Search Results

Search found 14421 results on 577 pages for 'oracle oracle maf'.

Page 485/577 | < Previous Page | 481 482 483 484 485 486 487 488 489 490 491 492  | Next Page >

  • Cluster Node Recovery Using Second Node in Solaris Cluster

    - by Onur Bingul
    Assumptions:Node 0a is the cluster node that has crashed and could not boot anymore.Node 0b is the node in cluster and in production with services active.Both nodes have their boot disk mirrored via SDS/SVM.We have many options to clone the boot disk from node 0b:- make a copy via network using the ufsdump command and pipe to ufsrestore - make a copy inserting the disk locally on node 0b and creating the third mirror with SDS- make a copy inserting the disk locally on node 0b using dd commandIn this procedure we are going to use dd command (from my experience this is the best option).Bare in mind that in the examples provided we work on Sun Fire V240 systems which have SCSI internal disks. In the case of Fibre Channel (FC) internal disks you must pay attention to the unique identifier, or World Wide Name (WWN), associated with each FC disk (in this case take a look at infodoc #40133 in order to recreate the device tree correctly).Procedure:On node 0b the boot disk is c1t0d0 (c1t1d0 mirror) and this is the VTOC:* Partition  Tag  Flags    Sector     Count    Sector  Mount Directory      0      2    00          0   2106432   2106431      1      3    01    2106432  74630784  76737215      2      5    00          0 143349312 143349311      4      7    00   76737216  50340672 127077887      5      4    00  127077888  14683968 141761855      6      0    00  141761856   1058304 142820159      7      0    00  142820160    529152 143349311We will insert the new disk on node 0b and it will be seen as c1t2d0.1) On node 0b we make a copy via dd from disk c1t0d0s2 to disk c1t2d0s2# dd if=/dev/rdsk/c1t0d0s2 of=/dev/rdsk/c1t2d0s2 bs=8192kA copy of a 72GB disk will take approximately about 45 minutes.Note: as an alternative to make identical copy of root over network follow Document ID: 47498Title: Sun[TM] Cluster 3.0: How to Rebuild a node with Veritas Volume Manager2) Perform an fsck on disk c1t2d0 data slices:   1.  fsck -o f /dev/rdsk/c1t2d0s0 (root)   2.  fsck -o f /dev/rdsk/c1t2d0s4 (/var)   3.  fsck -o f /dev/rdsk/c1t2d0s5 (/usr)   4.  fsck -o f /dev/rdsk/c1t2d0s6 (/globaldevices)3) Mount the root file system in order to edit following files for changing the node name:# mount /dev/dsk/c1t2d0s0 /mntChange the hostname from 0b to 0a:# cd /mnt/etc# vi hosts # vi hostname.bge0 # vi hostname.bge2 # vi nodename 4) Change the /mnt/etc/vfstab from the actual:/dev/md/dsk/d201        -       -       swap    -       no      -/dev/md/dsk/d200        /dev/md/rdsk/d200       /       ufs     1       no      -/dev/md/dsk/d205        /dev/md/rdsk/d205       /usr    ufs     1       no      logging/dev/md/dsk/d204        /dev/md/rdsk/d204       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d206        /dev/md/rdsk/d206       /global/.devices/node@2 ufs     2       noglobalto this (unencapsulate disk from SDS/SVM):/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/dsk/c1t0d0s0       /dev/rdsk/c1t0d0s0       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs     2       no globalIt is important that global device partition (slice 6) in the new vfstab will point to the physical partition of the disk (in our case slice 6).Be careful with the name you use for the new disk. In this case we define it as c1t0d0 because we will insert it as target 0 in node 0a.But this could be different based on the configuration you are working on.5) Remove following entry from /mnt/etc/system (part of unencapsulation procedure):rootdev:/pseudo/md@0:0,200,blk6) Correct the link shared -> ../../global/.devices/node@2/dev/md/shared in order to point to the nodeid of node 0a (in our case nodeid 1):# cd /mnt/dev/mdhow it is now.... node 0b has nodeid 2lrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@2/dev/md/shared# rm shared# ln -s ../../global/.devices/node@1/dev/md/shared sharedhow is going to be... with nodeid 1 for node 0alrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@1/dev/md/shared7) Change nodeid (in our case from 2 to 1):# cd /mnt/etc/cluster# vi nodeid8) Change the file /mnt/etc/path_to_inst in order to reflect the correct nodeid for node 0a:# cd /mnt/etc# vi path_to_instChange entries from node@2 to node@1 with the vi command ":%s/node@2/node@1/g"9) Write the bootblock to the disk... just in case:# /usr/sbin/installboot /usr/platform/sun4u/lib/fs/ufs/bootblk /dev/rdsk/c1t2d0s0Now the disk is ready to be inserted in node 0a in order to bootup the node.10) Bootup node 0a with command "boot -sx"... this is becasue we need to make some changes in ccr files in order to recreate did environment.11) Modify cluster ccr:# cd /etc/cluster/ccr# rm did_instances# rm did_instances.bak# vi directory - remove the did_instances line.# /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/directory # grep ccr_gennum /etc/cluster/ccr/directory ccr_gennum -1 # /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/infrastructure # grep ccr_gennum /etc/cluster/ccr/infrastructure ccr_gennum -112) Bring the node 0a down again to the ok prompt and then issue the command "boot -r"Now the node will join the cluster and from scstat and metaset command you can verify functionality. Next step is to encapsulate the boot disk in SDS/SVM and create the mirrors.In our case node 0b has metadevice name starting from d200. For this reason on node 0a we need to create metadevice starting from d100. This is just an example, you can have different names.The important thing to remember is that metadevice boot disks have different names on each node.13) Remove metadevice pointing to the boot and mirror disks (inherit from node 0b):# metaclear -r -f d200# metaclear -r -f d201# metaclear -r -f d204# metaclear -r -f d205# metaclear -r -f d206verify from metastat that no metadevices are set for boot and mirror disks.14) Encapsulate the boot disk:# metainit -f d110 1 1 c1t0d0s0# metainit d100 -m d110# metaroot d10015) Reboot node 0a.16) Create all the metadevice for slices remaining on boot disk# metainit -f d111 1 1 c1t0d0s1# metainit d101 -m d111# metainit -f d114 1 1 c1t0d0s4# metainit d104 -m d114# metainit -f d115 1 1 c1t0d0s5# metainit d105 -m d115# metainit -f d116 1 1 c1t0d0s6# metainit d106 -m d11617) Edit the vfstab in order to specifiy metadevices created:old:/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs      2       no  globalnew:/dev/md/dsk/d101        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/md/dsk/d105        /dev/md/rdsk/d105       /usr    ufs     1       no      logging/dev/md/dsk/d104        /dev/md/rdsk/d104       /var    ufs     1       no      logging#/dev/md/dsk/106       /dev/md/rdsk/d106       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d106        /dev/md/rdsk/d106       /global/.devices/node@1 ufs     2       noglobal18) Reboot node 0a in order to check new SDS/SVM boot configuration.19) Label the mirror disk c1t1d0 with the VTOC of boot disk c1t0d0:# prtvtoc /dev/dsk/c1t0d0s2 > /var/tmp/VTOC_c1t0d0 # fmthard -s /var/tmp/VTOC_c1t0d0 /dev/rdsk/c1t1d0s220) Put DB replica on slice 7 of disk c1t1d0:# metadb -a -c 3 /dev/dsk/c1t1d0s721) Create metadevice for mirror disk c1t1d0 and attach the new mirror side:# metainit d120 1 1 c1t1d0s0# metattach d100 d120# metainit d121 1 1 c1t1d0s1# metattach d101 d121# metainit d124 1 1 c1t1d0s4# metattach d104 d124# metainit d125 1 1 c1t1d0s5# metattach d105 d125# metainit d126 1 1 c1t1d0s6# metattach d106 d126

    Read the article

  • Duke at JavaOne

    - by Tori Wieldt
    A living, life-size Duke is a popular feature at every JavaOne developer conference.  One of the highlights for attendees is to meet Duke "in person" and get their picture taken. It's fun to show to your friends...and try to explain why you are standing next to a tooth.* While Duke refused any interviews, I found a slip of paper stuck to Duke's foot. If you wonder why I give 100%,The community deserves no less.Neither JavaOne.They both deserve the best! So much of the world we enjoy today,and the places we're sure to advanceis due to engineering brillianceand gives our species that chance. So when I dance and give it my allas Duke, to rally some cheer,the honor and the privilegemakes me smile, ear to ear. *Duke was designed to represent a "software agent" that performed tasks for the user. In 2006, Duke was officially open sourced under a BSD license. Developers and designers can play around with Duke and have access to Duke’s graphical specifications through a java.net project at http://duke.kenai.com. JavaOne attendees can find Duke in the Zone all week.

    Read the article

  • Java ME SDK 3.0.5 is released!

    - by SungmoonCho
      Java ME SDK 3.0.5 went live! For many months, we have been working hard to fix bugs from previous version, and add a lot of new features demanded by Java ME community. You can download the new version from this link. Please see below for more information. NetBeans Integration All Java ME tools are implemented as NetBeans plugins. Device Manager Java ME SDK now supports multiple device managers. You can switch between different versions of device managers. LWUIT 1.5 Support The Resource Editor is available from the Java ME menu to help you design and organize resources for LWUIT applications. For a description of LWUIT 1.5 features, visit the LWUIT download page Network Monitor Integrated with NetBeans profiling tools, the Network Monitor now supports WMA, SIP, Bluetooth and OBEX, SATSA APDU and JCRMI, and server sockets. CPU Profiler Now uses standard NetBeans profiling facilities to view snapshots. Profiling of VM classes can also be toggled on or off. WURFL Device Database The database has been updated with more than 1000 new devices. Tracing - New tracing functionality now includes CLDC VM events, and monitors events such as exceptions, class loading, garbage collection, and methods invocation. New or updated JSR support - Includes support for JSR 234 (Advanced Multimedia Supplements), JSR 253 (Mobile Telephony API), JSR 257 (Contactless Communication API), JSR 258 (Mobile User Interface Customization API), and JSR 293 (XML API for Java ME).

    Read the article

  • A tour of the GlassFish 3.1.2 DCOM support

    - by alexismp
    While we've mentioned the DCOM support in GlassFish 3.1.2 several times before, you'll probably find Byron's DCOM blog entry to be useful if you're using Windows as a deployment platform for your GlassFish cluster. Byron discusses how DCOM is used to communicate with remote Windows nodes participating in a GlassFish cluster, what Java libraries were used to wrap around DCOM, what new asadmin commands were addd (in particular validate-dcom) as well as some tips to make this all work on your specific environment. In addition to this blog post, you should considering reading the official product documentation : • Considerations for Using DCOM for Centralized Administration • Setting Up DCOM and Testing the DCOM Set Up

    Read the article

  • JMS : Specifying Message Paging Directory on Weblogic server.

    - by adejuanc
    Two ways to configure or modify Paging directory, here the examples : 1.- Via config.xml file. <paging-directory>C:\temp</paging-directory> <jms-server> <name>JMSServerMS1</name> <target>MS1</target> <persistent-store xsi:nil="true"></persistent-store> <hosting-temporary-destinations>true</hosting-temporary-destinations> <temporary-template-resource xsi:nil="true"></temporary-template-resource> <temporary-template-name xsi:nil="true"></temporary-template-name> <message-buffer-size>-1</message-buffer-size> <paging-directory>C:\temp</paging-directory> <paging-file-locking-enabled>true</paging-file-locking-enabled> <expiration-scan-interval>30</expiration-scan-interval> </jms-server> ------------------------------------------------------- 2 .- Via WLST (Weblogic scripting tool) startEdit() cd('/Deployments/JMSServerMS1') cmo.setPagingDirectory('C:\\temp') activate()

    Read the article

  • Script to set NO_HEARTBEAT Flag

    - by Koppar
    The new plugin provides some flags to help debug the browser side VM. Below are the flags: JPI_PLUGIN2_DEBUG=1JPI_PLUGIN2_VERBOSE=1 The above 2 provide tracing information JPI_PLUGIN2_NO_HEARTBEAT = 1 This disables sending of  heartbeat messages between browser side VM and the client JVM instance(s). This lets the client JVM stay independent of browser side VM. These are to be set as system environment variables. Many a times we are required to set them using scripts. Here is a small script to achieve the same: -----------set_jpi_flags.vbs------------------------------------------ Set WSHShell = WScript.CreateObject("WScript.Shell")Set WshEnv = WshShell.Environment("USER")WshEnv("JPI_PLUGIN2_NO_HEARTBEAT") = "1"WshEnv("JPI_PLUGIN2_DEBUG") = "1"WshEnv("JPI_PLUGIN2_VERBOSE") = "1"WScript.Echo WshEnv("JPI_PLUGIN2_NO_HEARTBEAT")   ---- displays the value of the NO_HEARTBEAT var ---------------------------------------------------------------------------

    Read the article

  • WebCenter Content shared folders for clustering

    - by Kyle Hatlestad
    When configuring a WebCenter Content (WCC) cluster, one of the things which makes it unique from some other WebLogic Server applications is its requirement for a shared file system.  This is actually not any different then 10g and previous versions of UCM when it ran directly on a JVM.  And while it is simple enough to say it needs a shared file system, there are some crucial details in how those directories are configured. And if they aren't followed, you may result in some unwanted behavior. This blog post will go into the details on how exactly the file systems should be split and what options are required. [Read More]

    Read the article

  • Demantra Performance Clustering Factor Out of Order Ratio TABLE_REORG CHECK_REORG (Doc ID 1594372.1)

    - by user702295
    Hello!   There is a new document available: Demantra Performance Clustering Factor Out of Order Ratio TABLE_REORG CHECK_REORG (Doc ID 1594372.1) Demantra Performance Clustering Factor Out of Order Ratio TABLE_REORG CHECK_REORG The table reorganization can be setup to automatically run in version 7.3.1.5.  In version 12.2.2 we run the TABLE_REORG.CHECK_REORG function at every appserver restart. If the function recommends a reorg then we strongly encourage to reorg the database object.  This is documented in the official docs. In versions 7.3.1.3 and 7.3.1.4, the TABLE_REORG module exists and can be used. It has two main functions that are documented in the Implementation Guide Supplement, Release 7.3, Part No. E26760-03, chapter 4. In short, if you are using version 7.3.1.3 or higher, you can check for the need to run a reorg by doing the following 2 steps: 1. Run TABLE_REORG.CHECK_REORG('T'); 2. Check the table LOG_TABLE_REORG for recommendations If you are on a version before 7.3.1.3, you will need to follow the instructions below to determine if you need to do a manual reorg. How to determine if a table reorg is needed 1. It is strongly encouraged by DEV that You gather statistics on the required table.  The prefered percentage for the gather is 100%. 2. Run the following SQL to evaluate how table reorg might affect Primary Key (PK) based access:   SELECT ui.index_name,trunc((ut.num_rows/ui.clustering_factor)/(ut.num_rows/ut.blocks),2) FROM user_indexes ui, user_tables ut, user_constraints uc WHERE ui.table_name=ut.table_name AND ut.table_name=uc.table_name AND ui.index_name=uc.index_name AND UC.CONSTRAINT_TYPE='P' AND ut.table_name=upper('&enter_table_name');   3. Based on the result: VALUE ABOVE 0.75 - DOES NOT REQUIRE REORG VALUE BETWEEN 0.5 AND 0.75 - REORG IS RECOMMENDED VALUE LOWER THAN 0.5 - IT IS HIGHLY RECOMMENDED TO REORG

    Read the article

  • eFX on NetBeans Platform at Silicon Valley JavaFX User Group

    - by Geertjan
    Below you can watch (in addition to seeing Steve Chin and Ben Evans) Sven Reimers presenting eFX, a JavaFX application framework on the NetBeans Platform, yesterday at the Silicon Valley JavaFX User Group. While watching, you'll learn quite a few things about the NetBeans Platform, at the same time. In the end, you see a VisualVM clone written in JavaFX on the NetBeans Platform. Sven will also talk on this topic at NetBeans Day and during his sessions at JavaOne.

    Read the article

  • Recent JSR Updates-JSR 356, 357, 355, 349, 236

    - by heathervc
    JSR 357, Social Media API, was not approved by the SE/EE EC to continue development in the JCP program. JSR 356, Java API for WebSocket, was approved by the SE/EE EC to continue development in the JCP program. JSR 355,  JCP Executive Committee Merge, published an Early Draft Review; this review closes 27 April.  You can read more about JSR 355 here. JSR 349, Bean Validation 1.1, published an Early Draft Review; this review closes 27 April. JSR 236,  Concurrency Utilities for Java EE, has updated the JSR page and moved to JCP version 2.8.

    Read the article

  • New Enhancements for InnoDB Memcached

    - by Calvin Sun
    In MySQL 5.6, we continued our development on InnoDB Memcached and completed a few widely desirable features that make InnoDB Memcached a competitive feature in more scenario. Notablely, they are 1) Support multiple table mapping 2) Added background thread to auto-commit long running transactions 3) Enhancement in binlog performance  Let’s go over each of these features one by one. And in the last section, we will go over a couple of internally performed performance tests. Support multiple table mapping In our earlier release, all InnoDB Memcached operations are mapped to a single InnoDB table. In the real life, user might want to use this InnoDB Memcached features on different tables. Thus being able to support access to different table at run time, and having different mapping for different connections becomes a very desirable feature. And in this GA release, we allow user just be able to do both. We will discuss the key concepts and key steps in using this feature. 1) "mapping name" in the "get" and "set" command In order to allow InnoDB Memcached map to a new table, the user (DBA) would still require to "pre-register" table(s) in InnoDB Memcached “containers” table (there is security consideration for this requirement). If you would like to know about “containers” table, please refer to my earlier blogs in blogs.innodb.com. Once registered, the InnoDB Memcached will then be able to look for such table when they are referred. Each of such registered table will have a unique "registration name" (or mapping_name) corresponding to the “name” field in the “containers” table.. To access these tables, user will include such "registration name" in their get or set commands, in the form of "get @@new_mapping_name.key", prefix "@@" is required for signaling a mapped table change. The key and the "mapping name" are separated by a configurable delimiter, by default, it is ".". So the syntax is: get [@@mapping_name.]key_name set [@@mapping_name.]key_name  or  get @@mapping_name set @@mapping_name Here is an example: Let's set up three tables in the "containers" table: The first is a map to InnoDB table "test/demo_test" table with mapping name "setup_1" INSERT INTO containers VALUES ("setup_1", "test", "demo_test", "c1", "c2", "c3", "c4", "c5", "PRIMARY");  Similarly, we set up table mappings for table "test/new_demo" with name "setup_2" and that to table "mydatabase/my_demo" with name "setup_3": INSERT INTO containers VALUES ("setup_2", "test", "new_demo", "c1", "c2", "c3", "c4", "c5", "secondary_index_x"); INSERT INTO containers VALUES ("setup_3", "my_database", "my_demo", "c1", "c2", "c3", "c4", "c5", "idx"); To switch to table "my_database/my_demo", and get the value corresponding to “key_a”, user will do: get @@setup_3.key_a (this will also output the value that corresponding to key "key_a" or simply get @@setup_3 Once this is done, this connection will switch to "my_database/my_demo" table until another table mapping switch is requested. so it can continue issue regular command like: get key_b  set key_c 0 0 7 These DMLs will all be directed to "my_database/my_demo" table. And this also implies that different connections can have different bindings (to different table). 2) Delimiter: For the delimiter "." that separates the "mapping name" and key value, we also added a configure option in the "config_options" system table with name of "table_map_delimiter": INSERT INTO config_options VALUES("table_map_delimiter", "."); So if user wants to change to a different delimiter, they can change it in the config_option table. 3) Default mapping: Once we have multiple table mapping, there should be always a "default" map setting. For this, we decided if there exists a mapping name of "default", then this will be chosen as default mapping. Otherwise, the first row of the containers table will chosen as default setting. Please note, user tables can be repeated in the "containers" table (for example, user wants to access different columns of the table in different settings), as long as they are using different mapping/configure names in the first column, which is enforced by a unique index. 4) bind command In addition, we also extend the protocol and added a bind command, its usage is fairly straightforward. To switch to "setup_3" mapping above, you simply issue: bind setup_3 This will switch this connection's InnoDB table to "my_database/my_demo" In summary, with this feature, you now can direct access to difference tables with difference session. And even a single connection, you can query into difference tables. Background thread to auto-commit long running transactions This is a feature related to the “batch” concept we discussed in earlier blogs. This “batch” feature allows us batch the read and write operations, and commit them only after certain calls. The “batch” size is controlled by the configure parameter “daemon_memcached_w_batch_size” and “daemon_memcached_r_batch_size”. This could significantly boost performance. However, it also comes with some disadvantages, for example, you will not be able to view “uncommitted” operations from SQL end unless you set transaction isolation level to read_uncommitted, and in addition, this will held certain row locks for extend period of time that might reduce the concurrency. To deal with this, we introduce a background thread that “auto-commits” the transaction if they are idle for certain amount of time (default is 5 seconds). The background thread will wake up every second and loop through every “connections” opened by Memcached, and check for idle transactions. And if such transaction is idle longer than certain limit and not being used, it will commit such transactions. This limit is configurable by change “innodb_api_bk_commit_interval”. Its default value is 5 seconds, and minimum is 1 second, and maximum is 1073741824 seconds. With the help of such background thread, you will not need to worry about long running uncommitted transactions when set daemon_memcached_w_batch_size and daemon_memcached_r_batch_size to a large number. This also reduces the number of locks that could be held due to long running transactions, and thus further increase the concurrency. Enhancement in binlog performance As you might all know, binlog operation is not done by InnoDB storage engine, rather it is handled in the MySQL layer. In order to support binlog operation through InnoDB Memcached, we would have to artificially create some MySQL constructs in order to access binlog handler APIs. In previous lab release, for simplicity consideration, we open and destroy these MySQL constructs (such as THD) for each operations. This required us to set the “batch” size always to 1 when binlog is on, no matter what “daemon_memcached_w_batch_size” and “daemon_memcached_r_batch_size” are configured to. This put a big restriction on our capability to scale, and also there are quite a bit overhead in creating destroying such constructs that bogs the performance down. With this release, we made necessary change that would keep MySQL constructs as long as they are valid for a particular connection. So there will not be repeated and redundant open and close (table) calls. And now even with binlog option is enabled (with innodb_api_enable_binlog,), we still can batch the transactions with daemon_memcached_w_batch_size and daemon_memcached_r_batch_size, thus scale the write/read performance. Although there are still overheads that makes InnoDB Memcached cannot perform as fast as when binlog is turned off. It is much better off comparing to previous release. And we are continuing optimize the solution is this area to improve the performance as much as possible. Performance Study: Amerandra of our System QA team have conducted some performance studies on queries through our InnoDB Memcached connection and plain SQL end. And it shows some interesting results. The test is conducted on a “Linux 2.6.32-300.7.1.el6uek.x86_64 ix86 (64)” machine with 16 GB Memory, Intel Xeon 2.0 GHz CPU X86_64 2 CPUs- 4 Core Each, 2 RAID DISKS (1027 GB,733.9GB). Results are described in following tables: Table 1: Performance comparison on Set operations Connections 5.6.7-RC-Memcached-plugin ( TPS / Qps) with memcached-threads=8*** 5.6.7-RC* X faster Set (QPS) Set** 8 30,000 5,600 5.36 32 59,000 13,000 4.54 128 68,000 8,000 8.50 512 63,000 6.800 9.23 * mysql-5.6.7-rc-linux2.6-x86_64 ** The “set” operation when implemented in InnoDB Memcached involves a couple of DMLs: it first query the table to see whether the “key” exists, if it does not, the new key/value pair will be inserted. If it does exist, the “value” field of matching row (by key) will be updated. So when used in above query, it is a precompiled store procedure, and query will just execute such procedures. *** added “–daemon_memcached_option=-t8” (default is 4 threads) So we can see with this “set” query, InnoDB Memcached can run 4.5 to 9 time faster than MySQL server. Table 2: Performance comparison on Get operations Connections 5.6.7-RC-Memcached-plugin ( TPS / Qps) with memcached-threads=8 5.6.7-RC* X faster Get (QPS) Get 8 42,000 27,000 1.56 32 101,000 55.000 1.83 128 117,000 52,000 2.25 512 109,000 52,000 2.10 With the “get” query (or the select query), memcached performs 1.5 to 2 times faster than normal SQL. Summary: In summary, we added several much-desired features to InnoDB Memcached in this release, allowing user to operate on different tables with this Memcached interface. We also now provide a background commit thread to commit long running idle transactions, thus allow user to configure large batch write/read without worrying about large number of rows held or not being able to see (uncommit) data. We also greatly enhanced the performance when Binlog is enabled. We will continue making efforts in both performance enhancement and functionality areas to make InnoDB Memcached a good demo case for our InnoDB APIs. Jimmy Yang, September 29, 2012

    Read the article

  • Java DB talks at JavaOne 2012

    - by kah
    It's soon time for JavaOne again in San Francisco, and Java DB is represented this year too. Dag Wanvik will give an introductory talk on Java DB on Tuesday, October 2 at 10:00: CON5141 - Java DB in JDK 7: A Free, Feature-Rich, Embeddable SQL Database Rick Hillegas and Noel Poore will discuss how to use Java DB on embedded devices in their talk on Thursday, October 4 at 14:00: CON6684 - Data Storage for Embedded Middleware Mark your calendars! :)

    Read the article

  • Contribute to GlassFish in Five Different Ways

    - by arungupta
    GlassFish has a lot to offer from Java EE 6 compliance, HA & Clustering, RESTful administration, IDE integration and many other features. However a recent blog by Markus, a GlassFish Champion, said something different: Ask not what GlassFish can do for you, but ask what you can do for GlassFish! Markus explained how you can easily contribute to GlassFish without being a programming genius. The preparatory steps are simple: • First of all: Don't be afraid! • Prepare yourself - Get up to speed! And then specific suggestions with cross-referenced documents: • Review, Suggest and Add Documentation! • Help Others - be a community hero! • Find and File Bugs on Releases! • Test-drive Promoted Builds and Release Candidates! • Work with Code! Get things done! Are you ready to contribute to GlassFish ? Read more details in Markus's blog.

    Read the article

  • iPack -The iOS Application Packager

    - by user13277780
    iOS applications are distributed in .ipa archive files. These files are regular zip files which contain application resources and executable-s. To protect them from unauthorized modifications and to provide identification of their sources, the content of the archives is signed. The signature is included in the application executable of an.ipa archive and protects the executable file itself and the associated resource files. Apple provides native Mac OS tools for signing iOS executable-s (which are actually generic Mach-O code signing tools), but these tools are not generally available on other platforms. To provide a multi-platform development environment for JavaFX based iOS applications, we ported iOS signing and packaging to Java and created a dedicated ipack tool for it. The iPack tool can be used as a last step of creating .ipa package on various operating systems. Prototype has been tested by creating a final distributable for JavaFX application that runs on iPad, all done on Windows 7. Source Code The source code of iPac tool is in OpenJFX project repository. You can find it in: <openjfx root>/rt/tools/ios/Maven/ipack To build the iPack tool use: rt/tools/ios/Maven/ipack$ mvn package After building, you can run the tool: java -jar <path to ipack.jar> <arguments>  Signing keystore The tool uses a java key store to read the signing certificate and the associated private key. To prepare such keystore users can use keytool from JDK. One possible scenario is to import an existing private key and the certificate from a key store used on Mac OS: To list the content of an existing key store and identify the source alias: keytool -list -keystore <src keystore>.p12 -storetype pkcs12 -storepass <src keystore password> To create Java key store and import the private key with its certificate to the keys store: keytool -importkeystore \ -destkeystore <dst keystore> -deststorepass <dst keystore password> \ -srckeystore <src keystore>.p12 -srcstorepass <src keystore password> -srcstoretype pkcs12 \ -srcalias <src alias> -destalias <dst alias> -destkeypass <dst key password> Another scenario would be to generate a private / public key pair directly in a Java key store and create a certificate request from it. After sending the request to Apple one can then import the certificate response back to the Java key store and complete the signing certificate entry. In both scenarios the resulting alias in the Java key store will contain only a single (leaf) certificate. This can be verified with the following command: keytool -list -v -keystore <ipack keystore> -storepass <keystore password> When looking at the Certificate chain length entry, the number next to it is 1. When an executable file is signed on Mac OS, the resulting signature (in CMS format) includes the whole certificate chain up to the Apple Root CA. The ipack tool includes only the chain which is stored under the alias specified on the command line. So to have the whole chain in the signature we need to replace the single certificate entry under the alias with the corresponding full certificate chain. To do that we need first to create the chain in a separate file. It is easy to create such chain when working with certificates in Base-64 encoded PEM format. A certificate chain can be created by concatenating PEM certificates, which should form the chain, into a single file. For iOS signing we need the following certificates in our chain: Apple Root CA Apple Worldwide Developer Relations CA Our signing leaf certificate To convert a certificate from the binary DER format (.der, .cer) to PEM format: keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert -file <certificate>.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert -rfc -file <certificate>.pem To export the signing certificate into PEM format: keytool -exportcert -keystore <ipack keystore> -storepass <keystore password> -alias <signing alias> -rfc -file SigningCert.pem After constructing a chain from AppleIncRootCertificate.pem, AppleWWDRCA.pem andSigningCert.pem, it can be imported back into the keystore with: keytool -importcert -noprompt -keystore <ipack keystore> -storepass <keystore password> -alias <signing alias> -keypass <key password> -file SigningCertChain.pem To summarize, the following example shows the full certificate chain replacement process: keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert1 -file AppleIncRootCertificate.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert1 -rfc -file AppleIncRootCertificate.pem keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert2 -file AppleWWDRCA.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert2 -rfc -file AppleWWDRCA.pem keytool -exportcert -keystore ipack.ks -storepass keystorepwd -alias mycert -rfc -file SigningCert.pem cat SigningCert.pem AppleWWDRCA.pem AppleIncRootCertificate.pem >SigningCertChain.pem keytool -importcert -noprompt -keystore ipack.ks -storepass keystorepwd -alias mycert -keypass keypwd -file SigningCertChain.pem keytool -list -v -keystore ipack.ks -storepass keystorepwd Usage When the ipack tool is started with no arguments it prints the following usage information: -appname MyApplication -appid com.myorg.MyApplication     Usage: ipack <archive> <signing opts> <application opts> [ <application opts> ... ] Signing options: -keystore <keystore> keystore to use for signing -storepass <password> keystore password -alias <alias> alias for the signing certificate chain and the associated private key -keypass <password> password for the private key Application options: -basedir <directory> base directory from which to derive relative paths -appdir <directory> directory with the application executable and resources -appname <file> name of the application executable -appid <id> application identifier Example: ipack MyApplication.ipa -keystore ipack.ks -storepass keystorepwd -alias mycert -keypass keypwd -basedir mysources/MyApplication/dist -appdir Payload/MyApplication.app -appname MyApplication -appid com.myorg.MyApplication    

    Read the article

  • libjpcap.so on Ubuntu for AT&T ARO

    - by Geertjan
    I now have AT&T ARO also running on Ubuntu, in addition to the Windows scenario I blogged about earlier: I managed to get it up and running thanks again to Doug Sillars, who pointed me here: http://developer.att.com/developer/forward.jsp?passedItemId=14100207&passedItemId=14100207 My plan is to make a screencast soon on HOW to port something like ARO, i.e., as an example of how to do something similar yourself, to a plugin for NetBeans IDE, as a follow up to Five Simple Ways to Extend NetBeans IDE. Thanks again, Doug.

    Read the article

  • Duke's Choice Award Ceremony

    - by Tori Wieldt
    The 2012 Duke's Choice Awards winners and their creative, Java-based technologies and Java community contributions were honored after the Sunday night JavaOne keynotes. Sharat Chander, Group Director for Java Technology Outreach, presented the awards. "Having the community participate directly in both submission and selection truly shows how we are driving exposure of the innovation happening in the Java community," he said. Apache Software Foundation Hadoop Project The Apache Software Foundation’s Hadoop project, written in Java, provides a framework for distributed processing of big data sets across clusters of computers, ranging from a few servers to thousands of machines. This harnessing of large data pools allows organizations to better understand and improve their business. AgroSense Project Improving farming methods to feed a hungry world is the goal of AgroSense, an open source farm information management system built in Java and the NetBeans platform. AgroSense enables farmers, agribusinesses, suppliers and others to develop modular applications that will easily exchange information through a common underlying NetBeans framework. JDuchess Rather than focus on a specific geographic area like most Java User Groups (JUGs), JDuchess fosters the participation of women in the Java community worldwide. The group has more than 500 members in 60 countries, and provides a platform through which women can connect with each other and get involved in all aspects of the Java community. Jelastic, Inc. Moving existing Java applications to the cloud can be a daunting task, but startup Jelastic, Inc. offers the first all-Java platform-as-a-service (PaaS) that enables existing Java applications to be deployed in the cloud without code changes or lock-in. Liquid Robotics Robotics – Liquid Robotics is an ocean data services provider whose Wave Glider technology collects information from the world’s oceans for application in government, science and commercial applications. The organization features the “father of Java” James Gosling as its chief software architect. London Java Community The second user group receiving a Duke’s Choice Award this year, the London Java Community (LJC) and its users have been active in the OpenJDK, the Java Community Process (JCP) and other efforts within the global Java community. NATO The first-ever Community Choice Award goes to the MASE Integrated Console Environment (MICE) in use at NATO. Built in Java on the NetBeans platform, MICE provides a high-performance visualization environment for conducting air defense and battle-space operations. Parleys.com E-learning specialist Parleys.com, based in Brussels, Belgium, uses Java technologies to bring online classes and full IT conferences to desktops, laptops, tablets and mobile devices. Parleys.com has hosted more than 1,700 conferences—including Devoxx and JavaOne—for more than 800,000 unique visitors. Student Nokia Developer Group This year’s student winner, Ram Kashyap, is the founder and president of the Nokia Student Network, and was profiled in the “The New Java Developers” feature in the March/April 2012 issue of Java Magazine. Since then, Ram has maintained a hectic pace, graduating from the People’s Education Society Institute of Technology in Bangalore, India, while working on a Java mobile startup and training students on Java ME. United Nations High Commissioner for Refugees The United Nations High Commissioner for Refugees (UNHCR) is on the front lines of crises around the world, from civil wars to natural disasters. To help facilitate its mission of humanitarian relief, the UNHCR has developed a light-client Java application on the NetBeans platform. The Level One registration tool enables the UNHCR to collect information on the number of refugees and their water, food, housing, health, and other needs in the field, and combines that with geocoding information from various sources. This enables the UNHCR to deliver the appropriate kind and amount of assistance where it is needed. You can read more about the winners in the current issue of Java Magazine.

    Read the article

  • RPi and Java Embedded GPIO: Sensor Hardware for Java Enabled Interface

    - by hinkmond
    Now here's the hardware you'll need to make a Java app interface with a static charge sensor connected to your Raspberry Pi via the GPIO port. It means another Fry's run of course. That's not too bad during Christmas since you can browse all the gadget and toys while doing your shopping for sensor hardware for your RPi. Here's a your shopping list: 1 - NTE312 JFET N-channel transistor (this is in place of the MPF-102) 1 - Set of Jumper Wires 1 - LED 1 - 300 ohm resistor 1 - set of header pins Grab all that from Fry's or your local hobby electronics shop and come back here for how to connect it together. Oh, and don't go too crazy buying all the other electronic toys and gadgets that catch your eye because of the holiday displays at the store. Hinkmond

    Read the article

  • SSAS: Utility to check you have the correct data types and sizes in your cube definition

    - by DrJohn
    This blog describes a tool I developed which allows you to compare the data types and data sizes found in the cube’s data source view with the data types/sizes of the corresponding dimensional attribute.  Why is this important?  Well when creating named queries in a cube’s data source view, it is often necessary to use the SQL CAST or CONVERT operation to change the data type to something more appropriate for SSAS.  This is particularly important when your cube is based on an Oracle data source or using custom SQL queries rather than views in the relational database.   The problem with BIDS is that if you change the underlying SQL query, then the size of the data type in the dimension does not update automatically.  This then causes problems during deployment whereby processing the dimension fails because the data in the relational database is wider than that allowed by the dimensional attribute. In particular, if you use some string manipulation functions provided by SQL Server or Oracle in your queries, you may find that the 10 character string you expect suddenly turns into an 8,000 character monster.  For example, the SQL Server function REPLACE returns column with a width of 8,000 characters.  So if you use this function in the named query in your DSV, you will get a column width of 8,000 characters.  Although the Oracle REPLACE function is far more intelligent, the generated column size could still be way bigger than the maximum length of the data actually in the field. Now this may not be a problem when prototyping, but in your production cubes you really should clean up this kind of thing as these massive strings will add to processing times and storage space. Similarly, you do not want to forget to change the size of the dimension attribute if your database columns increase in size. Introducing CheckCubeDataTypes Utiltity The CheckCubeDataTypes application extracts all the data types and data sizes for all attributes in the cube and compares them to the data types and data sizes in the cube’s data source view.  It then generates an Excel CSV file which contains all this metadata along with a flag indicating if there is a mismatch between the DSV and the dimensional attribute.  Note that the app not only checks all the attribute keys but also the name and value columns for each attribute. Another benefit of having the metadata held in a CSV text file format is that you can place the file under source code control.  This allows you to compare the metadata of the previous cube release with your new release to highlight problems introduced by new development. You can download the C# source code from here: CheckCubeDataTypes.zip A typical example of the output Excel CSV file is shown below - note that the last column shows a data size mismatch by TRUE appearing in the column

    Read the article

  • Warnings When Undo Isn't Possible

    - by ultan o'broin
    Enjoyed this post Never Use a Warning When you Mean Undo by Aza Raskin. It makes sense never to warn users if an undo option is possible. The examples given are from the web space. Here's the conclusion: Warnings cause us to lose our work, to mistrust our computers, and to blame ourselves. A simple but foolproof design methodology solves the problem: "Never use a warning when you mean undo." And when a user is deleting their work, you always mean undo. However, in enterprise apps you may find that an undo option isn't technically possible or desirable. Objects may be shared, part of a flow elsewhere, or undoing something committed to the database (a rollback I guess) may not be feasible if it becomes locked by another process. Plus, what constitutes user ownership of objects isn't always clear to users. The implications of delete (and other) actions need to be clearly communicated out in advance. Really, warnings are important in the enterprise space. Data has a very high value, and users can perform a wide variety of actions that may risk that data, not always within the application itself (at browser level, for example). That said, throwing warnings all over the place when an undo option is possible is annoying. Instead, treat warnings with respect. When there is no undo option possible, use warning messages to communicate potentially dangerous or irrecoverable actions or the downstream consequences of user actions on the process or task flow. Force the user to respond to a warning message by using a modal dialog with clearly labeled action buttons. Here's a couple of examples. A great article that got me thinking. Let's see more like that. Let's not forget there's more types of messages than just error messages. User assistance and user experience professionals need to understand when best to use confirmation, information, and warning types too!

    Read the article

  • HTML5 Development for Dummies

    - by Geertjan
    What's HTML5 all about and what does it actually mean, concretely, to develop HTML5 applications? NetBeans IDE 7.3 provides something called "Project Easel", which is a bundling of HTML5-related tools into a coherent toolset. Within a matter of hours, you'll know everything you need to know about what all this is about if you follow the steps below.  Get A Solid Overview. Start by viewing this screencast from JavaOne 2012 (click the media link on the right side once you've clicked the link below, a downloadable MP4 file is also available there):https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4038That is an awesome way to get you in the right mindframe for what HTML5 is and how it fits into the programming world, together with a very cool and entertaining demo, presented by JB Brock. He starts with about three slides and then does a super awesome demo that puts you into the picture very quickly. Understand How HTML5 Relates To Java EE. Now here's a very cool follow up to the above, again demo-driven (click the media links on the right side once you've clicked the link below):https://oracleus.activeevents.com/connect/sessionDetail.ww?SESSION_ID=4737David Konecny takes the Affable Bean project created via the NetBeans E-commerce Tutorial and creates an HTML5 front end for it! I.e., you are shown how HTML5 can provide a different front end, as an alternative to JSF. Why would you do that? Well, that's explained in David's session, as well as in JB Brock's session, i.e., choose the right technology for the right situation. Sometimes HTML5 might make sense, other times JSF might make sense. Follow The NetBeans Screencasts. To revise and firm up everything you've learned from the above two JavaOne sessions, watch two screencasts by Ken Ganfield, part 1, Getting Started with HTML5 and part 2, Working with JavaScript in HTML5 Applications. In particular, you'll learn how NetBeans IDE provides tools to thoroughly cover the needs of HTML5 developers. Having taken the above three steps, you now have a thorough background, together with an understanding of the tools and procedures needed for creating your own HTML5 applications.

    Read the article

  • Recent improvements in Console Performance

    - by loren.konkus
    Recently, the WebLogic Server development and support organizations have worked with a number of customers to quantify and improve the performance of the Administration Console in large, distributed configurations where there is significant latency in the communications between the administration server and managed servers. These improvements fall into two categories: Constraining the amount of time that the Console stalls waiting for communication Reducing and streamlining the amount of data required for an update A few releases ago, we added support for a configurable domain-wide mbean "Invocation Timeout" value on the Console's configuration: general, advanced section for a domain. The default value for this setting is 0, which means wait indefinitely and was chosen for compatibility with the behavior of previous releases. This configuration setting applies to all mbean communications between the admin server and managed servers, and is the first line of defense against being blocked by a stalled or completely overloaded managed server. Each site should choose an appropriate timeout value for their environment and network latency. In the next release of WebLogic Server, we've added an additional console preference, "Management Operation Timeout", to the Console's shared preference page. This setting further constrains how long certain console pages will wait for slowly responding servers before returning partial results. While not all Console pages support this yet, key pages such as the Servers Configuration and Control table pages and the Deployments Control pages have been updated to support this. For example, if a user requests a Servers Table page and a Management Operation Timeout occurs, the table is displayed with both local configuration and remote runtime information from the responding managed servers and only local configuration information for servers that did not yet respond. This means that a troublesome managed server does not impede your ability to manage your domain using the Console. To support these changes, these Console pages have been re-written to use the Work Management feature of WebLogic Server to interact with each server or deployment concurrently, which further improves the responsiveness of these pages. The basic algorithm for these pages is: For each configuration mbean (ie, Servers) populate rows with configuration attributes from the fast, local mbean server Find a WorkManager For each server, Create a Work instance to obtain runtime mbean attributes for the server Schedule Work instance in the WorkManager Call WorkManager.waitForAll to wait WorkItems to finish, constrained by Management Operation Timeout For each WorkItem, if the runtime information obtained was not complete, add a message indicating which server has incomplete data Display collected data in table In addition to these changes to constrain how long the console waits for communication, a number of other changes have been made to reduce the amount and scope of managed server interactions for key pages. For example, in previous releases the Deployments Control table looked at the status of a deployment on every managed server, even those servers that the deployment was not currently targeted on. (This was done to handle an edge case where a deployment's target configuration was changed while it remained running on previously targeted servers.) We decided supporting that edge case did not warrant the performance impact for all, and instead only look at the status of a deployment on the servers it is targeted to. Comprehensive status continues to be available if a user clicks on the 'status' field for a deployment. Finally, changes have been made to the System Status portlet to reduce its impact on Console page display times. Obtaining health information for this display requires several mbean interactions with managed servers. In previous releases, this mbean interaction occurred with every display, and any delay or impediment in these interactions was reflected in the display time for every page. To reduce this impact, we've made several changes in this portlet: Using Work Management to obtain health concurrently Applying the operation timeout configuration to constrain how long we will wait Caching health information to reduce the cost during rapid navigation from page to page and only obtaining new health information if the previous information is over 30 seconds old. Eliminating heath collection if this portlet is minimized. Together, these Console changes have resulted in significant performance improvements for the customers with large configurations and high latency that we have worked with during their development, and some lesser performance improvements for those with small configurations and very fast networks. These changes will be included in the 11g Rel 1 patch set 2 (10.3.3.0) release of WebLogic Server.

    Read the article

< Previous Page | 481 482 483 484 485 486 487 488 489 490 491 492  | Next Page >