/24 ---> 192.168.0.5/24 ---> 192.168.0.1 DSL router 10.200.2.235/22 .... .... 10.200.0.1 VPN server The traffic from 192.168.0.32/27 should be and is routed through VPN. I wanted to define some routing policies to route some traffic from 192.168.0.5 through VPN as well - for start - from user with uid 2000. Policy routing is done using iptables mark target and ip rule fwmark. The problem: When connecting using user 2000 from 192.168.0.5 tcpdump shows outgoing packets, but nothing comes back. Traffic from 192.168.0.35 works fine (here I am not using fwmark but src policy). Here is my VPN gateway setup: # uname -a Linux placebo 3.2.0-34-generic #53-Ubuntu SMP Thu Nov 15 10:49:02 UTC 2012 i686 i686 i386 GNU/Linux # iptables -V iptables v1.4.12 # ip -V ip utility, iproute2-ss111117 IPtables rules (all policies in table filter are ACCEPT) # iptables -t mangle -nvL Chain PREROUTING (policy ACCEPT 770K packets, 314M bytes) pkts bytes target prot opt in out source destination Chain INPUT (policy ACCEPT 767K packets, 312M bytes) pkts bytes target prot opt in out source destination Chain FORWARD (policy ACCEPT 5520 packets, 1920K bytes) pkts bytes target prot opt in out source destination Chain OUTPUT (policy ACCEPT 782K packets, 901M bytes) pkts bytes target prot opt in out source destination 74 4707 MARK all -- * * 0.0.0.0/0 0.0.0.0/0 owner UID match 2000 MARK set 0x3 Chain POSTROUTING (policy ACCEPT 788K packets, 903M bytes) pkts bytes target prot opt in out source destination # iptables -t nat -nvL Chain PREROUTING (policy ACCEPT 996 packets, 51172 bytes) pkts bytes target prot opt in out source destination Chain INPUT (policy ACCEPT 7 packets, 432 bytes) pkts bytes target prot opt in out source destination Chain OUTPUT (policy ACCEPT 1364 packets, 112K bytes) pkts bytes target prot opt in out source destination Chain POSTROUTING (policy ACCEPT 2302 packets, 160K bytes) pkts bytes target prot opt in out source destination 119 7588 MASQUERADE all -- * vpn 0.0.0.0/0 0.0.0.0/0 Routing: # ip addr show 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master lan state UNKNOWN qlen 1000 link/ether 00:40:63:f9:c3:8f brd ff:ff:ff:ff:ff:ff valid_lft forever preferred_lft forever 3: lan: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP link/ether 00:40:63:f9:c3:8f brd ff:ff:ff:ff:ff:ff inet 192.168.0.5/24 brd 192.168.0.255 scope global lan inet6 fe80::240:63ff:fef9:c38f/64 scope link valid_lft forever preferred_lft forever 4: vpn: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 100 link/none inet 10.200.2.235/22 brd 10.200.3.255 scope global vpn # ip rule show 0: from all lookup local 32764: from all fwmark 0x3 lookup VPN 32765: from 192.168.0.32/27 lookup VPN 32766: from all lookup main 32767: from all lookup default # ip route show table VPN default via 10.200.0.1 dev vpn 10.200.0.0/22 dev vpn proto kernel scope link src 10.200.2.235 192.168.0.0/24 dev lan proto kernel scope link src 192.168.0.5 # ip route show default via 192.168.0.1 dev lan metric 100 10.200.0.0/22 dev vpn proto kernel scope link src 10.200.2.235 192.168.0.0/24 dev lan proto kernel scope link src 192.168.0.5 TCP dump showing no traffic coming back when connection is made from 192.168.0.5 user 2000 # tcpdump -i vpn tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on vpn, link-type RAW (Raw IP), capture size 65535 bytes ### Traffic from user 2000 on 192.168.0.5 ### 10:19:05.629985 IP 10.200.2.235.37291 > 10.100-78-194.akamai.com.http: Flags [S], seq 2868799562, win 14600, options [mss 1460,sackOK,TS val 6887764 ecr 0,nop,wscale 4], length 0 10:19:21.678001 IP 10.200.2.235.37291 > 10.100-78-194.akamai.com.http: Flags [S], seq 2868799562, win 14600, options [mss 1460,sackOK,TS val 6891776 ecr 0,nop,wscale 4], length 0 ### Traffic from 192.168.0.35 ### 10:23:12.066174 IP 10.200.2.235.49247 > 10.100-78-194.akamai.com.http: Flags [S], seq 2294159276, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 557451322 ecr 0,sackOK,eol], length 0 10:23:12.265640 IP 10.100-78-194.akamai.com.http > 10.200.2.235.49247: Flags [S.], seq 2521908813, ack 2294159277, win 14480, options [mss 1367,sackOK,TS val 388565772 ecr 557451322,nop,wscale 1], length 0 10:23:12.276573 IP 10.200.2.235.49247 > 10.100-78-194.akamai.com.http: Flags [.], ack 1, win 8214, options [nop,nop,TS val 557451534 ecr 388565772], length 0 10:23:12.293030 IP 10.200.2.235.49247 > 10.100-78-194.akamai.com.http: Flags [P.], seq 1:480, ack 1, win 8214, options [nop,nop,TS val 557451552 ecr 388565772], length 479 10:23:12.574773 IP 10.100-78-194.akamai.com.http > 10.200.2.235.49247: Flags [.], ack 480, win 7776, options [nop,nop,TS val 388566081 ecr 557451552], length 0

    Read the article

  • How do I ignore an "invalid" SSL certificate in Objective-C?

    - by ipwnstuff
    Currently I have: NSArray* array = [NSArray arrayWithObjects:@"auth.login",@"username",@"password", nil]; NSData* packed_array = [array messagePack]; NSURL* url = [NSURL URLWithString:@"https://192.168.1.149:3790/api/1.0"]; NSMutableURLRequest* request = [NSMutableURLRequest requestWithURL:url]; [request setHTTPMethod:@"POST"]; [request setValue:@"RPC Server" forHTTPHeaderField:@"Host"]; [request setValue:@"binary/message-pack" forHTTPHeaderField:@"Content-Type"]; [request setValue:[NSString stringWithFormat:@"%d",[packed_array length]] forHTTPHeaderField:@"Content-Length"]; [request setHTTPBody:packed_array]; NSURLResponse *response; NSError *error; responseData = [NSMutableData dataWithData:[NSURLConnection sendSynchronousRequest:request returningResponse:&response error:&error]]; NSLog(@"response data: %@",[responseData messagePackParse]); NSLog(@"error: %@",error); - (BOOL)connection:(NSURLConnection *)connection canAuthenticateAgainstProtectionSpace:(NSURLProtectionSpace *)protectionSpace { NSLog(@"called canAuthenticateAgainstProtectionSpace"); return [protectionSpace.authenticationMethod isEqualToString:NSURLAuthenticationMethodServerTrust]; } - (void)connection:(NSURLConnection *)connection didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge { NSLog(@"called didReceiveAuthenticationChallenge"); [challenge.sender useCredential:[NSURLCredential credentialForTrust:challenge.protectionSpace.serverTrust] forAuthenticationChallenge:challenge]; } Which returns "Error Domain=NSURLErrorDomain Code=-1202 "The certificate for this server is invalid"…" How should I be implementing the answer from this question?

    Read the article

  • Elfsign Object Signing on Solaris

    - by danx
    Elfsign Object Signing on Solaris Don't let this happen to you—use elfsign! Solaris elfsign(1) is a command that signs and verifies ELF format executables. That includes not just executable programs (such as ls or cp), but other ELF format files including libraries (such as libnvpair.so) and kernel modules (such as autofs). Elfsign has been available since Solaris 10 and ELF format files distributed with Solaris, since Solaris 10, are signed by either Sun Microsystems or its successor, Oracle Corporation. When an ELF file is signed, elfsign adds a new section the ELF file, .SUNW_signature, that contains a RSA public key signature and other information about the signer. That is, the algorithm used, algorithm OID, signer CN/OU, and time stamp. The signature section can later be verified by elfsign or other software by matching the signature in the file agains the ELF file contents (excluding the signature). ELF executable files may also be signed by a 3rd-party or by the customer. This is useful for verifying the origin and authenticity of executable files installed on a system. The 3rd-party or customer public key certificate should be installed in /etc/certs/ to allow verification by elfsign. For currently-released versions of Solaris, only cryptographic framework plugin libraries are verified by Solaris. However, all ELF files may be verified by the elfsign command at any time. Elfsign Algorithms Elfsign signatures are created by taking a digest of the ELF section contents, then signing the digest with RSA. To verify, one takes a digest of ELF file and compares with the expected digest that's computed from the signature and RSA public key. Originally elfsign took a MD5 digest of a SHA-1 digest of the ELF file sections, then signed the resulting digest with RSA. In Solaris 11.1 then Solaris 11.1 SRU 7 (5/2013), the elfsign crypto algorithms available have been expanded to keep up with evolving cryptography. The following table shows the available elfsign algorithms: Elfsign Algorithm Solaris Release Comments elfsign sign -F rsa_md5_sha1   S10, S11.0, S11.1 Default for S10. Not recommended* elfsign sign -F rsa_sha1 S11.1 Default for S11.1. Not recommended elfsign sign -F rsa_sha256 S11.1 patch SRU7+   Recommended ___ *Most or all CAs do not accept MD5 CSRs and do not issue MD5 certs due to MD5 hash collision problems. RSA Key Length. I recommend using RSA-2048 key length with elfsign is RSA-2048 as the best balance between a long expected "life time", interoperability, and performance. RSA-2048 keys have an expected lifetime through 2030 (and probably beyond). For details, see Recommendation for Key Management: Part 1: General, NIST Publication SP 800-57 part 1 (rev. 3, 7/2012, PDF), tables 2 and 4 (pp. 64, 67). Step 1: create or obtain a key and cert The first step in using elfsign is to obtain a key and cert from a public Certificate Authority (CA), or create your own self-signed key and cert. I'll briefly explain both methods. Obtaining a Certificate from a CA To obtain a cert from a CA, such as Verisign, Thawte, or Go Daddy (to name a few random examples), you create a private key and a Certificate Signing Request (CSR) file and send it to the CA, following the instructions of the CA on their website. They send back a signed public key certificate. The public key cert, along with the private key you created is used by elfsign to sign an ELF file. The public key cert is distributed with the software and is used by elfsign to verify elfsign signatures in ELF files. You need to request a RSA "Class 3 public key certificate", which is used for servers and software signing. Elfsign uses RSA and we recommend RSA-2048 keys. The private key and CSR can be generated with openssl(1) or pktool(1) on Solaris. Here's a simple example that uses pktool to generate a private RSA_2048 key and a CSR for sending to a CA: $ pktool gencsr keystore=file format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" \ outkey=MYPRIVATEKEY.key $ openssl rsa -noout -text -in MYPRIVATEKEY.key Private-Key: (2048 bit) modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 publicExponent: 65537 (0x10001) privateExponent: 26:14:fc:49:26:bc:a3:14:ee:31:5e:6b:ac:69:83: . . . [omitted for brevity] . . . 81 prime1: 00:f6:b7:52:73:bc:26:57:26:c8:11:eb:6c:dc:cb: . . . [omitted for brevity] . . . bc:91:d0:40:d6:9d:ac:b5:69 prime2: 00:da:df:3f:56:b2:18:46:e1:89:5b:6c:f1:1a:41: . . . [omitted for brevity] . . . f3:b7:48:de:c3:d9:ce:af:af exponent1: 00:b9:a2:00:11:02:ed:9a:3f:9c:e4:16:ce:c7:67: . . . [omitted for brevity] . . . 55:50:25:70:d3:ca:b9:ab:99 exponent2: 00:c8:fc:f5:57:11:98:85:8e:9a:ea:1f:f2:8f:df: . . . [omitted for brevity] . . . 23:57:0e:4d:b2:a0:12:d2:f5 coefficient: 2f:60:21:cd:dc:52:76:67:1a:d8:75:3e:7f:b0:64: . . . [omitted for brevity] . . . 06:94:56:d8:9d:5c:8e:9b $ openssl req -noout -text -in MYCSR.p10 Certificate Request: Data: Version: 2 (0x2) Subject: OU=Canine SW object signing, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:d2:ef:42:f2:0b:8c:96:9f:45:32:fc:fe:54:94: . . . [omitted for brevity] . . . c9:c7 Exponent: 65537 (0x10001) Attributes: Signature Algorithm: sha1WithRSAEncryption b3:e8:30:5b:88:37:68:1c:26:6b:45:af:5e:de:ea:60:87:ea: . . . [omitted for brevity] . . . 06:f9:ed:b4 Secure storage of RSA private key. The private key needs to be protected if the key signing is used for production (as opposed to just testing). That is, protect the key to protect against unauthorized signatures by others. One method is to use a PIN-protected PKCS#11 keystore. The private key you generate should be stored in a secure manner, such as in a PKCS#11 keystore using pktool(1). Otherwise others can sign your signature. Other secure key storage mechanisms include a SCA-6000 crypto card, a USB thumb drive stored in a locked area, a dedicated server with restricted access, Oracle Key Manager (OKM), or some combination of these. I also recommend secure backup of the private key. Here's an example of generating a private key protected in the PKCS#11 keystore, and a CSR. $ pktool setpin # use if PIN not set yet Enter token passphrase: changeme Create new passphrase: Re-enter new passphrase: Passphrase changed. $ pktool gencsr keystore=pkcs11 label=MYPRIVATEKEY \ format=pem outcsr=MYCSR.p10 \ subject="CN=canineswworks.com,OU=Canine SW object signing" $ pktool list keystore=pkcs11 Enter PIN for Sun Software PKCS#11 softtoken: Found 1 asymmetric public keys. Key #1 - RSA public key: MYPRIVATEKEY Here's another example that uses openssl instead of pktool to generate a private key and CSR: $ openssl genrsa -out cert.key 2048 $ openssl req -new -key cert.key -out MYCSR.p10 Self-Signed Cert You can use openssl or pktool to create a private key and a self-signed public key certificate. A self-signed cert is useful for development, testing, and internal use. The private key created should be stored in a secure manner, as mentioned above. The following example creates a private key, MYSELFSIGNED.key, and a public key cert, MYSELFSIGNED.pem, using pktool and displays the contents with the openssl command. $ pktool gencert keystore=file format=pem serial=0xD06F00D lifetime=20-year \ keytype=rsa hash=sha256 outcert=MYSELFSIGNED.pem outkey=MYSELFSIGNED.key \ subject="O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com" $ pktool list keystore=file objtype=cert infile=MYSELFSIGNED.pem Found 1 certificates. 1. (X.509 certificate) Filename: MYSELFSIGNED.pem ID: c8:24:59:08:2b:ae:6e:5c:bc:26:bd:ef:0a:9c:54:de:dd:0f:60:46 Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Not Before: Oct 17 23:18:00 2013 GMT Not After: Oct 12 23:18:00 2033 GMT Serial: 0xD06F00D0 Signature Algorithm: sha256WithRSAEncryption $ openssl x509 -noout -text -in MYSELFSIGNED.pem Certificate: Data: Version: 3 (0x2) Serial Number: 3496935632 (0xd06f00d0) Signature Algorithm: sha256WithRSAEncryption Issuer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Validity Not Before: Oct 17 23:18:00 2013 GMT Not After : Oct 12 23:18:00 2033 GMT Subject: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com Subject Public Key Info: Public Key Algorithm: rsaEncryption Public-Key: (2048 bit) Modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 Exponent: 65537 (0x10001) Signature Algorithm: sha256WithRSAEncryption 9e:39:fe:c8:44:5c:87:2c:8f:f4:24:f6:0c:9a:2f:64:84:d1: . . . [omitted for brevity] . . . 5f:78:8e:e8 $ openssl rsa -noout -text -in MYSELFSIGNED.key Private-Key: (2048 bit) modulus: 00:bb:e8:11:21:d9:4b:88:53:8b:6c:5a:7a:38:8b: . . . [omitted for brevity] . . . bf:77 publicExponent: 65537 (0x10001) privateExponent: 0a:06:0f:23:e7:1b:88:62:2c:85:d3:2d:c1:e6:6e: . . . [omitted for brevity] . . . 9c:e1:e0:0a:52:77:29:4a:75:aa:02:d8:af:53:24: c1 prime1: 00:ea:12:02:bb:5a:0f:5a:d8:a9:95:b2:ba:30:15: . . . [omitted for brevity] . . . 5b:ca:9c:7c:19:48:77:1e:5d prime2: 00:cd:82:da:84:71:1d:18:52:cb:c6:4d:74:14:be: . . . [omitted for brevity] . . . 5f:db:d5:5e:47:89:a7:ef:e3 exponent1: 32:37:62:f6:a6:bf:9c:91:d6:f0:12:c3:f7:04:e9: . . . [omitted for brevity] . . . 97:3e:33:31:89:66:64:d1 exponent2: 00:88:a2:e8:90:47:f8:75:34:8f:41:50:3b:ce:93: . . . [omitted for brevity] . . . ff:74:d4:be:f3:47:45:bd:cb coefficient: 4d:7c:09:4c:34:73:c4:26:f0:58:f5:e1:45:3c:af: . . . [omitted for brevity] . . . af:01:5f:af:ad:6a:09:bf Step 2: Sign the ELF File object By now you should have your private key, and obtained, by hook or crook, a cert (either from a CA or use one you created (a self-signed cert). The next step is to sign one or more objects with your private key and cert. Here's a simple example that creates an object file, signs, verifies, and lists the contents of the ELF signature. $ echo '#include <stdio.h>\nint main(){printf("Hello\\n");}'>hello.c $ make hello cc -o hello hello.c $ elfsign verify -v -c MYSELFSIGNED.pem -e hello elfsign: no signature found in hello. $ elfsign sign -F rsa_sha256 -v -k MYSELFSIGNED.key -c MYSELFSIGNED.pem -e hello elfsign: hello signed successfully. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. $ elfsign list -f format -e hello rsa_sha256 $ elfsign list -f signer -e hello O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com $ elfsign list -f time -e hello October 17, 2013 04:22:49 PM PDT $ elfsign verify -v -c MYSELFSIGNED.key -e hello elfsign: verification of hello failed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:22:49 PM PDT. Signing using the pkcs11 keystore To sign the ELF file using a private key in the secure pkcs11 keystore, replace "-K MYSELFSIGNED.key" in the "elfsign sign" command line with "-T MYPRIVATEKEY", where MYPRIVATKEY is the pkcs11 token label. Step 3: Install the cert and test on another system Just signing the object isn't enough. You need to copy or install the cert and the signed ELF file(s) on another system to test that the signature is OK. Your public key cert should be installed in /etc/certs. Use elfsign verify to verify the signature. Elfsign verify checks each cert in /etc/certs until it finds one that matches the elfsign signature in the file. If one isn't found, the verification fails. Here's an example: $ su Password: # rm /etc/certs/MYSELFSIGNED.key # cp MYSELFSIGNED.pem /etc/certs # exit $ elfsign verify -v hello elfsign: verification of hello passed. format: rsa_sha256. signer: O=Canine Software Works, OU=Self-signed CA, CN=canineswworks.com. signed on: October 17, 2013 04:24:20 PM PDT. After testing, package your cert along with your ELF object to allow elfsign verification after your cert and object are installed or copied. Under the Hood: elfsign verification Here's the steps taken to verify a ELF file signed with elfsign. The steps to sign the file are similar except the private key exponent is used instead of the public key exponent and the .SUNW_signature section is written to the ELF file instead of being read from the file. Generate a digest (SHA-256) of the ELF file sections. This digest uses all ELF sections loaded in memory, but excludes the ELF header, the .SUNW_signature section, and the symbol table Extract the RSA signature (RSA-2048) from the .SUNW_signature section Extract the RSA public key modulus and public key exponent (65537) from the public key cert Calculate the expected digest as follows:     signaturepublicKeyExponent % publicKeyModulus Strip the PKCS#1 padding (most significant bytes) from the above. The padding is 0x00, 0x01, 0xff, 0xff, . . ., 0xff, 0x00. If the actual digest == expected digest, the ELF file is verified (OK). Further Information elfsign(1), pktool(1), and openssl(1) man pages. "Signed Solaris 10 Binaries?" blog by Darren Moffat (2005) shows how to use elfsign. "Simple CLI based CA on Solaris" blog by Darren Moffat (2008) shows how to set up a simple CA for use with self-signed certificates. "How to Create a Certificate by Using the pktool gencert Command" System Administration Guide: Security Services (available at docs.oracle.com)

