Search Results

Search found 5511 results on 221 pages for 'coding noob'.

Page 48/221 | < Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >

  • Calling Multiple functions simultaneously

    - by Noob
    I'm trying to call two different functions for two different HTML elements at the same time, but the second function isn't being read at all. I'm also trying to use the id to specify which corresponding elements to grab data from. Here's what I have: function changeImage(id) { var s = document.getElementById('showcase'); var simg = s.getElementsByTagName('img'); var slen = simg.length; for(i=0; i < slen; i++) { simg[i].style.display = 'none'; } $('#' + id).fadeIn('slow', 0); function createComment(jim) { //alert('hello?'); var d = document.getElementById('description'); var dh = document.getElementsByTagName('p'); var dlen = dh.length; //alert(dh); for(i=0; i < dlen; i++) { alert(dh); dh[i].style.display = 'none'; } $('#' + jim).fadeIn('slow', 0); }

    Read the article

  • C# Launcher program(ConsoleApp) that launches other executables

    - by Agile Noob
    I've written a launcher program that fires off a given number of executables, with the following code: Process.Start(strPath2EXE); The problem I'm running into is it seems I'm being limited to launching only about four copies of the executable. Is there a different way I can launch the executables without this limit? I'm hoping to run 10+ concurrently. Here is the error from the event log: EventType clr20r3, P1 launcher.exe, P2 1.0.0.0, P3 4bec3901, P4 system, P5 2.0.0.0, P6 4889de7a, P7 39f5, P8 288, P9 system.componentmodel.win32, P10 NIL.

    Read the article

  • how can i edit the action of the buttons in the dialog box in jquery?

    - by noob
    this code is from the demo of modal confirmation from jquery's site. <script type="text/javascript"> $(function() { $("#dialog").dialog({ bgiframe: true, resizable: false, height:140, modal: true, overlay: { backgroundColor: '#000', opacity: 0.5 }, buttons: { 'Yes': function() { $(this).dialog('close'); }, 'No': function() { $(this).dialog('close'); } } }); }); </script> <div class="demo"> <div id="dialog" title="Empty the recycle bin?"> <p><span class="ui-icon ui-icon-alert" style="float:left; margin:0 7px 20px 0;"></span>These items will be permanently deleted and cannot be recovered. Are you sure?</p> </div> <!-- Sample page content to illustrate the layering of the dialog --> <div class="hiddenInViewSource" style="padding:20px;"> <p>Sed vel diam id libero <a href="http://example.com">rutrum convallis</a>. Donec aliquet leo vel magna. Phasellus rhoncus faucibus ante. Etiam bibendum, enim faucibus aliquet rhoncus, arcu felis ultricies neque, sit amet auctor elit eros a lectus.</p> <form> <input value="text input" /><br /> <input type="checkbox" />checkbox<br /> <input type="radio" />radio<br /> <select> <option>select</option> </select><br /><br /> <textarea>textarea</textarea><br /> </form> </div><!-- End sample page content --> </div><!-- End demo --> <div class="demo-description"> <p>Confirm an action that may be destructive or important. Set the <code>modal</code> option to true, and specify primary and secondary user actions with the <code>buttons</code> option.</p> </div><!-- End demo-description --> can anyone tell me how to edit the action for the buttons? when yes is clicked i want to be redirected to test.php and when i hit no i want to be redirected to another page.

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • NDepend Evaluation: Part 3

    - by Anthony Trudeau
    NDepend is a Visual Studio add-in designed for intense code analysis with the goal of high code quality. NDepend uses a number of metrics and aggregates the data in pleasing static and active visual reports. My evaluation of NDepend will be broken up into several different parts. In the first part of the evaluation I looked at installing the add-in.  And in the last part I went over my first impressions including an overview of the features.  In this installment I provide a little more detail on a few of the features that I really like. Dependency Matrix The dependency matrix is one of the rich visual components provided with NDepend.  At a glance it lets you know where you have coupling problems including cycles.  It does this with number indicating the weight of the dependency and a color-coding that indicates the nature of the dependency. Green and blue cells are direct dependencies (with the difference being whether the relationship is from row-to-column or column-to-row).  Black cells are the ones that you really want to know about.  These indicate that you have a cycle.  That is, type A refers to type B and type B also refers to Type A. But, that’s not the end of the story.  A handy pop-up appears when you hover over the cell in question.  It explains the color, the dependency, and provides several interesting links that will teach you more than you want to know about the dependency. You can double-click the problem cells to explode the dependency.  That will show the dependencies on a method-by-method basis allowing you to more easily target and fix the problem.  When you’re done you can click the back button on the toolbar. Dependency Graph The dependency graph is another component provided.  It’s complementary to the dependency matrix, but it isn’t as easy to identify dependency issues using the window. On a positive note, it does provide more information than the matrix. My biggest issue with the dependency graph is determining what is shown.  This was not readily obvious.  I ended up using the navigation buttons to get an acceptable view.  I would have liked to choose what I see. Once you see the types you want you can get a decent idea of coupling strength based on the width of the dependency lines.  Double-arrowed lines are problematic and are shown in red.  The size of the boxes will be related to the metric being displayed.  This is controlled using the Box Size drop-down in the toolbar.  Personally, I don’t find the size of the box to be helpful, so I change it to Constant Font. One nice thing about the display is that you can see the entire path of dependencies when you hover over a type.  This is done by color-coding the dependencies and dependants.  It would be nice if selecting the box for the type would lock the highlighting in place. I did find a perhaps unintended work-around to the color-coding.  You can lock the color-coding in by hovering over the type, right-clicking, and then clicking on the canvas area to clear the pop-up menu.  You can then do whatever with it including saving it to an image file with the color-coding. CQL NDepend uses a code query language (CQL) to work with your code just like it was a database.  CQL cannot be confused with the robustness of T-SQL or even LINQ, but it represents an impressive attempt at providing an expressive way to enumerate and interrogate your code. There are two main windows you’ll use when working with CQL.  The CQL Query Explorer allows you to define what queries (rules) are run as part of a report – I immediately unselected rules that I don’t want in my results.  The CQL Query Edit window is where you can view or author your own rules.  The explorer window is pretty self-explanatory, so I won’t mention it further other than to say that any queries you author will appear in the custom group. Authoring your own queries is really hard to screw-up.  The Intellisense-like pop-ups tell you what you can do while making composition easy.  I was able to create a query within two minutes of playing with the editor.  My query warns if any types that are interfaces don’t start with an “I”. WARN IF Count > 0 IN SELECT TYPES WHERE IsInterface AND !NameLike “I” The results from the CQL Query Edit window are immediate. That fact makes it useful for ad hoc querying.  It’s worth mentioning two things that could make the experience smoother.  First, out of habit from using Visual Studio I expect to be able to scroll and press Tab to select an item in the list (like Intellisense).  You have to press Enter when you scroll to the item you want.  Second, the commands are case-sensitive.  I don’t see a really good reason to enforce that. CQL has a lot of potential not just in enforcing code quality, but also enforcing architectural constraints that your enterprise has defined. Up Next My next update will be the final part of the evaluation.  I will summarize my experience and provide my conclusions on the NDepend add-in. ** View Part 1 of the Evaluation ** ** View Part 2 of the Evaluation ** Disclaimer: Patrick Smacchia contacted me about reviewing NDepend. I received a free license in return for sharing my experiences and talking about the capabilities of the add-in on this site. There is no expectation of a positive review elicited from the author of NDepend.

    Read the article

  • How to translate along Z axis in OpenTK

    - by JeremyJAlpha
    I am playing around with an OpenGL sample application I downloaded for Xamarin-Android. The sample application produces a rotating colored cube I would simply like to edit it so that the rotating cube is translated along the Z axis and disappears into the distance. I modified the code by: adding an cumulative variable to store my Z distance, adding GL.Enable(All.DepthBufferBit) - unsure if I put it in the right place, adding GL.Translate(0.0f, 0.0f, Depth) - before the rotate functions, Result: cube rotates a couple of times then disappears, it seems to be getting clipped out of the frustum. So my question is what is the correct way to use and initialize the Z buffer and get the cube to travel along the Z axis? I am sure I am missing some function calls but am unsure of what they are and where to put them. I apologise in advance as this is very basic stuff but am still learning :P, I would appreciate it if anyone could show me the best way to get the cube to still rotate but to also move along the Z axis. I have commented all my modifications in the code: // This gets called when the drawing surface is ready protected override void OnLoad (EventArgs e) { // this call is optional, and meant to raise delegates // in case any are registered base.OnLoad (e); // UpdateFrame and RenderFrame are called // by the render loop. This is takes effect // when we use 'Run ()', like below UpdateFrame += delegate (object sender, FrameEventArgs args) { // Rotate at a constant speed for (int i = 0; i < 3; i ++) rot [i] += (float) (rateOfRotationPS [i] * args.Time); }; RenderFrame += delegate { RenderCube (); }; GL.Enable(All.DepthBufferBit); //Added by Noob GL.Enable(All.CullFace); GL.ShadeModel(All.Smooth); GL.Hint(All.PerspectiveCorrectionHint, All.Nicest); // Run the render loop Run (30); } void RenderCube () { GL.Viewport(0, 0, viewportWidth, viewportHeight); GL.MatrixMode (All.Projection); GL.LoadIdentity (); if ( viewportWidth > viewportHeight ) { GL.Ortho(-1.5f, 1.5f, 1.0f, -1.0f, -1.0f, 1.0f); } else { GL.Ortho(-1.0f, 1.0f, -1.5f, 1.5f, -1.0f, 1.0f); } GL.MatrixMode (All.Modelview); GL.LoadIdentity (); Depth -= 0.02f; //Added by Noob GL.Translate(0.0f,0.0f,Depth); //Added by Noob GL.Rotate (rot[0], 1.0f, 0.0f, 0.0f); GL.Rotate (rot[1], 0.0f, 1.0f, 0.0f); GL.Rotate (rot[2], 0.0f, 1.0f, 0.0f); GL.ClearColor (0, 0, 0, 1.0f); GL.Clear (ClearBufferMask.ColorBufferBit); GL.VertexPointer(3, All.Float, 0, cube); GL.EnableClientState (All.VertexArray); GL.ColorPointer (4, All.Float, 0, cubeColors); GL.EnableClientState (All.ColorArray); GL.DrawElements(All.Triangles, 36, All.UnsignedByte, triangles); SwapBuffers (); }

    Read the article

  • Designing interfaces: predict methods needed, discipline yourself and deal with code that comes to m

    - by fireeyedboy
    Was: Design by contract: predict methods needed, discipline yourself and deal with code that comes to mind I like the idea of designing by contract a lot (at least, as far as I understand the principal). I believe it means you define intefaces first before you start implementing actual code, right? However, from my limited experience (3 OOP years now) I usually can't resist the urge to start coding pretty early, for several reasons: because my limited experience has shown me I am unable to predict what methods I will be needing in the interface, so I might as well start coding right away. or because I am simply too impatient to write out the whole interfaces first. or when I do try it, I still wind up implementing bits of code already, because I fear I might forget this or that imporant bit of code, that springs to mind when I am designing the interfaces. As you see, especially with the last two points, this leads to a very disorderly way of doing things. Tasks get mixed up. I should draw a clear line between designing interfaces and actual coding. If you, unlike me, are a good/disciplined planner, as intended above, how do you: ...know the majority of methods you will be needing up front so well? Especially if it's components that implement stuff you are not familiar with yet. ...resist the urge to start coding right away? ...deal with code that comes to mind when you are designing the interfaces? UPDATE: Thank you for the answers so far. Valuable insights! And... I stand corrected; it seems I misinterpreted the idea of Design By Contract. For clarity, what I actually meant was: "coming up with interface methods before implementing the actual components". An additional thing that came up in my mind is related to point 1): b) How do you know the majority of components you will be needing. How do you flesh out these things before you start actually coding? For arguments sake, let's say I'm a novice with the MVC pattern, and I wanted to implement such a component/architecture. A naive approach would be to think of: a front controller some abstract action controller some abstract view ... and be done with it, so to speak. But, being more familiar with the MVC pattern, I know now that it makes sense to also have: a request object a router a dispatcher a response object view helpers etc.. etc.. If you map this idea to some completely new component you want to develop, with which you have no experience yet; how do you come up with these sort of additional components without actually coding the thing, and stuble upon the ideas that way? How would you know up front how fine grained some components should be? Is this a matter of disciplining yourself to think it out thoroughly? Or is it a matter of being good at thinking in abstractions?

    Read the article

  • Time management and self improvement

    - by Filip
    I hope I can open a discussion on this topic as this is not a specific problem. It's a topic I hope to get some ideas on how people in similar situation as mine manage their time. OK, I'm a single developer on a software project for the last 6-8 months. The project I'm working on uses several technologies, mainly .net stuff: WPF, WF, NHibernate, WCF, MySql and other third party SDKs relevant for the project nature. My experience and knowledge vary, for example I have a lot of experience in WPF but much less in WCF. I work full time on the project and im curios on how other programmers which need to multi task in many areas manage their time. I'm a very applied type of person and prefer to code instead of doing research. I feel that doing research "might" slow down the progress of the project while I recognize that research and learning more in areas which I'm not so strong will ultimately make me more productive. How would you split up your daily time in productive coding time and time to and experiment, read blogs, go through tutorials etc. I would say that Im coding about 90%+ of my day and devoting some but very little time in research and acquiring new knowledge. Thanks for your replies. I think I will adopt a gradual transition to Dominics block parts. I kinda knew that coding was taking up way to much of my time but it feels good having a first version of the project completed and ready. With a few months of focused hard work behind me I hope to get more time to experiment and expand my knowlegde. Now I only hope my boss will cut me some slack and stop pressuring me for features...

    Read the article

  • Sucking Less Every Year?

    - by AdityaGameProgrammer
    Sucking Less Every Year -Jeff Atwood I had come across this insightful article.Quoting directly from the post I've often thought that sucking less every year is how humble programmers improve. You should be unhappy with code you wrote a year ago. If you aren't, that means either A) you haven't learned anything in a year, B) your code can't be improved, or C) you never revisit old code. All of these are the kiss of death for software developers. How often does this happen or not happen to you? How long before you see an actual improvement in your coding ? month, year? Do you ever revisit Your old code? How often does your old code plague you? or how often do you have to deal with your technical debt. It is definitely very painful to fix old bugs n dirty code that we may have done to quickly meet a deadline and those quick fixes ,some cases we may have to rewrite most of the application/code. No arguments about that. Some of the developers i had come across argued that they were already at the evolved stage where their coding doesn't need improvement or cant get improved anymore. Does this happen? If so how many years into coding on a particular language does one expect this to happen? Related: Ever look back at some of your old code and grimace in pain? Star Wars Moment in Code "Luke! I am your code!" "No! Impossible! It can't be!"

    Read the article

  • Agile project management, agile development: early integration

    - by Matías Fidemraizer
    I believe that agile works if everything is agile. In software development area, in my opinion, if team members' code is integrated early, code will be more in sync and this has a lot of pros: Early integration helps team members to avoid painful merges. Encourages better coding habits, because everyone makes sure that they don't break co-workers' code everyday. Both developers and architects (code reviewers) may detect bad design decisions or just wrong development directions in real-time, preventing useless work. Actually I'm talking about getting the latest version of code base and checking-in your own code to the source control in a daily basis. When you start your coding day (i.e. you arrive to your work), your first action is updating your code base with the latest version from the source control. In the other hand, when you're about an hour to leave from your work and go home, your last action is checking-in your code to the source control and be sure that your day work doesn't break the project's build process. Rather than updating and checking-in your code once you finished an entire task, I believe the best approach is fixing small and flexible personal milestones and checking-in the code once you finish one of these. I really believe that this coding approach fits better in the agile project management concept. Do you know some document, blog post, wiki, article or whatever that you can suggest me that could be in sync with my opinion?. And, do you find any problem working with this approach?. Thank you in advance.

    Read the article

  • Sucking Less Every Year ?

    - by AdityaGameProgrammer
    Sucking Less Every Year A trail of thought that had been on my mind for a while Quoting directly from the post I've often thought that sucking less every year is how humble programmers improve. You should be unhappy with code you wrote a year ago. If you aren't, that means either A) you haven't learned anything in a year, B) your code can't be improved, or C) you never revisit old code. All of these are the kiss of death for software developers. How often does this happen or not happen to you? How long before you see an actual improvement in your coding ? month, year? Do you ever revisit Your old code? How often does your old code plague you? or how often do you have to deal with your technical debt. It is definitely very painful to fix old bugs n dirty code that we may have done to quickly meet a deadline and those quick fixes ,some cases we may have to rewrite most of the application/code. No arguments about that. Some of the developers i had come across argued that they were already at the evolved stage where their coding doesn't need improvement or cant get improved anymore. Does this happen? If so how many years into coding on a particular language does one expect this to happen?

    Read the article

  • Assuming "clean code/architecture" is there a difference in "effort" between PHP or Java/J2EE web application development?

    - by PhD
    A client asked us to estimate effort when selecting PHP as the implementation language for his next web-based application. We spent about a week exploring PHP, prototyping, testing etc., We are quite new to this language - may have hacked around it in the past but, let's go with PHP-noobs but application development experts (for the lack of a better, less flattering word :) It seems, that if we write, clean maintainable code, follow separation of concerns, enterprise architecture patters (DAOs etc.) the 'effort' in creating an object-oriented PHP based web-application seems to be the same for a Java based one. Here's our equation for estimating the effort (development/delivery time): ConstructionEffort = f(analysis, design, coding, testing, review, deployment) We were specifically comparing effort estimates in creating an enterprise application with the following: PHP + CakePHP/CodeIgniter (should we have considered others?) Java + Spring + Restlet It's an end-to-end application: Client: Javascript/jQuery + HTML/CSS Middle tier/Business Logic - (Still evaluating PHP/Java) Database: MySQL The effort estimates of the 1st and 3rd tier are constant and relatively independent of the middle tier's technology. At a high level with an initial breakdown into user stories of the requested features as well as a high-level SWAG on the sheer number of classes/SLOC that would be required for PHP doesn't seem to differ by much from what is required of the same in Java. Is this correct? We are basing our initial estimates on the initial prototyping/coding we've done with PHP - we are currently disregarding fluency with the language as a factor, since that'll be an initial hurdle and not a long term impediment IMHO (we also have sufficient time to become quite fluent with PHP). I'm interested in knowing the programmers' perspective with respect to effort when creating similar applications with either of the languages to justify choosing one over the other. Are we missing something here? It seems we are going against popular belief of PHP being quicker to market (or we being very fluent with Java have our vision clouded). It doesn't seem to have any coding/programming effort saving from what we/ve played around with.

    Read the article

  • Convert your Hash keys to object properties in Ruby

    - by kerry
    Being a Ruby noob (and having a background in Groovy), I was a little surprised that you can not access hash objects using the dot notation.  I am writing an application that relies heavily on XML and JSON data.  This data will need to be displayed and I would rather use book.author.first_name over book[‘author’][‘first_name’].  A quick search on google yielded this post on the subject. So, taking the DRYOO (Don’t Repeat Yourself Or Others) concept.  I came up with this: 1: class ::Hash 2:  3: # add keys to hash 4: def to_obj 5: self.each do |k,v| 6: if v.kind_of? Hash 7: v.to_obj 8: end 9: k=k.gsub(/\.|\s|-|\/|\'/, '_').downcase.to_sym 10: self.instance_variable_set("@#{k}", v) ## create and initialize an instance variable for this key/value pair 11: self.class.send(:define_method, k, proc{self.instance_variable_get("@#{k}")}) ## create the getter that returns the instance variable 12: self.class.send(:define_method, "#{k}=", proc{|v| self.instance_variable_set("@#{k}", v)}) ## create the setter that sets the instance variable 13: end 14: return self 15: end 16: end This works pretty well.  It converts each of your keys to properties of the Hash.  However, it doesn’t sit very well with me because I probably will not use 90% of the properties most of the time.  Why should I go through the performance overhead of creating instance variables for all of the unused ones? Enter the ‘magic method’ #missing_method: 1: class ::Hash 2: def method_missing(name) 3: return self[name] if key? name 4: self.each { |k,v| return v if k.to_s.to_sym == name } 5: super.method_missing name 6: end 7: end This is a much cleaner method for my purposes.  Quite simply, it checks to see if there is a key with the given symbol, and if not, loop through the keys and attempt to find one. I am a Ruby noob, so if there is something I am overlooking, please let me know.

    Read the article

  • AppKata - Enter the next level of programming exercises

    - by Ralf Westphal
    Doing CodeKatas is all the rage lately. That´s great since widely accepted exercises are important to further the art. They provide a means of communication across platforms and allow to compare results which is part of any deliberate practice. But CodeKatas suffer from their size. They are intentionally small, so they can be done again and again. Repetition helps to build habit and to dig deeper. Over time ever new nuances of the problem or one´s approach become visible. On the other hand, though, their small size limits the methods, techniques, technologies that can be applied. To improve your TDD skills doing CodeKatas might be enough. But what about other skills? Developing on a software in a team, designing larger pieces of software, iteratively releasing software… all this and more is kinda hard to train using the tiny CodeKata problems. That´s why I´d like to present here another kind of kata I call Application Kata (or just AppKata). AppKatas are larger programming problems. They require the development of “whole” applications, i.e. not just one class or method, but bunches of classes accessible through a user interface. Also AppKata problems always are split into iterations. To get the most out of them, just look at the requirements of one iteration at a time. This way you´re closer to reality where requirements evolve in unexpected ways. So if you´re looking for more of a challenge for your software development skills, check out these AppKatas – or invent your own. AppKatas are platform independent like CodeKatas. Use whatever programming language and IDE you like. Also use whatever approach to software development you like. Just be sensitive to how easy it is to evolve your code across iterations. Reflect on what went well and what not. Compare your solutions with others. Or – for even more challenge – go for the “Coding Carousel” (see below). CSV Viewer An application to view CSV files. Sounds easy, but watch out! Requirements sometimes drastically change if the customer is happy with what you delivered. Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 (to come) Questionnaire If you like GUI programming, this AppKata might be for you. It´s about an app to let people fill out questionnaires. Also this problem might be interestin for you, if you´re into DDD. Iteration 1 Iteration 2 (to come) Iteration 3 (to come) Iteration 4 (to come) Tic Tac Toe For developers who like game programming. Although Tic Tac Toe is a trivial game, this AppKata poses some interesting infrastructure challenges. The GUI, however, stays simple; leave any 3D ambitions at home ;-) Iteration 1 Iteration 2 (to come) Iteration 3 (to come) Iteration 4 (to come) Iteration 5 (to come) Coding Carousel There are many ways you can do AppKatas. Work on them alone or in a team, pitch several devs against each other in an AppKata contest – or go around in a Coding Carousel. For the Coding Carousel you need at least 3 dev teams (regardless of size). All teams work on the same iteration at the same time. But here´s the trick: After each iteration the teams swap their code. Whatever they did for iteration n will be the basis for changes another team has to apply in iteration n+1. The code is going around the teams like in a carousel. I promise you, that´s gonna be fun! :-)

    Read the article

  • Help me to set samba and apache on my Ubuntu VM from Vista, starting from ping

    - by avastreg
    Ok the title is not so clear after all, so let's start with the problem description posting some points: i'm on Win Vista i have a Virtual Box Ubuntu 9.04 server (Virtual Machine) installed in windows i'm under Active Directory (maybe helps), with network 192.168.2.x After Ubuntu installation (LAMP), i have: Ubuntu Ip set to 10.0.2.15 (dhcp) Vista pings Ubuntu and Ubuntu pings Vista (only IPs, not names) Can't connect to Apache (default install ubuntu server) at the url h**p://10.0.2.15/ On Ubuntu, testing Apache by doing 'wget http://10.0.2.15/' works Tried to setup samba, writing a share def, but nothing, i can't access from Vista to Ubuntu My scope is: Setting up samba to work on files from windows Reaching apache to test web pages Ok i'm not completely noob (but i'm on the noob way anyway) and i've tried many solutions, so please try to help me; let's look together what went wrong :)

    Read the article

  • Emacs Lisp: how to set encoding for call-process

    - by RamyenHead
    I thought I knew how to set coding-system (or encoding): use process-coding-system-alist. Apparently, it's not working. ;; -*- coding: utf-8 -*- (require 'cl) (let ((process-coding-system-alist '("cygwin/bin/bash" . (utf-8-dos . utf-8-unix)))) (setq my-words (list "Lilo" "?_?" "_?" "?_" "?" "Stitch") my-cygwin-bash "C:/cygwin/bin/bash.exe" my-outbuf (get-buffer-create "*my cygwin bash echo test*") ) (with-current-buffer my-outbuf (goto-char (point-max)) (loop for word in my-words do (insert (concat "echo " word "\n")) (call-process my-cygwin-bash nil my-outbuf nil "-c" (concat "echo " word))) ) (display-buffer my-outbuf) ) Running the above code, the output is this: echo Lilo Lilo echo ?_? /usr/bin/bash: -c: line 0: unexpected EOF while looking for matching `"' /usr/bin/bash: -c: line 1: syntax error: unexpected end of file echo _? /usr/bin/bash: -c: line 0: unexpected EOF while looking for matching `"' /usr/bin/bash: -c: line 1: syntax error: unexpected end of file echo ?_ /usr/bin/bash: $'echo \346\267\205?': command not found echo ? /usr/bin/bash: -c: line 0: unexpected EOF while looking for matching `"' /usr/bin/bash: -c: line 1: syntax error: unexpected end of file echo Stitch Stitch Anything sent to cygwin in unicode is failing (MS Windows, Korean).

    Read the article

  • Design by contract: predict methods needed, discipline yourself and deal with code that comes to min

    - by fireeyedboy
    I like the idea of designing by contract a lot (at least, as far as I understand the principal). I believe it means you define intefaces first before you start implementing actual code, right? However, from my limited experience (3 OOP years now) I usually can't resist the urge to start coding pretty early, for several reasons: because my limited experience has shown me I am unable to predict what methods I will be needing in the interface, so I might as well start coding right away. or because I am simply too impatient to write out the whole interfaces first. or when I do try it, I still wind up implementing bits of code already, because I fear I might forget this or that imporant bit of code, that springs to mind when I am designing the interfaces. As you see, especially with the last two points, this leads to a very disorderly way of doing thing. Tasks get mixed up. I should draw a clear line between designing interfaces and actual coding. If you, unlike me, are a good/disciplined planner, as intended above, how do you: ...know the majority of methods you will be needing up front so well? Especially if it's components that implement stuff you are not familiar with yet. ...keep yourself from resisting the urge to start coding right away? ...deal with code that comes to mind when you are designing the intefaces?

    Read the article

  • jQuery selector for option tag value attribute returns null

    - by Ben
    Hello, I am trying to change the selected option in a select dropdown box with jQuery. I have it set so that it finds the hash tag at the end of the URL and based on that hash tag it changes the selected option in the select box. Most of my code is functional, it successfully finds the hash tag and executes the if statement that corresponds with it. However, when it goes to execute the "then" section of the statement when it goes to the selector for the option (which uses an attribute selector based on the value attribute of the option tag) it returns null. If figured this out with firebug, in the console it says that the selector is null. Here is my code: $(document).ready(function() { var $hash = window.location.hash if($hash == "#htmlcss") { $('option[value="HTML/CSS Coding"]').attr("selected","selected") } if($hash == "#php") { $('option[value="PHP Coding"]').attr("selected","selected") } if($hash == "#jscript") { $('option[value="Javascript and jQuery Coding"]').attr("selected","selected") } if($hash == "#improv") { $('option[value="General Website Improvements"]').attr("selected","selected") } if($hash == "#towp") { $('option[value="Website Conversion to Wordpress"]').attr("selected","selected") } if($hash == "#wptheme") { $('option[value="Wordpress Theme Design"]').attr("selected","selected") } if($hash == "#complete") { $('option[value="Complete Website Creation"]').attr("selected","selected") } if($hash == "#server") { $('option[value="Web Server Configuration"]').attr("selected","selected") } }); So to clarify, when I enter in a url that ends in the #php hash tag, for example, the desired action does not occur which would change the "PHP Coding" option to the selected one by using the "selected" html attribute however the selector for the particular option tag returns null. Is there a problem with my syntax or is my code not functioning in the way that I think it should? Thanks very much.

    Read the article

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #032

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Complete Series of Database Coding Standards and Guidelines SQL SERVER Database Coding Standards and Guidelines – Introduction SQL SERVER – Database Coding Standards and Guidelines – Part 1 SQL SERVER – Database Coding Standards and Guidelines – Part 2 SQL SERVER Database Coding Standards and Guidelines Complete List Download Explanation and Example – SELF JOIN When all of the data you require is contained within a single table, but data needed to extract is related to each other in the table itself. Examples of this type of data relate to Employee information, where the table may have both an Employee’s ID number for each record and also a field that displays the ID number of an Employee’s supervisor or manager. To retrieve the data tables are required to relate/join to itself. Insert Multiple Records Using One Insert Statement – Use of UNION ALL This is very interesting question I have received from new developer. How can I insert multiple values in table using only one insert? Now this is interesting question. When there are multiple records are to be inserted in the table following is the common way using T-SQL. Function to Display Current Week Date and Day – Weekly Calendar Straight blog post with script to find current week date and day based on the parameters passed in the function.  2008 In my beginning years, I have almost same confusion as many of the developer had in their earlier years. Here are two of the interesting question which I have attempted to answer in my early year. Even if you are experienced developer may be you will still like to read following two questions: Order Of Column In Index Order of Conditions in WHERE Clauses Example of DISTINCT in Aggregate Functions Have you ever used DISTINCT with the Aggregation Function? Here is a simple example about how users can do it. Create a Comma Delimited List Using SELECT Clause From Table Column Straight to script example where I explained how to do something easy and quickly. Compound Assignment Operators SQL SERVER 2008 has introduced new concept of Compound Assignment Operators. Compound Assignment Operators are available in many other programming languages for quite some time. Compound Assignment Operators is operator where variables are operated upon and assigned on the same line. PIVOT and UNPIVOT Table Examples Here is a very interesting question – the answer to the question can be YES or NO both. “If we PIVOT any table and UNPIVOT that table do we get our original table?” Read the blog post to get the explanation of the question above. 2009 What is Interim Table – Simple Definition of Interim Table The interim table is a table that is generated by joining two tables and not the final result table. In other words, when two tables are joined they create an interim table as resultset but the resultset is not final yet. It may be possible that more tables are about to join on the interim table, and more operations are still to be applied on that table (e.g. Order By, Having etc). Besides, it may be possible that there is no interim table; sometimes final table is what is generated when the query is run. 2010 Stored Procedure and Transactions If Stored Procedure is transactional then, it should roll back complete transactions when it encounters any errors. Well, that does not happen in this case, which proves that Stored Procedure does not only provide just the transactional feature to a batch of T-SQL. Generate Database Script for SQL Azure When talking about SQL Azure the most common complaint I hear is that the script generated from stand-along SQL Server database is not compatible with SQL Azure. This was true for some time for sure but not any more. If you have SQL Server 2008 R2 installed you can follow the guideline below to generate a script which is compatible with SQL Azure. Convert IN to EXISTS – Performance Talk It is NOT necessary that every time when IN is replaced by EXISTS it gives better performance. However, in our case listed above it does for sure give better performance. You can read about this subject in the associated blog post. Subquery or Join – Various Options – SQL Server Engine Knows the Best Every single time whenever there is a performance tuning exercise, I hear the conversation from developer where some prefer subquery and some prefer join. In this two part blog post, I explain the same in the detail with examples. Part 1 | Part 2 Merge Operations – Insert, Update, Delete in Single Execution MERGE is a new feature that provides an efficient way to do multiple DML operations. In earlier versions of SQL Server, we had to write separate statements to INSERT, UPDATE, or DELETE data based on certain conditions; however, at present, by using the MERGE statement, we can include the logic of such data changes in one statement that even checks when the data is matched and then just update it, and similarly, when the data is unmatched, it is inserted. 2011 Puzzle – Statistics are not updated but are Created Once Here is the quick scenario about my setup. Create Table Insert 1000 Records Check the Statistics Now insert 10 times more 10,000 indexes Check the Statistics – it will be NOT updated – WHY? Question to You – When to use Function and When to use Stored Procedure Personally, I believe that they are both different things - they cannot be compared. I can say, it will be like comparing apples and oranges. Each has its own unique use. However, they can be used interchangeably at many times and in real life (i.e., production environment). I have personally seen both of these being used interchangeably many times. This is the precise reason for asking this question. 2012 In year 2012 I had two interesting series ran on the blog. If there is no fun in learning, the learning becomes a burden. For the same reason, I had decided to build a three part quiz around SEQUENCE. The quiz was to identify the next value of the sequence. I encourage all of you to take part in this fun quiz. Guess the Next Value – Puzzle 1 Guess the Next Value – Puzzle 2 Guess the Next Value – Puzzle 3 Guess the Next Value – Puzzle 4 Simple Example to Configure Resource Governor – Introduction to Resource Governor Resource Governor is a feature which can manage SQL Server Workload and System Resource Consumption. We can limit the amount of CPU and memory consumption by limiting /governing /throttling on the SQL Server. If there are different workloads running on SQL Server and each of the workload needs different resources or when workloads are competing for resources with each other and affecting the performance of the whole server resource governor is a very important task. Tricks to Replace SELECT * with Column Names – SQL in Sixty Seconds #017 – Video  Retrieves unnecessary columns and increases network traffic When a new columns are added views needs to be refreshed manually Leads to usage of sub-optimal execution plan Uses clustered index in most of the cases instead of using optimal index It is difficult to debug SQL SERVER – Load Generator – Free Tool From CodePlex The best part of this SQL Server Load Generator is that users can run multiple simultaneous queries again SQL Server using different login account and different application name. The interface of the tool is extremely easy to use and very intuitive as well. A Puzzle – Swap Value of Column Without Case Statement Let us assume there is a single column in the table called Gender. The challenge is to write a single update statement which will flip or swap the value in the column. For example if the value in the gender column is ‘male’ swap it with ‘female’ and if the value is ‘female’ swap it with ‘male’. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • How to create a folder for each item in a directory?

    - by Adrian Andronic
    I'm having trouble making folders that I create go where I want them to go. For each file in a given folder, I want to create a new folder, then put that file in the new folder. My problem is that the new folders I create are being put in the parent directory, not the one I want. My example: def createFolder(): dir_name = 'C:\\Users\\Adrian\\Entertainment\\Coding\\Test Folder' files = os.listdir(dir_name) for i in files: os.mkdir(i) Let's say that my files in that directory are Hello.txt and Goodbye.txt. When I run the script, it makes new folders for these files, but puts them one level above, in 'C:\Users\Adrian\Entertainment\Coding. How do I make it so they are created in the same place as the files, AKA 'C:\Users\Adrian\Entertainment\Coding\Test Folder'?

    Read the article

< Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >