Search Results

Search found 4160 results on 167 pages for 'continuation passing styl'.

Page 48/167 | < Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >

  • vb.net sqlite how to loop through selected records and pass each record as a parameter to another fu

    - by mazrabul
    Hi, I have a sqlite table with following fields: Langauge level hours German 2 50 French 3 40 English 1 60 German 1 10 English 2 50 English 3 60 German 1 20 French 2 40 I want to loop through the records based on language and other conditions and then pass the current selected record to a different function. So I have the following mixture of actual code and psudo code. I need help with converting the psudo code to actual code, please. I am finding it difficult to do so. Here is what I have: Private sub mainp() Dim oslcConnection As New SQLite.SQLiteConnection Dim oslcCommand As SQLite.SQLiteCommand Dim langs() As String = {"German", "French", "English"} Dim i as Integer = 0 oslcConnection.ConnectionString = "Data Source=" & My.Settings.dbFullPath & ";" oslcConnection.Open() oslcCommand = oslcConnection.CreateCommand Do While i <= langs.count If langs(i) = "German" Then oslcCommand.CommandText = "SELECT * FROM table WHERE language = '" & langs(i) & "';" For each record selected 'psudo code If level = 1 Then 'psudo code update level to 2 'psudo code minorp(currentRecord) 'psudo code: calling minorp function and passing the whole record as a parameter End If 'psudo code If level = 2 Then 'psudo code update level to 3 'psudo code minorp(currentRecord) 'psudo code: calling minorp function and passing the whole record as a parameter End If 'psudo code Next 'psudo code End If If langs(i) = "French" Then oslcCommand.CommandText = "SELECT * FROM table WHERE language = '" & langs(i) & "';" For each record selected 'psudo code If level = 1 Then 'psudo code update level to 2 'psudo code minorp(currentRecord) 'psudo code: calling minorp function and passing the whole record as a parameter End If 'psudo code If level = 2 Then 'psudo code update level to 3 'psudo code minorp(currentRecord) 'psudo code: calling minorp function and passing the whole record as a parameter End If 'psudo code Next 'psudo code End If Loop End Sub Many thanks for your help.

    Read the article

  • How to pass common arguments to Perl modules

    - by Leonard
    I'm not thrilled with the argument-passing architecture I'm evolving for the (many) Perl scripts that have been developed for some scripts that call various Hadoop MapReduce jobs. There are currently 8 scripts (of the form run_something.pl) that are run from cron. (And more on the way ... we expect anywhere from 1 to 3 more for every function we add to hadoop.) Each of these have about 6 identical command-line parameters, and a couple command line parameters that are similar, all specified with Euclid. The implementations are in a dozen .pm modules. Some of which are common, and others of which are unique.... Currently I'm passing the args globally to each module ... Inside run_something.pl I have: set_common_args (%ARGV); set_something_args (%ARGV); And inside Something.pm I have sub set_something_args { (%MYARGS) =@_; } So then I can do if ( $MYARGS{'--needs_more_beer'} ) { $beer++; } I'm seeing that I'm probably going to have additional "common" files that I'll want to pass args to, so I'll have three or four set_xxx_args calls at the top of each run_something.pl, and it just doesn't seem too elegant. On the other hand, it beats passing the whole stupid argument array down the call chain, and choosing and passing individual elements down the call chain is (a) too much work (b) error-prone (c) doesn't buy much. In lots of ways what I'm doing is just object-oriented design without the object-oriented language trappings, and it looks uglier without said trappings, but nonetheless ... Anyone have thoughts or ideas?

    Read the article

  • Tomcat does not pick up the class file - the JSP file is not displayed

    - by blueSky
    I have a Java code which is a controller for a jsp page, called: HomeController.java. Code is as follows: @Controller public class HomeController { protected final transient Log log = LogFactory.getLog(getClass()); @RequestMapping(value = "/mypage") public String home() { System.out.println("HomeController: Passing through..."); return "home"; } } There is nothing especial in the jsp page: home.jsp. If I go to this url: http://localhost:8080/adcopyqueue/mypage I can view mypage and everything works fine. Also in the tomcat Dos page I can see the comment: HomeController: Passing through... As expected. Now under the same directory that I have HomeController.java, I've created another file called: LoginController.java. Following is the code: @Controller public class LoginController { protected final transient Log log = LogFactory.getLog(getClass()); @RequestMapping(value = "/loginpage") public String login() { System.out.println("LoginController: Passing through..."); return "login"; } } And under the same place which I have home.jsp, I've created login.jsp. Also under tomcat folders, LoginController.class exists under the same folder that HomeController.class exists and login.jsp exists under the same folder which home.jsp exists. But when I go to this url: http://localhost:8080/adcopyqueue/loginpage Nothing is displayed! I think tomcat does not pick up LoginController.class b/c on the tomcat Dos window, I do NOT see this comment: LoginController: Passing through... Instead I see following which I do not know what do they mean? [ INFO] [http-8080-1 01:43:45] (AppInfo.java:populateAppInfo:34) got manifest [ INFO] [http-8080-1 01:43:45] (AppInfo.java:populateAppInfo:36) manifest entrie s 8 The structure and the code for HomeController.java and LoginController.java plus the jsp files match. I have no idea why tomcat sees one of the files and not the other? Clean build did not help. Does anybody have any idea? Any help is greatly appraciated.

    Read the article

  • Understanding C# async / await (2) Awaitable / Awaiter Pattern

    - by Dixin
    What is awaitable Part 1 shows that any Task is awaitable. Actually there are other awaitable types. Here is an example: Task<int> task = new Task<int>(() => 0); int result = await task.ConfigureAwait(false); // Returns a ConfiguredTaskAwaitable<TResult>. The returned ConfiguredTaskAwaitable<TResult> struct is awaitable. And it is not Task at all: public struct ConfiguredTaskAwaitable<TResult> { private readonly ConfiguredTaskAwaiter m_configuredTaskAwaiter; internal ConfiguredTaskAwaitable(Task<TResult> task, bool continueOnCapturedContext) { this.m_configuredTaskAwaiter = new ConfiguredTaskAwaiter(task, continueOnCapturedContext); } public ConfiguredTaskAwaiter GetAwaiter() { return this.m_configuredTaskAwaiter; } } It has one GetAwaiter() method. Actually in part 1 we have seen that Task has GetAwaiter() method too: public class Task { public TaskAwaiter GetAwaiter() { return new TaskAwaiter(this); } } public class Task<TResult> : Task { public new TaskAwaiter<TResult> GetAwaiter() { return new TaskAwaiter<TResult>(this); } } Task.Yield() is a another example: await Task.Yield(); // Returns a YieldAwaitable. The returned YieldAwaitable is not Task either: public struct YieldAwaitable { public YieldAwaiter GetAwaiter() { return default(YieldAwaiter); } } Again, it just has one GetAwaiter() method. In this article, we will look at what is awaitable. The awaitable / awaiter pattern By observing different awaitable / awaiter types, we can tell that an object is awaitable if It has a GetAwaiter() method (instance method or extension method); Its GetAwaiter() method returns an awaiter. An object is an awaiter if: It implements INotifyCompletion or ICriticalNotifyCompletion interface; It has an IsCompleted, which has a getter and returns a Boolean; it has a GetResult() method, which returns void, or a result. This awaitable / awaiter pattern is very similar to the iteratable / iterator pattern. Here is the interface definitions of iteratable / iterator: public interface IEnumerable { IEnumerator GetEnumerator(); } public interface IEnumerator { object Current { get; } bool MoveNext(); void Reset(); } public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IDisposable, IEnumerator { T Current { get; } } In case you are not familiar with the out keyword, please find out the explanation in Understanding C# Covariance And Contravariance (2) Interfaces. The “missing” IAwaitable / IAwaiter interfaces Similar to IEnumerable and IEnumerator interfaces, awaitable / awaiter can be visualized by IAwaitable / IAwaiter interfaces too. This is the non-generic version: public interface IAwaitable { IAwaiter GetAwaiter(); } public interface IAwaiter : INotifyCompletion // or ICriticalNotifyCompletion { // INotifyCompletion has one method: void OnCompleted(Action continuation); // ICriticalNotifyCompletion implements INotifyCompletion, // also has this method: void UnsafeOnCompleted(Action continuation); bool IsCompleted { get; } void GetResult(); } Please notice GetResult() returns void here. Task.GetAwaiter() / TaskAwaiter.GetResult() is of such case. And this is the generic version: public interface IAwaitable<out TResult> { IAwaiter<TResult> GetAwaiter(); } public interface IAwaiter<out TResult> : INotifyCompletion // or ICriticalNotifyCompletion { bool IsCompleted { get; } TResult GetResult(); } Here the only difference is, GetResult() return a result. Task<TResult>.GetAwaiter() / TaskAwaiter<TResult>.GetResult() is of this case. Please notice .NET does not define these IAwaitable / IAwaiter interfaces at all. As an UI designer, I guess the reason is, IAwaitable interface will constraint GetAwaiter() to be instance method. Actually C# supports both GetAwaiter() instance method and GetAwaiter() extension method. Here I use these interfaces only for better visualizing what is awaitable / awaiter. Now, if looking at above ConfiguredTaskAwaitable / ConfiguredTaskAwaiter, YieldAwaitable / YieldAwaiter, Task / TaskAwaiter pairs again, they all “implicitly” implement these “missing” IAwaitable / IAwaiter interfaces. In the next part, we will see how to implement awaitable / awaiter. Await any function / action In C# await cannot be used with lambda. This code: int result = await (() => 0); will cause a compiler error: Cannot await 'lambda expression' This is easy to understand because this lambda expression (() => 0) may be a function or a expression tree. Obviously we mean function here, and we can tell compiler in this way: int result = await new Func<int>(() => 0); It causes an different error: Cannot await 'System.Func<int>' OK, now the compiler is complaining the type instead of syntax. With the understanding of the awaitable / awaiter pattern, Func<TResult> type can be easily made into awaitable. GetAwaiter() instance method, using IAwaitable / IAwaiter interfaces First, similar to above ConfiguredTaskAwaitable<TResult>, a FuncAwaitable<TResult> can be implemented to wrap Func<TResult>: internal struct FuncAwaitable<TResult> : IAwaitable<TResult> { private readonly Func<TResult> function; public FuncAwaitable(Func<TResult> function) { this.function = function; } public IAwaiter<TResult> GetAwaiter() { return new FuncAwaiter<TResult>(this.function); } } FuncAwaitable<TResult> wrapper is used to implement IAwaitable<TResult>, so it has one instance method, GetAwaiter(), which returns a IAwaiter<TResult>, which wraps that Func<TResult> too. FuncAwaiter<TResult> is used to implement IAwaiter<TResult>: public struct FuncAwaiter<TResult> : IAwaiter<TResult> { private readonly Task<TResult> task; public FuncAwaiter(Func<TResult> function) { this.task = new Task<TResult>(function); this.task.Start(); } bool IAwaiter<TResult>.IsCompleted { get { return this.task.IsCompleted; } } TResult IAwaiter<TResult>.GetResult() { return this.task.Result; } void INotifyCompletion.OnCompleted(Action continuation) { new Task(continuation).Start(); } } Now a function can be awaited in this way: int result = await new FuncAwaitable<int>(() => 0); GetAwaiter() extension method As IAwaitable shows, all that an awaitable needs is just a GetAwaiter() method. In above code, FuncAwaitable<TResult> is created as a wrapper of Func<TResult> and implements IAwaitable<TResult>, so that there is a  GetAwaiter() instance method. If a GetAwaiter() extension method  can be defined for Func<TResult>, then FuncAwaitable<TResult> is no longer needed: public static class FuncExtensions { public static IAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { return new FuncAwaiter<TResult>(function); } } So a Func<TResult> function can be directly awaited: int result = await new Func<int>(() => 0); Using the existing awaitable / awaiter - Task / TaskAwaiter Remember the most frequently used awaitable / awaiter - Task / TaskAwaiter. With Task / TaskAwaiter, FuncAwaitable / FuncAwaiter are no longer needed: public static class FuncExtensions { public static TaskAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { Task<TResult> task = new Task<TResult>(function); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter<TResult>. } } Similarly, with this extension method: public static class ActionExtensions { public static TaskAwaiter GetAwaiter(this Action action) { Task task = new Task(action); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter. } } an action can be awaited as well: await new Action(() => { }); Now any function / action can be awaited: await new Action(() => HelperMethods.IO()); // or: await new Action(HelperMethods.IO); If function / action has parameter(s), closure can be used: int arg0 = 0; int arg1 = 1; int result = await new Action(() => HelperMethods.IO(arg0, arg1)); Using Task.Run() The above code is used to demonstrate how awaitable / awaiter can be implemented. Because it is a common scenario to await a function / action, so .NET provides a built-in API: Task.Run(): public class Task2 { public static Task Run(Action action) { // The implementation is similar to: Task task = new Task(action); task.Start(); return task; } public static Task<TResult> Run<TResult>(Func<TResult> function) { // The implementation is similar to: Task<TResult> task = new Task<TResult>(function); task.Start(); return task; } } In reality, this is how we await a function: int result = await Task.Run(() => HelperMethods.IO(arg0, arg1)); and await a action: await Task.Run(() => HelperMethods.IO());

    Read the article

  • The Execute SQL Task

    In this article we are going to take you through the Execute SQL Task in SQL Server Integration Services for SQL Server 2005 (although it appies just as well to SQL Server 2008).  We will be covering all the essentials that you will need to know to effectively use this task and make it as flexible as possible. The things we will be looking at are as follows: A tour of the Task. The properties of the Task. After looking at these introductory topics we will then get into some examples. The examples will show different types of usage for the task: Returning a single value from a SQL query with two input parameters. Returning a rowset from a SQL query. Executing a stored procedure and retrieveing a rowset, a return value, an output parameter value and passing in an input parameter. Passing in the SQL Statement from a variable. Passing in the SQL Statement from a file. Tour Of The Task Before we can start to use the Execute SQL Task in our packages we are going to need to locate it in the toolbox. Let's do that now. Whilst in the Control Flow section of the package expand your toolbox and locate the Execute SQL Task. Below is how we found ours. Now drag the task onto the designer. As you can see from the following image we have a validation error appear telling us that no connection manager has been assigned to the task. This can be easily remedied by creating a connection manager. There are certain types of connection manager that are compatable with this task so we cannot just create any connection manager and these are detailed in a few graphics time. Double click on the task itself to take a look at the custom user interface provided to us for this task. The task will open on the general tab as shown below. Take a bit of time to have a look around here as throughout this article we will be revisting this page many times. Whilst on the general tab, drop down the combobox next to the ConnectionType property. In here you will see the types of connection manager which this task will accept. As with SQL Server 2000 DTS, SSIS allows you to output values from this task in a number of formats. Have a look at the combobox next to the Resultset property. The major difference here is the ability to output into XML. If you drop down the combobox next to the SQLSourceType property you will see the ways in which you can pass a SQL Statement into the task itself. We will have examples of each of these later on but certainly when we saw these for the first time we were very excited. Next to the SQLStatement property if you click in the empty box next to it you will see ellipses appear. Click on them and you will see the very basic query editor that becomes available to you. Alternatively after you have specified a connection manager for the task you can click on the Build Query button to bring up a completely different query editor. This is slightly inconsistent. Once you've finished looking around the general tab, move on to the next tab which is the parameter mapping tab. We shall, again, be visiting this tab throughout the article but to give you an initial heads up this is where you define the input, output and return values from your task. Note this is not where you specify the resultset. If however you now move on to the ResultSet tab this is where you define what variable will receive the output from your SQL Statement in whatever form that is. Property Expressions are one of the most amazing things to happen in SSIS and they will not be covered here as they deserve a whole article to themselves. Watch out for this as their usefulness will astound you. For a more detailed discussion of what should be the parameter markers in the SQL Statements on the General tab and how to map them to variables on the Parameter Mapping tab see Working with Parameters and Return Codes in the Execute SQL Task. Task Properties There are two places where you can specify the properties for your task. One is in the task UI itself and the other is in the property pane which will appear if you right click on your task and select Properties from the context menu. We will be doing plenty of property setting in the UI later so let's take a moment to have a look at the property pane. Below is a graphic showing our properties pane. Now we shall take you through all the properties and tell you exactly what they mean. A lot of these properties you will see across all tasks as well as the package because of everything's base structure The Container. BypassPrepare Should the statement be prepared before sending to the connection manager destination (True/False) Connection This is simply the name of the connection manager that the task will use. We can get this from the connection manager tray at the bottom of the package. DelayValidation Really interesting property and it tells the task to not validate until it actually executes. A usage for this may be that you are operating on table yet to be created but at runtime you know the table will be there. Description Very simply the description of your Task. Disable Should the task be enabled or not? You can also set this through a context menu by right clicking on the task itself. DisableEventHandlers As a result of events that happen in the task, should the event handlers for the container fire? ExecValueVariable The variable assigned here will get or set the execution value of the task. Expressions Expressions as we mentioned earlier are a really powerful tool in SSIS and this graphic below shows us a small peek of what you can do. We select a property on the left and assign an expression to the value of that property on the right causing the value to be dynamically changed at runtime. One of the most obvious uses of this is that the property value can be built dynamically from within the package allowing you a great deal of flexibility FailPackageOnFailure If this task fails does the package? FailParentOnFailure If this task fails does the parent container? A task can he hosted inside another container i.e. the For Each Loop Container and this would then be the parent. ForcedExecutionValue This property allows you to hard code an execution value for the task. ForcedExecutionValueType What is the datatype of the ForcedExecutionValue? ForceExecutionResult Force the task to return a certain execution result. This could then be used by the workflow constraints. Possible values are None, Success, Failure and Completion. ForceExecutionValue Should we force the execution result? IsolationLevel This is the transaction isolation level of the task. IsStoredProcedure Certain optimisations are made by the task if it knows that the query is a Stored Procedure invocation. The docs say this will always be false unless the connection is an ADO connection. LocaleID Gets or sets the LocaleID of the container. LoggingMode Should we log for this container and what settings should we use? The value choices are UseParentSetting, Enabled and Disabled. MaximumErrorCount How many times can the task fail before we call it a day? Name Very simply the name of the task. ResultSetType How do you want the results of your query returned? The choices are ResultSetType_None, ResultSetType_SingleRow, ResultSetType_Rowset and ResultSetType_XML. SqlStatementSource Your Query/SQL Statement. SqlStatementSourceType The method of specifying the query. Your choices here are DirectInput, FileConnection and Variables TimeOut How long should the task wait to receive results? TransactionOption How should the task handle being asked to join a transaction? Usage Examples As we move through the examples we will only cover in them what we think you must know and what we think you should see. This means that some of the more elementary steps like setting up variables will be covered in the early examples but skipped and simply referred to in later ones. All these examples used the AventureWorks database that comes with SQL Server 2005. Returning a Single Value, Passing in Two Input Parameters So the first thing we are going to do is add some variables to our package. The graphic below shows us those variables having been defined. Here the CountOfEmployees variable will be used as the output from the query and EndDate and StartDate will be used as input parameters. As you can see all these variables have been scoped to the package. Scoping allows us to have domains for variables. Each container has a scope and remember a package is a container as well. Variable values of the parent container can be seen in child containers but cannot be passed back up to the parent from a child. Our following graphic has had a number of changes made. The first of those changes is that we have created and assigned an OLEDB connection manager to this Task ExecuteSQL Task Connection. The next thing is we have made sure that the SQLSourceType property is set to Direct Input as we will be writing in our statement ourselves. We have also specified that only a single row will be returned from this query. The expressions we typed in was: SELECT COUNT(*) AS CountOfEmployees FROM HumanResources.Employee WHERE (HireDate BETWEEN ? AND ?) Moving on now to the Parameter Mapping tab this is where we are going to tell the task about our input paramaters. We Add them to the window specifying their direction and datatype. A quick word here about the structure of the variable name. As you can see SSIS has preceeded the variable with the word user. This is a default namespace for variables but you can create your own. When defining your variables if you look at the variables window title bar you will see some icons. If you hover over the last one on the right you will see it says "Choose Variable Columns". If you click the button you will see a list of checkbox options and one of them is namespace. after checking this you will see now where you can define your own namespace. The next tab, result set, is where we need to get back the value(s) returned from our statement and assign to a variable which in our case is CountOfEmployees so we can use it later perhaps. Because we are only returning a single value then if you remember from earlier we are allowed to assign a name to the resultset but it must be the name of the column (or alias) from the query. A really cool feature of Business Intelligence Studio being hosted by Visual Studio is that we get breakpoint support for free. In our package we set a Breakpoint so we can break the package and have a look in a watch window at the variable values as they appear to our task and what the variable value of our resultset is after the task has done the assignment. Here's that window now. As you can see the count of employess that matched the data range was 2. Returning a Rowset In this example we are going to return a resultset back to a variable after the task has executed not just a single row single value. There are no input parameters required so the variables window is nice and straight forward. One variable of type object. Here is the statement that will form the soure for our Resultset. select p.ProductNumber, p.name, pc.Name as ProductCategoryNameFROM Production.ProductCategory pcJOIN Production.ProductSubCategory pscON pc.ProductCategoryID = psc.ProductCategoryIDJOIN Production.Product pON psc.ProductSubCategoryID = p.ProductSubCategoryID We need to make sure that we have selected Full result set as the ResultSet as shown below on the task's General tab. Because there are no input parameters we can skip the parameter mapping tab and move straight to the Result Set tab. Here we need to Add our variable defined earlier and map it to the result name of 0 (remember we covered this earlier) Once we run the task we can again set a breakpoint and have a look at the values coming back from the task. In the following graphic you can see the result set returned to us as a COM object. We can do some pretty interesting things with this COM object and in later articles that is exactly what we shall be doing. Return Values, Input/Output Parameters and Returning a Rowset from a Stored Procedure This example is pretty much going to give us a taste of everything. We have already covered in the previous example how to specify the ResultSet to be a Full result set so we will not cover it again here. For this example we are going to need 4 variables. One for the return value, one for the input parameter, one for the output parameter and one for the result set. Here is the statement we want to execute. Note how much cleaner it is than if you wanted to do it using the current version of DTS. In the Parameter Mapping tab we are going to Add our variables and specify their direction and datatypes. In the Result Set tab we can now map our final variable to the rowset returned from the stored procedure. It really is as simple as that and we were amazed at how much easier it is than in DTS 2000. Passing in the SQL Statement from a Variable SSIS as we have mentioned is hugely more flexible than its predecessor and one of the things you will notice when moving around the tasks and the adapters is that a lot of them accept a variable as an input for something they need. The ExecuteSQL task is no different. It will allow us to pass in a string variable as the SQL Statement. This variable value could have been set earlier on from inside the package or it could have been populated from outside using a configuration. The ResultSet property is set to single row and we'll show you why in a second when we look at the variables. Note also the SQLSourceType property. Here's the General Tab again. Looking at the variable we have in this package you can see we have only two. One for the return value from the statement and one which is obviously for the statement itself. Again we need to map the Result name to our variable and this can be a named Result Name (The column name or alias returned by the query) and not 0. The expected result into our variable should be the amount of rows in the Person.Contact table and if we look in the watch window we see that it is.   Passing in the SQL Statement from a File The final example we are going to show is a really interesting one. We are going to pass in the SQL statement to the task by using a file connection manager. The file itself contains the statement to run. The first thing we are going to need to do is create our file connection mananger to point to our file. Click in the connections tray at the bottom of the designer, right click and choose "New File Connection" As you can see in the graphic below we have chosen to use an existing file and have passed in the name as well. Have a look around at the other "Usage Type" values available whilst you are here. Having set that up we can now see in the connection manager tray our file connection manager sitting alongside our OLE-DB connection we have been using for the rest of these examples. Now we can go back to the familiar General Tab to set up how the task will accept our file connection as the source. All the other properties in this task are set up exactly as we have been doing for other examples depending on the options chosen so we will not cover them again here.   We hope you will agree that the Execute SQL Task has changed considerably in this release from its DTS predecessor. It has a lot of options available but once you have configured it a few times you get to learn what needs to go where. We hope you have found this article useful.

    Read the article

  • Installing Ruby 1.8.6 via RVM on Snow Leopard

    - by Neil Middleton
    I'm trying to install ruby 1.8.6 onto Snow Leopard - but am getting some make errors: ossl_x509revoked.c: In function ‘ossl_x509revoked_new’: ossl_x509revoked.c:48: warning: passing argument 2 of ‘ASN1_dup’ from incompatible pointer type ossl_x509revoked.c: In function ‘DupX509RevokedPtr’: ossl_x509revoked.c:64: warning: passing argument 2 of ‘ASN1_dup’ from incompatible pointer type readline.c: In function ‘username_completion_proc_call’: readline.c:730: error: ‘username_completion_function’ undeclared (first use in this function) readline.c:730: error: (Each undeclared identifier is reported only once readline.c:730: error: for each function it appears in.) make[1]: *** [readline.o] Error 1 make: *** [all] Error 1 Anyone have any ideas?

    Read the article

  • Installing Ruby 1.8.6 via RVM on Snow Leopard

    - by Neil Middleton
    I'm trying to install ruby 1.8.6 onto Snow Leopard - but am getting some make errors: ossl_x509revoked.c: In function ‘ossl_x509revoked_new’: ossl_x509revoked.c:48: warning: passing argument 2 of ‘ASN1_dup’ from incompatible pointer type ossl_x509revoked.c: In function ‘DupX509RevokedPtr’: ossl_x509revoked.c:64: warning: passing argument 2 of ‘ASN1_dup’ from incompatible pointer type readline.c: In function ‘username_completion_proc_call’: readline.c:730: error: ‘username_completion_function’ undeclared (first use in this function) readline.c:730: error: (Each undeclared identifier is reported only once readline.c:730: error: for each function it appears in.) make[1]: *** [readline.o] Error 1 make: *** [all] Error 1 Anyone have any ideas?

    Read the article

  • Flex Validator -- Show Red Error Border on DataGrid Cell

    - by gmoniey
    I can successfully add a validator on an item in my datagrid, by passing in the particular element in the dataProvider to the validator, but I can't get the red border to show up around the cell if the validation fails. I have stepped through the validator, and confirmed that it is passing back a failure, but I can't figure out why the red error border doesn't show up. I have a feeling its because I am passing the item in my dataProvider as the validator source, rather than the 'cell' item, but I can't find a way to access the cell. Thanks.

    Read the article

  • Function returns CSV File: How to go about checking it ?

    - by Rachel
    I am doing something like: $outputFile = getCurrentDBSnapshot($data); where $data is the resource stream that am passing in, basically from command prompt am passing an file and am opening it using fopen for writing with 'w+' permissions, now getCurrentDBSnapshot would get the current state of a table and would update the $data csv file, so basically $outputFile would be updated with the current state of database table, now I want to var_dump or print the value of $outputFile to see the data present into it. But when I do $this->fout = fopen($outputFile,'r') or die('Cannot open file'); $test = fgetcsv($outputFile,5000,":"); var_dump($test); It gives me an error saying that it expects parameter 1 to be a string type and am passing resource. My goal to see the contains of $outputFile and so my question is that How can I see the contains present in $outputFile or how can I see what getcurrentDBSnapshot function is returning me ?

    Read the article

  • How to easily pass a very long string to a worker process under Windows?

    - by sharptooth
    My native C++ Win32 program spawns a worker process and needs to pass a huge configuration string to it. Currently it just passes the string as a command line to CreateProcess(). The problem is the string is getting longer and now it doesn't fit into the 32K characters limitation imposed by Windows. Of course I could do something like complicating the worker process start - I use the RPC server in it anyway and I could introduce an RPC request for passing the configuration string, but this will require a lot of changes and make the solution not so reliable. Saving the data into a file for passing is also not very elegant - the file could be left on the filesystem and become garbage. What other simple ways are there for passing long strings to a worker process started by my program on Windows?

    Read the article

  • Passing a template func. as a func. ptr to an overloaded func. - is there a way to compile this code

    - by LoudNPossiblyRight
    Just a general c++ curiosity: This code below shouldn't compile because it's impossible to know which to instantiate: temp(const int&) or temp(const string&) when calling func(temp) - this part i know. What i would like to know is if there is anything i can do to the line marked PASSINGLINE to get the compiler to deduce that i want FPTR1 called and not FPTR2 ? #include<iostream> using std::cout; using std::endl; /*FPTR1*/ void func(void(*fptr)(const int&)){ fptr(1001001);} /*FPTR2*/ void func(void(*fptr)(const string&)){ fptr("1001001"); } template <typename T> void temp(const T &t){ cout << t << endl; } int main(){ /*PASSINGLINE*/ func(temp); return 0; } Thank you.

    Read the article

  • Django: request object to template context transparancy

    - by anars
    Hi! I want to include an initialized data structure in my request object, making it accessible in the context object from my templates. What I'm doing right now is passing it manually and tiresome within all my views: render_to_response(...., ( {'menu': RequestContext(request)})) The request object contains the key,value pair which is injected using a custom context processor. While this works, I had hoped there was a more generic way of passing selected parts of the request object to the template context. I've tried passing it by generic views, but as it turns out the request object isn't instantiated when parsing the urlpatterns list.

    Read the article

  • JS Variable inside another variable

    - by Tusk
    I have a function that would use other variables, depending on what has been passed. Like this = ActionBar(slot) slot contains "one". and I would like to create a call inside that like object.slot.name but it should convert it before hand to make the command look like object.one.name. Is there a way to do this in javascript/jquery? I remember vaguely that some other language does this as {slot} or something like that. Sorry if this question was already asked, I've checked google and stackoverflow too, but didn't find an answer. Also I'd like to know what's the proper programming term for this kind of variable passing? Edited it cause of misunderstandings. I'm looking into OOP js, so object is an object, one is an object, and name is an attribute, but when passing I'm passing "one" as a string to the function. Tried eval, it doesn't work while dotted with an object.

    Read the article

  • Pass structured data from C++ app to ASP.NET web service.

    - by Odrade
    I have Visual C++ application that needs to communicate with a ASP.NET web service. Specifically, the app needs to pass structured data (e.g. objects that contain lists of structures, etc) as a parameter to one of the service methods. The C++ application is already generating an xml document that contains this data. The document is generating using an xml library, so it should always well-formed. What is a good method for passing this data to the web service? I'm thinking about passing the document to the web service as a string parameter, then deserializing to a .NET object based on an xsd. But, I hear that passing an xml doc as a string parameter is not recommended. So, my questions: What are the pitfalls associated with sending the document as a string parameter, assuming that the document itself is always well-formed? Assuming the above is a bad idea, what are some good alternate approaches?

    Read the article

  • Parallelism in .NET – Part 17, Think Continuations, not Callbacks

    - by Reed
    In traditional asynchronous programming, we’d often use a callback to handle notification of a background task’s completion.  The Task class in the Task Parallel Library introduces a cleaner alternative to the traditional callback: continuation tasks. Asynchronous programming methods typically required callback functions.  For example, MSDN’s Asynchronous Delegates Programming Sample shows a class that factorizes a number.  The original method in the example has the following signature: public static bool Factorize(int number, ref int primefactor1, ref int primefactor2) { //... .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, calling this is quite “tricky”, even if we modernize the sample to use lambda expressions via C# 3.0.  Normally, we could call this method like so: int primeFactor1 = 0; int primeFactor2 = 0; bool answer = Factorize(10298312, ref primeFactor1, ref primeFactor2); Console.WriteLine("{0}/{1} [Succeeded {2}]", primeFactor1, primeFactor2, answer); If we want to make this operation run in the background, and report to the console via a callback, things get tricker.  First, we need a delegate definition: public delegate bool AsyncFactorCaller( int number, ref int primefactor1, ref int primefactor2); Then we need to use BeginInvoke to run this method asynchronously: int primeFactor1 = 0; int primeFactor2 = 0; AsyncFactorCaller caller = new AsyncFactorCaller(Factorize); caller.BeginInvoke(10298312, ref primeFactor1, ref primeFactor2, result => { int factor1 = 0; int factor2 = 0; bool answer = caller.EndInvoke(ref factor1, ref factor2, result); Console.WriteLine("{0}/{1} [Succeeded {2}]", factor1, factor2, answer); }, null); This works, but is quite difficult to understand from a conceptual standpoint.  To combat this, the framework added the Event-based Asynchronous Pattern, but it isn’t much easier to understand or author. Using .NET 4’s new Task<T> class and a continuation, we can dramatically simplify the implementation of the above code, as well as make it much more understandable.  We do this via the Task.ContinueWith method.  This method will schedule a new Task upon completion of the original task, and provide the original Task (including its Result if it’s a Task<T>) as an argument.  Using Task, we can eliminate the delegate, and rewrite this code like so: var background = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); background.ContinueWith(task => Console.WriteLine("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result)); This is much simpler to understand, in my opinion.  Here, we’re explicitly asking to start a new task, then continue the task with a resulting task.  In our case, our method used ref parameters (this was from the MSDN Sample), so there is a little bit of extra boiler plate involved, but the code is at least easy to understand. That being said, this isn’t dramatically shorter when compared with our C# 3 port of the MSDN code above.  However, if we were to extend our requirements a bit, we can start to see more advantages to the Task based approach.  For example, supposed we need to report the results in a user interface control instead of reporting it to the Console.  This would be a common operation, but now, we have to think about marshaling our calls back to the user interface.  This is probably going to require calling Control.Invoke or Dispatcher.Invoke within our callback, forcing us to specify a delegate within the delegate.  The maintainability and ease of understanding drops.  However, just as a standard Task can be created with a TaskScheduler that uses the UI synchronization context, so too can we continue a task with a specific context.  There are Task.ContinueWith method overloads which allow you to provide a TaskScheduler.  This means you can schedule the continuation to run on the UI thread, by simply doing: Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }).ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), TaskScheduler.FromCurrentSynchronizationContext()); This is far more understandable than the alternative.  By using Task.ContinueWith in conjunction with TaskScheduler.FromCurrentSynchronizationContext(), we get a simple way to push any work onto a background thread, and update the user interface on the proper UI thread.  This technique works with Windows Presentation Foundation as well as Windows Forms, with no change in methodology.

    Read the article

  • SQL SERVER – Fix : Error 3623 – An invalid floating point operation occurred

    - by pinaldave
    Going back in time, I always had a problem with mathematics. It was a great subject and I loved it a lot but I only mastered it after practices a lot. I learned that mathematics problems should be addressed systematically and being verbose is not a trick, I learned to solve any problem. Recently one of reader sent me an email with the title “Mathematics problem – please help!” and I was a bit scared. I was good at mathematics but not the best. When I opened the email I was relieved as it was Mathematics problem with SQL Server. My friend received following error while working with SQL Server. Msg 3623, Level 16, State 1, Line 1 An invalid floating point operation occurred. The reasons for the error is simply that invalid usage of the mathematical function is attempted. Let me give you a few examples of the same. SELECT SQRT(-5); SELECT ACOS(-3); SELECT LOG(-9); If you run any of the above functions they will give you an error related to invalid floating point. Honestly there is no workaround except passing the function appropriate values. SQRT of a negative number will give you result in real numbers which is not supported at this point of time as well LOG of a negative number is not possible (because logarithm is the inverse function of an exponential function and the exponential function is NEVER negative). When I send above reply to my friend he did understand that he was passing incorrect value to the function. As mentioned earlier the only way to fix this issue is finding incorrect value and avoid passing it to the function. Every mathematics function is different and there is not a single solution to identify erroneous value passed. If you are facing this error and not able to figure out the solution. Post a comment and I will do my best to figure out the solution. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Error Messages, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Introduction to PERCENTILE_DISC() – Analytic Functions Introduced in SQL Server 2012

    - by pinaldave
    SQL Server 2012 introduces new analytical function PERCENTILE_DISC(). The book online gives following definition of this function: Computes a specific percentile for sorted values in an entire rowset or within distinct partitions of a rowset in Microsoft SQL Server 2012 Release Candidate 0 (RC 0). For a given percentile value P, PERCENTILE_DISC sorts the values of the expression in the ORDER BY clause and returns the value with the smallest CUME_DIST value (with respect to the same sort specification) that is greater than or equal to P. If you are clear with understanding of the function – no need to read further. If you got lost here is the same in simple words – find value of the column which is equal or more than CUME_DIST. Before you continue reading this blog I strongly suggest you read about CUME_DIST function over here Introduction to CUME_DIST – Analytic Functions Introduced in SQL Server 2012. Now let’s have fun following query: USE AdventureWorks GO SELECT SalesOrderID, OrderQty, ProductID, CUME_DIST() OVER(PARTITION BY SalesOrderID ORDER BY ProductID ) AS CDist, PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY ProductID) OVER (PARTITION BY SalesOrderID) AS PercentileDisc FROM Sales.SalesOrderDetail WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY SalesOrderID DESC GO The above query will give us the following result: You can see that I have used PERCENTILE_DISC(0.5) in query, which is similar to finding median but not exactly. PERCENTILE_DISC() function takes a percentile as a passing parameters. It returns the value as answer which value is equal or great to the percentile value which is passed into the example. For example in above example we are passing 0.5 into the PERCENTILE_DISC() function. It will go through the resultset and identify which rows has values which are equal to or great than 0.5. In first example it found two rows which are equal to 0.5 and the value of ProductID of that row is the answer of PERCENTILE_DISC(). In some third windowed resultset there is only single row with the CUME_DIST() value as 1 and that is for sure higher than 0.5 making it as a answer. To make sure that we are clear with this example properly. Here is one more example where I am passing 0.6 as a percentile. Now let’s have fun following query: USE AdventureWorks GO SELECT SalesOrderID, OrderQty, ProductID, CUME_DIST() OVER(PARTITION BY SalesOrderID ORDER BY ProductID ) AS CDist, PERCENTILE_DISC(0.6) WITHIN GROUP (ORDER BY ProductID) OVER (PARTITION BY SalesOrderID) AS PercentileDisc FROM Sales.SalesOrderDetail WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY SalesOrderID DESC GO The above query will give us the following result: The result of the PERCENTILE_DISC(0.6) is ProductID of which CUME_DIST() is more than 0.6. This means for SalesOrderID 43670 has row with CUME_DIST() 0.75 is the qualified row, resulting answer 773 for ProductID. I hope this explanation makes it further clear. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Function, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Pythonika installation error on ubuntu 12

    - by user1426913
    I have been following links: to install pythonika on ubuntu: How to install Pythonika on Ubuntu? I get error: $ sudo make -f Makefile.linux cc -c Pythonika.c -I/usr/local/Wolfram/Mathematica/9.0/SystemFiles/Links/MathLink/DeveloperKit/Linux/CompilerAdditions -I/usr/include/python2.7/ Pythonika.c: In function ‘PyUnicodeString’: Pythonika.c:109:5: warning: passing argument 1 of ‘PyUnicodeUCS4_FromUnicode’ from incompatible pointer type [enabled by default] /usr/include/python2.7/unicodeobject.h:464:23: note: expected ‘const Py_UNICODE *’ but argument is of type ‘short unsigned int *’ Pythonika.c: In function ‘python_to_mathematica_object’: Pythonika.c:411:13: warning: passing argument 2 of ‘MLPutUnicodeString’ from incompatible pointer type [enabled by default] /usr/local/Wolfram/Mathematica/9.0/SystemFiles/Links/MathLink/DeveloperKit/Linux/CompilerAdditions/mathlink.h:4299:1: note: expected ‘const short unsigned int *’ but argument is of type ‘Py_UNICODE ’ "/usr/local/Wolfram/Mathematica/9.0/SystemFiles/Links/MathLink/DeveloperKit/Linux/CompilerAdditions/mprep" Pythonika.tm -o Pythonikatm.c /bin/sh: 1: /usr/local/Wolfram/Mathematica/9.0/SystemFiles/Links/MathLink/DeveloperKit/Linux/CompilerAdditions/mprep: not found make: ** [Pythonikatm.o] Error 127

    Read the article

  • Kinect office demo ideas

    - by Tedd Hansen
    I'm thinking of placing a Kinect (connected to a PC) in the office and have something fun on it. Just a small thing people can interact with. Basically I get a depthmap (image) and a color image from the Kinect which I can analyze and do stuff with. My limited imagination came up with: Count people passing by. Measure average width of people passing by. Some ball with physics people can play with. Audible alert when someone is walking too fast. Anyone have any good ideas? :)

    Read the article

  • One True Event Loop

    - by CyberShadow
    Simple programs that collect data from only one system need only one event loop. For example, Windows applications have the message loop, POSIX network programs usually have a select/epoll/etc. loop at their core, pure SDL games use SDL's event loop. But what if you need to collect events from several subsystems? Such as an SDL game which doesn't use SDL_net for networking. I can think of several solutions: Polling (ugh) Put each event loop in its own thread, and: Send messages to the main thread, which collects and processes the events, or Place the event-processing code of each thread in a critical section, so that the threads can wait for events asynchronously but process them synchronously Choose one subsystem for the main event loop, and pass events from other subsystems via that subsystem as custom messages (for example, the Windows message loop and custom messages, or a socket select() loop and passing events via a loopback connection). Option 2.1 is more interesting on platforms where message-passing is a well-developed threading primitive (e.g. in the D programming language), but 2.2 looks like the best option to me.

    Read the article

  • How to send multiple MVP matrices to a vertex shader in OpenGL ES 2.0

    - by Carbon Crystal
    I'm working my way through optimizing the rendering of sprites in a 2D game using OpenGL ES and I've hit the limit of my knowledge when it comes to GLSL and vertex shaders. I have two large float buffers containing my vertex coordinates and texture coordinates (eventually this will be one buffer) for multiple sprites in order to perform a single glDrawArrays call. This works but I've hit a snag when it comes to passing the transformation matrix into the vertex shader. My shader code is: uniform mat4 u_MVPMatrix; attribute vec4 a_Position; attribute vec2 a_TexCoordinate; varying vec2 v_TexCoordinate; void main() { v_TexCoordinate = a_TexCoordinate; gl_Position = u_MVPMatrix * a_Position; } In Java (Android) I am using a FloatBuffer to store the vertex/texture data and this is provided to the shader like so: mGlEs20.glVertexAttribPointer(mVertexHandle, Globals.GL_POSITION_VERTEX_COUNT, GLES20.GL_FLOAT, false, 0, mVertexCoordinates); mGlEs20.glVertexAttribPointer(mTextureCoordinateHandle, Globals.GL_TEXTURE_VERTEX_COUNT, GLES20.GL_FLOAT, false, 0, mTextureCoordinates); (The Globals.GL_POSITION_VERTEX_COUNT etc are just integers with the value of 2 right now) And I'm passing the MVP (Model/View/Projection) matrix buffer like this: GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mModelCoordinates); (mModelCoordinates is a FloatBuffer containing 16-float sequences representing the MVP matrix for each sprite) This renders my scene but all the sprites share the same transformation, so it's obviously only picking the first 16 elements from the buffer which makes sense since I am passing in "1" as the second parameter. The documentation for this method says: "This should be 1 if the targeted uniform variable is not an array of matrices, and 1 or more if it is an array of matrices." So I tried modifying the shader with a fixed size array large enough to accomodate most of my scenarios: uniform mat4 u_MVPMatrix[1000]; But this lead to an error in the shader: cannot convert from 'uniform array of 4X4 matrix of float' to 'Position 4-component vector of float' This just seems wrong anyway as it's not clear to me how the shader would know when to transition to the next matrix anyway. Anyone have an idea how I can get my shader to pick up a different MVP matrix (i.e. the NEXT 16 floats) from my MVP buffer for every 4 vertices it encounters? (I am using GL_TRIANGLE_STRIP so each sprite has 4 vertices). Thanks!

    Read the article

  • Navigation for ASP.NET Web Forms project published on codeplex

    Navigation for ASP.NET Web Forms manages movement and data passing between aspx Pages in a unit testable manner. There is no Client-side logic, so it works in all browsers, and no Server-side cache, so it works with the browser back button.Features include loosely coupled Pages, typed data passing, empty code-behinds, context-sensitive bread crumb trail, ASP.NET Data binding integration, automatic ASP.NET Ajax history navigation and many more.The source code, binaries and comprehensive documentation...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Firefox 13 disponible en version finale, un « Responsive Mode » pour développeurs débarque sur la Nighty Build du navigateur

    Firefox 13 disponible en version finale Un Responsive Mode pour développeurs débarque sur la Nighty Build du navigateur Mozilla vient de délivrer Firefox 13. Le navigateur de la fondation est téléchargeable en version finale depuis hier, soit un jour avant le délai et l'annonce officielle. Peu ambitieuse du premier abord, avec le peu de nouveauté qu'elle propose, Firefox 13 prépare le terrain à des versions ultérieures prometteuses pour les développeurs. Une alternance que le rapide cycle de développement semble imposer. Pour rappel (voir l'annonce de la bêta ci-devant), Firefox 13 supporte le protocole SPDY (un successeur du HTTP). Son Page Inspector a été amélioré et Styl...

    Read the article

< Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >