Search Results

Search found 4860 results on 195 pages for 'parallel extensions'.

Page 48/195 | < Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >

  • How to read & write contents of a div from localstorage in chrome extensions?

    - by Minas Abovyan
    I am trying to build an extension that will allow users to put some parameters into a text box in the popup, generate a link using that information and add it to the said popup. I have all that working, but needless to say, it gets flushed every time the user opens the extension anew. I'd like the info that has been put in there to stay, but can't seem to get it to work. Here's what I have thus far: manifest.json { "manifest_version": 2, "name": "Test", "description": "Test Extension", "version": "1.0", "permissions": [ "http://*/*", "https://*/*" ], "browser_action": { "default_title": "This is a test", "default_popup": "popup.html" } } popup.html <!DOCTYPE html> <html> <head> </head> <body> <div id="linkContainer"/> <input type="text" id="catsList"/> <button type="button" id="addToList">Add</button> <script src="popup.js"></script> </body> </html> popup.js function addCats() { var a = document.createElement('a'); a.appendChild(document.createTextNode(document.getElementById('catsList').value)); a.setAttribute('href', 'http://google.com'); var p = document.createElement('p'); p.appendChild(a) document.getElementById('linkContainer').appendChild(p); indexLinks() } function indexLinks() { var links = document.getElementsByTagName("a"); for (var i = 0; i < links.length; i++) { (function () { var ln = links[i]; var location = ln.href; ln.onclick = function () { chrome.tabs.create({active: true, url: location}); }; })(); } }; document.getElementById('addToList').onclick = addCats; My guess is that I need something along the lines of localStorage['cointainer'] = document.getElementById('linkContainer'); at the end of addCats() and a call to something like function loadLocalStorage() { var container = document.getElementById('linkContainer'); container.innerHTML = localStorage['container']; } at the beginning, but doing that didn't work. Not sure what's going wrong. Also,if there is a different way to save users' additions, I'd be open to them.

    Read the article

  • Parallel MySQL queries for HTML table - WHILE(x or y)?

    - by Beti Chode
    I'm trying to create a table using PHP. What I need is a table with two columns. So I have an SQL table with 4 fields - primary key id, language, word and definition. The language for each is either Arabic or Russian. I want a table that does the following: | defintion | |____________________| | | | rus1 | arab1 | | rus2 | arab2 | | rus3 | arab3 | | rus4 | | So it divides the list by English word, creates a for each English word, then lists Russian equivalents in the left column and Arabic in the right. However there are often not the same number for both. What I am doing right now is running a WHILE loop in a WHILE loop. The outer loop is running fine but I think I am doing the inner loop wrong. Here is the bulk of the code: $definitions=mysql_query("SELECT DISTINCT definition FROM words") WHILE($row=mysql_fetch_array($definitions) { ECHO '<tr><th colspan="2">' . $row['definition'] . '</th></tr>'; $russian="SELECT * FROM words WHERE language='Russian' AND definition='".$row['definition']."'"; $arabic="SELECT * FROM words WHERE language='Arabic' AND definition='".$row['definition']."'"; WHILE($rus=mysql_fetch_array($russian) or $arb=mysql_fetch_array($arabic)) { ECHO '<tr><td>'.$rus['word'].'</td><td>'.$arb['word'].'</td></tr>'; } } Sadly I am getting soemthing like this: | defintion | |____________________| | | | rus1 | | | rus2 | | | rus3 | | | rus4 | | | | arab1 | | | arab2 | | | arab3 | Not sure what other way I can do this? I tried changing the or to || thinking the different precedence would cause another outcome, but then I get ONLY the Russian column. I'm out of ideas, you guys are my only hope!

    Read the article

  • How to jar java source files from different (sub-)directories?

    - by Holger
    Consider the following directory structure: ./source/com/mypackage/../A.java ./extensions/extension1/source/com/mypackage/../T.java ./extensions/extension2/source/com/mypackage/../U.java ... ./extensions/extensionN/source/com/mypackage/../Z.java I want to produce a source jar with the following contents: com/mypackage/../A.java com/mypackage/../T.java com/mypackage/../U.java ... com/mypackage/../Z.java I know I could use a fileset for each source directory. But is there an easy solution using ANT without having to refer to all extensions explicitly?

    Read the article

  • Rogue program disabled access to Firefox's "Get add-ons" and "Extensions". How can I get them back?

    - by Eric
    After installing a program called "FreeFileViewer", the program disabled access to Firefox's "Get add-ons" and "Extensions" options. To make matters worse, it installed the Yahoo! toolbar that I now can't remove (because it disabled Firefox's options to do so). Please help. Any advice you can give me to restore these Firefox options would be greatly appreciated! BTW, I am running Firefox 15.0.1 on a Windows 7 machine. Thanks, in advance, for your help! -- Eric

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Configuration Error ASP.NET password format specified is invalid

    - by salvationishere
    I am getting the above error in IIS 6.0 now when I browse my C# / SQL web application. This was built in VS 2008 and SS 2008 on a 32-bit XP OS. The application was working before I added Login controls to it. However, this is my first time configuring Login/password controls so I am probably missing something really basic. This error doesn't happen until I try to login. Here are the details of my error from IIS; I get the same error in VS: Parser Error Message: Password format specified is invalid. Source Error: Line 31: <add Line 32: name="SqlProvider" Line 33: type="System.Web.Security.SqlMembershipProvider" Line 34: connectionStringName="AdventureWorksConnectionString2" Line 35: applicationName="AddFileToSQL2" Source File: C:\Inetpub\AddFileToSQL2\web.config Line: 33 And the relevant contents of my web.config are: <connectionStrings> <add name="Master" connectionString="server=MSSQLSERVER;database=Master; Integrated Security=SSPI" providerName="System.Data.SqlClient" /> <add name="AdventureWorksConnectionString" connectionString="Data Source=SIDEKICK;Initial Catalog=AdventureWorks;Integrated Security=True" providerName="System.Data.SqlClient" /> <add name="AdventureWorksConnectionString2" connectionString="Data Source=SIDEKICK;Initial Catalog=AdventureWorks;Integrated Security=True; " providerName="System.Data.SqlClient" /> </connectionStrings> <system.web> <membership defaultProvider="SqlProvider" userIsOnlineTimeWindow="15"> <providers> <clear /> <add name="SqlProvider" type="System.Web.Security.SqlMembershipProvider" connectionStringName="AdventureWorksConnectionString2" applicationName="AddFileToSQL2" enablePasswordRetrieval="false" enablePasswordReset="true" requiresQuestionAndAnswer="true" requiresUniqueEmail="false" passwordFormat="encrypted" /> </providers> </membership> <!-- Set compilation debug="true" to insert debugging symbols into the compiled page. Because this affects performance, set this value to true only during development. --> <roleManager enabled="true" /> <compilation debug="true"> <assemblies> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> </assemblies> </compilation> <!-- The <authentication> section enables configuration of the security authentication mode used by ASP.NET to identify an incoming user. --> <authentication mode="Forms"> <forms loginUrl="Password.aspx" protection="All" timeout="30" name="SqlAuthCookie" path="/FormsAuth" requireSSL="false" slidingExpiration="true" defaultUrl="default.aspx" cookieless="UseCookies" enableCrossAppRedirects="false" /> </authentication> <!--Authorization permits only authenticated users to access the application --> <authorization> <deny users="?" /> <allow users="*" /> </authorization> <!-- The <customErrors> section enables configuration of what to do if/when an unhandled error occurs during the execution of a request. Specifically, it enables developers to configure html error pages to be displayed in place of a error stack trace. <customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm"> <error statusCode="403" redirect="NoAccess.htm" /> <error statusCode="404" redirect="FileNotFound.htm" /> </customErrors> --> <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </controls> </pages> <httpHandlers> <remove verb="*" path="*.asmx"/> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false"/> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </httpModules> </system.web> <system.codedom> <compilers> <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <providerOption name="CompilerVersion" value="v3.5"/> <providerOption name="WarnAsError" value="false"/> </compiler> </compilers> </system.codedom> <!-- The system.webServer section is required for running ASP.NET AJAX under Internet Information Services 7.0. It is not necessary for previous version of IIS. --> <system.webServer> <validation validateIntegratedModeConfiguration="false"/> <modules> <remove name="ScriptModule"/> <add name="ScriptModule" preCondition="managedHandler" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </modules> <handlers> <remove name="WebServiceHandlerFactory-Integrated"/> <remove name="ScriptHandlerFactory"/> <remove name="ScriptHandlerFactoryAppServices"/> <remove name="ScriptResource"/> <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </handlers> </system.webServer> <runtime> <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> <dependentAssembly> <assemblyIdentity name="System.Web.Extensions" publicKeyToken="31bf3856ad364e35"/> <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0"/> </dependentAssembly> <dependentAssembly> <assemblyIdentity name="System.Web.Extensions.Design" publicKeyToken="31bf3856ad364e35"/> <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0"/> </dependentAssembly> </assemblyBinding> </runtime> <system.net> <mailSettings> <smtp from="[email protected]"> <network host="SIDEKICK" password="" userName="" /> </smtp> </mailSettings> </system.net> </configuration> I checked and I do have an aspnetdb database in my SSMS. The Network Service account has SELECT, EXECUTE, INSERT, UPDATE access to this database. But one problem I see is that all of the tables in this database are empty except for aspnet_SchemaVersions, which just has 2 records (common and membership). Is this right? I added users and roles via ASP.NET Configuration wizard, and I believe I set this up correctly since I followed the Microsoft tutorial at http://msdn.microsoft.com/en-us/library/ms998347.aspx. One other problem I see from VS is after adding content to my Page_Load on my initial login Password.aspx.cs file, I'm getting an invalid cast problem below. I googled this problem also but the solutions I saw confused me even more. The Page_Load section I added is: protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello, " + Server.HtmlEncode(User.Identity.Name)); FormsIdentity id = (FormsIdentity)User.Identity; FormsAuthenticationTicket ticket = id.Ticket; Response.Write("<p/>TicketName: " + ticket.Name); Response.Write("<br/>Cookie Path: " + ticket.CookiePath); Response.Write("<br/>Ticket Expiration: " + ticket.Expiration.ToString()); Response.Write("<br/>Expired: " + ticket.Expired.ToString()); Response.Write("<br/>Persistent: " + ticket.IsPersistent.ToString()); Response.Write("<br/>IssueDate: " + ticket.IssueDate.ToString()); Response.Write("<br/>UserData: " + ticket.UserData); Response.Write("<br/>Version: " + ticket.Version.ToString()); } And the VS exception I'm getting: System.InvalidCastException was unhandled by user code Message="Unable to cast object of type 'System.Security.Principal.GenericIdentity' to type 'System.Web.Security.FormsIdentity'." Source="AddFileToSQL" StackTrace: at AddFileToSQL.Password.Page_Load(Object sender, EventArgs e) in C:\Documents and Settings\Admin\My Documents\Visual Studio 2008\Projects\AddFileToSQL2\AddFileToSQL\Password.aspx.cs:line 22 at System.Web.Util.CalliHelper.EventArgFunctionCaller(IntPtr fp, Object o, Object t, EventArgs e) at System.Web.Util.CalliEventHandlerDelegateProxy.Callback(Object sender, EventArgs e) at System.Web.UI.Control.OnLoad(EventArgs e) at System.Web.UI.Control.LoadRecursive() at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) InnerException:

    Read the article

  • Creating a podcast feed for iTunes & BlackBerry users using WCF Syndication

    - by brian_ritchie
     In my previous post, I showed how to create a RSS feed using WCF Syndication.  Next, I'll show how to add the additional tags needed to turn a RSS feed into an iTunes podcast.   A podcast is merely a RSS feed with some special characteristics: iTunes RSS tags.  These are additional tags beyond the standard RSS spec.  Apple has a good page on the requirements. Audio file enclosure.  This is a link to the audio file (such as mp3) hosted by your site.  Apple doesn't host the audio, they just read the meta-data from the RSS feed into their system. The SyndicationFeed class supports both AttributeExtensions & ElementExtensions to add custom tags to the RSS feeds. A couple of points of interest in the code below: The imageUrl below provides the album cover for iTunes (170px × 170px) Each SyndicationItem corresponds to an audio episode in your podcast So, here's the code: .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: Consolas, "Courier New", Courier, Monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: XNamespace itunesNS = "http://www.itunes.com/dtds/podcast-1.0.dtd"; 2: string prefix = "itunes"; 3:   4: var feed = new SyndicationFeed(title, description, new Uri(link)); 5: feed.Categories.Add(new SyndicationCategory(category)); 6: feed.AttributeExtensions.Add(new XmlQualifiedName(prefix, 7: "http://www.w3.org/2000/xmlns/"), itunesNS.NamespaceName); 8: feed.Copyright = new TextSyndicationContent(copyright); 9: feed.Language = "en-us"; 10: feed.Copyright = new TextSyndicationContent(DateTime.Now.Year + " " + ownerName); 11: feed.ImageUrl = new Uri(imageUrl); 12: feed.LastUpdatedTime = DateTime.Now; 13: feed.Authors.Add(new SyndicationPerson() {Name=ownerName, Email=ownerEmail }); 14: var extensions = feed.ElementExtensions; 15: extensions.Add(new XElement(itunesNS + "subtitle", subTitle).CreateReader()); 16: extensions.Add(new XElement(itunesNS + "image", 17: new XAttribute("href", imageUrl)).CreateReader()); 18: extensions.Add(new XElement(itunesNS + "author", ownerName).CreateReader()); 19: extensions.Add(new XElement(itunesNS + "summary", description).CreateReader()); 20: extensions.Add(new XElement(itunesNS + "category", 21: new XAttribute("text", category), 22: new XElement(itunesNS + "category", 23: new XAttribute("text", subCategory))).CreateReader()); 24: extensions.Add(new XElement(itunesNS + "explicit", "no").CreateReader()); 25: extensions.Add(new XDocument( 26: new XElement(itunesNS + "owner", 27: new XElement(itunesNS + "name", ownerName), 28: new XElement(itunesNS + "email", ownerEmail))).CreateReader()); 29:   30: var feedItems = new List<SyndicationItem>(); 31: foreach (var i in Items) 32: { 33: var item = new SyndicationItem(i.title, null, new Uri(link)); 34: item.Summary = new TextSyndicationContent(i.summary); 35: item.Id = i.id; 36: if (i.publishedDate != null) 37: item.PublishDate = (DateTimeOffset)i.publishedDate; 38: item.Links.Add(new SyndicationLink() { 39: Title = i.title, Uri = new Uri(link), 40: Length = i.size, MediaType = i.mediaType }); 41: var itemExt = item.ElementExtensions; 42: itemExt.Add(new XElement(itunesNS + "subtitle", i.subTitle).CreateReader()); 43: itemExt.Add(new XElement(itunesNS + "summary", i.summary).CreateReader()); 44: itemExt.Add(new XElement(itunesNS + "duration", 45: string.Format("{0}:{1:00}:{2:00}", 46: i.duration.Hours, i.duration.Minutes, i.duration.Seconds) 47: ).CreateReader()); 48: itemExt.Add(new XElement(itunesNS + "keywords", i.keywords).CreateReader()); 49: itemExt.Add(new XElement(itunesNS + "explicit", "no").CreateReader()); 50: itemExt.Add(new XElement("enclosure", new XAttribute("url", i.url), 51: new XAttribute("length", i.size), new XAttribute("type", i.mediaType))); 52: feedItems.Add(item); 53: } 54:   55: feed.Items = feedItems; If you're hosting your podcast feed within a MVC project, you can use the code from my previous post to stream it. Once you have created your feed, you can use the Feed Validator tool to make sure it is up to spec.  Or you can use iTunes: Launch iTunes. In the Advanced menu, select Subscribe to Podcast. Enter your feed URL in the text box and click OK. After you've verified your feed is solid & good to go, you can submit it to iTunes.  Launch iTunes. In the left navigation column, click on iTunes Store to open the store. Once the store loads, click on Podcasts along the top navigation bar to go to the Podcasts page. In the right column of the Podcasts page, click on the Submit a Podcast link. Follow the instructions on the Submit a Podcast page. Here are the full instructions.  Once they have approved your podcast, it will be available within iTunes. RIM has also gotten into the podcasting business...which is great for BlackBerry users.  They accept the same enhanced-RSS feed that iTunes uses, so just create an account with them & submit the feed's URL.  It goes through a similar approval process to iTunes.  BlackBerry users must be on BlackBerry 6 OS or download the Podcast App from App World. In my next post, I'll show how to build the podcast feed dynamically from the ID3 tags within the MP3 files.

    Read the article

  • PHP 5.2.13 thowing errors on AIX

    - by Thumbeti
    Hi All, On AIX 5.3 (TL 5 to 11) in my application I have updated PHP version from 5.2.6 to 5.2.13. Since then, executing php.bin throwing the following errors: =================================================================== PHP Warning: PHP Startup: Unable to load dynamic library '/opt/pdag/lib/extensions/curl.so' - rtld: 0712-001 Symbol zend_wrong_param_count was referenced from module /opt/pdag/lib/extensions/curl.so(), but a runtime definition of the symbol was not found. rtld: 0712-001 Symbol _ecalloc was referenced from module /opt/pdag/lib/extensions/curl.so(), but a runtime definition of the symbol was not found. rtld: 0712-001 Symbol zend_llist_init was referenced from module /opt/pdag/lib/extensions/curl.so(), but a runtime definition of the symbol was not found. rtld: 0712-001 Symbol zend_register_resource was referenced from module /opt/pdag/lib/extensions/curl.so(), but a runtime definition of the symbol was not found. =================================================================== With PHP version 5.2.6, this issue is not there? Anything i am missing here? Thanks & Regards, Thumbeti

    Read the article

  • Tomcat 7 taking ages to start up after upgrade

    - by Lawrence
    I recently updated my server installation from Tomcat 6 to Tomcat 7, in order to take advantage of better connection pooling. My project uses Hibernate, for object persistance, a Mysql 5.5.20 database, and memcached for caching. When I was using Tomcat 6, Tomcat would start in about 8 seconds. After moving to Tomcat 7, it now takes between 75 - 80 seconds to start (this is on a Macbook pro 15", core i7 2Ghz, 8Gb of RAM). The only thing that has really changed between during the move from Tomcat 6 to 7 has been my context.xml file, which controls the connection pooling information: <Context antiJARLocking="true" reloadable="true" path=""> <Resource name="jdbc/test-db" auth="Container" type="javax.sql.DataSource" factory="org.apache.tomcat.jdbc.pool.DataSourceFactory" testOnBorrow="true" testOnReturn="false" testWhileIdle="true" validationQuery="SELECT 1" validationQueryTimeout="20000" validationInterval="30000" timeBetweenEvictionRunsMillis="60000" logValidationErrors="true" autoReconnect="true" username="webuser" password="xxxxxxx" driverClassName="com.mysql.jdbc.Driver" url="jdbc:mysql://databasename.us-east-1.rds.amazonaws.com:3306/test-db" maxActive="15" minIdle="2" maxIdle="10" maxWait="10000" maxAge="7200000"/> </Context> Now, as you can see, the database is running on Amazon RDS (where our live servers are), and thus is about 200ms round trip time away from my machine. I have already checked that I have security permissions to that database from my machine, (and anyway, it connects after 75 secs, so it cant be that). My initial thought was that Tomcat 7 and hibernate are doing something weird (like pre-instantiating a bunch of connections or something), and the latency to the database is amplifying the effects. While trying to diagnose the problem, I used jstack to get a stack trace of the Tomcat 7 server while its doing its startup thing. Here is the stack trace... Full thread dump Java HotSpot(TM) 64-Bit Server VM (20.12-b01-434 mixed mode): "Attach Listener" daemon prio=9 tid=7fa4c0038800 nid=0x10c39a000 waiting on condition [00000000] java.lang.Thread.State: RUNNABLE "Abandoned connection cleanup thread" daemon prio=5 tid=7fa4bb810000 nid=0x10f3ba000 in Object.wait() [10f3b9000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <7f40a0070> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:118) - locked <7f40a0070> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:134) at com.mysql.jdbc.NonRegisteringDriver$1.run(NonRegisteringDriver.java:93) "PoolCleaner[545768040:1352724902327]" daemon prio=5 tid=7fa4be852800 nid=0x10e772000 in Object.wait() [10e771000] java.lang.Thread.State: TIMED_WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <7f40c7c90> (a java.util.TaskQueue) at java.util.TimerThread.mainLoop(Timer.java:509) - locked <7f40c7c90> (a java.util.TaskQueue) at java.util.TimerThread.run(Timer.java:462) "localhost-startStop-1" daemon prio=5 tid=7fa4bd034800 nid=0x10d66b000 runnable [10d668000] java.lang.Thread.State: RUNNABLE at java.net.SocketInputStream.socketRead0(Native Method) at java.net.SocketInputStream.read(SocketInputStream.java:129) at com.mysql.jdbc.util.ReadAheadInputStream.fill(ReadAheadInputStream.java:114) at com.mysql.jdbc.util.ReadAheadInputStream.readFromUnderlyingStreamIfNecessary(ReadAheadInputStream.java:161) at com.mysql.jdbc.util.ReadAheadInputStream.read(ReadAheadInputStream.java:189) - locked <7f3673be0> (a com.mysql.jdbc.util.ReadAheadInputStream) at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:3014) at com.mysql.jdbc.MysqlIO.reuseAndReadPacket(MysqlIO.java:3467) at com.mysql.jdbc.MysqlIO.reuseAndReadPacket(MysqlIO.java:3456) at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3997) at com.mysql.jdbc.MysqlIO.sendCommand(MysqlIO.java:2468) at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2629) at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2713) - locked <7f366a1c0> (a com.mysql.jdbc.JDBC4Connection) at com.mysql.jdbc.ConnectionImpl.configureClientCharacterSet(ConnectionImpl.java:1930) at com.mysql.jdbc.ConnectionImpl.initializePropsFromServer(ConnectionImpl.java:3571) at com.mysql.jdbc.ConnectionImpl.connectOneTryOnly(ConnectionImpl.java:2445) at com.mysql.jdbc.ConnectionImpl.createNewIO(ConnectionImpl.java:2215) - locked <7f366a1c0> (a com.mysql.jdbc.JDBC4Connection) at com.mysql.jdbc.ConnectionImpl.<init>(ConnectionImpl.java:813) at com.mysql.jdbc.JDBC4Connection.<init>(JDBC4Connection.java:47) at sun.reflect.GeneratedConstructorAccessor10.newInstance(Unknown Source) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at com.mysql.jdbc.Util.handleNewInstance(Util.java:411) at com.mysql.jdbc.ConnectionImpl.getInstance(ConnectionImpl.java:399) at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:334) at org.apache.tomcat.jdbc.pool.PooledConnection.connectUsingDriver(PooledConnection.java:278) at org.apache.tomcat.jdbc.pool.PooledConnection.connect(PooledConnection.java:182) at org.apache.tomcat.jdbc.pool.ConnectionPool.createConnection(ConnectionPool.java:699) at org.apache.tomcat.jdbc.pool.ConnectionPool.borrowConnection(ConnectionPool.java:631) at org.apache.tomcat.jdbc.pool.ConnectionPool.init(ConnectionPool.java:485) at org.apache.tomcat.jdbc.pool.ConnectionPool.<init>(ConnectionPool.java:143) at org.apache.tomcat.jdbc.pool.DataSourceProxy.pCreatePool(DataSourceProxy.java:116) - locked <7f34f0dc8> (a org.apache.tomcat.jdbc.pool.DataSource) at org.apache.tomcat.jdbc.pool.DataSourceProxy.createPool(DataSourceProxy.java:103) at org.apache.tomcat.jdbc.pool.DataSourceFactory.createDataSource(DataSourceFactory.java:539) at org.apache.tomcat.jdbc.pool.DataSourceFactory.getObjectInstance(DataSourceFactory.java:237) at org.apache.naming.factory.ResourceFactory.getObjectInstance(ResourceFactory.java:143) at javax.naming.spi.NamingManager.getObjectInstance(NamingManager.java:304) at org.apache.naming.NamingContext.lookup(NamingContext.java:843) at org.apache.naming.NamingContext.lookup(NamingContext.java:154) at org.apache.naming.NamingContext.lookup(NamingContext.java:831) at org.apache.naming.NamingContext.lookup(NamingContext.java:168) at org.apache.catalina.core.NamingContextListener.addResource(NamingContextListener.java:1061) at org.apache.catalina.core.NamingContextListener.createNamingContext(NamingContextListener.java:671) at org.apache.catalina.core.NamingContextListener.lifecycleEvent(NamingContextListener.java:270) at org.apache.catalina.util.LifecycleSupport.fireLifecycleEvent(LifecycleSupport.java:119) at org.apache.catalina.util.LifecycleBase.fireLifecycleEvent(LifecycleBase.java:90) at org.apache.catalina.core.StandardContext.startInternal(StandardContext.java:5173) - locked <7f46b07f0> (a org.apache.catalina.core.StandardContext) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) - locked <7f46b07f0> (a org.apache.catalina.core.StandardContext) at org.apache.catalina.core.ContainerBase$StartChild.call(ContainerBase.java:1559) at org.apache.catalina.core.ContainerBase$StartChild.call(ContainerBase.java:1549) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:303) at java.util.concurrent.FutureTask.run(FutureTask.java:138) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:680) "Catalina-startStop-1" daemon prio=5 tid=7fa4b7a5e800 nid=0x10d568000 waiting on condition [10d567000] java.lang.Thread.State: WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <7f480e970> (a java.util.concurrent.FutureTask$Sync) at java.util.concurrent.locks.LockSupport.park(LockSupport.java:156) at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:811) at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:969) at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1281) at java.util.concurrent.FutureTask$Sync.innerGet(FutureTask.java:218) at java.util.concurrent.FutureTask.get(FutureTask.java:83) at org.apache.catalina.core.ContainerBase.startInternal(ContainerBase.java:1123) - locked <7f453c630> (a org.apache.catalina.core.StandardHost) at org.apache.catalina.core.StandardHost.startInternal(StandardHost.java:800) - locked <7f453c630> (a org.apache.catalina.core.StandardHost) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) - locked <7f453c630> (a org.apache.catalina.core.StandardHost) at org.apache.catalina.core.ContainerBase$StartChild.call(ContainerBase.java:1559) at org.apache.catalina.core.ContainerBase$StartChild.call(ContainerBase.java:1549) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:303) at java.util.concurrent.FutureTask.run(FutureTask.java:138) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:680) "GC Daemon" daemon prio=2 tid=7fa4b9912800 nid=0x10d465000 in Object.wait() [10d464000] java.lang.Thread.State: TIMED_WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <7f4506d28> (a sun.misc.GC$LatencyLock) at sun.misc.GC$Daemon.run(GC.java:100) - locked <7f4506d28> (a sun.misc.GC$LatencyLock) "Low Memory Detector" daemon prio=5 tid=7fa4b480b800 nid=0x10c8ae000 runnable [00000000] java.lang.Thread.State: RUNNABLE "C2 CompilerThread1" daemon prio=9 tid=7fa4b480b000 nid=0x10c7ab000 waiting on condition [00000000] java.lang.Thread.State: RUNNABLE "C2 CompilerThread0" daemon prio=9 tid=7fa4b480a000 nid=0x10c6a8000 waiting on condition [00000000] java.lang.Thread.State: RUNNABLE "Signal Dispatcher" daemon prio=9 tid=7fa4b4809800 nid=0x10c5a5000 runnable [00000000] java.lang.Thread.State: RUNNABLE "Surrogate Locker Thread (Concurrent GC)" daemon prio=5 tid=7fa4b4808800 nid=0x10c4a2000 waiting on condition [00000000] java.lang.Thread.State: RUNNABLE "Finalizer" daemon prio=8 tid=7fa4b793f000 nid=0x10c297000 in Object.wait() [10c296000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <7f451c8f0> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:118) - locked <7f451c8f0> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:134) at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:159) "Reference Handler" daemon prio=10 tid=7fa4b793e000 nid=0x10c194000 in Object.wait() [10c193000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <7f452e168> (a java.lang.ref.Reference$Lock) at java.lang.Object.wait(Object.java:485) at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:116) - locked <7f452e168> (a java.lang.ref.Reference$Lock) "main" prio=5 tid=7fa4b7800800 nid=0x104329000 waiting on condition [104327000] java.lang.Thread.State: WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <7f480e9a0> (a java.util.concurrent.FutureTask$Sync) at java.util.concurrent.locks.LockSupport.park(LockSupport.java:156) at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:811) at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:969) at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1281) at java.util.concurrent.FutureTask$Sync.innerGet(FutureTask.java:218) at java.util.concurrent.FutureTask.get(FutureTask.java:83) at org.apache.catalina.core.ContainerBase.startInternal(ContainerBase.java:1123) - locked <7f451fd90> (a org.apache.catalina.core.StandardEngine) at org.apache.catalina.core.StandardEngine.startInternal(StandardEngine.java:302) - locked <7f451fd90> (a org.apache.catalina.core.StandardEngine) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) - locked <7f451fd90> (a org.apache.catalina.core.StandardEngine) at org.apache.catalina.core.StandardService.startInternal(StandardService.java:443) - locked <7f451fd90> (a org.apache.catalina.core.StandardEngine) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) - locked <7f453e810> (a org.apache.catalina.core.StandardService) at org.apache.catalina.core.StandardServer.startInternal(StandardServer.java:732) - locked <7f4506d58> (a [Lorg.apache.catalina.Service;) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) - locked <7f44f7ba0> (a org.apache.catalina.core.StandardServer) at org.apache.catalina.startup.Catalina.start(Catalina.java:684) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.catalina.startup.Bootstrap.start(Bootstrap.java:322) at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:451) "VM Thread" prio=9 tid=7fa4b7939800 nid=0x10c091000 runnable "Gang worker#0 (Parallel GC Threads)" prio=9 tid=7fa4b7802000 nid=0x10772b000 runnable "Gang worker#1 (Parallel GC Threads)" prio=9 tid=7fa4b7802800 nid=0x10782e000 runnable "Gang worker#2 (Parallel GC Threads)" prio=9 tid=7fa4b7803000 nid=0x107931000 runnable "Gang worker#3 (Parallel GC Threads)" prio=9 tid=7fa4b7804000 nid=0x107a34000 runnable "Gang worker#4 (Parallel GC Threads)" prio=9 tid=7fa4b7804800 nid=0x107b37000 runnable "Gang worker#5 (Parallel GC Threads)" prio=9 tid=7fa4b7805000 nid=0x107c3a000 runnable "Gang worker#6 (Parallel GC Threads)" prio=9 tid=7fa4b7805800 nid=0x107d3d000 runnable "Gang worker#7 (Parallel GC Threads)" prio=9 tid=7fa4b7806800 nid=0x107e40000 runnable "Concurrent Mark-Sweep GC Thread" prio=9 tid=7fa4b78e3800 nid=0x10bd0b000 runnable "Gang worker#0 (Parallel CMS Threads)" prio=9 tid=7fa4b78e2800 nid=0x10b305000 runnable "Gang worker#1 (Parallel CMS Threads)" prio=9 tid=7fa4b78e3000 nid=0x10b408000 runnable "VM Periodic Task Thread" prio=10 tid=7fa4b4815800 nid=0x10c9b1000 waiting on condition "Exception Catcher Thread" prio=10 tid=7fa4b7801800 nid=0x104554000 runnable JNI global references: 919 The only thing I can figure out from this is that it looks like the mysql jdbc drivers might have something to do with the long start up (the various stack traces I took during the start up process all pretty much look the same as this). Could anyone shed some light on what might be causing this? Have I done something dense in my context.xml? Is hibernate perhaps to blame?

    Read the article

  • How to hide all filenames during thumbnail view? Windows 7

    - by Saebin
    When you use the right click 'View - Hide file names' option it really only works on preset file extensions.... which is not really helpful when you have extensions with thumbnails windows isn't set to hide (ie, flv files). Not only that, you may have other files mixed in with media files that aren't hidden either (exe, zip, etc). Is there some way to hide all file names or add additional extensions to hide?

    Read the article

  • Why is GPO Tool reporting a GPO version mismatch when the GPO version #'s do match?

    - by SturdyErde
    Any ideas why the group policy diagnostic utility GPOTool would report a GPO version mismatch between two domain controllers if the version numbers are a match? Policy {GUID} Error: Version mismatch on dc1.domain.org, DS=65580, sysvol=65576 Friendly name: Default Domain Controllers Policy Error: Version mismatch on dc2.domain.org, DS=65580, sysvol=65576 Details: ------------------------------------------------------------ DC: dc1.domain.org Friendly name: Default Domain Controllers Policy Created: 7/7/2005 6:39:33 PM Changed: 6/18/2012 12:33:04 PM DS version: 1(user) 44(machine) Sysvol version: 1(user) 40(machine) Flags: 0 (user side enabled; machine side enabled) User extensions: not found Machine extensions: [{GUID}] Functionality version: 2 ------------------------------------------------------------ DC: dc2.domain.org Friendly name: Default Domain Controllers Policy Created: 7/7/2005 6:39:33 PM Changed: 6/18/2012 12:33:05 PM DS version: 1(user) 44(machine) Sysvol version: 1(user) 40(machine) Flags: 0 (user side enabled; machine side enabled) User extensions: not found Machine extensions: [{GUID}] Functionality version: 2

    Read the article

  • HTC Sync Manager and MKV files

    - by Zundrium
    My problem is pretty straight forward: HTC Sync manager works perfectly with my HTC One X. However, it filters extensions it's not able to use with it's stock applications. (HTC Sense) But 3rd party applications can handle other extensions of course. Is there a way to adjust the HTC Sync Manager so that extensions will not be filtered? And if that's not possible is there a syncronisation tool that synchronises automatically once the android device is connected through USB? (Tried Allway Sync, doesn't work properly)

    Read the article

  • Can you explain how to understand what the 'iwconfig' command displays in Ubuntu-9.04?

    - by Shawn
    I'm having trouble making my wireless connection work, and I realized I don't really know how to use the tools I have, in this case, the iwconfig command in Ubuntu-9.04. Here is what I get: ***iwconfig*** - lo no wireless extensions. eth0 no wireless extensions. wmaster0 no wireless extensions. wlan0 IEEE 802.11bgn ESSID:"Network" Mode:Managed Frequency:2.412 GHz Access Point: Not-Associated Tx-Power=20 dBm Retry min limit:7 RTS thr:off Fragment thr=2352 B Power Management:off Link Quality:0 Signal level:0 Noise level:0 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:0 Missed beacon:0 vboxnet0 no wireless extensions. pan0 no wireless extensions. "Network" is the name of my wireless network, btw. But what does this all mean? How can this information help me aquire a working wireless connection? When I try associating a key using sudo iwconfig wlan0 key s:my_key I get the following error message: Error for wireless request "Set Encode" (8B2A) : SET failed on device wlan0 ; Invalid argument. I do have the right key though, so what's the problem?

    Read the article

  • Can you explain how to understand what the 'iwconfig' command displays in Ubuntu-9.04?

    - by Shawn
    I'm having trouble making my wireless connection work, and I realized I don't really know how to use the tools I have, in this case, the iwconfig command in Ubuntu-9.04. Here is what I get: ***iwconfig*** - lo no wireless extensions. eth0 no wireless extensions. wmaster0 no wireless extensions. wlan0 IEEE 802.11bgn ESSID:"Network" Mode:Managed Frequency:2.412 GHz Access Point: Not-Associated Tx-Power=20 dBm Retry min limit:7 RTS thr:off Fragment thr=2352 B Power Management:off Link Quality:0 Signal level:0 Noise level:0 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:0 Missed beacon:0 vboxnet0 no wireless extensions. pan0 no wireless extensions. "Network" is the name of my wireless network, btw. But what does this all mean? How can this information help me aquire a working wireless connection? When I try associating a key using sudo iwconfig wlan0 key s:my_key I get the following error message: Error for wireless request "Set Encode" (8B2A) : SET failed on device wlan0 ; Invalid argument. I do have the right key though, so what's the problem?

    Read the article

  • Error using Session in IIS7

    - by flashnik
    After deployment of my website to IIS I'm getting a following error message when trying to access session: Session state can only be used when enableSessionState is set to true, either in a configuration file or in the Page directive. Please also make sure that System.Web.SessionStateModule or a custom session state module is included in the \\ section in the application configuration. I access it in Page_Load or PreRender events (I tried both versions). With VS Dev Server it works without a problem. I tried both InProc an SessionState storage, 1 and multiple woker processes. I added a enableSessionState = "true" to my webpage explicitly. Here is part of web.config: <system.web> <globalization culture="ru-RU" uiCulture="ru-RU" /> <compilation debug="true" defaultLanguage="c#"> <assemblies> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Web.Extensions.Design, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add assembly="System.Design, Version=2.0.0.0, Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A" /> <add assembly="System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> </assemblies> </compilation> <pages enableEventValidation="false" enableSessionState="true"> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </controls> </pages> <httpHandlers> <remove verb="*" path="*.asmx" /> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false" /> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="SearchUrlRewriter" type="Synonymizer.SearchUrlRewriter, Synonymizer, Version=1.0.0.0, Culture=neutral" /> <add name="Session" type="System.Web.SessionStateModule" /> </httpModules> <sessionState cookieless="UseCookies" cookieName="My_SessionId" mode="InProc" stateNetworkTimeout="5" /> <customErrors mode="Off" /> </system.web> What else do I need to do to make it work?? UPD I tried to monitor if IIS accesses aspnet_client folder with ProcMon and didn't get any access.

    Read the article

  • Error using Session in IIS

    - by flashnik
    After deployment of my website to IIS I'm getting a following error message when trying to access session: Session state can only be used when enableSessionState is set to true, either in a configuration file or in the Page directive. Please also make sure that System.Web.SessionStateModule or a custom session state module is included in the \\ section in the application configuration. I access it in Page_Load or PreRender events (I tried both versions). With VS Dev Server it works without a problem. I tried both InProc an SessionState storage, 1 and multiple woker processes. I added a enableSessionState = "true" to my webpage explicitly. Here is part of web.config: <system.web> <globalization culture="ru-RU" uiCulture="ru-RU" /> <compilation debug="true" defaultLanguage="c#"> <assemblies> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> <add assembly="System.Web.Extensions.Design, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add assembly="System.Design, Version=2.0.0.0, Culture=neutral, PublicKeyToken=B03F5F7F11D50A3A" /> <add assembly="System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089" /> </assemblies> </compilation> <pages enableEventValidation="false" enableSessionState="true"> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </controls> </pages> <httpHandlers> <remove verb="*" path="*.asmx" /> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false" /> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> <add name="SearchUrlRewriter" type="Synonymizer.SearchUrlRewriter, Synonymizer, Version=1.0.0.0, Culture=neutral" /> <add name="Session" type="System.Web.SessionStateModule" /> </httpModules> <sessionState cookieless="UseCookies" cookieName="My_SessionId" mode="InProc" stateNetworkTimeout="5" /> <customErrors mode="Off" /> </system.web> What else do I need to do to make it work??

    Read the article

  • indirect rendering issue on 12.04, using ati driver

    - by lurscher
    I have ubuntu 12.04 64-bit system, when i run glxinfo i see some strange error about indirect rendering and failed to load some lib32/dri/swrast_dri libraries. Any idea what is going on? please let me know if i can enhance the relevant information provided in this question $ LIBGL_DEBUG=verbose glxinfo name of display: :0 libGL: screen 0 does not appear to be DRI2 capable libGL: OpenDriver: trying /usr/lib32/dri/tls/swrast_dri.so libGL: OpenDriver: trying /usr/lib32/dri/swrast_dri.so libGL error: dlopen /usr/lib32/dri/swrast_dri.so failed (/usr/lib32/dri/swrast_dri.so: cannot open shared object file: No such file or directory) libGL: OpenDriver: trying /usr/lib/dri/tls/swrast_dri.so libGL: OpenDriver: trying /usr/lib/dri/swrast_dri.so libGL error: dlopen /usr/lib/dri/swrast_dri.so failed (/usr/lib/dri/swrast_dri.so: cannot open shared object file: No such file or directory) libGL error: unable to load driver: swrast_dri.so libGL error: reverting to indirect rendering display: :0 screen: 0 direct rendering: No (If you want to find out why, try setting LIBGL_DEBUG=verbose) server glx vendor string: ATI server glx version string: 1.4 server glx extensions: GLX_ARB_multisample, GLX_EXT_import_context, GLX_EXT_texture_from_pixmap, GLX_EXT_visual_info, GLX_EXT_visual_rating, GLX_OML_swap_method, GLX_SGI_make_current_read, GLX_SGI_swap_control, GLX_SGIS_multisample, GLX_SGIX_fbconfig, GLX_SGIX_pbuffer, GLX_SGIX_visual_select_group client glx vendor string: Mesa Project and SGI client glx version string: 1.4 client glx extensions: GLX_ARB_create_context, GLX_ARB_create_context_profile, GLX_ARB_get_proc_address, GLX_ARB_multisample, GLX_EXT_import_context, GLX_EXT_visual_info, GLX_EXT_visual_rating, GLX_EXT_framebuffer_sRGB, GLX_EXT_create_context_es2_profile, GLX_MESA_copy_sub_buffer, GLX_MESA_multithread_makecurrent, GLX_MESA_swap_control, GLX_OML_swap_method, GLX_OML_sync_control, GLX_SGI_make_current_read, GLX_SGI_swap_control, GLX_SGI_video_sync, GLX_SGIS_multisample, GLX_SGIX_fbconfig, GLX_SGIX_pbuffer, GLX_SGIX_visual_select_group, GLX_EXT_texture_from_pixmap, GLX_INTEL_swap_event GLX version: 1.4 GLX extensions: GLX_ARB_get_proc_address, GLX_ARB_multisample, GLX_EXT_import_context, GLX_EXT_visual_info, GLX_EXT_visual_rating, GLX_MESA_multithread_makecurrent, GLX_OML_swap_method, GLX_SGI_make_current_read, GLX_SGI_swap_control, GLX_SGIS_multisample, GLX_SGIX_fbconfig, GLX_SGIX_pbuffer, GLX_SGIX_visual_select_group, GLX_EXT_texture_from_pixmap OpenGL vendor string: ATI Technologies Inc. OpenGL renderer string: AMD Radeon HD 6800 Series OpenGL version string: 1.4 (2.1 (4.2.11762 Compatibility Profile Context)) OpenGL extensions: GL_ARB_depth_texture, GL_ARB_draw_buffers, GL_ARB_fragment_program, GL_ARB_fragment_program_shadow, GL_ARB_framebuffer_object, GL_ARB_imaging, GL_ARB_multisample, GL_ARB_multitexture, GL_ARB_occlusion_query, GL_ARB_point_parameters, GL_ARB_point_sprite, GL_ARB_shadow, GL_ARB_shadow_ambient, GL_ARB_texture_border_clamp, GL_ARB_texture_compression, GL_ARB_texture_cube_map, GL_ARB_texture_env_add, GL_ARB_texture_env_combine, GL_ARB_texture_env_crossbar, GL_ARB_texture_env_dot3, GL_ARB_texture_mirrored_repeat, GL_ARB_texture_non_power_of_two, GL_ARB_texture_rectangle, GL_ARB_transpose_matrix, GL_ARB_vertex_program, GL_ARB_window_pos, GL_EXT_abgr, GL_EXT_bgra, GL_EXT_blend_color, GL_EXT_blend_equation_separate, GL_EXT_blend_func_separate, GL_EXT_blend_minmax, GL_EXT_blend_subtract, GL_EXT_copy_texture, GL_EXT_draw_range_elements, GL_EXT_fog_coord, GL_EXT_framebuffer_blit, GL_EXT_framebuffer_multisample, GL_EXT_framebuffer_object, GL_EXT_multi_draw_arrays, GL_EXT_packed_pixels, GL_EXT_point_parameters, GL_EXT_rescale_normal, GL_EXT_secondary_color, GL_EXT_separate_specular_color, GL_EXT_shadow_funcs, GL_EXT_stencil_wrap, GL_EXT_subtexture, GL_EXT_texture3D, GL_EXT_texture_compression_s3tc, GL_EXT_texture_edge_clamp, GL_EXT_texture_env_add, GL_EXT_texture_env_combine, GL_EXT_texture_env_dot3, GL_EXT_texture_lod, GL_EXT_texture_lod_bias, GL_EXT_texture_mirror_clamp, GL_EXT_texture_object, GL_EXT_texture_rectangle, GL_EXT_vertex_array, GL_ATI_draw_buffers, GL_ATI_texture_env_combine3, GL_ATI_texture_mirror_once, GL_ATIX_texture_env_combine3, GL_IBM_texture_mirrored_repeat, GL_INGR_blend_func_separate, GL_NV_texture_rectangle, GL_SGIS_generate_mipmap, GL_SGIS_texture_border_clamp, GL_SGIS_texture_edge_clamp, GL_SGIS_texture_lod, GL_SGIX_shadow_ambient, GL_SUN_multi_draw_arrays

    Read the article

  • Convert ddply {plyr} to Oracle R Enterprise, or use with Embedded R Execution

    - by Mark Hornick
    The plyr package contains a set of tools for partitioning a problem into smaller sub-problems that can be more easily processed. One function within {plyr} is ddply, which allows you to specify subsets of a data.frame and then apply a function to each subset. The result is gathered into a single data.frame. Such a capability is very convenient. The function ddply also has a parallel option that if TRUE, will apply the function in parallel, using the backend provided by foreach. This type of functionality is available through Oracle R Enterprise using the ore.groupApply function. In this blog post, we show a few examples from Sean Anderson's "A quick introduction to plyr" to illustrate the correpsonding functionality using ore.groupApply. To get started, we'll create a demo data set and load the plyr package. set.seed(1) d <- data.frame(year = rep(2000:2014, each = 3),         count = round(runif(45, 0, 20))) dim(d) library(plyr) This first example takes the data frame, partitions it by year, and calculates the coefficient of variation of the count, returning a data frame. # Example 1 res <- ddply(d, "year", function(x) {   mean.count <- mean(x$count)   sd.count <- sd(x$count)   cv <- sd.count/mean.count   data.frame(cv.count = cv)   }) To illustrate the equivalent functionality in Oracle R Enterprise, using embedded R execution, we use the ore.groupApply function on the same data, but pushed to the database, creating an ore.frame. The function ore.push creates a temporary table in the database, returning a proxy object, the ore.frame. D <- ore.push(d) res <- ore.groupApply (D, D$year, function(x) {   mean.count <- mean(x$count)   sd.count <- sd(x$count)   cv <- sd.count/mean.count   data.frame(year=x$year[1], cv.count = cv)   }, FUN.VALUE=data.frame(year=1, cv.count=1)) You'll notice the similarities in the first three arguments. With ore.groupApply, we augment the function to return the specific data.frame we want. We also specify the argument FUN.VALUE, which describes the resulting data.frame. From our previous blog posts, you may recall that by default, ore.groupApply returns an ore.list containing the results of each function invocation. To get a data.frame, we specify the structure of the result. The results in both cases are the same, however the ore.groupApply result is an ore.frame. In this case the data stays in the database until it's actually required. This can result in significant memory and time savings whe data is large. R> class(res) [1] "ore.frame" attr(,"package") [1] "OREbase" R> head(res)    year cv.count 1 2000 0.3984848 2 2001 0.6062178 3 2002 0.2309401 4 2003 0.5773503 5 2004 0.3069680 6 2005 0.3431743 To make the ore.groupApply execute in parallel, you can specify the argument parallel with either TRUE, to use default database parallelism, or to a specific number, which serves as a hint to the database as to how many parallel R engines should be used. The next ddply example uses the summarise function, which creates a new data.frame. In ore.groupApply, the year column is passed in with the data. Since no automatic creation of columns takes place, we explicitly set the year column in the data.frame result to the value of the first row, since all rows received by the function have the same year. # Example 2 ddply(d, "year", summarise, mean.count = mean(count)) res <- ore.groupApply (D, D$year, function(x) {   mean.count <- mean(x$count)   data.frame(year=x$year[1], mean.count = mean.count)   }, FUN.VALUE=data.frame(year=1, mean.count=1)) R> head(res)    year mean.count 1 2000 7.666667 2 2001 13.333333 3 2002 15.000000 4 2003 3.000000 5 2004 12.333333 6 2005 14.666667 Example 3 uses the transform function with ddply, which modifies the existing data.frame. With ore.groupApply, we again construct the data.frame explicilty, which is returned as an ore.frame. # Example 3 ddply(d, "year", transform, total.count = sum(count)) res <- ore.groupApply (D, D$year, function(x) {   total.count <- sum(x$count)   data.frame(year=x$year[1], count=x$count, total.count = total.count)   }, FUN.VALUE=data.frame(year=1, count=1, total.count=1)) > head(res)    year count total.count 1 2000 5 23 2 2000 7 23 3 2000 11 23 4 2001 18 40 5 2001 4 40 6 2001 18 40 In Example 4, the mutate function with ddply enables you to define new columns that build on columns just defined. Since the construction of the data.frame using ore.groupApply is explicit, you always have complete control over when and how to use columns. # Example 4 ddply(d, "year", mutate, mu = mean(count), sigma = sd(count),       cv = sigma/mu) res <- ore.groupApply (D, D$year, function(x) {   mu <- mean(x$count)   sigma <- sd(x$count)   cv <- sigma/mu   data.frame(year=x$year[1], count=x$count, mu=mu, sigma=sigma, cv=cv)   }, FUN.VALUE=data.frame(year=1, count=1, mu=1,sigma=1,cv=1)) R> head(res)    year count mu sigma cv 1 2000 5 7.666667 3.055050 0.3984848 2 2000 7 7.666667 3.055050 0.3984848 3 2000 11 7.666667 3.055050 0.3984848 4 2001 18 13.333333 8.082904 0.6062178 5 2001 4 13.333333 8.082904 0.6062178 6 2001 18 13.333333 8.082904 0.6062178 In Example 5, ddply is used to partition data on multiple columns before constructing the result. Realizing this with ore.groupApply involves creating an index column out of the concatenation of the columns used for partitioning. This example also allows us to illustrate using the ORE transparency layer to subset the data. # Example 5 baseball.dat <- subset(baseball, year > 2000) # data from the plyr package x <- ddply(baseball.dat, c("year", "team"), summarize,            homeruns = sum(hr)) We first push the data set to the database to get an ore.frame. We then add the composite column and perform the subset, using the transparency layer. Since the results from database execution are unordered, we will explicitly sort these results and view the first 6 rows. BB.DAT <- ore.push(baseball) BB.DAT$index <- with(BB.DAT, paste(year, team, sep="+")) BB.DAT2 <- subset(BB.DAT, year > 2000) X <- ore.groupApply (BB.DAT2, BB.DAT2$index, function(x) {   data.frame(year=x$year[1], team=x$team[1], homeruns=sum(x$hr))   }, FUN.VALUE=data.frame(year=1, team="A", homeruns=1), parallel=FALSE) res <- ore.sort(X, by=c("year","team")) R> head(res)    year team homeruns 1 2001 ANA 4 2 2001 ARI 155 3 2001 ATL 63 4 2001 BAL 58 5 2001 BOS 77 6 2001 CHA 63 Our next example is derived from the ggplot function documentation. This illustrates the use of ddply within using the ggplot2 package. We first create a data.frame with demo data and use ddply to create some statistics for each group (gp). We then use ggplot to produce the graph. We can take this same code, push the data.frame df to the database and invoke this on the database server. The graph will be returned to the client window, as depicted below. # Example 6 with ggplot2 library(ggplot2) df <- data.frame(gp = factor(rep(letters[1:3], each = 10)),                  y = rnorm(30)) # Compute sample mean and standard deviation in each group library(plyr) ds <- ddply(df, .(gp), summarise, mean = mean(y), sd = sd(y)) # Set up a skeleton ggplot object and add layers: ggplot() +   geom_point(data = df, aes(x = gp, y = y)) +   geom_point(data = ds, aes(x = gp, y = mean),              colour = 'red', size = 3) +   geom_errorbar(data = ds, aes(x = gp, y = mean,                                ymin = mean - sd, ymax = mean + sd),              colour = 'red', width = 0.4) DF <- ore.push(df) ore.tableApply(DF, function(df) {   library(ggplot2)   library(plyr)   ds <- ddply(df, .(gp), summarise, mean = mean(y), sd = sd(y))   ggplot() +     geom_point(data = df, aes(x = gp, y = y)) +     geom_point(data = ds, aes(x = gp, y = mean),                colour = 'red', size = 3) +     geom_errorbar(data = ds, aes(x = gp, y = mean,                                  ymin = mean - sd, ymax = mean + sd),                   colour = 'red', width = 0.4) }) But let's take this one step further. Suppose we wanted to produce multiple graphs, partitioned on some index column. We replicate the data three times and add some noise to the y values, just to make the graphs a little different. We also create an index column to form our three partitions. Note that we've also specified that this should be executed in parallel, allowing Oracle Database to control and manage the server-side R engines. The result of ore.groupApply is an ore.list that contains the three graphs. Each graph can be viewed by printing the list element. df2 <- rbind(df,df,df) df2$y <- df2$y + rnorm(nrow(df2)) df2$index <- c(rep(1,300), rep(2,300), rep(3,300)) DF2 <- ore.push(df2) res <- ore.groupApply(DF2, DF2$index, function(df) {   df <- df[,1:2]   library(ggplot2)   library(plyr)   ds <- ddply(df, .(gp), summarise, mean = mean(y), sd = sd(y))   ggplot() +     geom_point(data = df, aes(x = gp, y = y)) +     geom_point(data = ds, aes(x = gp, y = mean),                colour = 'red', size = 3) +     geom_errorbar(data = ds, aes(x = gp, y = mean,                                  ymin = mean - sd, ymax = mean + sd),                   colour = 'red', width = 0.4)   }, parallel=TRUE) res[[1]] res[[2]] res[[3]] To recap, we've illustrated how various uses of ddply from the plyr package can be realized in ore.groupApply, which affords the user explicit control over the contents of the data.frame result in a straightforward manner. We've also highlighted how ddply can be used within an ore.groupApply call.

    Read the article

  • Forking a GPL dual licensed software with business owned copyrights

    - by Eric
    After receiving some threats of the copyrights holder of a dual licensed software(GPL2 and commercial) to buy the commercial version for projects in production, I am thinking to make a fork. In a case of GPL2 and commercially dual licensed with business owned copyrights software, is forking the GPL2 version an option? Also, is forking a good way to deal with such cases? Background information The software is a web CMS released under 2 versions a GPL2 free open source edition and a commercial edition including technical support and extra functionality. The problem is that now, basing their argumentation on the "distribution" definition of the GPL2, the company holding the copyrights argue that delivering the software and some extensions to a client is considered as a "distribution". And that such a "distribution" falls under the GPL2 obligation to release the custom made extension code. Custom made extensions are mainly designs, templates and very specific functionality. Basically they give me 3 choices: Buying the commercial licensed edition for projects based on the GPL in production, Deleting all the projects in production based on GPL2 version, Releasing all the extensions as GPL2 code. The first 2 options are nothing realistic for finished projects. The third option could be fine, but as most of the extensions are very specific, cleaning the code to make it usable by other users means lot of works and also I am not sure the clients will appreciate to have their website designs and specific functionality released publicly. The copyrights holding company even contacted some clients directly, giving them the "choice". I know that this is a very corporate interpretation of GPL2, and a such action is nothing close to legal, but as an independent developer, I don't want to take the risk to get involved in some long and tiring legal procedures. PS. This question was first asked on Stack Overflow where it felt out of the scope and closed, after reading the present site FAQ, discussing about software licensing seems fine.

    Read the article

  • ASP.NET application partially reading external configuration

    - by Trent
    I have an ASP.NET web app and am attempting to reference an external config (using enterprise application blocks configuration) for some of the configuration but it is not entirely working. I previously had all of the configuration info in the web.config (and it was working), but we are wanting to share some of this configuration information between multiple apps. When I put configurationSource tag in the web.config, and read the configuration through the WebConfigurationManager object, it loads some of the external config info (Logging) but not the connectionStrings and not the custom section I created. So its reading it (logging is working), but some dots aren't being connected and my connection strings aren't coming through. Again, it worked when it was all in the web.config. Any idea what needs to change to be able to reference an external configuration source and have it all come through? [Code that accesses web.config] Configuration webConfig = System.Web.Configuration.WebConfigurationManager.OpenWebConfiguration("~"); ConnectionStringSettingsCollection connectionStrings = System.Web.Configuration.WebConfigurationManager.ConnectionStrings; [web.config] <configuration> <configSections> <section name="enterpriseLibrary.ConfigurationSource" type="Microsoft.Practices.EnterpriseLibrary.Common.Configuration.ConfigurationSourceSection, Microsoft.Practices.EnterpriseLibrary.Common, Version=4.1.0.0, Culture=neutral, PublicKeyToken=74025d8738dfe4ce" /> <sectionGroup name="system.web.extensions" type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="scriptResourceHandler" type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <sectionGroup name="webServices" type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="jsonSerialization" type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="Everywhere" /> <section name="profileService" type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="authenticationService" type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="roleService" type="System.Web.Configuration.ScriptingRoleServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> </sectionGroup> </sectionGroup> </sectionGroup> </configSections> <enterpriseLibrary.ConfigurationSource selectedSource="File Configuration Source"> <sources> <add name="File Configuration Source" type="Microsoft.Practices.EnterpriseLibrary.Common.Configuration.FileConfigurationSource, Microsoft.Practices.EnterpriseLibrary.Common, Version=4.1.0.0, Culture=neutral, PublicKeyToken=74025d8738dfe4ce" filePath="C:\MSEAB\MSEAB.config" /> </sources> </enterpriseLibrary.ConfigurationSource> ... ... </configuration> [external MSEAB.config] <configuration> <configSections> <section name="loggingConfiguration" type="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.LoggingSettings, Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.1.0.0, Culture=neutral, PublicKeyToken=74025d8738dfe4ce" /> <section name="dataConfiguration" type="Microsoft.Practices.EnterpriseLibrary.Data.Configuration.DatabaseSettings, Microsoft.Practices.EnterpriseLibrary.Data, Version=4.1.0.0, Culture=neutral, PublicKeyToken=74025d8738dfe4ce" /> <sectionGroup name="customSectionGroup"> <section name="customSection" type="app.customSection" allowLocation="true" allowDefinition="Everywhere" /> </sectionGroup> </configSections> <loggingConfiguration name="Logging Application Block" tracingEnabled="true" defaultCategory="General" logWarningsWhenNoCategoriesMatch="true"> ... </loggingConfiguration> <connectionStrings> <clear /> <add name="DB.DEV" connectionString="User ID=user;Password=pwd;Data Source=DV408;" providerName="Oracle.DataAccess.Client"/> <add name="DB.TEST" connectionString="User ID=user;Password=pwd;Data Source=TS408;" providerName="Oracle.DataAccess.Client"/> ... </connectionStrings> <customSectionGroup> <customSection notificationemail="[email protected]" dirPath="C:\Dir" initialrowlimit="500" maxrowlimit="1500" adminadgroup="_admins"> </customSection> </customSectionGroup> </configuration>

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Beginner Geek: How to Use Bookmarklets on Any Device

    - by Chris Hoffman
    Web browser bookmarklets allow you to perform actions on the current page with just a click or tap. They’re a lightweight alternative to browser extensions. They even work on mobile browsers that don’t support traditional extensions. To use bookmarklets, all you need is a web browser that supports bookmarks — that’s it! Bookmarklets Explained Web pages you view in your browser use JavaScript code. That’s why web pages aren’t just static documents anymore — they’re dynamic. A bookmarklet is a normal bookmark with a piece of JavaScript code instead of a web address. When you click or tap the bookmarklet, it will execute the JavaScript code on the current page instead of loading a different page, as most bookmarks do. Bookmarklets can be used to do something to a web page with a single click. For example, you’ll find bookmarklets associated with web services like Twitter, Facebook, Google+, LinkedIn, Pocket, and LastPass. When you click the bookmarklet, it will run code that lets you easily share the current page with that service. Bookmarklets don’t just have to be  associated with web services. A bookmarklet you click could modify the appearance of the page, stripping away most of the junk and giving you a clean “reading mode.” It could alter fonts, remove images, or insert other content. It can access anything the web page could access. For example, you could use a bookmarklet to reveal a password that just appears as ******* on the page. Unlike browser extensions, bookmarklets don’t run in the background and bog down your browser. They don’t do anything at all until you click them. Because they just use the standard bookmark system, they can also be used in mobile browsers where you couldn’t run extensions. For example, you could install the Pocket bookmarklet in Safari on an iPad and get an “Add to Pocket” option in Safari. Safari doesn’t offer browsing extensions and Apple’s iOS doesn’t offer a “Share” feature like Android and Windows 8 do, so this is the only way to get this direct integration. You could even use the LastPass bookmarklets in Safari on an iPad to integrate LastPass with the Safari web browser. Where to Find Bookmarklets If you’re looking for a bookmarklet for a particular service, you’ll generally find the bookmarklet on that service’s site. Websites like Twitter, Facebook, and Pocket host pages where they provide bookmarklets along with browser extensions. Bookmarklets aren’t like programs. They’re really just a piece of text that you can put in a bookmarklet, so you don’t have to download them a specific site. You can get them from practically anywhere — installing them just involves copying a bit of text off of a web page. For example, you can just search the web for “reveal password bookmarklet” if you wanted a bookmarklet that will reveal passwords. We’ve covered many of the must-have bookmarklets — and our readers have chimed in too — so take a look at our lists for more examples. How to Install a Bookmarklet Bookmarklets are simple to install. When you hover over a bookmarklet on a web page, you’ll see its address begins with “javascript:”. If you have your web browser’s bookmark or favorites toolbar visible, the easiest way to install a bookmarklet is with drag-and-drop. Press Ctrl+Shift+B to show your bookmarks toolbar if you’re using Chrome or Internet Explorer. In Firefox, right-click the toolbar and click Bookmarks Toolbar. Just drag and drop this link to your bookmark toolbar. The bookmarklet is now installed. You can also install bookmarklets manually. Select the bookmarklet’s code and copy it to your clipboard. If the bookmarklet is a link, right-click or long-press the link and copy its address to your clipboard. Open your browser’s bookmarks manager, add a bookmark, and paste the JavaScript code directly into the address box. Give your bookmarklet a name and save it. How to Use a Bookmarklet Bookmarklets are easiest to use if you have your browser’s bookmarks toolbar enabled. Just click the bookmarklet and your browser will run it on the current page. If you don’t have a bookmarks toolbar — such as on Safari on an iPad or another mobile browser — just open your browser’s bookmarks pane and tap or click the bookmark. In mobile Chrome, you’ll need to launch the bookmarklet from the location bar. Open the web page you want to run the bookmarklet on, tap your location bar, and start searching for the name of the bookmarklet. Tap the bookmarklet’s name to run it on the current page. Note that the bookmarklet only appears here because we have it saved as a bookmark in Chrome. You’ll need to add the bookmarklet to your browser’s bookmarks before you can use it in this way. The location bar approach may also be necessary in other browsers. The trick is loading the bookmark so that it will be associated with your current tab. You can’t just open your bookmarks in a separate browser tab and run the bookmarklet from there — it will run on that other browser tab. Bookmarklets are powerful and flexible. While they’re not as flashy as browser extensions, they’re much more lightweight and allow you to get extension-like features in more limited mobile browsers.

    Read the article

  • C# Extension Methods - To Extend or Not To Extend...

    - by James Michael Hare
    I've been thinking a lot about extension methods lately, and I must admit I both love them and hate them. They are a lot like sugar, they taste so nice and sweet, but they'll rot your teeth if you eat them too much.   I can't deny that they aren't useful and very handy. One of the major components of the Shared Component library where I work is a set of useful extension methods. But, I also can't deny that they tend to be overused and abused to willy-nilly extend every living type.   So what constitutes a good extension method? Obviously, you can write an extension method for nearly anything whether it is a good idea or not. Many times, in fact, an idea seems like a good extension method but in retrospect really doesn't fit.   So what's the litmus test? To me, an extension method should be like in the movies when a person runs into their twin, separated at birth. You just know you're related. Obviously, that's hard to quantify, so let's try to put a few rules-of-thumb around them.   A good extension method should:     Apply to any possible instance of the type it extends.     Simplify logic and improve readability/maintainability.     Apply to the most specific type or interface applicable.     Be isolated in a namespace so that it does not pollute IntelliSense.     So let's look at a few examples in relation to these rules.   The first rule, to me, is the most important of all. Once again, it bears repeating, a good extension method should apply to all possible instances of the type it extends. It should feel like the long lost relative that should have been included in the original class but somehow was missing from the family tree.    Take this nifty little int extension, I saw this once in a blog and at first I really thought it was pretty cool, but then I started noticing a code smell I couldn't quite put my finger on. So let's look:       public static class IntExtensinos     {         public static int Seconds(int num)         {             return num * 1000;         }           public static int Minutes(int num)         {             return num * 60000;         }     }     This is so you could do things like:       ...     Thread.Sleep(5.Seconds());     ...     proxy.Timeout = 1.Minutes();     ...     Awww, you say, that's cute! Well, that's the problem, it's kitschy and it doesn't always apply (and incidentally you could achieve the same thing with TimeStamp.FromSeconds(5)). It's syntactical candy that looks cool, but tends to rot and pollute the code. It would allow things like:       total += numberOfTodaysOrders.Seconds();     which makes no sense and should never be allowed. The problem is you're applying an extension method to a logical domain, not a type domain. That is, the extension method Seconds() doesn't really apply to ALL ints, it applies to ints that are representative of time that you want to convert to milliseconds.    Do you see what I mean? The two problems, in a nutshell, are that a) Seconds() called off a non-time value makes no sense and b) calling Seconds() off something to pass to something that does not take milliseconds will be off by a factor of 1000 or worse.   Thus, in my mind, you should only ever have an extension method that applies to the whole domain of that type.   For example, this is one of my personal favorites:       public static bool IsBetween<T>(this T value, T low, T high)         where T : IComparable<T>     {         return value.CompareTo(low) >= 0 && value.CompareTo(high) <= 0;     }   This allows you to check if any IComparable<T> is within an upper and lower bound. Think of how many times you type something like:       if (response.Employee.Address.YearsAt >= 2         && response.Employee.Address.YearsAt <= 10)     {     ...     }     Now, you can instead type:       if(response.Employee.Address.YearsAt.IsBetween(2, 10))     {     ...     }     Note that this applies to all IComparable<T> -- that's ints, chars, strings, DateTime, etc -- and does not depend on any logical domain. In addition, it satisfies the second point and actually makes the code more readable and maintainable.   Let's look at the third point. In it we said that an extension method should fit the most specific interface or type possible. Now, I'm not saying if you have something that applies to enumerables, you create an extension for List, Array, Dictionary, etc (though you may have reasons for doing so), but that you should beware of making things TOO general.   For example, let's say we had an extension method like this:       public static T ConvertTo<T>(this object value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This lets you do more fluent conversions like:       double d = "5.0".ConvertTo<double>();     However, if you dig into Reflector (LOVE that tool) you will see that if the type you are calling on does not implement IConvertible, what you convert to MUST be the exact type or it will throw an InvalidCastException. Now this may or may not be what you want in this situation, and I leave that up to you. Things like this would fail:       object value = new Employee();     ...     // class cast exception because typeof(IEmployee) != typeof(Employee)     IEmployee emp = value.ConvertTo<IEmployee>();       Yes, that's a downfall of working with Convertible in general, but if you wanted your fluent interface to be more type-safe so that ConvertTo were only callable on IConvertibles (and let casting be a manual task), you could easily make it:         public static T ConvertTo<T>(this IConvertible value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This is what I mean by choosing the best type to extend. Consider that if we used the previous (object) version, every time we typed a dot ('.') on an instance we'd pull up ConvertTo() whether it was applicable or not. By filtering our extension method down to only valid types (those that implement IConvertible) we greatly reduce our IntelliSense pollution and apply a good level of compile-time correctness.   Now my fourth rule is just my general rule-of-thumb. Obviously, you can make extension methods as in-your-face as you want. I included all mine in my work libraries in its own sub-namespace, something akin to:       namespace Shared.Core.Extensions { ... }     This is in a library called Shared.Core, so just referencing the Core library doesn't pollute your IntelliSense, you have to actually do a using on Shared.Core.Extensions to bring the methods in. This is very similar to the way Microsoft puts its extension methods in System.Linq. This way, if you want 'em, you use the appropriate namespace. If you don't want 'em, they won't pollute your namespace.   To really make this work, however, that namespace should only include extension methods and subordinate types those extensions themselves may use. If you plant other useful classes in those namespaces, once a user includes it, they get all the extensions too.   Also, just as a personal preference, extension methods that aren't simply syntactical shortcuts, I like to put in a static utility class and then have extension methods for syntactical candy. For instance, I think it imaginable that any object could be converted to XML:       namespace Shared.Core     {         // A collection of XML Utility classes         public static class XmlUtility         {             ...             // Serialize an object into an xml string             public static string ToXml(object input)             {                 var xs = new XmlSerializer(input.GetType());                   // use new UTF8Encoding here, not Encoding.UTF8. The later includes                 // the BOM which screws up subsequent reads, the former does not.                 using (var memoryStream = new MemoryStream())                 using (var xmlTextWriter = new XmlTextWriter(memoryStream, new UTF8Encoding()))                 {                     xs.Serialize(xmlTextWriter, input);                     return Encoding.UTF8.GetString(memoryStream.ToArray());                 }             }             ...         }     }   I also wanted to be able to call this from an object like:       value.ToXml();     But here's the problem, if i made this an extension method from the start with that one little keyword "this", it would pop into IntelliSense for all objects which could be very polluting. Instead, I put the logic into a utility class so that users have the choice of whether or not they want to use it as just a class and not pollute IntelliSense, then in my extensions namespace, I add the syntactical candy:       namespace Shared.Core.Extensions     {         public static class XmlExtensions         {             public static string ToXml(this object value)             {                 return XmlUtility.ToXml(value);             }         }     }   So now it's the best of both worlds. On one hand, they can use the utility class if they don't want to pollute IntelliSense, and on the other hand they can include the Extensions namespace and use as an extension if they want. The neat thing is it also adheres to the Single Responsibility Principle. The XmlUtility is responsible for converting objects to XML, and the XmlExtensions is responsible for extending object's interface for ToXml().

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • Adding multiple data importers support to web applications

    - by DigiMortal
    I’m building web application for customer and there is requirement that users must be able to import data in different formats. Today we will support XLSX and ODF as import formats and some other formats are waiting. I wanted to be able to add new importers on the fly so I don’t have to deploy web application again when I add new importer or change some existing one. In this posting I will show you how to build generic importers support to your web application. Importer interface All importers we use must have something in common so we can easily detect them. To keep things simple I will use interface here. public interface IMyImporter {     string[] SupportedFileExtensions { get; }     ImportResult Import(Stream fileStream, string fileExtension); } Our interface has the following members: SupportedFileExtensions – string array of file extensions that importer supports. This property helps us find out what import formats are available and which importer to use with given format. Import – method that does the actual importing work. Besides file we give in as stream we also give file extension so importer can decide how to handle the file. It is enough to get started. When building real importers I am sure you will switch over to abstract base class. Importer class Here is sample importer that imports data from Excel and Word documents. Importer class with no implementation details looks like this: public class MyOpenXmlImporter : IMyImporter {     public string[] SupportedFileExtensions     {         get { return new[] { "xlsx", "docx" }; }     }     public ImportResult Import(Stream fileStream, string extension)     {         // ...     } } Finding supported import formats in web application Now we have importers created and it’s time to add them to web application. Usually we have one page or ASP.NET MVC controller where we need importers. To this page or controller we add the following method that uses reflection to find all classes that implement our IMyImporter interface. private static string[] GetImporterFileExtensions() {     var types = from a in AppDomain.CurrentDomain.GetAssemblies()                 from t in a.GetTypes()                 where t.GetInterfaces().Contains(typeof(IMyImporter))                 select t;       var extensions = new Collection<string>();     foreach (var type in types)     {         var instance = (IMyImporter)type.InvokeMember(null,                        BindingFlags.CreateInstance, null, null, null);           foreach (var extension in instance.SupportedFileExtensions)         {             if (extensions.Contains(extension))                 continue;               extensions.Add(extension);         }     }       return extensions.ToArray(); } This code doesn’t look nice and is far from optimal but it works for us now. It is possible to improve performance of web application if we cache extensions and their corresponding types to some static dictionary. We have to fill it only once because our application is restarted when something changes in bin folder. Finding importer by extension When user uploads file we need to detect the extension of file and find the importer that supports given extension. We add another method to our page or controller that uses reflection to return us importer instance or null if extension is not supported. private static IMyImporter GetImporterForExtension(string extensionToFind) {     var types = from a in AppDomain.CurrentDomain.GetAssemblies()                 from t in a.GetTypes()                 where t.GetInterfaces().Contains(typeof(IMyImporter))                 select t;     foreach (var type in types)     {         var instance = (IMyImporter)type.InvokeMember(null,                        BindingFlags.CreateInstance, null, null, null);           if (instance.SupportedFileExtensions.Contains(extensionToFind))         {             return instance;         }     }       return null; } Here is example ASP.NET MVC controller action that accepts uploaded file, finds importer that can handle file and imports data. Again, this is sample code I kept minimal to better illustrate how things work. public ActionResult Import(MyImporterModel model) {     var file = Request.Files[0];     var extension = Path.GetExtension(file.FileName).ToLower();     var importer = GetImporterForExtension(extension.Substring(1));     var result = importer.Import(file.InputStream, extension);     if (result.Errors.Count > 0)     {         foreach (var error in result.Errors)             ModelState.AddModelError("file", error);           return Import();     }     return RedirectToAction("Index"); } Conclusion That’s it. Using couple of ugly methods and one simple interface we were able to add importers support to our web application. Example code here is not perfect but it works. It is possible to cache mappings between file extensions and importer types to some static variable because changing of these mappings means that something is changed in bin folder of web application and web application is restarted in this case anyway.

    Read the article

< Previous Page | 44 45 46 47 48 49 50 51 52 53 54 55  | Next Page >