    Read the article

  • Windows Azure Root CAs and SSL Client Certificates

    - by Your DisplayName here!
    I ran into some problems while trying to make SSL client certificates work for StarterSTS 1.5. In theory you have to do two things (via startup tasks): Unlock the SSL section in IIS Install all the root certificates for the client certs you want to accept I did that. But it still does not work. While inspecting the event log, I stumbled over an schannel error message that I’ve never seen before: “When asking for client authentication, this server sends a list of trusted certificate authorities to the client. The client uses this list to choose a client certificate that is trusted by the server. Currently, this server trusts so many certificate authorities that the list has grown too long. This list has thus been truncated. The administrator of this machine should review the certificate authorities trusted for client authentication and remove those that do not really need to be trusted.” WTF? And indeed standard Azure (web role) VMs trust 275 root CAs (see attached list). Including kinda obscure ones. I don’t really know why MS made this design decision. It seems just wrong (including breaking the SSL client cert functionality). Deleting like 60% of them made SSL client certs from my CA work. So I guess I now have to find an automated way to attach CTLs to my site…joy. Exported list of trusted CA (as of 30th Dec 2010) AC Raíz Certicámara S.A. (4/2/2030 9:42:02 PM) AC RAIZ FNMT-RCM (1/1/2030 12:00:00 AM) A-CERT ADVANCED (10/23/2011 2:14:14 PM) Actalis Authentication CA G1 (6/25/2022 2:06:00 PM) Agence Nationale de Certification Electronique (8/12/2037 9:03:17 AM) Agence Nationale de Certification Electronique (8/12/2037 9:58:14 AM) Agencia Catalana de Certificacio (NIF Q-0801176-I) (1/7/2031 10:59:59 PM) America Online Root Certification Authority 1 (11/19/2037 8:43:00 PM) America Online Root Certification Authority 2 (9/29/2037 2:08:00 PM) ANCERT Certificados CGN (2/11/2024 5:27:12 PM) ANCERT Certificados Notariales (2/11/2024 3:58:26 PM) ANCERT Corporaciones de Derecho Publico (2/11/2024 5:22:45 PM) A-Trust-nQual-01 (11/30/2014 11:00:00 PM) A-Trust-nQual-03 (8/17/2015 10:00:00 PM) A-Trust-Qual-01 (11/30/2014 11:00:00 PM) A-Trust-Qual-02 (12/2/2014 11:00:00 PM) A-Trust-Qual-03a (4/24/2018 10:00:00 PM) Austria Telekom-Control Kommission (9/24/2005 12:40:00 PM) Austrian Society for Data Protection (2/12/2009 11:30:30 AM) Austrian Society for Data Protection GLOBALTRUST Certification Service (9/18/2036 2:12:35 PM) Autoridad Certificadora Raiz de la Secretaria de Economia (5/9/2025 12:00:00 AM) Autoridad de Certificacion de la Abogacia (6/13/2030 10:00:00 PM) Autoridad de Certificacion Firmaprofesional CIF A62634068 (10/24/2013 10:00:00 PM) Autoridade Certificadora Raiz Brasileira (11/30/2011 11:59:00 PM) Baltimore CyberTrust Root (5/12/2025 11:59:00 PM) BIT AdminCA-CD-T01 (1/25/2016 12:36:19 PM) BIT Admin-Root-CA (11/10/2021 7:51:07 AM) Buypass Class 2 CA 1 (10/13/2016 10:25:09 AM) Buypass Class 3 CA 1 (5/9/2015 2:13:03 PM) CA Disig (3/22/2016 1:39:34 AM) CertEurope (3/27/2037 11:00:00 PM) CERTICAMARA S.A. (2/23/2015 5:10:37 PM) Certicámara S.A. (5/23/2011 10:00:00 PM) Certigna (6/29/2027 3:13:05 PM) Certipost E-Trust Primary Normalised CA (7/26/2020 10:00:00 AM) Certipost E-Trust Primary Qualified CA (7/26/2020 10:00:00 AM) Certipost E-Trust Primary TOP Root CA (7/26/2025 10:00:00 AM) Certisign Autoridade Certificadora AC1S (6/27/2018 12:00:00 AM) Certisign Autoridade Certificadora AC2 (6/27/2018 12:00:00 AM) Certisign Autoridade Certificadora AC3S (7/9/2018 8:56:32 PM) Certisign Autoridade Certificadora AC4 (6/27/2018 12:00:00 AM) CertPlus Class 1 Primary CA (7/6/2020 11:59:59 PM) CertPlus Class 2 Primary CA (7/6/2019 11:59:59 PM) CertPlus Class 3 Primary CA (7/6/2019 11:59:59 PM) CertPlus Class 3P Primary CA (7/6/2019 11:59:59 PM) CertPlus Class 3TS Primary CA (7/6/2019 11:59:59 PM) CertRSA01 (3/3/2010 2:59:59 PM) certSIGN Root CA (7/4/2031 5:20:04 PM) Certum (6/11/2027 10:46:39 AM) Certum Trusted Network CA (12/31/2029 12:07:37 PM) Chambers of Commerce Root - 2008 (7/31/2038 12:29:50 PM) Chambersign Chambers of Commerce Root (9/30/2037 4:13:44 PM) Chambersign Global Root (9/30/2037 4:14:18 PM) Chambersign Public Notary Root (9/30/2037 4:14:49 PM) Chunghwa Telecom Co. Ltd. (12/20/2034 2:31:27 AM) Cisco Systems (5/14/2029 8:25:42 PM) CNNIC Root (4/16/2027 7:09:14 AM) Common Policy (10/15/2027 4:08:00 PM) COMODO (12/31/2028 11:59:59 PM) COMODO (1/18/2038 11:59:59 PM) COMODO (12/31/2029 11:59:59 PM) ComSign Advanced Security CA (3/24/2029 9:55:55 PM) ComSign CA (3/19/2029 3:02:18 PM) ComSign Secured CA (3/16/2029 3:04:56 PM) Correo Uruguayo - Root CA (12/31/2030 2:59:59 AM) Cybertrust Global Root (12/15/2021 8:00:00 AM) DanID (2/11/2037 9:09:30 AM) DanID (4/5/2021 5:03:17 PM) Deutsche Telekom Root CA 2 (7/9/2019 11:59:00 PM) DigiCert (11/10/2031 12:00:00 AM) DigiCert (11/10/2031 12:00:00 AM) DigiCert (11/10/2031 12:00:00 AM) DigiNotar Root CA (3/31/2025 6:19:21 PM) DIRECCION GENERAL DE LA POLICIA (2/8/2036 10:59:59 PM) DST (ABA.ECOM) CA (7/9/2009 5:33:53 PM) DST (ANX Network) CA (12/9/2018 4:16:48 PM) DST (Baltimore EZ) CA (7/3/2009 7:56:53 PM) DST (National Retail Federation) RootCA (12/8/2008 4:14:16 PM) DST (United Parcel Service) RootCA (12/7/2008 12:25:46 AM) DST ACES CA X6 (11/20/2017 9:19:58 PM) DST Root CA X3 (9/30/2021 2:01:15 PM) DST RootCA X1 (11/28/2008 6:18:55 PM) DST RootCA X2 (11/27/2008 10:46:16 PM) DSTCA E1 (12/10/2018 6:40:23 PM) DSTCA E2 (12/9/2018 7:47:26 PM) DST-Entrust GTI CA (12/9/2018 12:32:24 AM) D-TRUST GmbH (5/16/2022 5:20:47 AM) D-TRUST GmbH (6/8/2012 11:47:46 AM) D-TRUST GmbH (5/16/2022 5:20:47 AM) EBG Elektronik Sertifika Hizmet Saglayicisi (8/14/2016 12:31:09 AM) E-Certchile (9/5/2028 7:39:41 PM) Echoworx Root CA2 (10/7/2030 10:49:13 AM) ECRaizEstado (6/23/2030 1:41:27 PM) EDICOM (4/13/2028 4:24:22 PM) E-GÜVEN Elektronik Sertifika Hizmet Saglayicisi (1/4/2017 11:32:48 AM) E-ME SSI (RCA) (5/19/2027 8:48:15 AM) Entrust (11/27/2026 8:53:42 PM) Entrust (5/25/2019 4:39:40 PM) Entrust.net (12/7/2030 5:55:54 PM) Equifax Secure eBusiness CA-1 (6/21/2020 4:00:00 AM) Equifax Secure eBusiness CA-2 (6/23/2019 12:14:45 PM) Equifax Secure Global eBusiness CA-1 (6/21/2020 4:00:00 AM) eSign Australia: eSign Imperito Primary Root CA (5/23/2012 11:59:59 PM) eSign Australia: Gatekeeper Root CA (5/23/2014 11:59:59 PM) eSign Australia: Primary Utility Root CA (5/23/2012 11:59:59 PM) Fabrica Nacional de Moneda y Timbre (3/18/2019 3:26:19 PM) GeoTrust (8/22/2018 4:41:51 PM) GeoTrust (7/16/2036 11:59:59 PM) GeoTrust Global CA (5/21/2022 4:00:00 AM) GeoTrust Global CA 2 (3/4/2019 5:00:00 AM) GeoTrust Primary Certification Authority - G2 (1/18/2038 11:59:59 PM) GeoTrust Primary Certification Authority - G3 (12/1/2037 11:59:59 PM) GeoTrust Universal CA (3/4/2029 5:00:00 AM) GeoTrust Universal CA 2 (3/4/2029 5:00:00 AM) Global Chambersign Root - 2008 (7/31/2038 12:31:40 PM) GlobalSign (1/28/2028 12:00:00 PM) GlobalSign (12/15/2021 8:00:00 AM) Go Daddy Class 2 Certification Authority (6/29/2034 5:06:20 PM) GTE CyberTrust Global Root (8/13/2018 11:59:00 PM) GTE CyberTrust Root (4/3/2004 11:59:00 PM) GTE CyberTrust Root (2/23/2006 11:59:00 PM) Halcom CA FO (6/5/2020 10:33:31 AM) Halcom CA PO 2 (2/7/2019 6:33:31 PM) Hongkong Post Root CA (1/16/2010 11:59:00 PM) Hongkong Post Root CA 1 (5/15/2023 4:52:29 AM) I.CA První certifikacní autorita a.s. (4/1/2018 12:00:00 AM) I.CA První certifikacní autorita a.s. (4/1/2018 12:00:00 AM) InfoNotary (3/6/2026 5:33:05 PM) IPS SERVIDORES (12/29/2009 11:21:07 PM) IZENPE S.A. (1/30/2018 11:00:00 PM) Izenpe.com (12/13/2037 8:27:25 AM) Japan Certification Services, Inc. SecureSign RootCA1 (9/15/2020 2:59:59 PM) Japan Certification Services, Inc. SecureSign RootCA11 (4/8/2029 4:56:47 AM) Japan Certification Services, Inc. SecureSign RootCA2 (9/15/2020 2:59:59 PM) Japan Certification Services, Inc. SecureSign RootCA3 (9/15/2020 2:59:59 PM) Japan Local Government PKI Application CA (3/31/2016 2:59:59 PM) Japanese Government ApplicationCA (12/12/2017 3:00:00 PM) Juur-SK AS Sertifitseerimiskeskus (8/26/2016 2:23:01 PM) KamuSM (8/21/2017 11:37:07 AM) KISA RootCA 1 (8/24/2025 8:05:46 AM) KISA RootCA 3 (11/19/2014 6:39:51 AM) Macao Post eSignTrust (1/29/2013 11:59:59 PM) MicroSec e-Szigno Root CA (4/6/2017 12:28:44 PM) Microsoft Authenticode(tm) Root (12/31/1999 11:59:59 PM) Microsoft Root Authority (12/31/2020 7:00:00 AM) Microsoft Root Certificate Authority (5/9/2021 11:28:13 PM) Microsoft Timestamp Root (12/30/1999 11:59:59 PM) MOGAHA Govt of Korea (4/21/2012 9:07:23 AM) MOGAHA Govt of Korea GPKI (3/15/2017 6:00:04 AM) NetLock Arany (Class Gold) Fotanúsítvány (12/6/2028 3:08:21 PM) NetLock Expressz (Class C) Tanusitvanykiado (2/20/2019 2:08:11 PM) NetLock Kozjegyzoi (Class A) Tanusitvanykiado (2/19/2019 11:14:47 PM) NetLock Minositett Kozjegyzoi (Class QA) Tanusitvanykiado (12/15/2022 1:47:11 AM) NetLock Platina (Class Platinum) Fotanúsítvány (12/6/2028 3:12:44 PM) NetLock Uzleti (Class B) Tanusitvanykiado (2/20/2019 2:10:22 PM) Netrust CA1 (3/30/2021 2:57:45 AM) Network Solutions (12/31/2029 11:59:59 PM) NLB Nova Ljubljanska Banka d.d. Ljubljana (5/15/2023 12:22:45 PM) OISTE WISeKey Global Root GA CA (12/11/2037 4:09:51 PM) Post.Trust Root CA (7/5/2022 9:12:33 AM) Post.Trust Root CA (8/20/2010 1:56:21 PM) Posta CA Root (10/20/2028 12:52:08 PM) POSTarCA (2/7/2023 11:06:58 AM) QuoVadis Root CA 2 (11/24/2031 6:23:33 PM) QuoVadis Root CA 3 (11/24/2031 7:06:44 PM) QuoVadis Root Certification Authority (3/17/2021 6:33:33 PM) Root CA Generalitat Valenciana (7/1/2021 3:22:47 PM) RSA Security 2048 V3 (2/22/2026 8:39:23 PM) SECOM Trust Systems CO LTD (6/6/2037 2:12:32 AM) SECOM Trust Systems CO LTD (6/25/2019 10:23:48 PM) SECOM Trust Systems CO LTD (9/30/2023 4:20:49 AM) Secretaria de Economia Mexico (5/8/2025 12:00:00 AM) Secrétariat Général de la Défense Nationale (10/17/2020 2:29:22 PM) SecureNet CA Class B (10/16/2009 9:59:00 AM) Serasa Certificate Authority I (11/21/2024 2:12:45 PM) Serasa Certificate Authority II (11/21/2024 12:44:48 PM) Serasa Certificate Authority III (11/21/2024 1:24:14 PM) SERVICIOS DE CERTIFICACION - A.N.C. (3/9/2009 9:08:07 PM) Sigen-CA (6/29/2021 9:57:46 PM) Sigov-CA (1/10/2021 2:22:52 PM) Skaitmeninio sertifikavimo centras (12/28/2026 12:05:04 PM) Skaitmeninio sertifikavimo centras (12/25/2026 12:08:26 PM) Skaitmeninio sertifikavimo centras (12/22/2026 12:11:30 PM) Sonera Class1 CA (4/6/2021 10:49:13 AM) Sonera Class2 CA (4/6/2021 7:29:40 AM) Spanish Property & Commerce Registry CA (4/27/2012 9:39:50 AM) Staat der Nederlanden Root CA (12/16/2015 9:15:38 AM) Staat der Nederlanden Root CA - G2 (3/25/2020 11:03:10 AM) Starfield Class 2 Certification Authority (6/29/2034 5:39:16 PM) Starfield Technologies (6/26/2019 12:19:54 AM) Starfield Technologies Inc. (12/31/2029 11:59:59 PM) StartCom Certification Authority (9/17/2036 7:46:36 PM) S-TRUST Authentication and Encryption Root CA 2005:PN (6/21/2030 11:59:59 PM) Swisscom Root CA 1 (8/18/2025 10:06:20 PM) SwissSign (10/25/2036 8:30:35 AM) SwissSign Platinum G2 Root CA (10/25/2036 8:36:00 AM) SwissSign Silver G2 Root CA (10/25/2036 8:32:46 AM) TC TrustCenter Class 1 CA (1/1/2011 11:59:59 AM) TC TrustCenter Class 2 CA (1/1/2011 11:59:59 AM) TC TrustCenter Class 2 CA II (12/31/2025 10:59:59 PM) TC TrustCenter Class 3 CA (1/1/2011 11:59:59 AM) TC TrustCenter Class 3 CA II (12/31/2025 10:59:59 PM) TC TrustCenter Class 4 CA (1/1/2011 11:59:59 AM) TC TrustCenter Class 4 CA II (12/31/2025 10:59:59 PM) TC TrustCenter Time Stamping CA (1/1/2011 11:59:59 AM) TC TrustCenter Universal CA I (12/31/2025 10:59:59 PM) TC TrustCenter Universal CA II (12/31/2030 10:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte (7/16/2036 11:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte (12/31/2020 11:59:59 PM) thawte Primary Root CA - G2 (1/18/2038 11:59:59 PM) thawte Primary Root CA - G3 (12/1/2037 11:59:59 PM) Thawte Timestamping CA (12/31/2020 11:59:59 PM) Trustis EVS Root CA (1/9/2027 11:56:00 AM) Trustis FPS Root CA (1/21/2024 11:36:54 AM) Trustwave (1/1/2035 5:37:19 AM) Trustwave (12/31/2029 7:40:55 PM) Trustwave (12/31/2029 7:52:06 PM) TURKTRUST Elektronik Islem Hizmetleri (9/16/2015 12:13:05 PM) TURKTRUST Elektronik Islem Hizmetleri (3/22/2015 10:04:51 AM) TURKTRUST Elektronik Sertifika Hizmet Saglayicisi (9/16/2015 10:07:57 AM) TURKTRUST Elektronik Sertifika Hizmet Saglayicisi (3/22/2015 10:27:17 AM) TÜRKTRUST Elektronik Sertifika Hizmet Saglayicisi (12/22/2017 6:37:19 PM) TW Government Root Certification Authority (12/5/2032 1:23:33 PM) TWCA Root Certification Authority 1 (12/31/2030 3:59:59 PM) TWCA Root Certification Authority 2 (12/31/2030 3:59:59 PM) U.S. Government FBCA (10/6/2010 6:53:56 PM) UCA Global Root (12/31/2037 12:00:00 AM) UCA Root (12/31/2029 12:00:00 AM) USERTrust (7/9/2019 6:40:36 PM) USERTrust (7/9/2019 5:36:58 PM) USERTrust (6/24/2019 7:06:30 PM) USERTrust (7/9/2019 6:19:22 PM) USERTrust (5/30/2020 10:48:38 AM) UTN - USERFirst-Network Applications (7/9/2019 6:57:49 PM) ValiCert Class 3 Policy Validation Authority (6/26/2019 12:22:33 AM) VAS Latvijas Pasts SSI(RCA) (9/13/2024 9:27:57 AM) VeriSign (5/18/2018 11:59:59 PM) VeriSign (7/16/2036 11:59:59 PM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (12/31/1999 9:37:48 AM) VeriSign (1/7/2004 11:59:59 PM) VeriSign (5/18/2018 11:59:59 PM) VeriSign (1/7/2004 11:59:59 PM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (1/7/2020 11:59:59 PM) VeriSign (12/31/1999 9:35:58 AM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (7/16/2036 11:59:59 PM) VeriSign (1/7/2004 11:59:59 PM) VeriSign (7/16/2036 11:59:59 PM) VeriSign (1/7/2010 11:59:59 PM) VeriSign (5/18/2018 11:59:59 PM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (1/7/2004 11:59:59 PM) VeriSign (7/16/2036 11:59:59 PM) VeriSign (7/16/2036 11:59:59 PM) VeriSign (8/1/2028 11:59:59 PM) VeriSign (5/18/2018 11:59:59 PM) VeriSign Class 3 Public Primary CA (8/1/2028 11:59:59 PM) VeriSign Class 3 Public Primary Certification Authority - G4 (1/18/2038 11:59:59 PM) VeriSign Time Stamping CA (1/7/2004 11:59:59 PM) VeriSign Universal Root Certification Authority (12/1/2037 11:59:59 PM) Visa eCommerce Root (6/24/2022 12:16:12 AM) Visa Information Delivery Root CA (6/29/2025 5:42:42 PM) VRK Gov. Root CA (12/18/2023 1:51:08 PM) Wells Fargo Root Certificate Authority (1/14/2021 4:41:28 PM) WellsSecure Public Certificate Authority (12/14/2022 12:07:54 AM) Xcert EZ by DST (7/11/2009 4:14:18 PM)

    Read the article

  • Using Wildcard SSL Certificates on IIS 7

    - by The Official Microsoft IIS Site
    The other day I was helping someone who was trying to configure a wildcard certificate on their Windows Cloud Server . Their server was running Windows 2008 R2 server using IIS 7. The were technically savvy and knew how to configure site’s on their own and install a regular SSL certificate but they were stuck trying to get a wildcard certificate configured properly. They had quite a few site’s configured using subdomains such as support.domain.com, mail.domain.com, login.domain.com, etc. To tighten...(read more)

    Read the article

  • Configuring Oracle iPlanet WebServer / Oracle Traffic Director to use crypto accelerators on T4-1 servers

    - by mv
    Configuring Oracle iPlanet Web Server / Oracle Traffic Director to use crypto accelerators on T4-1 servers Jyri had written a technical article on Configuring Solaris Cryptographic Framework and Sun Java System Web Server 7 on Systems With UltraSPARC T1 Processors. I tried to find out what has changed since then in T4. I have used a T4-1 SPARC system with Solaris 10. Results slightly vary for Solaris 11.  For Solaris 11, the T4 optimization was implemented in libsoftcrypto.so while it was in pkcs11_softtoken_extra.so for Solaris 10. Overview of T4 processors is here in this blog. Many thanx to Chi-Chang Lin and Julien for their help. 1. Install Oracle iPlanet Web Server / Oracle Traffic Director.  Go to instance/config directory.  # cd /opt/oracle/webserver7/https-hostname.fqdn/config 2. List default PKCS#11 Modules # ../../bin/modutil -dbdir . -listListing of PKCS #11 Modules-----------------------------------------------------------1. NSS Internal PKCS #11 Moduleslots: 2 slots attachedstatus: loadedslot: NSS Internal Cryptographic Servicestoken: NSS Generic Crypto Servicesslot: NSS User Private Key and Certificate Servicestoken: NSS Certificate DB2. Root Certslibrary name: libnssckbi.soslots: 1 slot attachedstatus: loadedslot: NSS Builtin Objectstoken: Builtin Object Token----------------------------------------------------------- 3. Initialize the soft token data store in the $HOME/.sunw/pkcs11_softtoken/ directory # pktool setpin keystore=pkcs11Enter token passphrase: olderpasswordCreate new passphrase: passwordRe-enter new passphrase: passwordPassphrase changed. 4. Offload crypto operations to Solaris Crypto Framework on T4 $ ../../bin/modutil -dbdir . -nocertdb -add SCF -libfile /usr/lib/libpkcs11.so -mechanisms RSA:AES:SHA1:MD5 Module "SCF" added to database. Note that -nocertdb means modutil won't try to open the NSS softoken key database. It doesn't even have to be present. PKCS#11 library used is /usr/lib/libpkcs11.so. If the server is running in 64 bit mode, we have to use /usr/lib/64/libpkcs11.so Unlike T1 and T2, in T4 we do not have to disable mechanisms in softtoken provider using cryptoadm. 5. List again to check that a new module SCF is added # ../../bin/modutil -dbdir . -list Listing of PKCS #11 Modules-----------------------------------------------------------1. NSS Internal PKCS #11 Moduleslots: 2 slots attachedstatus: loadedslot: NSS Internal Cryptographic Servicestoken: NSS Generic Crypto Servicesslot: NSS User Private Key and Certificate Servicestoken: NSS Certificate DB2. SCFlibrary name: /usr/lib/libpkcs11.soslots: 2 slots attachedstatus: loadedslot: Sun Metaslottoken: Sun Metaslotslot: n2rng/0 SUNW_N2_Random_Number_Generator token: n2rng/0 SUNW_N2_RNG 3. Root Certs library name: libnssckbi.so slots: 1 slot attached status: loaded slot: NSS Builtin Objects token: Builtin Object Token----------------------------------------------------------- 6.  Create certificate in “Sun Metaslot” : I have used certutil, but you must use Admin Server CLI / GUI # ../../bin/certutil -S -x -n "Server-Cert" -t "CT,CT,CT" -s "CN=*.fqdn" -d . -h "Sun Metaslot"Enter Password or Pin for "Sun Metaslot": password 7. Verify that the certificate is created properly in “Sun Metslaot” # ../../bin/certutil -L -d . -h "Sun Metaslot"Certificate Nickname Trust AttributesSSL,S/MIME,JAR/XPIEnter Password or Pin for "Sun Metaslot": passwordSun Metaslot:Server-Cert CTu,Cu,Cu# 8. Associate this newly created certificate to http listener using Admin CLI/GUI. After that server.xml should have <http-listener> ...    <ssl>        <server-cert-nickname>Sun Metaslot:Server-Cert</server-cert-nicknamer>    </ssl> Note the prefix "Sun Metaslot" 9. Disable PKCS#11 bypass To use the accelerated AES algorithm, turn off PKCS#11 bypass, and configure modutil to have the AES mechanism go to the Metaslot. After you disable PKCS#11 bypasss using Admin GUI/CLI,  check that server.xml should have <server> ....    <pkcs11>         <enabled>1</enabled>         <allow-bypass>0</allow-bypass>     </pkcs11> With PKCS#11 bypass enabled, Oracle iPlanet Web Server will only use the RSA capability of the T4, provided certificate and key are stored in the T4 slot (Metaslot). Actually, the RSA op is never bypassed in NSS, it's always done with PKCS#11 calls. So the bypass settings won't affect the behavior of the probes for RSA at all. The only thing that matters if where the RSA key and certificate live, ie. which PKCS#11 token, and thus which PKCS#11 module gets called to do the work. If your certificate/key are in the NSS certificate/key db, you will see libsoftokn3/libfreebl libraries doing the RSA work. If they are in the Sun Metaslot, it should be the Solaris code. 10. Start the server instance # ../bin/startserv Oracle iPlanet Web Server 7.0.16 B09/14/2012 03:33Please enter the PIN for the "Sun Metaslot" token: password...info: HTTP3072: http-listener-1: https://hostname.fqdn:80 ready to accept requestsinfo: CORE3274: successful server startup 11. Figure out which process to run this DTrace script on # ps -eaf | grep webservd | grep -v dogwebservd 18224 18223 0 13:17:25 ? 0:07 webservd -d /opt/oracle/webserver7/https-hostname.fqdn/config -r /opt/root 18225 18224 0 13:17:25 ? 0:00 webservd -d /opt/oracle/webserver7/https-hostname.fqdn/config -r /opt/ (For Oracle Traffic Director look for process named "trafficd") We see that the child process id is “18225” 12. Clients for testing : You can use any browser. I used NSS tool tstclnt for testing $cat > req.txtGET /index.html HTTP/1.0 For checking both RSA and AES, I used cipher “:0035” which is TLS_RSA_WITH_AES_256_CBC_SHA $./tstclnt -h hostname -p 80 -d . -T -f -o -v -c “:0035” < req.txt 13. How do I make sure that crypto accelerator is being used 13.1 Create DTrace script The following D script should be able to uncover whether T4-specific crypto routine are being called or not. It also displays stats per second. # cat > t4crypto.d#!/usr/sbin/dtrace -spid$target::*rsa*:entry,pid$target::*yf*:entry{    @ops[probemod, probefunc] = count();}tick-1sec{    printa(@ops);    trunc(@ops);} Invoke with './t4crypto.d -p <pid> ' 13.2 EXPECTED PROBES FOR Solaris 10 : If offloading to T4 HW are correctly set up, the expected DTrace output would have these probes and libraries library Operations PROBES pkcs11_softtoken_extra.so RSA soft_decrypt_rsa_pkcs_decode, soft_encrypt_rsa_pkcs_encode soft_rsa_crypt_init_common soft_rsa_decrypt, soft_rsa_encrypt soft_rsa_decrypt_common, soft_rsa_encrypt_common AES yf_aes_instructions_present yf_aes_expand256, yf_aes256_cbc_decrypt, yf_aes256_cbc_encrypt, yf_aes256_load_keys_for_decrypt, yf_aes256_load_keys_for_encrypt, Note that these are for 256, same for 128, 192... these are for cbc, same for ecb, ctr, cfb128... DES yf_des_expand, yf_des_instructions_present yf_des_encrypt libmd_psr.so MD5 yf_md5_multiblock, yf_md5_instruction_present SHA1 yf_sha1_instruction_present, yf_sha1_multibloc 13.3 SAMPLE OUTPUT FOR CIPHER TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) ON T4 SPARC SOLARIS 10 WITHOUT PKCS#11 BYPASS # ./t4crypto.d -p 18225 pkcs11_softtoken_extra.so.1   soft_decrypt_rsa_pkcs_decode    1 pkcs11_softtoken_extra.so.1   soft_rsa_crypt_init_common      1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt                1 pkcs11_softtoken_extra.so.1   big_mp_mul_yf                   2 pkcs11_softtoken_extra.so.1   mpm_yf_mpmul                    2 pkcs11_softtoken_extra.so.1   mpmul_arr_yf                    2 pkcs11_softtoken_extra.so.1   rijndael_key_setup_enc_yf       2 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt_common         2 pkcs11_softtoken_extra.so.1   yf_aes_expand256                2 pkcs11_softtoken_extra.so.1   yf_aes256_cbc_decrypt           3 pkcs11_softtoken_extra.so.1   yf_aes256_load_keys_for_decrypt 3 pkcs11_softtoken_extra.so.1   big_mont_mul_yf                 6 pkcs11_softtoken_extra.so.1   mm_yf_montmul                   6 pkcs11_softtoken_extra.so.1   yf_des_instructions_present     6 pkcs11_softtoken_extra.so.1   yf_aes256_cbc_encrypt           8 pkcs11_softtoken_extra.so.1   yf_aes256_load_keys_for_encrypt 8 pkcs11_softtoken_extra.so.1   yf_mpmul_present                8 pkcs11_softtoken_extra.so.1   yf_aes_instructions_present    13 pkcs11_softtoken_extra.so.1   yf_des_encrypt                 18 libmd_psr.so.1                yf_md5_multiblock              41 libmd_psr.so.1                yf_md5_instruction_present     72 libmd_psr.so.1                yf_sha1_instruction_present    82 libmd_psr.so.1                yf_sha1_multiblock             82 This indicates that both RSA and AES ops are done in Solaris Crypto Framework. 13.4 SAMPLE OUTPUT FOR CIPHER TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) ON T4 SPARC SOLARIS 10 WITH PKCS#11 BYPASS # ./t4crypto.d -p 18225 pkcs11_softtoken_extra.so.1   soft_decrypt_rsa_pkcs_decode 1 pkcs11_softtoken_extra.so.1   soft_rsa_crypt_init_common   1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt             1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt_common      1 pkcs11_softtoken_extra.so.1   big_mp_mul_yf                2 pkcs11_softtoken_extra.so.1   mpm_yf_mpmul                 2 pkcs11_softtoken_extra.so.1   mpmul_arr_yf                 2 pkcs11_softtoken_extra.so.1   big_mont_mul_yf              6 pkcs11_softtoken_extra.so.1   mm_yf_montmul                6 pkcs11_softtoken_extra.so.1   yf_mpmul_present             8 For this cipher, when I enable PKCS#11 bypass, Only RSA probes are being hit AES probes are not being hit. 13.5 ustack() for RSA operations / probefunc == "soft_rsa_decrypt" / Shows that libnss3.so is calling C_* functions of libpkcs11.so which is calling functions of pkcs11_softtoken_extra.so for both cases with and without bypass. When PKCS#11 bypass is disabled (allow-bypass is 0) pkcs11_softtoken_extra.so.1`soft_rsa_decrypt pkcs11_softtoken_extra.so.1`soft_rsa_decrypt_common+0x94 pkcs11_softtoken_extra.so.1`soft_unwrapkey+0x258 pkcs11_softtoken_extra.so.1`C_UnwrapKey+0x1ec libpkcs11.so.1`meta_unwrap_key+0x17c libpkcs11.so.1`meta_UnwrapKey+0xc4 libpkcs11.so.1`C_UnwrapKey+0xfc libnss3.so`pk11_AnyUnwrapKey+0x6b8 libnss3.so`PK11_PubUnwrapSymKey+0x8c libssl3.so`ssl3_HandleRSAClientKeyExchange+0x1a0 libssl3.so`ssl3_HandleClientKeyExchange+0x154 libssl3.so`ssl3_HandleHandshakeMessage+0x440 libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec libssl3.so`ssl_SecureRecv+0x1c8 libssl3.so`ssl_Recv+0x9c libns-httpd40.so`__1cNDaemonSessionDrun6M_v_+0x2dc When PKCS#11 bypass is enabled (allow-bypass is 1) pkcs11_softtoken_extra.so.1`soft_rsa_decrypt pkcs11_softtoken_extra.so.1`soft_rsa_decrypt_common+0x94 pkcs11_softtoken_extra.so.1`C_Decrypt+0x164 libpkcs11.so.1`meta_do_operation+0x27c libpkcs11.so.1`meta_Decrypt+0x4c libpkcs11.so.1`C_Decrypt+0xcc libnss3.so`PK11_PrivDecryptPKCS1+0x1ac libssl3.so`ssl3_HandleRSAClientKeyExchange+0xe4 libssl3.so`ssl3_HandleClientKeyExchange+0x154 libssl3.so`ssl3_HandleHandshakeMessage+0x440 libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec libssl3.so`ssl_SecureRecv+0x1c8 libssl3.so`ssl_Recv+0x9c libns-httpd40.so`__1cNDaemonSessionDrun6M_v_+0x2dc libnsprwrap.so`ThreadMain+0x1c libnspr4.so`_pt_root+0xe8 13.6 ustack() FOR AES operations / probefunc == "yf_aes256_cbc_encrypt" / When PKCS#11 bypass is disabled (allow-bypass is 0) pkcs11_softtoken_extra.so.1`yf_aes256_cbc_encrypt pkcs11_softtoken_extra.so.1`aes_block_process_contiguous_whole_blocks+0xb4 pkcs11_softtoken_extra.so.1`aes_crypt_contiguous_blocks+0x1cc pkcs11_softtoken_extra.so.1`soft_aes_encrypt_common+0x22c pkcs11_softtoken_extra.so.1`C_EncryptUpdate+0x10c libpkcs11.so.1`meta_do_operation+0x1fc libpkcs11.so.1`meta_EncryptUpdate+0x4c libpkcs11.so.1`C_EncryptUpdate+0xcc libnss3.so`PK11_CipherOp+0x1a0 libssl3.so`ssl3_CompressMACEncryptRecord+0x264 libssl3.so`ssl3_SendRecord+0x300 libssl3.so`ssl3_FlushHandshake+0x54 libssl3.so`ssl3_SendFinished+0x1fc libssl3.so`ssl3_HandleFinished+0x314 libssl3.so`ssl3_HandleHandshakeMessage+0x4ac libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec Shows that libnss3.so is calling C_* functions of libpkcs11.so which is calling functions of pkcs11_softtoken_extra.so However when PKCS#11 bypass is disabled (allow-bypass is 1) this stack isn't getting called. 14. LIST OF ALL THE PROBES MATCHED BY D SCRIPT FOR REFERENCE # ./t4crypto.d -p 18225 -l ID PROVIDER MODULE FUNCTION NAME ... 55720 pid18225 libmd_psr.so.1 yf_md5_instruction_present entry 55721 pid18225 libmd_psr.so.1 yf_sha256_instruction_present entry 55722 pid18225 libmd_psr.so.1 yf_sha512_instruction_present entry 55723 pid18225 libmd_psr.so.1 yf_sha1_instruction_present entry 55724 pid18225 libmd_psr.so.1 yf_sha256 entry 55725 pid18225 libmd_psr.so.1 yf_sha256_multiblock entry 55726 pid18225 libmd_psr.so.1 yf_sha512 entry 55727 pid18225 libmd_psr.so.1 yf_sha512_multiblock entry 55728 pid18225 libmd_psr.so.1 yf_sha1 entry 55729 pid18225 libmd_psr.so.1 yf_sha1_multiblock entry 55730 pid18225 libmd_psr.so.1 yf_md5 entry 55731 pid18225 libmd_psr.so.1 yf_md5_multiblock entry 55732 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_instructions_present entry 55733 pid18225 pkcs11_softtoken_extra.so.1 rijndael_key_setup_enc_yf entry 55734 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand128 entry 55735 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt128 entry 55736 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt128 entry 55737 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand192 entry 55738 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt192 entry 55739 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt192 entry 55740 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand256 entry 55741 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt256 entry 55742 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt256 entry 55743 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_load_keys_for_encrypt entry 55744 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_load_keys_for_encrypt entry 55745 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_load_keys_for_encrypt entry 55746 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ecb_encrypt entry 55747 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ecb_encrypt entry 55748 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ecb_encrypt entry 55749 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cbc_encrypt entry 55750 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cbc_encrypt entry 55751 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cbc_encrypt entry 55752 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ctr_crypt entry 55753 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ctr_crypt entry 55754 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ctr_crypt entry 55755 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cfb128_encrypt entry 55756 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cfb128_encrypt entry 55757 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cfb128_encrypt entry 55758 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_load_keys_for_decrypt entry 55759 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_load_keys_for_decrypt entry 55760 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_load_keys_for_decrypt entry 55761 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ecb_decrypt entry 55762 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ecb_decrypt entry 55763 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ecb_decrypt entry 55764 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cbc_decrypt entry 55765 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cbc_decrypt entry 55766 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cbc_decrypt entry 55767 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cfb128_decrypt entry 55768 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cfb128_decrypt entry 55769 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cfb128_decrypt entry 55771 pid18225 pkcs11_softtoken_extra.so.1 yf_des_instructions_present entry 55772 pid18225 pkcs11_softtoken_extra.so.1 yf_des_expand entry 55773 pid18225 pkcs11_softtoken_extra.so.1 yf_des_encrypt entry 55774 pid18225 pkcs11_softtoken_extra.so.1 yf_mpmul_present entry 55775 pid18225 pkcs11_softtoken_extra.so.1 yf_montmul_present entry 55776 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_montmul entry 55777 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_montsqr entry 55778 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_restore_func entry 55779 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_ret_from_mont_func entry 55780 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_execute_slp entry 55781 pid18225 pkcs11_softtoken_extra.so.1 big_modexp_ncp_yf entry 55782 pid18225 pkcs11_softtoken_extra.so.1 big_mont_mul_yf entry 55783 pid18225 pkcs11_softtoken_extra.so.1 mpmul_arr_yf entry 55784 pid18225 pkcs11_softtoken_extra.so.1 big_mp_mul_yf entry 55785 pid18225 pkcs11_softtoken_extra.so.1 mpm_yf_mpmul entry 55786 pid18225 libns-httpd40.so nsapi_rsa_set_priv_fn entry ... 55795 pid18225 libnss3.so prepare_rsa_priv_key_export_for_asn1 entry 55796 pid18225 libresolv.so.2 sunw_dst_rsaref_init entry 55797 pid18225 libnssutil3.so NSS_Get_SEC_UniversalStringTemplate entry ... 55813 pid18225 libsoftokn3.so prepare_low_rsa_priv_key_for_asn1 entry 55814 pid18225 libsoftokn3.so rsa_FormatOneBlock entry 55815 pid18225 libsoftokn3.so rsa_FormatBlock entry 55816 pid18225 libnssdbm3.so lg_prepare_low_rsa_priv_key_for_asn1 entry 55817 pid18225 libfreebl_32fpu_3.so rsa_build_from_primes entry 55818 pid18225 libfreebl_32fpu_3.so rsa_is_prime entry 55819 pid18225 libfreebl_32fpu_3.so rsa_get_primes_from_exponents entry 55820 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpNoCRT entry 55821 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpCRTNoCheck entry 55822 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpCRTCheckedPubKey entry 55823 pid18225 pkcs11_kernel.so.1 key_gen_rsa_by_value entry 55824 pid18225 pkcs11_kernel.so.1 get_rsa_private_key entry 55825 pid18225 pkcs11_kernel.so.1 get_rsa_public_key entry 55826 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_encrypt entry 55827 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_decrypt entry 55828 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_crypt_init_common entry 55829 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_encrypt_common entry 55830 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_decrypt_common entry 55831 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_sign_verify_init_common entry 55832 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_sign_common entry 55833 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_verify_common entry 55834 pid18225 pkcs11_softtoken_extra.so.1 generate_rsa_key entry 55835 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_genkey_pair entry 55836 pid18225 pkcs11_softtoken_extra.so.1 get_rsa_sha1_prefix entry 55837 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_digest_sign_common entry 55838 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_digest_verify_common entry 55839 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_verify_recover entry 55840 pid18225 pkcs11_softtoken_extra.so.1 rsa_pri_to_asn1 entry 55841 pid18225 pkcs11_softtoken_extra.so.1 asn1_to_rsa_pri entry 55842 pid18225 pkcs11_softtoken_extra.so.1 soft_encrypt_rsa_pkcs_encode entry 55843 pid18225 pkcs11_softtoken_extra.so.1 soft_decrypt_rsa_pkcs_decode entry 55844 pid18225 pkcs11_softtoken_extra.so.1 soft_sign_rsa_pkcs_encode entry 55845 pid18225 pkcs11_softtoken_extra.so.1 soft_verify_rsa_pkcs_decode entry 55770 profile tick-1sec

    Read the article

  • RDS, RDWeb, and RemoteApp: How to use public certificate for launching apps on session host?

    - by Bret Fisher
    Question: How do i tell RDWeb to launch apps from remote.domain.com rather then host.internaldomain.local? Environment: Existing org with AD forest. New single Server 2012 running all Remote Desktop Services roles for session host. Used the new 2012 wizard to setup "QuickSessionCollection" with roles: RD Session Host RD Connection Broker RD Gateway RD Web Access RD Licensing Everything works with self-signed cert, but we want to prevent those. The users are potentially non-domain machines so sticking a private root cert for on their machines isn't an option. Every part of the solution needs to use public cert. Added public remote.domain.com cert to all roles using Server Manager GUI: RD Connection Broker - Enable Single Sign On RD Connection Broker - Publishing RD Web Access RD Gateway So now everything works beautifully except the last step: user logs into https://remote.domain.com user clicks a app icon, which in background downloads a .rdp file that is signed by remote.domain.com. .rdp is set to use RD Gateway, which is remote.domain.com .rdp says app is hosted on internal host.internaldomain.local, which doesn't match the RDP-tcp TLS cert of remote.domain.com, and pops a warning. It's this last step that I'd like to fix. Is there a config option in PowerShell, WMI, or .config to tell RDWeb/RemoteApp to use remote.domain.com for all published apps so the TLS cert for RDP matches what the Session Host is using? NOTE: This question talks about this issue, and this answer mentions how you might fix it in 2008, but that GUI doesn't exist in 2012 for RemoteApp, and I can't find a PowerShell setting for it. NOTE: Here's a screenshot of the setting in 2008R2 that I need to change. It tells RemoteApp what to use for the Session Host server name. How can I set that in 2012?

    Read the article

  • Disable .htaccess from apache allowoverride none, still reads .htaccess files

    - by John Magnolia
    I have moved all of our .htaccess config into <Directory> blocks and set AllowOverride None in the default and default-ssl. Although after restarting apache it is still reading the .htaccess files. How can I completely turn off reading these files? Update of all files with "AllowOverride" /etc/apache2/mods-available/userdir.conf <IfModule mod_userdir.c> UserDir public_html UserDir disabled root <Directory /home/*/public_html> AllowOverride FileInfo AuthConfig Limit Indexes Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec <Limit GET POST OPTIONS> Order allow,deny Allow from all </Limit> <LimitExcept GET POST OPTIONS> Order deny,allow Deny from all </LimitExcept> </Directory> </IfModule> /etc/apache2/mods-available/alias.conf <IfModule alias_module> # # Aliases: Add here as many aliases as you need (with no limit). The format is # Alias fakename realname # # Note that if you include a trailing / on fakename then the server will # require it to be present in the URL. So "/icons" isn't aliased in this # example, only "/icons/". If the fakename is slash-terminated, then the # realname must also be slash terminated, and if the fakename omits the # trailing slash, the realname must also omit it. # # We include the /icons/ alias for FancyIndexed directory listings. If # you do not use FancyIndexing, you may comment this out. # Alias /icons/ "/usr/share/apache2/icons/" <Directory "/usr/share/apache2/icons"> Options Indexes MultiViews AllowOverride None Order allow,deny Allow from all </Directory> </IfModule> /etc/apache2/httpd.conf # # Directives to allow use of AWStats as a CGI # Alias /awstatsclasses "/usr/share/doc/awstats/examples/wwwroot/classes/" Alias /awstatscss "/usr/share/doc/awstats/examples/wwwroot/css/" Alias /awstatsicons "/usr/share/doc/awstats/examples/wwwroot/icon/" ScriptAlias /awstats/ "/usr/share/doc/awstats/examples/wwwroot/cgi-bin/" # # This is to permit URL access to scripts/files in AWStats directory. # <Directory "/usr/share/doc/awstats/examples/wwwroot"> Options None AllowOverride None Order allow,deny Allow from all </Directory> Alias /awstats-icon/ /usr/share/awstats/icon/ <Directory /usr/share/awstats/icon> Options None AllowOverride None Order allow,deny Allow from all </Directory> /etc/apache2/sites-available/default-ssl <IfModule mod_ssl.c> <VirtualHost _default_:443> ServerAdmin webmaster@localhost DocumentRoot /var/www <Directory /> Options FollowSymLinks AllowOverride None </Directory> <Directory /var/www/> Options Indexes FollowSymLinks MultiViews AllowOverride None </Directory> ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all </Directory> ErrorLog ${APACHE_LOG_DIR}/error.log # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. LogLevel warn CustomLog ${APACHE_LOG_DIR}/ssl_access.log combined # SSL Engine Switch: # Enable/Disable SSL for this virtual host. SSLEngine on # A self-signed (snakeoil) certificate can be created by installing # the ssl-cert package. See # /usr/share/doc/apache2.2-common/README.Debian.gz for more info. # If both key and certificate are stored in the same file, only the # SSLCertificateFile directive is needed. SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key # Server Certificate Chain: # Point SSLCertificateChainFile at a file containing the # concatenation of PEM encoded CA certificates which form the # certificate chain for the server certificate. Alternatively # the referenced file can be the same as SSLCertificateFile # when the CA certificates are directly appended to the server # certificate for convinience. #SSLCertificateChainFile /etc/apache2/ssl.crt/server-ca.crt # Certificate Authority (CA): # Set the CA certificate verification path where to find CA # certificates for client authentication or alternatively one # huge file containing all of them (file must be PEM encoded) # Note: Inside SSLCACertificatePath you need hash symlinks # to point to the certificate files. Use the provided # Makefile to update the hash symlinks after changes. #SSLCACertificatePath /etc/ssl/certs/ #SSLCACertificateFile /etc/apache2/ssl.crt/ca-bundle.crt # Certificate Revocation Lists (CRL): # Set the CA revocation path where to find CA CRLs for client # authentication or alternatively one huge file containing all # of them (file must be PEM encoded) # Note: Inside SSLCARevocationPath you need hash symlinks # to point to the certificate files. Use the provided # Makefile to update the hash symlinks after changes. #SSLCARevocationPath /etc/apache2/ssl.crl/ #SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl # Client Authentication (Type): # Client certificate verification type and depth. Types are # none, optional, require and optional_no_ca. Depth is a # number which specifies how deeply to verify the certificate # issuer chain before deciding the certificate is not valid. #SSLVerifyClient require #SSLVerifyDepth 10 # Access Control: # With SSLRequire you can do per-directory access control based # on arbitrary complex boolean expressions containing server # variable checks and other lookup directives. The syntax is a # mixture between C and Perl. See the mod_ssl documentation # for more details. #<Location /> #SSLRequire ( %{SSL_CIPHER} !~ m/^(EXP|NULL)/ \ # and %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd." \ # and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"} \ # and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \ # and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20 ) \ # or %{REMOTE_ADDR} =~ m/^192\.76\.162\.[0-9]+$/ #</Location> # SSL Engine Options: # Set various options for the SSL engine. # o FakeBasicAuth: # Translate the client X.509 into a Basic Authorisation. This means that # the standard Auth/DBMAuth methods can be used for access control. The # user name is the `one line' version of the client's X.509 certificate. # Note that no password is obtained from the user. Every entry in the user # file needs this password: `xxj31ZMTZzkVA'. # o ExportCertData: # This exports two additional environment variables: SSL_CLIENT_CERT and # SSL_SERVER_CERT. These contain the PEM-encoded certificates of the # server (always existing) and the client (only existing when client # authentication is used). This can be used to import the certificates # into CGI scripts. # o StdEnvVars: # This exports the standard SSL/TLS related `SSL_*' environment variables. # Per default this exportation is switched off for performance reasons, # because the extraction step is an expensive operation and is usually # useless for serving static content. So one usually enables the # exportation for CGI and SSI requests only. # o StrictRequire: # This denies access when "SSLRequireSSL" or "SSLRequire" applied even # under a "Satisfy any" situation, i.e. when it applies access is denied # and no other module can change it. # o OptRenegotiate: # This enables optimized SSL connection renegotiation handling when SSL # directives are used in per-directory context. #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire <FilesMatch "\.(cgi|shtml|phtml|php)$"> SSLOptions +StdEnvVars </FilesMatch> <Directory /usr/lib/cgi-bin> SSLOptions +StdEnvVars </Directory> # SSL Protocol Adjustments: # The safe and default but still SSL/TLS standard compliant shutdown # approach is that mod_ssl sends the close notify alert but doesn't wait for # the close notify alert from client. When you need a different shutdown # approach you can use one of the following variables: # o ssl-unclean-shutdown: # This forces an unclean shutdown when the connection is closed, i.e. no # SSL close notify alert is send or allowed to received. This violates # the SSL/TLS standard but is needed for some brain-dead browsers. Use # this when you receive I/O errors because of the standard approach where # mod_ssl sends the close notify alert. # o ssl-accurate-shutdown: # This forces an accurate shutdown when the connection is closed, i.e. a # SSL close notify alert is send and mod_ssl waits for the close notify # alert of the client. This is 100% SSL/TLS standard compliant, but in # practice often causes hanging connections with brain-dead browsers. Use # this only for browsers where you know that their SSL implementation # works correctly. # Notice: Most problems of broken clients are also related to the HTTP # keep-alive facility, so you usually additionally want to disable # keep-alive for those clients, too. Use variable "nokeepalive" for this. # Similarly, one has to force some clients to use HTTP/1.0 to workaround # their broken HTTP/1.1 implementation. Use variables "downgrade-1.0" and # "force-response-1.0" for this. BrowserMatch "MSIE [2-6]" \ nokeepalive ssl-unclean-shutdown \ downgrade-1.0 force-response-1.0 # MSIE 7 and newer should be able to use keepalive BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown </VirtualHost> </IfModule> /etc/apache2/sites-available/default <VirtualHost *:80> ServerAdmin webmaster@localhost DocumentRoot /var/www <Directory /> Options FollowSymLinks AllowOverride None </Directory> <Directory /var/www/> Options -Indexes FollowSymLinks MultiViews AllowOverride None Order allow,deny allow from all </Directory> ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/ <Directory "/usr/lib/cgi-bin"> AllowOverride None Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch Order allow,deny Allow from all </Directory> Alias /delboy /usr/share/phpmyadmin <Directory /usr/share/phpmyadmin> # Restrict phpmyadmin access Order Deny,Allow Allow from all </Directory> ErrorLog ${APACHE_LOG_DIR}/error.log # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. LogLevel warn CustomLog ${APACHE_LOG_DIR}/access.log combined Alias /doc/ "/usr/share/doc/" <Directory "/usr/share/doc/"> Options Indexes MultiViews FollowSymLinks AllowOverride None Order deny,allow Deny from all Allow from 127.0.0.0/255.0.0.0 ::1/128 </Directory> </VirtualHost> /etc/apache2/conf.d/security # # Disable access to the entire file system except for the directories that # are explicitly allowed later. # # This currently breaks the configurations that come with some web application # Debian packages. # #<Directory /> # AllowOverride None # Order Deny,Allow # Deny from all #</Directory> # Changing the following options will not really affect the security of the # server, but might make attacks slightly more difficult in some cases. # # ServerTokens # This directive configures what you return as the Server HTTP response # Header. The default is 'Full' which sends information about the OS-Type # and compiled in modules. # Set to one of: Full | OS | Minimal | Minor | Major | Prod # where Full conveys the most information, and Prod the least. # #ServerTokens Minimal ServerTokens OS #ServerTokens Full # # Optionally add a line containing the server version and virtual host # name to server-generated pages (internal error documents, FTP directory # listings, mod_status and mod_info output etc., but not CGI generated # documents or custom error documents). # Set to "EMail" to also include a mailto: link to the ServerAdmin. # Set to one of: On | Off | EMail # #ServerSignature Off ServerSignature On # # Allow TRACE method # # Set to "extended" to also reflect the request body (only for testing and # diagnostic purposes). # # Set to one of: On | Off | extended # TraceEnable Off #TraceEnable On /etc/apache2/apache2.conf # # Based upon the NCSA server configuration files originally by Rob McCool. # # This is the main Apache server configuration file. It contains the # configuration directives that give the server its instructions. # See http://httpd.apache.org/docs/2.2/ for detailed information about # the directives. # # Do NOT simply read the instructions in here without understanding # what they do. They're here only as hints or reminders. If you are unsure # consult the online docs. You have been warned. # # The configuration directives are grouped into three basic sections: # 1. Directives that control the operation of the Apache server process as a # whole (the 'global environment'). # 2. Directives that define the parameters of the 'main' or 'default' server, # which responds to requests that aren't handled by a virtual host. # These directives also provide default values for the settings # of all virtual hosts. # 3. Settings for virtual hosts, which allow Web requests to be sent to # different IP addresses or hostnames and have them handled by the # same Apache server process. # # Configuration and logfile names: If the filenames you specify for many # of the server's control files begin with "/" (or "drive:/" for Win32), the # server will use that explicit path. If the filenames do *not* begin # with "/", the value of ServerRoot is prepended -- so "foo.log" # with ServerRoot set to "/etc/apache2" will be interpreted by the # server as "/etc/apache2/foo.log". # ### Section 1: Global Environment # # The directives in this section affect the overall operation of Apache, # such as the number of concurrent requests it can handle or where it # can find its configuration files. # # # ServerRoot: The top of the directory tree under which the server's # configuration, error, and log files are kept. # # NOTE! If you intend to place this on an NFS (or otherwise network) # mounted filesystem then please read the LockFile documentation (available # at <URL:http://httpd.apache.org/docs/2.2/mod/mpm_common.html#lockfile>); # you will save yourself a lot of trouble. # # Do NOT add a slash at the end of the directory path. # #ServerRoot "/etc/apache2" # # The accept serialization lock file MUST BE STORED ON A LOCAL DISK. # LockFile ${APACHE_LOCK_DIR}/accept.lock # # PidFile: The file in which the server should record its process # identification number when it starts. # This needs to be set in /etc/apache2/envvars # PidFile ${APACHE_PID_FILE} # # Timeout: The number of seconds before receives and sends time out. # Timeout 300 # # KeepAlive: Whether or not to allow persistent connections (more than # one request per connection). Set to "Off" to deactivate. # KeepAlive On # # MaxKeepAliveRequests: The maximum number of requests to allow # during a persistent connection. Set to 0 to allow an unlimited amount. # We recommend you leave this number high, for maximum performance. # MaxKeepAliveRequests 100 # # KeepAliveTimeout: Number of seconds to wait for the next request from the # same client on the same connection. # KeepAliveTimeout 4 ## ## Server-Pool Size Regulation (MPM specific) ## # prefork MPM # StartServers: number of server processes to start # MinSpareServers: minimum number of server processes which are kept spare # MaxSpareServers: maximum number of server processes which are kept spare # MaxClients: maximum number of server processes allowed to start # MaxRequestsPerChild: maximum number of requests a server process serves <IfModule mpm_prefork_module> StartServers 5 MinSpareServers 5 MaxSpareServers 10 MaxClients 150 MaxRequestsPerChild 500 </IfModule> # worker MPM # StartServers: initial number of server processes to start # MaxClients: maximum number of simultaneous client connections # MinSpareThreads: minimum number of worker threads which are kept spare # MaxSpareThreads: maximum number of worker threads which are kept spare # ThreadLimit: ThreadsPerChild can be changed to this maximum value during a # graceful restart. ThreadLimit can only be changed by stopping # and starting Apache. # ThreadsPerChild: constant number of worker threads in each server process # MaxRequestsPerChild: maximum number of requests a server process serves <IfModule mpm_worker_module> StartServers 2 MinSpareThreads 25 MaxSpareThreads 75 ThreadLimit 64 ThreadsPerChild 25 MaxClients 150 MaxRequestsPerChild 0 </IfModule> # event MPM # StartServers: initial number of server processes to start # MaxClients: maximum number of simultaneous client connections # MinSpareThreads: minimum number of worker threads which are kept spare # MaxSpareThreads: maximum number of worker threads which are kept spare # ThreadsPerChild: constant number of worker threads in each server process # MaxRequestsPerChild: maximum number of requests a server process serves <IfModule mpm_event_module> StartServers 2 MaxClients 150 MinSpareThreads 25 MaxSpareThreads 75 ThreadLimit 64 ThreadsPerChild 25 MaxRequestsPerChild 0 </IfModule> # These need to be set in /etc/apache2/envvars User ${APACHE_RUN_USER} Group ${APACHE_RUN_GROUP} # # AccessFileName: The name of the file to look for in each directory # for additional configuration directives. See also the AllowOverride # directive. # AccessFileName .htaccess # # The following lines prevent .htaccess and .htpasswd files from being # viewed by Web clients. # <Files ~ "^\.ht"> Order allow,deny Deny from all Satisfy all </Files> # # DefaultType is the default MIME type the server will use for a document # if it cannot otherwise determine one, such as from filename extensions. # If your server contains mostly text or HTML documents, "text/plain" is # a good value. If most of your content is binary, such as applications # or images, you may want to use "application/octet-stream" instead to # keep browsers from trying to display binary files as though they are # text. # DefaultType text/plain # # HostnameLookups: Log the names of clients or just their IP addresses # e.g., www.apache.org (on) or 204.62.129.132 (off). # The default is off because it'd be overall better for the net if people # had to knowingly turn this feature on, since enabling it means that # each client request will result in AT LEAST one lookup request to the # nameserver. # HostnameLookups Off # ErrorLog: The location of the error log file. # If you do not specify an ErrorLog directive within a <VirtualHost> # container, error messages relating to that virtual host will be # logged here. If you *do* define an error logfile for a <VirtualHost> # container, that host's errors will be logged there and not here. # ErrorLog ${APACHE_LOG_DIR}/error.log # # LogLevel: Control the number of messages logged to the error_log. # Possible values include: debug, info, notice, warn, error, crit, # alert, emerg. # LogLevel warn # Include module configuration: Include mods-enabled/*.load Include mods-enabled/*.conf # Include all the user configurations: Include httpd.conf # Include ports listing Include ports.conf # # The following directives define some format nicknames for use with # a CustomLog directive (see below). # If you are behind a reverse proxy, you might want to change %h into %{X-Forwarded-For}i # LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" vhost_combined LogFormat "%h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\"" combined LogFormat "%h %l %u %t \"%r\" %>s %O" common LogFormat "%{Referer}i -> %U" referer LogFormat "%{User-agent}i" agent # Include of directories ignores editors' and dpkg's backup files, # see README.Debian for details. # Include generic snippets of statements Include conf.d/ # Include the virtual host configurations: Include sites-enabled/

    Read the article

  • Require TLS on RDP for all connections

    - by MarkM
    I have a 2008 DC and a 2008 AD CS server and a Windows 7 client. What I would like is to require the certificate to be used when RDPing to the server. The certificate is valid, and if I connect using the FQDN I am shown that i was authenticated by both the certificate and Kerberos as expected. When I connect with just the hostname I am allowed to connect and am only authenticated by Kerberos, even though I have Require TLS 1.0 set on the server that I am RDPing to. I fully understand that the certificate will not be valid unless the server is accessed by FQDN, what I want to do is disallow connections that do not use the certificate AND Kerberos. I thought that setting Require TLS 1.0 would do it. What am I missing?

    Read the article

  • Designing A 2-Way SSL RESTful API

    - by Mithir
    I am starting to develop a WCF API, which should serve some specific clients. We don't know which devices will be using the API so I thought that using a RESTful API will be the most flexible choice. All devices using the API would be authenticated using an SSL certificate (client side certificate), and our API will have a certificate as well ( so its a 2 Way SSL) I was reading this question over SO, and I saw the answers about authentication using Basic-HTTP or OAuth, but I was thinking that in my case these are not needed, I can already trust the client because it possesses the client-side certificate. Is this design ok? Am I missing anything? Maybe there's a better way of doing this?

    Read the article

  • Little mysterious RowMatch

    - by kishore.kondepudi(at)oracle.com
    Incidentally this was the first piece of code i ever wrote in ADF.The requirement was we have tax rates which are read from a table.And there can be different type of tax rates called certificates or exceptions based on the rate_type column in the tax rates table.The simplest design i chose was to create an EO on the tax rates table and create two VO's called CertificateVO and ExceptionVO based on the same EO.So far so good.I wrote all the business logic in the EO and completed the model project.The CertificateVO has the query as select * from tax_rates TaxRateEO where rate_type='CERTIFICATE' and similary the ExceptionVO is also built.The UI is pretty simple and it has two tabs called Certificates and Exceptions and each table has a button to create a tax rate.The certificate tab is driven by CertificateVO and exception tab is driven by ExceptionVO.The CertificateVO has default value of rate_type set to 'CERTIFICATE' and ExceptionVO has default value of rate_type to 'EXCEPTION' to default values for new records.So far so good.But on running the UI i noticed a strange thing,When i create a new row in Certificate i see the same row in Exception too and vice-versa.i.e; what ever row i create in one VO it also appears in the second one although it shouldn't be.I couldn't understand the reason for behavior even though an explicit where clause is present.Digging through documentation i found that ADF doesnt apply the where clause to new rows instead it applies something called as RowMatch to them.RowMatch in simple terms is a where condition applied to the VO rows at runtime.Since we had both VO's based on the same EO we have the same entity cache.The filter factor for new rows to be shown in VO at runtime is actually RowMatch than the where clause defined in the VO.The default RowMatch is empty as a result any new row appears in both the VO's since its from same entity cache.The solution to this problem is to use polymorphic view objects which can do the row filter based on configuration or override the getRowMatch() method in the VOImpl and pass the custom where filter instead of default RowMatch.Eg:@Overridepublic RowMatch getRowMatch(){    return new RowMatch("rate_type='CERTIFICATE'");}similarly for ExceptionVO too.With proper RowMatch in place new rows will route themselves to appropriate VO.PS: The behavior(Same row pushed to both VO's from entity cache) is also called as ViewLink Consistency.Try it out!

    Read the article

  • How to: Add an HTTPS Endpoint to a Windows Azure Cloud Service

    - by kaleidoscope
    Technorati Tags: Ritesh,Windows Azure,Endpoints,https The process to add an HTTPS endpoint is a 3 step process. Configure the endpoint Upload the certificate to the Cloud Configure the SSL certificate (and then point the endpoint to that certificate) Reference – http://blogs.msdn.com/jnak/archive/2009/12/01/how-to-add-an-https-endpoint-to-a-windows-azure-cloud-service.aspx - Ritesh, D

    Read the article

  • Dovecot and StartSSL problems with issuer

    - by knoim
    I am using dovecot (1) and trying to get my StartSSL certificate running. ssl_key_file points to my private key I tried pointing ssl_cert_file to my public key, with and without using the class1 certificate from http://www.startssl.com/certs/sub.class1.server.ca.pem as ssl_ca_file aswell as combing them with cat publickey sub.class1.server.ca.pem chained My mail client keeps telling me the certificate has no issuer, but doing openssl x509 on my public certificate tells me it is C=IL, O=StartCom Ltd., OU=Secure Digital Certificate Signing, CN=StartCom Class 1 Primary Intermediate Server CA My option for the CSR were: openssl req -new -newkey rsa:4096 -nodes Dovecot's log doesn't mention any problems. EDIT: Doesn't seem to be a problem with dovecot. I am having the same problem with postfix. openssl verify gives me the same error.

    Read the article

  • Solved: Chrome v18, self signed certs and &ldquo;signed using a weak signature algorithm&rdquo;

    - by David Christiansen
    So chrome has just updated itself automatically and you are now running v18 – great. Or is it… If like me, you are someone that are running sites using a self-signed SSL Certificate (i.e. when running a site on a developer machine) you may come across the following lovely message; Fear not, this is likely as a result of you following instructions you found on the apache openssl site which results in a self signed cert using the MD5 signature hashing algorithm. Using OpenSSL The simple fix is to generate a new certificate specifying to use the SHA512 signature hashing algorithm, like so; openssl req -new -x509 -sha512 -nodes -out server.crt -keyout server.key Simples! Now, you should be able to confirm the signature algorithm used is sha512 by looking at the details tab of certificate Notes If you change your certificate, be sure to reapply any private key permissions you require – such as allowing access to the application pool user.

    Read the article

  • How to secure both root domain and wildcard subdomains with one SSL cert?

    - by Question Overflow
    I am trying to generate a self-signed SSL certificate to secure both example.com and *.example.com. Looking at the answers to this and this questions, there seems to be an equal number of people agreeing and disagreeing whether this could be done. However, the website from a certification authority seems to suggest that it could be done. Currently, these are the changes added to my openssl configuration file: [req] req_extensions = v3_req [req_distinguished_name] commonName = example.com [v3_req] subjectAltName = @alt_names [alt_names] DNS.1 = example.com DNS.2 = *.example.com I tried the above configuration and generated a certificate. When navigating to https://example.com, it produces the usual warning that the cert is "self-signed". After acceptance, I navigate to https://abc.example.com and an additional warning is produced, saying that the certificate is only valid for example.com. The certificate details only listed example.com in the certificate hierarchy with no signs of any wildcard subdomain being present. I am not sure whether this is due to a misconfiguration or that the common name should have a wildcard or that this could not be done.

    Read the article

< Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >