Search Results

Search found 14213 results on 569 pages for 'distributed programming'.

Page 486/569 | < Previous Page | 482 483 484 485 486 487 488 489 490 491 492 493  | Next Page >

  • What is Database Continuous Integration?

    - by David Atkinson
    Although not everyone is practicing continuous integration, many have at least heard of the concept. A recent poll on www.simple-talk.com indicates that 40% of respondents are employing the technique. It is widely accepted that the earlier issues are identified in the development process, the lower the cost to the development process. The worst case scenario, of course, is for the bug to be found by the customer following the product release. A number of Agile development best practices have evolved to combat this problem early in the development process, including pair programming, code inspections and unit testing. Continuous integration is one such Agile concept that tackles the problem at the point of committing a change to source control. This can alternatively be run on a regular schedule. This triggers a sequence of events that compiles the code and performs a variety of tests. Often the continuous integration process is regarded as a build validation test, and if issues were to be identified at this stage, the testers would simply not 'waste their time ' and touch the build at all. Such a ‘broken build’ will trigger an alert and the development team’s number one priority should be to resolve the issue. How application code is compiled and tested as part of continuous integration is well understood. However, this isn’t so clear for databases. Indeed, before I cover the mechanics of implementation, we need to decide what we mean by database continuous integration. For me, database continuous integration can be implemented as one or more of the following: 1)      Your application code is being compiled and tested. You therefore need a database to be maintained at the corresponding version. 2)      Just as a valid application should compile, so should the database. It should therefore be possible to build a new database from scratch. 3)     Likewise, it should be possible to generate an upgrade script to take your already deployed databases to the latest version. I will be covering these in further detail in future blogs. In the meantime, more information can be found in the whitepaper linked off www.red-gate.com/ci If you have any questions, feel free to contact me directly or post a comment to this blog post.

    Read the article

  • Game development: “Play Now” via website vs. download & install

    - by Inside
    Heyo, I've spent some time looking over the various threads here on gamedev and also on the regular stackoverflow and while I saw a lot of posts and threads regarding various engines that could be used in game development, I haven't seen very much discussion regarding the various platforms that they can be used on. In particular, I'm talking about browser games vs. desktop games. I want to develop a simple 3D networked multiplayer game - roughly on the graphics level of Paper Mario and gameplay with roughly the same level of interaction as a hack & slash action/adventure game - and I'm having a hard time deciding what platform I want to target with it. I have some experience with using C++/Ogre3D and Python/Panda3D (and also some synchronized/networked programming), but I'm wondering if it's worth it to spend the extra time to learn another language and another engine/toolkit just so that the game can be played in a browser window (I'm looking at jMonkeyEngine right now). For simple & short games the newgrounds approach (go to the site, click "play now", instant gratification) seems to work well. What about for more complex games? Is there a point where the complexity of a game is enough for people to say "ok, I'm going to download and play that"? Is it worth it to go with engines that are less-mature, have less documentation, have fewer features, and smaller communities* just so that a (possibly?) larger audience can be reached? Does it make sense to even go with a web-environment for the kind of game that I want to make? Does anyone have any experiences with decisions like this? Thanks! (* With the exception of flash-based engines it seems like most of the other approaches have these downsides when compared to what is available for desktop-based environments. I'd go with flash, but I'm worried that flash's 3D capabilities aren't mature enough right now to do what I want easily. There's also Unity3D, but I'm not sure how I feel about that at all. It seems highly polished, but requires a plugin to be downloaded for the game to be played -- at that rate I might as well have players download my game.)

    Read the article

  • The Red Gate Guide to SQL Server Team based Development Free e-book

    - by Mladen Prajdic
    After about 6 months of work, the new book I've coauthored with Grant Fritchey (Blog|Twitter), Phil Factor (Blog|Twitter) and Alex Kuznetsov (Blog|Twitter) is out. They're all smart folks I talk to online and this book is packed with good ideas backed by years of experience. The book contains a good deal of information about things you need to think of when doing any kind of multi person database development. Although it's meant for SQL Server, the principles can be applied to any database platform out there. In the book you will find information on: writing readable code, documenting code, source control and change management, deploying code between environments, unit testing, reusing code, searching and refactoring your code base. I've written chapter 5 about Database testing and chapter 11 about SQL Refactoring. In the database testing chapter (chapter 5) I cover why you should test your database, why it is a good idea to have a database access interface composed of stored procedures, views and user defined functions, what and how to test. I talk about how there are many testing methods like black and white box testing, unit and integration testing, error and stress testing and why and how you should do all those. Sometimes you have to convince management to go for testing in the development lifecycle so I give some pointers and tips how to do that. Testing databases is a bit different from testing object oriented code in a way that to have independent unit tests you need to rollback your code after each test. The chapter shows you ways to do this and also how to avoid it. At the end I show how to test various database objects and how to test access to them. In the SQL Refactoring chapter (chapter 11) I cover why refactor and where to even begin refactoring. I also who you a way to achieve a set based mindset to solve SQL problems which is crucial to good SQL set based programming and a few commonly seen problems to refactor. These problems include: using functions on columns in the where clause, SELECT * problems, long stored procedure with many input parameters, one subquery per condition in the select statement, cursors are good for anything problem, using too large data types everywhere and using your data in code for business logic anti-pattern. You can read more about it and download it here: The Red Gate Guide to SQL Server Team-based Development Hope you like it and send me feedback if you wish too.

    Read the article

  • JavaOne Rock Star – Adam Bien

    - by Janice J. Heiss
    Among the most celebrated developers in recent years, especially in the domain of Java EE and JavaFX, is consultant Adam Bien, who, in addition to being a JavaOne Rock Star for Java EE sessions given in 2009 and 2011, is a Java Champion, the winner of Oracle Magazine’s 2011 Top Java Developer of the Year Award, and recently won a 2012 JAX Innovation Award as a top Java Ambassador. Bien will be presenting the following sessions: TUT3907 - Java EE 6/7: The Lean Parts CON3906 - Stress-Testing Java EE 6 Applications Without Stress CON3908 - Building Serious JavaFX 2 Applications CON3896 - Interactive Onstage Java EE Overengineering I spoke with Bien to get his take on Java today. He expressed excitement that the smallest companies and startups are showing increasing interest in Java EE. “This is a very good sign,” said Bien. “Only a few years ago J2EE was mostly used by larger companies -- now it becomes interesting even for one-person shows. Enterprise Java events are also extremely popular. On the Java SE side, I'm really excited about Project Nashorn.” Nashorn is an upcoming JavaScript engine, developed fully in Java by Oracle, and based on the Da Vinci Machine (JSR 292) which is expected to be available for Java 8.    Bien expressed concern about a common misconception regarding Java's mediocre productivity. “The problem is not Java,” explained Bien, “but rather systems built with ancient patterns and approaches. Sometimes it really is ‘Cargo Cult Programming.’ Java SE/EE can be incredibly productive and lean without the unnecessary and hard-to-maintain bloat. The real problems are ‘Ivory Towers’ and not Java’s lack of productivity.” Bien remarked that if there is one thing he wanted Java developers to understand it is that, "Premature optimization is the root of all evil. Or at least of some evil. Modern JVMs and application servers are hard to optimize upfront. It is far easier to write simple code and measure the results continuously. Identify the hotspots first, then optimize.”   He advised Java EE developers to, “Rethink everything you know about Enterprise Java. Before you implement anything, ask the question: ‘Why?’ If there is no clear answer -- just don't do it. Most well known best practices are outdated. Focus your efforts on the domain problem and not the technology.” Looking ahead, Bien remarked, “I would like to see open source application servers running directly on a hypervisor. Packaging the whole runtime in a single file would significantly simplify the deployment and operations.” Check out a recent Java Magazine interview with Bien about his Java EE 6 stress monitoring tool here.

    Read the article

  • Visual Studio Load Testing using Windows Azure

    - by Tarun Arora
    In my opinion the biggest adoption barrier in performance testing on smaller projects is not the tooling but the high infrastructure and administration cost that comes with this phase of testing. Only if a reusable solution was possible and infrastructure management wasn’t as expensive, adoption would certainly spike. It certainly is possible if you bring Visual Studio and Windows Azure into the equation. It is possible to run your test rig in the cloud without getting tangled in SCVMM or Lab Management. All you need is an active Azure subscription, Windows Azure endpoint enabled developer workstation running visual studio ultimate on premise, windows azure endpoint enabled worker roles on azure compute instances set up to run as test controllers and test agents. My test rig is running SQL server 2012 and Visual Studio 2012 RC agents. The beauty is that the solution is reusable, you can open the azure project, change the subscription and certificate, click publish and *BOOM* in less than 15 minutes you could have your own test rig running in the cloud. In this blog post I intend to show you how you can use the power of Windows Azure to effectively abstract the administration cost of infrastructure management and lower the total cost of Load & Performance Testing. As a bonus, I will share a reusable solution that you can use to automate test rig creation for both VS 2010 agents as well as VS 2012 agents. Introduction The slide show below should help you under the high level details of what we are trying to achive... Leveraging Azure for Performance Testing View more PowerPoint from Avanade Scenario 1 – Running a Test Rig in Windows Azure To start off with the basics, in the first scenario I plan to discuss how to, - Automate deployment & configuration of Windows Azure Worker Roles for Test Controller and Test Agent - Automate deployment & configuration of SQL database on Test Controller on the Test Controller Worker Role - Scaling Test Agents on demand - Creating a Web Performance Test and a simple Load Test - Managing Test Controllers right from Visual Studio on Premise Developer Workstation - Viewing results of the Load Test - Cleaning up - Have the above work in the shape of a reusable solution for both VS2010 and VS2012 Test Rig Scenario 2 – The scaled out Test Rig and sharing data using SQL Azure A scaled out version of this implementation would involve running multiple test rigs running in the cloud, in this scenario I will show you how to sync the load test database from these distributed test rigs into one SQL Azure database using Azure sync. The selling point for this scenario is being able to collate the load test efforts from across the organization into one data store. - Deploy multiple test rigs using the reusable solution from scenario 1 - Set up and configure Windows Azure Sync - Test SQL Azure Load Test result database created as a result of Windows Azure Sync - Cleaning up - Have the above work in the shape of a reusable solution for both VS2010 and VS2012 Test Rig The Ingredients Though with an active MSDN ultimate subscription you would already have access to everything and more, you will essentially need the below to try out the scenarios, 1. Windows Azure Subscription 2. Windows Azure Storage – Blob Storage 3. Windows Azure Compute – Worker Role 4. SQL Azure Database 5. SQL Data Sync 6. Windows Azure Connect – End points 7. SQL 2012 Express or SQL 2008 R2 Express 8. Visual Studio All Agents 2012 or Visual Studio All Agents 2010 9. A developer workstation set up with Visual Studio 2012 – Ultimate or Visual Studio 2010 – Ultimate 10. Visual Studio Load Test Unlimited Virtual User Pack. Walkthrough To set up the test rig in the cloud, the test controller, test agent and SQL express installers need to be available when the worker role set up starts, the easiest and most efficient way is to pre upload the required software into Windows Azure Blob storage. SQL express, test controller and test agent expose various switches which we can take advantage of including the quiet install switch. Once all the 3 have been installed the test controller needs to be registered with the test agents and the SQL database needs to be associated to the test controller. By enabling Windows Azure connect on the machines in the cloud and the developer workstation on premise we successfully create a virtual network amongst the machines enabling 2 way communication. All of the above can be done programmatically, let’s see step by step how… Scenario 1 Video Walkthrough–Leveraging Windows Azure for performance Testing Scenario 2 Work in progress, watch this space for more… Solution If you are still reading and are interested in the solution, drop me an email with your windows live id. I’ll add you to my TFS preview project which has a re-usable solution for both VS 2010 and VS 2012 test rigs as well as guidance and demo performance tests.   Conclusion Other posts and resources available here. Possibilities…. Endless!

    Read the article

  • Am I experienced enough to learn and develop immediately using Ruby on Rails?

    - by acheong87
    General Question I understand that discussions revolving around questions of this form run the risk of becoming too specific to help others. So, perhaps a better, general question would be: What kind of experience, if any, translates easily to Ruby on Rails; and if none, then what's the learning curve like, in comparison to other popular languages? Background I have the opportunity to build a website using whatever technologies I wish to use. It's a fairly simple website, for listing products, taking payments, managing customer data, providing a back-end portal for employees to manage data, possibly hooking in flight information (the products are travel related), possibly integrating a blog and all the social-networking goodies. Specific Problem I have to let the client know by tonight whether I'm interested in taking up this project, before he talks to other potential developers, but I'm on the fence. I already work a full-time C++ development job, so the money doesn't do it for me. It's the opportunity to (be paid to) learn some new technologies and to have a real, running product in the end. I've heard and read great things about Ruby, and am really intrigued. I zipped through some introductory Ruby tutorials, no sweat. However I found the Rails tutorials a little overwhelming, especially not being able to try it out anywhere. And researching Rails hosts like Heroku and EngineYard makes me think that maybe I don't know what I'm getting myself into. The ship's leaving port! I wish I had more time to learn, better yet play with the language, but I have to decide soon! Should I venture or pass? Additional Details My experiences are in C/C++/Tcl/Perl/PHP/jQuery, and basic knowledge of Java/C#. I didn't study C.S. formally so I wasn't exposed to design principles, programming paradigms, etc., which is my greatest concern. Will my lack of understanding in this realm make RoR frustrating to learn? Will it be so incompatible with a C++ "way" of thinking that I'll wish I never started? Am I putting my client at risk by attempting this? If it helps, I'm quick to learn new things (self-taught so far) and care a great deal about correctness, using things for their intended purposes, and so on. I've read numerous recommendations of Agile Development with Rails and would love to read it (though perhaps, while developing in parallel, for shortness of time). Worse comes to worst, I'd give up and do the standard LAMP gig, of course, not charging the client for wasted time. But I'm hoping to avoid the project altogether if it's gonna come down to that! Thanks in advance for any tips, insights, votes of confidence, votes of discouragement (for the better), and such.

    Read the article

  • Should I be put off a junior role that uses an online development test?

    - by Ninefingers
    I've applied for a junior development role, or rather been found by a recruiter looking for a developer. In order to get to a telephone interview stage I've been asked to sit one of those online coding assessments. This wasn't quite what I expected. I consider myself a fairly good developer for my age and experience, but I've no illusions about being Don Knuth or anything. The test was a series of incredibly obtuse questions asking about the results of various obscure evaluations. About 30 minutes in I was thinking to myself I hadn't intended to enter an obfuscated code contest/code golf exercise. After my last telephone interview I was asked to build something. I did. That seemed fair. Go away and work this out is more my in office experience of programming than "please evaluate this combination of lambdas, filters, maps, lists, tuples etc". So I'm a little put off, to be honest. I never claimed to know the language inside out or all the little corner cases. My questions, then: Should I be put off? Why? Why not? Are these kinds of tests what I should be expecting for junior roles? Should I learn stuff exam style? That seems to be the objective of these tests, for which you are timed and not supposed to use references or books? Normally, in the course of development I have a fairly good idea of basic types, rules, flow control and whatever. Occasionally I'll come up on something I need to use a regex for and have to go and remind myself of the exact piece of syntax I need if trying what I think should work doesn't. Or I'll come up against a module I've not used before and go and look it up. For example, if I wanted to write a server using sockets in C right now, I'd probably check the last piece of code I wrote doing that (and or the various books I have) and work from there. Chances are I probably couldn't do it exactly from scratch and from memory, although I can tell you you'd need a socket(), bind(), listen() and accept() call and you might also want select() depending on whether you intend to pthread_create or not. So I know what the calls are, but not their specific parameter list. What are your experiences if you are a recruiting manager? Are you after programmers who can quote you the API or do you not mind if your programmers have a few books on their desk and google function calls every so often?

    Read the article

  • Using Hadooop (HDInsight) with Microsoft - Two (OK, Three) Options

    - by BuckWoody
    Microsoft has many tools for “Big Data”. In fact, you need many tools – there’s no product called “Big Data Solution” in a shrink-wrapped box – if you find one, you probably shouldn’t buy it. It’s tempting to want a single tool that handles everything in a problem domain, but with large, complex data, that isn’t a reality. You’ll mix and match several systems, open and closed source, to solve a given problem. But there are tools that help with handling data at large, complex scales. Normally the best way to do this is to break up the data into parts, and then put the calculation engines for that chunk of data right on the node where the data is stored. These systems are in a family called “Distributed File and Compute”. Microsoft has a couple of these, including the High Performance Computing edition of Windows Server. Recently we partnered with Hortonworks to bring the Apache Foundation’s release of Hadoop to Windows. And as it turns out, there are actually two (technically three) ways you can use it. (There’s a more detailed set of information here: http://www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/big-data.aspx, I’ll cover the options at a general level below)  First Option: Windows Azure HDInsight Service  Your first option is that you can simply log on to a Hadoop control node and begin to run Pig or Hive statements against data that you have stored in Windows Azure. There’s nothing to set up (although you can configure things where needed), and you can send the commands, get the output of the job(s), and stop using the service when you are done – and repeat the process later if you wish. (There are also connectors to run jobs from Microsoft Excel, but that’s another post)   This option is useful when you have a periodic burst of work for a Hadoop workload, or the data collection has been happening into Windows Azure storage anyway. That might be from a web application, the logs from a web application, telemetrics (remote sensor input), and other modes of constant collection.   You can read more about this option here:  http://blogs.msdn.com/b/windowsazure/archive/2012/10/24/getting-started-with-windows-azure-hdinsight-service.aspx Second Option: Microsoft HDInsight Server Your second option is to use the Hadoop Distribution for on-premises Windows called Microsoft HDInsight Server. You set up the Name Node(s), Job Tracker(s), and Data Node(s), among other components, and you have control over the entire ecostructure.   This option is useful if you want to  have complete control over the system, leave it running all the time, or you have a huge quantity of data that you have to bulk-load constantly – something that isn’t going to be practical with a network transfer or disk-mailing scheme. You can read more about this option here: http://www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/big-data.aspx Third Option (unsupported): Installation on Windows Azure Virtual Machines  Although unsupported, you could simply use a Windows Azure Virtual Machine (we support both Windows and Linux servers) and install Hadoop yourself – it’s open-source, so there’s nothing preventing you from doing that.   Aside from being unsupported, there are other issues you’ll run into with this approach – primarily involving performance and the amount of configuration you’ll need to do to access the data nodes properly. But for a single-node installation (where all components run on one system) such as learning, demos, training and the like, this isn’t a bad option. Did I mention that’s unsupported? :) You can learn more about Windows Azure Virtual Machines here: http://www.windowsazure.com/en-us/home/scenarios/virtual-machines/ And more about Hadoop and the installation/configuration (on Linux) here: http://en.wikipedia.org/wiki/Apache_Hadoop And more about the HDInsight installation here: http://www.microsoft.com/web/gallery/install.aspx?appid=HDINSIGHT-PREVIEW Choosing the right option Since you have two or three routes you can go, the best thing to do is evaluate the need you have, and place the workload where it makes the most sense.  My suggestion is to install the HDInsight Server locally on a test system, and play around with it. Read up on the best ways to use Hadoop for a given workload, understand the parts, write a little Pig and Hive, and get your feet wet. Then sign up for a test account on HDInsight Service, and see how that leverages what you know. If you're a true tinkerer, go ahead and try the VM route as well. Oh - there’s another great reference on the Windows Azure HDInsight that just came out, here: http://blogs.msdn.com/b/brunoterkaly/archive/2012/11/16/hadoop-on-azure-introduction.aspx  

    Read the article

  • Source of (programmer) inefficiency

    - by Daniel
    I am interested to gain a better insight about the possible reasons of personal inefficiency as programmers (and only in programming) due to – simply - our own errors (because we are humans – well, almost all of us). I am not interested in how much we are productive or in how many adjustements the customer asks for when the work is done, but where and how each of us spend that part of its time in tasks that are unproductive and there is no one to blame except ourselves. Excluding ego - feeding and / or self – gratification, what I am trying to get (for all of us) is: what are the common issues eating our time; insight on reasons for that issues; identify simple way for us, personally (not delegating actions to other or our organizations), to correct our own problems. Please, do not think in academic terms but aim at the opportunity to compare our daily experiences and understand what are and how we try to fix our personal deficiencies. If you are interested to respond to this post, please: integrate the list if you see something important (or obvious) missing; highlight or name honestly your first issue tellng the way you try to address and solve your issue acting on yourself and yourself only in a sort of "continuous quality improving" My criteria for accepting the answer is: choose the best solution (feasibility and utility) to fix one (or more) of the problems of the list. Of course, selecting an error is not a vote on our skills: maybe we are hyper professional programmers and we lose ten minutes only every year or we are terribly inefficient, losing a couple of days a week: reasons for inefficiency could be really the same - but in a different scale. A possible list: Plain error in the names (variables, functions). Inability to see the obvious in your code. Misreading. Lack of concentration. Trying to use a technology you have not mastered. Errors with data types. Time required to understand your previous code or your documentation. Trying to do something more than requested because you enjoy it Using solutions more complicated than required because you enjoy it. Plain logical errors. Errors due to your fault in communications. Distraction My first personal issue: "Trying to use a technology you do not master." I have to use daily several technologies and I often need to spend significant time correcting code because my assumptions were plainly wrong. Reasons for this: production needs put high pressure and make difficult to find the time to learn. I try to address this reading technical books - as many as I can - even if this actually consumes a lot of time.

    Read the article

  • Voxel Engine in Multiplayer?

    - by Oliver Schöning
    This is a question more out of Interest for now, because I am not even near to the point that I could create this project at the moment. I really like the progress on the Atomontage Engine. A Voxel engine that is WIP at the moment. I would like to create a Voxel SERVER eventually. First in JavaScript (That's what I am learning right now) later perhaps in C++ for speed. Remember, I am perfectly aware that this is very hard! This is a brainstorm for the next 10 years as for now. What I would like to achieve one day is a Multiplayer Game in the Browser where the voxels positions are updated by XYZ input from the server. The Browser Does only 3 things: sending player input to the server, updating Voxel positions send from the server and rendering the world. I imagine using something like the Three.js libary on the client side. So that would be my programming dream right there... Now to something simpler for the near future. Right now I am learning javascript. And I am making games with Construct2. (A really cool JavaScript "game maker") The plan is to create a 2D Voxel enviorment (Block Voxels) on the Socket.IO Server* and send the position of the Voxels and Players to the Client side which then positions the Voxel Blocks to the Server Output coordinates. I think that is a bit more manageable then the other bigger idea. And also there should be no worries about speed with this type of project in JavaScript (I hope). Extra Info: *I am using nodejs (Without really knowing what it does besides making Socket.IO work) So now some questions: Is the "dream project" doable in JavaScript? Or is C++ just the best option because it does not take as long to be interpreted at run time like JavaScript? What are the limitations? I can think of some: Need of a Powerful server depending on how much information the server has to process. Internet Speed; Sending the data of the Voxel positions to every player could add up being very high! The browser FPS might go down quickly if rendering to many objects. One way of fixing reducing the packages Could be to let the browser calculate some of the Voxel positions from Several Values. But that would slow down the Client side too. What about the more achievable project? I am almost 100% convinced that this is possible in JavaScript, and that there are several ways of doing this. This is just XY position Updating for now.. Hope this did make some sense. Please comment if you got something to say :D

    Read the article

  • iPack -The iOS Application Packager

    - by user13277780
    iOS applications are distributed in .ipa archive files. These files are regular zip files which contain application resources and executable-s. To protect them from unauthorized modifications and to provide identification of their sources, the content of the archives is signed. The signature is included in the application executable of an.ipa archive and protects the executable file itself and the associated resource files. Apple provides native Mac OS tools for signing iOS executable-s (which are actually generic Mach-O code signing tools), but these tools are not generally available on other platforms. To provide a multi-platform development environment for JavaFX based iOS applications, we ported iOS signing and packaging to Java and created a dedicated ipack tool for it. The iPack tool can be used as a last step of creating .ipa package on various operating systems. Prototype has been tested by creating a final distributable for JavaFX application that runs on iPad, all done on Windows 7. Source Code The source code of iPac tool is in OpenJFX project repository. You can find it in: <openjfx root>/rt/tools/ios/Maven/ipack To build the iPack tool use: rt/tools/ios/Maven/ipack$ mvn package After building, you can run the tool: java -jar <path to ipack.jar> <arguments>  Signing keystore The tool uses a java key store to read the signing certificate and the associated private key. To prepare such keystore users can use keytool from JDK. One possible scenario is to import an existing private key and the certificate from a key store used on Mac OS: To list the content of an existing key store and identify the source alias: keytool -list -keystore <src keystore>.p12 -storetype pkcs12 -storepass <src keystore password> To create Java key store and import the private key with its certificate to the keys store: keytool -importkeystore \ -destkeystore <dst keystore> -deststorepass <dst keystore password> \ -srckeystore <src keystore>.p12 -srcstorepass <src keystore password> -srcstoretype pkcs12 \ -srcalias <src alias> -destalias <dst alias> -destkeypass <dst key password> Another scenario would be to generate a private / public key pair directly in a Java key store and create a certificate request from it. After sending the request to Apple one can then import the certificate response back to the Java key store and complete the signing certificate entry. In both scenarios the resulting alias in the Java key store will contain only a single (leaf) certificate. This can be verified with the following command: keytool -list -v -keystore <ipack keystore> -storepass <keystore password> When looking at the Certificate chain length entry, the number next to it is 1. When an executable file is signed on Mac OS, the resulting signature (in CMS format) includes the whole certificate chain up to the Apple Root CA. The ipack tool includes only the chain which is stored under the alias specified on the command line. So to have the whole chain in the signature we need to replace the single certificate entry under the alias with the corresponding full certificate chain. To do that we need first to create the chain in a separate file. It is easy to create such chain when working with certificates in Base-64 encoded PEM format. A certificate chain can be created by concatenating PEM certificates, which should form the chain, into a single file. For iOS signing we need the following certificates in our chain: Apple Root CA Apple Worldwide Developer Relations CA Our signing leaf certificate To convert a certificate from the binary DER format (.der, .cer) to PEM format: keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert -file <certificate>.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert -rfc -file <certificate>.pem To export the signing certificate into PEM format: keytool -exportcert -keystore <ipack keystore> -storepass <keystore password> -alias <signing alias> -rfc -file SigningCert.pem After constructing a chain from AppleIncRootCertificate.pem, AppleWWDRCA.pem andSigningCert.pem, it can be imported back into the keystore with: keytool -importcert -noprompt -keystore <ipack keystore> -storepass <keystore password> -alias <signing alias> -keypass <key password> -file SigningCertChain.pem To summarize, the following example shows the full certificate chain replacement process: keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert1 -file AppleIncRootCertificate.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert1 -rfc -file AppleIncRootCertificate.pem keytool -importcert -noprompt -keystore temp.ks -storepass temppwd -alias tempcert2 -file AppleWWDRCA.cer keytool -exportcert -keystore temp.ks -storepass temppwd -alias tempcert2 -rfc -file AppleWWDRCA.pem keytool -exportcert -keystore ipack.ks -storepass keystorepwd -alias mycert -rfc -file SigningCert.pem cat SigningCert.pem AppleWWDRCA.pem AppleIncRootCertificate.pem >SigningCertChain.pem keytool -importcert -noprompt -keystore ipack.ks -storepass keystorepwd -alias mycert -keypass keypwd -file SigningCertChain.pem keytool -list -v -keystore ipack.ks -storepass keystorepwd Usage When the ipack tool is started with no arguments it prints the following usage information: -appname MyApplication -appid com.myorg.MyApplication     Usage: ipack <archive> <signing opts> <application opts> [ <application opts> ... ] Signing options: -keystore <keystore> keystore to use for signing -storepass <password> keystore password -alias <alias> alias for the signing certificate chain and the associated private key -keypass <password> password for the private key Application options: -basedir <directory> base directory from which to derive relative paths -appdir <directory> directory with the application executable and resources -appname <file> name of the application executable -appid <id> application identifier Example: ipack MyApplication.ipa -keystore ipack.ks -storepass keystorepwd -alias mycert -keypass keypwd -basedir mysources/MyApplication/dist -appdir Payload/MyApplication.app -appname MyApplication -appid com.myorg.MyApplication    

    Read the article

  • How to Use Your Android Phone as a Modem; No Rooting Required

    - by Jason Fitzpatrick
    If your cellular provider’s mobile hotspot/tethering plans are too pricey, skip them and tether your phone to your computer without inflating your monthly bill. Read on to see how you can score free mobile internet. We recently received a letter from a How-To Geek reader, requesting help linking their Android phone to their laptop to avoid the highway robbery their cellular provider was insisting upon: Dear How-To Geek, I recently found out that my cellphone company charges $30 a month to use your smartphone as a data modem. That’s an outrageous price when I already pay an extra $15 a month charge just because they insist that because I have a smartphone I need a data plan because I’ll be using so much more data than other users. They expect me to pay what amounts to a $45 a month premium just to do some occasional surfing and email checking from the comfort of my laptop instead of the much smaller smartphone screen! Surely there is a work around? I’m running Windows 7 on my laptop and I have an Android phone running Android OS 2.2. Help! Sincerely, No Double Dipping! Well Double Dipping, this is a sentiment we can strongly related to as many of us on staff are in a similar situation. It’s absurd that so many companies charge you to use the data connection on the phone you’re already paying for. There is no difference in bandwidth usage if you stream Pandora to your phone or to your laptop, for example. Fortunately we have a solution for you. It’s not free-as-in-beer but it only costs $16 which, over the first year of use alone, will save you $344. Let’s get started! Latest Features How-To Geek ETC What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? How To Make Hundreds of Complex Photo Edits in Seconds With Photoshop Actions How to Enable User-Specific Wireless Networks in Windows 7 How to Use Google Chrome as Your Default PDF Reader (the Easy Way) How To Remove People and Objects From Photographs In Photoshop Make Efficient Use of Tab Bar Space by Customizing Tab Width in Firefox See the Geeky Work Done Behind the Scenes to Add Sounds to Movies [Video] Use a Crayon to Enhance Engraved Lettering on Electronics Adult Swim Brings Their Programming Lineup to iOS Devices Feel the Chill of the South Atlantic with the Antarctica Theme for Windows 7 Seas0nPass Now Offers Untethered Apple TV Jailbreaking

    Read the article

  • JDK bug migration: components and subcomponents

    - by darcy
    One subtask of the JDK migration from the legacy bug tracking system to JIRA was reclassifying bugs from a three-level taxonomy in the legacy system, (product, category, subcategory), to a fundamentally two-level scheme in our customized JIRA instance, (component, subcomponent). In the JDK JIRA system, there is technically a third project-level classification, but by design a large majority of JDK-related bugs were migrated into a single "JDK" project. In the end, over 450 legacy subcategories were simplified into about 120 subcomponents in JIRA. The 120 subcomponents are distributed among 17 components. A rule of thumb used was that a subcategory had to have at least 50 bugs in it for it to be retained. Below is a listing the component / subcomponent classification of the JDK JIRA project along with some notes and guidance on which OpenJDK email addresses cover different areas. Eventually, a separate incidents project to host new issues filed at bugs.sun.com will use a slightly simplified version of this scheme. The preponderance of bugs and subcomponents for the JDK are in library-related areas, with components named foo-libs and subcomponents primarily named after packages. While there was an overall condensation of subcomponents in the migration, in some cases long-standing informal divisions in core libraries based on naming conventions in the description were promoted to formal subcomponents. For example, hundreds of bugs in the java.util subcomponent whose descriptions started with "(coll)" were moved into java.util:collections. Likewise, java.lang bugs starting with "(reflect)" and "(proxy)" were moved into java.lang:reflect. client-libs (Predominantly discussed on 2d-dev and awt-dev and swing-dev.) 2d demo java.awt java.awt:i18n java.beans (See beans-dev.) javax.accessibility javax.imageio javax.sound (See sound-dev.) javax.swing core-libs (See core-libs-dev.) java.io java.io:serialization java.lang java.lang.invoke java.lang:class_loading java.lang:reflect java.math java.net java.nio (Discussed on nio-dev.) java.nio.charsets java.rmi java.sql java.sql:bridge java.text java.util java.util.concurrent java.util.jar java.util.logging java.util.regex java.util:collections java.util:i18n javax.annotation.processing javax.lang.model javax.naming (JNDI) javax.script javax.script:javascript javax.sql org.openjdk.jigsaw (See jigsaw-dev.) security-libs (See security-dev.) java.security javax.crypto (JCE: includes SunJCE/MSCAPI/UCRYPTO/ECC) javax.crypto:pkcs11 (JCE: PKCS11 only) javax.net.ssl (JSSE, includes javax.security.cert) javax.security javax.smartcardio javax.xml.crypto org.ietf.jgss org.ietf.jgss:krb5 other-libs corba corba:idl corba:orb corba:rmi-iiop javadb other (When no other subcomponent is more appropriate; use judiciously.) Most of the subcomponents in the xml component are related to jaxp. xml jax-ws jaxb javax.xml.parsers (JAXP) javax.xml.stream (JAXP) javax.xml.transform (JAXP) javax.xml.validation (JAXP) javax.xml.xpath (JAXP) jaxp (JAXP) org.w3c.dom (JAXP) org.xml.sax (JAXP) For OpenJDK, most JVM-related bugs are connected to the HotSpot Java virtual machine. hotspot (See hotspot-dev.) build compiler (See hotspot-compiler-dev.) gc (garbage collection, see hotspot-gc-dev.) jfr (Java Flight Recorder) jni (Java Native Interface) jvmti (JVM Tool Interface) mvm (Multi-Tasking Virtual Machine) runtime (See hotspot-runtime-dev.) svc (Servicability) test core-svc (See serviceability-dev.) debugger java.lang.instrument java.lang.management javax.management tools The full JDK bug database contains entries related to legacy virtual machines that predate HotSpot as well as retired APIs. vm-legacy jit (Sun Exact VM) jit_symantec (Symantec VM, before Exact VM) jvmdi (JVM Debug Interface ) jvmpi (JVM Profiler Interface ) runtime (Exact VM Runtime) Notable command line tools in the $JDK/bin directory have corresponding subcomponents. tools appletviewer apt (See compiler-dev.) hprof jar javac (See compiler-dev.) javadoc(tool) (See compiler-dev.) javah (See compiler-dev.) javap (See compiler-dev.) jconsole launcher updaters (Timezone updaters, etc.) visualvm Some aspects of JDK infrastructure directly affect JDK Hg repositories, but other do not. infrastructure build (See build-dev and build-infra-dev.) licensing (Covers updates to the third party readme, licenses, and similar files.) release_eng (Release engineering) staging (Staging of web pages related to JDK releases.) The specification subcomponent encompasses the formal language and virtual machine specifications. specification language (The Java Language Specification) vm (The Java Virtual Machine Specification) The code for the deploy and install areas is not currently included in OpenJDK. deploy deployment_toolkit plugin webstart install auto_update install servicetags In the JDK, there are a number of cross-cutting concerns whose organization is essentially orthogonal to other areas. Since these areas generally have dedicated teams working on them, it is easier to find bugs of interest if these bugs are grouped first by their cross-cutting component rather than by the affected technology. docs doclet guides hotspot release_notes tools tutorial embedded build hotspot libraries globalization locale-data translation performance hotspot libraries The list of subcomponents will no doubt grow over time, but my inclination is to resist that growth since the addition of each subcomponent makes the system as a whole more complicated and harder to use. When the system gets closer to being externalized, I plan to post more blog entries describing recommended use of various custom fields in the JDK project.

    Read the article

  • Windows Azure Recipe: Software as a Service (SaaS)

    - by Clint Edmonson
    The cloud was tailor built for aspiring companies to create innovative internet based applications and solutions. Whether you’re a garage startup with very little capital or a Fortune 1000 company, the ability to quickly setup, deliver, and iterate on new products is key to capturing market and mind share. And if you can capture that share and go viral, having resiliency and infinite scale at your finger tips is great peace of mind. Drivers Cost avoidance Time to market Scalability Solution Here’s a sketch of how a basic Software as a Service solution might be built out: Ingredients Web Role – this hosts the core web application. Each web role will host an instance of the software and as the user base grows, additional roles can be spun up to meet demand. Access Control – this service is essential to managing user identity. It’s backed by a full blown implementation of Active Directory and allows the definition and management of users, groups, and roles. A pre-built ASP.NET membership provider is included in the training kit to leverage this capability but it’s also flexible enough to be combined with external Identity providers including Windows LiveID, Google, Yahoo!, and Facebook. The provider model provides extensibility to hook into other industry specific identity providers as well. Databases – nearly every modern SaaS application is backed by a relational database for its core operational data. If the solution is sold to organizations, there’s a good chance multi-tenancy will be needed. An emerging best practice for SaaS applications is to stand up separate SQL Azure database instances for each tenant’s proprietary data to ensure isolation from other tenants. Worker Role – this is the best place to handle autonomous background processing such as data aggregation, billing through external services, and other specialized tasks that can be performed asynchronously. Placing these tasks in a worker role frees the web roles to focus completely on user interaction and data input and provides finer grained control over the system’s scalability and throughput. Caching (optional) – as a web site traffic grows caching can be leveraged to keep frequently used read-only, user specific, and application resource data in a high-speed distributed in-memory for faster response times and ultimately higher scalability without spinning up more web and worker roles. It includes a token based security model that works alongside the Access Control service. Blobs (optional) – depending on the nature of the software, users may be creating or uploading large volumes of heterogeneous data such as documents or rich media. Blob storage provides a scalable, resilient way to store terabytes of user data. The storage facilities can also integrate with the Access Control service to ensure users’ data is delivered securely. Training & Examples These links point to online Windows Azure training labs and examples where you can learn more about the individual ingredients described above. (Note: The entire Windows Azure Training Kit can also be downloaded for offline use.) Windows Azure (16 labs) Windows Azure is an internet-scale cloud computing and services platform hosted in Microsoft data centers, which provides an operating system and a set of developer services which can be used individually or together. It gives developers the choice to build web applications; applications running on connected devices, PCs, or servers; or hybrid solutions offering the best of both worlds. New or enhanced applications can be built using existing skills with the Visual Studio development environment and the .NET Framework. With its standards-based and interoperable approach, the services platform supports multiple internet protocols, including HTTP, REST, SOAP, and plain XML SQL Azure (7 labs) Microsoft SQL Azure delivers on the Microsoft Data Platform vision of extending the SQL Server capabilities to the cloud as web-based services, enabling you to store structured, semi-structured, and unstructured data. Windows Azure Services (9 labs) As applications collaborate across organizational boundaries, ensuring secure transactions across disparate security domains is crucial but difficult to implement. Windows Azure Services provides hosted authentication and access control using powerful, secure, standards-based infrastructure. Developing Applications for the Cloud, 2nd Edition (eBook) This book demonstrates how you can create from scratch a multi-tenant, Software as a Service (SaaS) application to run in the cloud using the latest versions of the Windows Azure Platform and tools. The book is intended for any architect, developer, or information technology (IT) professional who designs, builds, or operates applications and services that run on or interact with the cloud. Fabrikam Shipping (SaaS reference application) This is a full end to end sample scenario which demonstrates how to use the Windows Azure platform for exposing an application as a service. We developed this demo just as you would: we had an existing on-premises sample, Fabrikam Shipping, and we wanted to see what it would take to transform it in a full subscription based solution. The demo you find here is the result of that investigation See my Windows Azure Resource Guide for more guidance on how to get started, including more links web portals, training kits, samples, and blogs related to Windows Azure.

    Read the article

  • Building a Flash Platformer

    - by Jonathan O
    I am basically making a game where the whole game is run in the onEnterFrame method. This is causing a delay in my code that makes debugging and testing difficult. Should programming an entire platformer in this method be efficient enough for me to run hundreds of lines of code? Also, do variables in flash get updated immediately? Are there just lots of threads listening at the same time? Here is the code... stage.addEventListener(Event.ENTER_FRAME, onEnter); function onEnter(e:Event):void { //Jumping if (Yoshi.y > groundBaseLevel) { dy = 0; canJump = true; onGround = true; //This line is not updated in time } if (Key.isDown(Key.UP) && canJump) { dy = -10; canJump = false; onGround = false; //This line is not updated in time } if(!onGround) { dy += gravity; Yoshi.y += dy; } //limit screen boundaries //character movement if (! Yoshi.hitTestObject(Platform)) //no collision detected { if (Key.isDown(Key.RIGHT)) { speed += 4; speed *= friction; Yoshi.x = Yoshi.x + movementIncrement + speed; Yoshi.scaleX = 1; Yoshi.gotoAndStop('Walking'); } else if (Key.isDown(Key.LEFT)) { speed -= 4; speed *= friction; Yoshi.x = Yoshi.x - movementIncrement + speed; Yoshi.scaleX = -1; Yoshi.gotoAndStop('Walking'); } else { speed *= friction; Yoshi.x = Yoshi.x + speed; Yoshi.gotoAndStop('Still'); } } else //bounce back collision detected { if(Yoshi.hitTestPoint(Platform.x - Platform.width/2, Platform.y - Platform.height/2, false)) { trace('collision left'); Yoshi.x -=20; } if(Yoshi.hitTestPoint(Platform.x, Platform.y - Platform.height/2, false)) { trace('collision top'); onGround=true; //This update is not happening in time speed = 0; } } }

    Read the article

  • Master Data Management Implementation Styles

    - by david.butler(at)oracle.com
    In any Master Data Management solution deployment, one of the key decisions to be made is the choice of the MDM architecture. Gartner and other analysts describe some different Hub deployment styles, which must be supported by a best of breed MDM solution in order to guarantee the success of the deployment project.   Registry Style: In a Registry Style MDM Hub, the various source systems publish their data and a subscribing Hub stores only the source system IDs, the Foreign Keys (record IDs on source systems) and the key data values needed for matching. The Hub runs the cleansing and matching algorithms and assigns unique global identifiers to the matched records, but does not send any data back to the source systems. The Registry Style MDM Hub uses data federation capabilities to build the "virtual" golden view of the master entity from the connected systems.   Consolidation Style: The Consolidation Style MDM Hub has a physically instantiated, "golden" record stored in the central Hub. The authoring of the data remains distributed across the spoke systems and the master data can be updated based on events, but is not guaranteed to be up to date. The master data in this case is usually not used for transactions, but rather supports reporting; however, it can also be used for reference operationally.   Coexistence Style: The Coexistence Style MDM Hub involves master data that's authored and stored in numerous spoke systems, but includes a physically instantiated golden record in the central Hub and harmonized master data across the application portfolio. The golden record is constructed in the same manner as in the consolidation style, and, in the operational world, Consolidation Style MDM Hubs often evolve into the Coexistence Style. The key difference is that in this architectural style the master data stored in the central MDM system is selectively published out to the subscribing spoke systems.   Transaction Style: In this architecture, the Hub stores, enhances and maintains all the relevant (master) data attributes. It becomes the authoritative source of truth and publishes this valuable information back to the respective source systems. The Hub publishes and writes back the various data elements to the source systems after the linking, cleansing, matching and enriching algorithms have done their work. Upstream, transactional applications can read master data from the MDM Hub, and, potentially, all spoke systems subscribe to updates published from the central system in a form of harmonization. The Hub needs to support merging of master records. Security and visibility policies at the data attribute level need to be supported by the Transaction Style hub, as well.   Adaptive Transaction Style: This is similar to the Transaction Style, but additionally provides the capability to respond to diverse information and process requests across the enterprise. This style emerged most recently to address the limitations of the above approaches. With the Adaptive Transaction Style, the Hub is built as a platform for consolidating data from disparate third party and internal sources and for serving unified master entity views to operational applications, analytical systems or both. This approach delivers a real-time Hub that has a reliable, persistent foundation of master reference and relationship data, along with all the history and lineage of data changes needed for audit and compliance tracking. On top of this persistent master data foundation, the Hub can dynamically aggregate transaction data on demand from different source systems to deliver the unified golden view to downstream systems. Data can also be accessed through batch interfaces, published to a message bus or served through a real-time services layer. New data sources can be readily added in this approach by extending the data model and by configuring the new source mappings and the survivorship rules, meaning that all legacy data hubs can be leveraged to contribute their records/rules into the new transaction hub. Finally, through rich user interfaces for data stewardship, it allows exception handling by business analysts to keep it current with business rules/practices while maintaining the reliability of best-of-breed master records.   Confederation Style: In this architectural style, several Hubs are maintained at departmental and/or agency and/or territorial level, and each of them are connected to the other Hubs either directly or via a central Super-Hub. Each Domain level Hub can be implemented using any of the previously described styles, but normally the Central Super-Hub is a Registry Style one. This is particularly important for Public Sector organizations, where most of the time it is practically or legally impossible to store in a single central hub all the relevant constituent information from all departments.   Oracle MDM Solutions can be deployed according to any of the above MDM architectural styles, and have been specifically designed to fully support the Transaction and Adaptive Transaction styles. Oracle MDM Solutions provide strong data federation and integration capabilities which are key to enabling the use of the Confederated Hub as a possible architectural style approach. Don't lock yourself into a solution that cannot evolve with your needs. With Oracle's support for any type of deployment architecture, its ability to leverage the outstanding capabilities of the Oracle technology stack, and its open interfaces for non-Oracle technology stacks, Oracle MDM Solutions provide a low TCO and a quick ROI by enabling a phased implementation strategy.

    Read the article

  • Hype and LINQ

    - by Tony Davis
    "Tired of querying in antiquated SQL?" I blinked in astonishment when I saw this headline on the LinqPad site. Warming to its theme, the site suggests that what we need is to "kiss goodbye to SSMS", and instead use LINQ, a modern query language! Elsewhere, there is an article entitled "Why LINQ beats SQL". The designers of LINQ, along with many DBAs, would, I'm sure, cringe with embarrassment at the suggestion that LINQ and SQL are, in any sense, competitive ways of doing the same thing. In fact what LINQ really is, at last, is an efficient, declarative language for C# and VB programmers to access or manipulate data in objects, local data stores, ORMs, web services, data repositories, and, yes, even relational databases. The fact is that LINQ is essentially declarative programming in a .NET language, and so in many ways encourages developers into a "SQL-like" mindset, even though they are not directly writing SQL. In place of imperative logic and loops, it uses various expressions, operators and declarative logic to build up an "expression tree" describing only what data is required, not the operations to be performed to get it. This expression tree is then parsed by the language compiler, and the result, when used against a relational database, is a SQL string that, while perhaps not always perfect, is often correctly parameterized and certainly no less "optimal" than what is achieved when a developer applies blunt, imperative logic to the SQL language. From a developer standpoint, it is a mistake to consider LINQ simply as a substitute means of querying SQL Server. The strength of LINQ is that that can be used to access any data source, for which a LINQ provider exists. Microsoft supplies built-in providers to access not just SQL Server, but also XML documents, .NET objects, ADO.NET datasets, and Entity Framework elements. LINQ-to-Objects is particularly interesting in that it allows a declarative means to access and manipulate arrays, collections and so on. Furthermore, as Michael Sorens points out in his excellent article on LINQ, there a whole host of third-party LINQ providers, that offers a simple way to get at data in Excel, Google, Flickr and much more, without having to learn a new interface or language. Of course, the need to be generic enough to deal with a range of data sources, from something as mundane as a text file to as esoteric as a relational database, means that LINQ is a compromise and so has inherent limitations. However, it is a powerful and beautifully compact language and one that, at least in its "query syntax" guise, is accessible to developers and DBAs alike. Perhaps there is still hope that LINQ can fulfill Phil Factor's lobster-induced fantasy of a language that will allow us to "treat all data objects, whether Word files, Excel files, XML, relational databases, text files, HTML files, registry files, LDAPs, Outlook and so on, in the same logical way, as linked databases, and extract the metadata, create the entities and relationships in the same way, and use the same SQL syntax to interrogate, create, read, write and update them." Cheers, Tony.

    Read the article

  • Characteristics of a Web service that promote reusability and change

    Characteristics of a Web service that promote reusability and change:  Standardized Data Exchange Formats (XML, JSON) Standardized communication protocols (Soap, Rest) Promotes Loosely Coupled Systems  Standardized Data Exchange Formats (XML, JSON) XML W3.org defines Extensible Markup Language (XML) as a simplistic text format derived from SGML. XML was designed to solve challenges found in large-scale electronic publishing. In addition,  XML is playing an important role in the exchange of data primarily focusing on data exchange on the web. JSON JavaScript Object Notation (JSON) is a human-readable text-based standard designed for data interchange. This format is used for serializing and transmitting data over a network connection in a structured format. The primary use of JSON is to transmit data between a server and web application. JSON is an alternative to XML. Standardized communication protocols (Soap, Rest) Soap W3Scools.com defines SOAP as a simple XML-based protocol. This protocol lets applications exchange data over HTTP.  SOAP provides a way to communicate between applications running on different operating systems, with different technologies and programming languages. Rest In 2007, Stefan Tilkov defines Representational State Transfer (REST) as a set of principles that outlines how Web standards are supposed to be used.  Using REST in an application will ensure that it exploits the Web’s architecture to its benefit. Promotes Loosely Coupled Systems “Loose coupling as an approach to interconnecting the components in a system or network so that those components, also called elements, depend on each other to the least extent practicable. Coupling refers to the degree of direct knowledge that one element has of another.” (TechTarget.com, 2007) “Loosely coupled system can be easily broken down into definable elements. The extent of coupling in a system can be measured by mapping the maximum number of element changes that can occur without adverse effects. Examples of such changes include adding elements, removing elements, renaming elements, reconfiguring elements, modifying internal element characteristics and rearranging the way in which elements are interconnected.” (TechTarget.com, 2007) References: W3C. (2011). Extensible Markup Language (XML). Retrieved from W3.org: http://www.w3.org/XML/ W3Scools.com. (2011). SOAP Introduction. Retrieved from W3Scools.com: http://www.w3schools.com/soap/soap_intro.asp Tilkov, Stefan. (2007). A Brief Introduction to REST. Retrieved from Infoq.com: http://www.infoq.com/articles/rest-introduction TechTarget.com. (2011). loose coupling. Retrieved from TechTarget.com: http://searchnetworking.techtarget.com/definition/loose-coupling

    Read the article

  • How does I/O work for large graph databases?

    - by tjb1982
    I should preface this by saying that I'm mostly a front end web developer, trained as a musician, but over the past few years I've been getting more and more into computer science. So one idea I have as a fun toy project to learn about data structures and C programming was to design and implement my own very simple database that would manage an adjacency list of posts. I don't want SQL (maybe I'll do my own query language? I'm just having fun). It should support ACID. It should be capable of storing 1TB let's say. So with that, I was trying to think of how a database even stores data, without regard to data structures necessarily. I'm working on linux, and I've read that in that world "everything is a file," including hardware (like /dev/*), so I think that that obviously has to apply to a database, too, and it clearly does--whether it's MySQL or PostgreSQL or Neo4j, the database itself is a collection of files you can see in the filesystem. That said, there would come a point in scale where loading the entire database into primary memory just wouldn't work, so it doesn't make sense to design it with that mindset (I assume). However, reading from secondary memory would be much slower and regardless some portion of the database has to be in primary memory in order for you to be able to do anything with it. I read this post: Why use a database instead of just saving your data to disk? And I found it difficult to understand how other databases, like SQLite or Neo4j, read and write from secondary memory and are still very fast (faster, it would seem, than simply writing files to the filesystem as the above question suggests). It seems the key is indexing. But even indexes need to be stored in secondary memory. They are inherently smaller than the database itself, but indexes in a very large database might be prohibitively large, too. So my question is how is I/O generally done with large databases like the one I described above that would be at least 1TB storing a big adjacency list? If indexing is more or less the answer, how exactly does indexing work--what data structures should be involved?

    Read the article

  • View the Real Links Behind Shortened URLs in Chrome

    - by Asian Angel
    When you encounter shortened URLs there is always that worry in the back of your mind about where they really lead to. Now you can get a “sneak peak” at the real links behind those URLs with the View Thru extension for Google Chrome. The URL Shortening services officially supported at this time are: bit.ly, cli.gs, ff.im, goo.gl, is.gd, nyti.ms, ow.ly, post.ly, su.pr, & tinyurl.com. Before When you encounter a shortened URL you are pretty much on your own in deciding whether to trust that link or not. It would really be nice if you could just hover your mouse over those links and know where they will lead ahead of time. After Once you have the extension installed you are ready to access that link viewing goodness. Please note that you will need to reload any pages that were open prior to installing the extension. For our first example we chose a shortened URL from “bit.ly”. As you can see the entire link behind the shortened URL is displayed very nicely…no hidden surprises there! Note: There are no options to worry with for the extension. Another perfect result for the “goo.gl URL” shown below. View Thru will certainly remove a lot of the stress related to clicking on shortened URLs. Bonus Find Just out of curiosity we looked for a shortened URL not listed as being officially supported at this time. We found one with the “http://nyti.ms/” domain and View Thru showed the link perfectly…so be sure to give it a try on other services too. Conclusion If you worry about where a shortened URL will really lead you then the View Thru extension can help alleviate that stress. Links Download the View Thru extension (Google Chrome Extensions) Similar Articles Productive Geek Tips See Where Shortened URLs “Link To” in Your Favorite BrowserVerify the Destinations of Shortened URLs the Easy WayCreate Shortened goo.gl URLs in Google Chrome the Easy WayCreate Shortened goo.gl URLs in Your Favorite BrowserAccess Google Chrome’s Special Pages the Easy Way TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 QuicklyCode Provides Cheatsheets & Other Programming Stuff Download Free MP3s from Amazon Awe inspiring, inter-galactic theme (Win 7) Case Study – How to Optimize Popular Wordpress Sites Restore Hidden Updates in Windows 7 & Vista Iceland an Insurance Job?

    Read the article

  • SQL SERVER – Concurrancy Problems and their Relationship with Isolation Level

    - by pinaldave
    Concurrency is simply put capability of the machine to support two or more transactions working with the same data at the same time. This usually comes up with data is being modified, as during the retrieval of the data this is not the issue. Most of the concurrency problems can be avoided by SQL Locks. There are four types of concurrency problems visible in the normal programming. 1)      Lost Update – This problem occurs when there are two transactions involved and both are unaware of each other. The transaction which occurs later overwrites the transactions created by the earlier update. 2)      Dirty Reads – This problem occurs when a transactions selects data that isn’t committed by another transaction leading to read the data which may not exists when transactions are over. Example: Transaction 1 changes the row. Transaction 2 changes the row. Transaction 1 rolls back the changes. Transaction 2 has selected the row which does not exist. 3)      Nonrepeatable Reads – This problem occurs when two SELECT statements of the same data results in different values because another transactions has updated the data between the two SELECT statements. Example: Transaction 1 selects a row, which is later on updated by Transaction 2. When Transaction A later on selects the row it gets different value. 4)      Phantom Reads – This problem occurs when UPDATE/DELETE is happening on one set of data and INSERT/UPDATE is happening on the same set of data leading inconsistent data in earlier transaction when both the transactions are over. Example: Transaction 1 is deleting 10 rows which are marked as deleting rows, during the same time Transaction 2 inserts row marked as deleted. When Transaction 1 is done deleting rows, there will be still rows marked to be deleted. When two or more transactions are updating the data, concurrency is the biggest issue. I commonly see people toying around with isolation level or locking hints (e.g. NOLOCK) etc, which can very well compromise your data integrity leading to much larger issue in future. Here is the quick mapping of the isolation level with concurrency problems: Isolation Dirty Reads Lost Update Nonrepeatable Reads Phantom Reads Read Uncommitted Yes Yes Yes Yes Read Committed No Yes Yes Yes Repeatable Read No No No Yes Snapshot No No No No Serializable No No No No I hope this 400 word small article gives some quick understanding on concurrency issues and their relation to isolation level. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Am 10.02. startet WebCast-Serie für Java Entwickler und WebLogic Interessenten: WebLogic Developer - Get the latest on Oracle WebLogic Server and Java EE 6

    - by Thomas Leopold
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 21 false false false DE X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Accelerate Your Development with Oracle WebLogic Suite Many organisations are reducing travel, conference, and training budgets for their developers without any change to the results expected of those developers. So how can you keep up with the latest developments?By receiving training, delivered free of charge, at your desk!Join us during February and March for a series of online events designed and run by the development team at Oracle. Learn how Oracle WebLogic Suite enables a whole new level of productivity for enterprise developers.Virtual Developer Day - 10th FebruaryStarting with our Virtual Developer Day on 10th February, join us for a blend of hands-on labs, live chat and presentations covering the latest on WebLogic, Java EE 6 and the programming tenets that have made it a true platform breakthrough.Weekly WebLogic Webcasts from 17th February to 17th MarchAfterwards, join us every week from 17th February to 17th March for our weekly one-hour webcasts where we will show you how to build an application from the ground up using Java and JEE technologies. Presented by the engineering team for WebLogic, these webcasts will be of great value to developers and architects, not just those already using WebLogic.For registration, full session abstracts and schedule please click here. Don't miss out! Register now to join our virtual events and keep up with all the latest developments. Find out more and register now Copyright © 2011, Oracle Corporation and/or its affiliates.All rights reserved. Contact Us | Legal Notices and Terms of Use | Privacy Statement

    Read the article

  • Is Java viable for serious game development?

    - by tehtros
    Ever since I was a little kid, my dream has been to develop games. Well, now that I am older, more mature, and have some programming experience, I would like to start. However, I would like to turn this into a career. The problem, is that my language of choice is Java. Now, I am not intending this to be a Java vs. C++ question, but rather, is Java an acceptable language for serious game development, instead of lower level languages like C++. By serious, I mean high quality graphics, and being able to play a game with said high quality graphics, without much lag on decent computers. Also, eventually, possible making it to consoles. I have scoured the internet, but there are not very many resources for Java game development, not nearly as many as C++. In fact, most engines are written in C++. Once, I tried to play a made with jMonkeyEngine. The game was terribly slow, to the point where my computer froze. I had no other Java applications running and nothing too resource intensive. Keep in mind, that my computer can play most modern 3D games with ease. So, I am really serious about game development, is Java still a viable choice? I have tried multiple times to learn C++, but I don't really like the language. I don't really know why, but usually, whenever I try to learn, I can never grasp the topics. Also, my most of my friends know Java, and one is even anti-C++, saying that no one knows how to use it right. Then, he goes to say that "there is no right way to use C++, that it can not be used correctly. The nature of the language prevents good code." Also, if I continue to learn and improve Java now, and it turns out that later I am required to learn C++, will making the switch be difficult? So, in short, can Java be taken serious, for serious game development. This includes heavy graphics, fast game play without lag, and possibly, and easy switch to consoles?

    Read the article

  • Informed TDD &ndash; Kata &ldquo;To Roman Numerals&rdquo;

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/05/28/informed-tdd-ndash-kata-ldquoto-roman-numeralsrdquo.aspxIn a comment on my article on what I call Informed TDD (ITDD) reader gustav asked how this approach would apply to the kata “To Roman Numerals”. And whether ITDD wasn´t a violation of TDD´s principle of leaving out “advanced topics like mocks”. I like to respond with this article to his questions. There´s more to say than fits into a commentary. Mocks and TDD I don´t see in how far TDD is avoiding or opposed to mocks. TDD and mocks are orthogonal. TDD is about pocess, mocks are about structure and costs. Maybe by moving forward in tiny red+green+refactor steps less need arises for mocks. But then… if the functionality you need to implement requires “expensive” resource access you can´t avoid using mocks. Because you don´t want to constantly run all your tests against the real resource. True, in ITDD mocks seem to be in almost inflationary use. That´s not what you usually see in TDD demonstrations. However, there´s a reason for that as I tried to explain. I don´t use mocks as proxies for “expensive” resource. Rather they are stand-ins for functionality not yet implemented. They allow me to get a test green on a high level of abstraction. That way I can move forward in a top-down fashion. But if you think of mocks as “advanced” or if you don´t want to use a tool like JustMock, then you don´t need to use mocks. You just need to stand the sight of red tests for a little longer ;-) Let me show you what I mean by that by doing a kata. ITDD for “To Roman Numerals” gustav asked for the kata “To Roman Numerals”. I won´t explain the requirements again. You can find descriptions and TDD demonstrations all over the internet, like this one from Corey Haines. Now here is, how I would do this kata differently. 1. Analyse A demonstration of TDD should never skip the analysis phase. It should be made explicit. The requirements should be formalized and acceptance test cases should be compiled. “Formalization” in this case to me means describing the API of the required functionality. “[D]esign a program to work with Roman numerals” like written in this “requirement document” is not enough to start software development. Coding should only begin, if the interface between the “system under development” and its context is clear. If this interface is not readily recognizable from the requirements, it has to be developed first. Exploration of interface alternatives might be in order. It might be necessary to show several interface mock-ups to the customer – even if that´s you fellow developer. Designing the interface is a task of it´s own. It should not be mixed with implementing the required functionality behind the interface. Unfortunately, though, this happens quite often in TDD demonstrations. TDD is used to explore the API and implement it at the same time. To me that´s a violation of the Single Responsibility Principle (SRP) which not only should hold for software functional units but also for tasks or activities. In the case of this kata the API fortunately is obvious. Just one function is needed: string ToRoman(int arabic). And it lives in a class ArabicRomanConversions. Now what about acceptance test cases? There are hardly any stated in the kata descriptions. Roman numerals are explained, but no specific test cases from the point of view of a customer. So I just “invent” some acceptance test cases by picking roman numerals from a wikipedia article. They are supposed to be just “typical examples” without special meaning. Given the acceptance test cases I then try to develop an understanding of the problem domain. I´ll spare you that. The domain is trivial and is explain in almost all kata descriptions. How roman numerals are built is not difficult to understand. What´s more difficult, though, might be to find an efficient solution to convert into them automatically. 2. Solve The usual TDD demonstration skips a solution finding phase. Like the interface exploration it´s mixed in with the implementation. But I don´t think this is how it should be done. I even think this is not how it really works for the people demonstrating TDD. They´re simplifying their true software development process because they want to show a streamlined TDD process. I doubt this is helping anybody. Before you code you better have a plan what to code. This does not mean you have to do “Big Design Up-Front”. It just means: Have a clear picture of the logical solution in your head before you start to build a physical solution (code). Evidently such a solution can only be as good as your understanding of the problem. If that´s limited your solution will be limited, too. Fortunately, in the case of this kata your understanding does not need to be limited. Thus the logical solution does not need to be limited or preliminary or tentative. That does not mean you need to know every line of code in advance. It just means you know the rough structure of your implementation beforehand. Because it should mirror the process described by the logical or conceptual solution. Here´s my solution approach: The arabic “encoding” of numbers represents them as an ordered set of powers of 10. Each digit is a factor to multiply a power of ten with. The “encoding” 123 is the short form for a set like this: {1*10^2, 2*10^1, 3*10^0}. And the number is the sum of the set members. The roman “encoding” is different. There is no base (like 10 for arabic numbers), there are just digits of different value, and they have to be written in descending order. The “encoding” XVI is short for [10, 5, 1]. And the number is still the sum of the members of this list. The roman “encoding” thus is simpler than the arabic. Each “digit” can be taken at face value. No multiplication with a base required. But what about IV which looks like a contradiction to the above rule? It is not – if you accept roman “digits” not to be limited to be single characters only. Usually I, V, X, L, C, D, M are viewed as “digits”, and IV, IX etc. are viewed as nuisances preventing a simple solution. All looks different, though, once IV, IX etc. are taken as “digits”. Then MCMLIV is just a sum: M+CM+L+IV which is 1000+900+50+4. Whereas before it would have been understood as M-C+M+L-I+V – which is more difficult because here some “digits” get subtracted. Here´s the list of roman “digits” with their values: {1, I}, {4, IV}, {5, V}, {9, IX}, {10, X}, {40, XL}, {50, L}, {90, XC}, {100, C}, {400, CD}, {500, D}, {900, CM}, {1000, M} Since I take IV, IX etc. as “digits” translating an arabic number becomes trivial. I just need to find the values of the roman “digits” making up the number, e.g. 1954 is made up of 1000, 900, 50, and 4. I call those “digits” factors. If I move from the highest factor (M=1000) to the lowest (I=1) then translation is a two phase process: Find all the factors Translate the factors found Compile the roman representation Translation is just a look-up. Finding, though, needs some calculation: Find the highest remaining factor fitting in the value Remember and subtract it from the value Repeat with remaining value and remaining factors Please note: This is just an algorithm. It´s not code, even though it might be close. Being so close to code in my solution approach is due to the triviality of the problem. In more realistic examples the conceptual solution would be on a higher level of abstraction. With this solution in hand I finally can do what TDD advocates: find and prioritize test cases. As I can see from the small process description above, there are two aspects to test: Test the translation Test the compilation Test finding the factors Testing the translation primarily means to check if the map of factors and digits is comprehensive. That´s simple, even though it might be tedious. Testing the compilation is trivial. Testing factor finding, though, is a tad more complicated. I can think of several steps: First check, if an arabic number equal to a factor is processed correctly (e.g. 1000=M). Then check if an arabic number consisting of two consecutive factors (e.g. 1900=[M,CM]) is processed correctly. Then check, if a number consisting of the same factor twice is processed correctly (e.g. 2000=[M,M]). Finally check, if an arabic number consisting of non-consecutive factors (e.g. 1400=[M,CD]) is processed correctly. I feel I can start an implementation now. If something becomes more complicated than expected I can slow down and repeat this process. 3. Implement First I write a test for the acceptance test cases. It´s red because there´s no implementation even of the API. That´s in conformance with “TDD lore”, I´d say: Next I implement the API: The acceptance test now is formally correct, but still red of course. This will not change even now that I zoom in. Because my goal is not to most quickly satisfy these tests, but to implement my solution in a stepwise manner. That I do by “faking” it: I just “assume” three functions to represent the transformation process of my solution: My hypothesis is that those three functions in conjunction produce correct results on the API-level. I just have to implement them correctly. That´s what I´m trying now – one by one. I start with a simple “detail function”: Translate(). And I start with all the test cases in the obvious equivalence partition: As you can see I dare to test a private method. Yes. That´s a white box test. But as you´ll see it won´t make my tests brittle. It serves a purpose right here and now: it lets me focus on getting one aspect of my solution right. Here´s the implementation to satisfy the test: It´s as simple as possible. Right how TDD wants me to do it: KISS. Now for the second equivalence partition: translating multiple factors. (It´a pattern: if you need to do something repeatedly separate the tests for doing it once and doing it multiple times.) In this partition I just need a single test case, I guess. Stepping up from a single translation to multiple translations is no rocket science: Usually I would have implemented the final code right away. Splitting it in two steps is just for “educational purposes” here. How small your implementation steps are is a matter of your programming competency. Some “see” the final code right away before their mental eye – others need to work their way towards it. Having two tests I find more important. Now for the next low hanging fruit: compilation. It´s even simpler than translation. A single test is enough, I guess. And normally I would not even have bothered to write that one, because the implementation is so simple. I don´t need to test .NET framework functionality. But again: if it serves the educational purpose… Finally the most complicated part of the solution: finding the factors. There are several equivalence partitions. But still I decide to write just a single test, since the structure of the test data is the same for all partitions: Again, I´m faking the implementation first: I focus on just the first test case. No looping yet. Faking lets me stay on a high level of abstraction. I can write down the implementation of the solution without bothering myself with details of how to actually accomplish the feat. That´s left for a drill down with a test of the fake function: There are two main equivalence partitions, I guess: either the first factor is appropriate or some next. The implementation seems easy. Both test cases are green. (Of course this only works on the premise that there´s always a matching factor. Which is the case since the smallest factor is 1.) And the first of the equivalence partitions on the higher level also is satisfied: Great, I can move on. Now for more than a single factor: Interestingly not just one test becomes green now, but all of them. Great! You might say, then I must have done not the simplest thing possible. And I would reply: I don´t care. I did the most obvious thing. But I also find this loop very simple. Even simpler than a recursion of which I had thought briefly during the problem solving phase. And by the way: Also the acceptance tests went green: Mission accomplished. At least functionality wise. Now I´ve to tidy up things a bit. TDD calls for refactoring. Not uch refactoring is needed, because I wrote the code in top-down fashion. I faked it until I made it. I endured red tests on higher levels while lower levels weren´t perfected yet. But this way I saved myself from refactoring tediousness. At the end, though, some refactoring is required. But maybe in a different way than you would expect. That´s why I rather call it “cleanup”. First I remove duplication. There are two places where factors are defined: in Translate() and in Find_factors(). So I factor the map out into a class constant. Which leads to a small conversion in Find_factors(): And now for the big cleanup: I remove all tests of private methods. They are scaffolding tests to me. They only have temporary value. They are brittle. Only acceptance tests need to remain. However, I carry over the single “digit” tests from Translate() to the acceptance test. I find them valuable to keep, since the other acceptance tests only exercise a subset of all roman “digits”. This then is my final test class: And this is the final production code: Test coverage as reported by NCrunch is 100%: Reflexion Is this the smallest possible code base for this kata? Sure not. You´ll find more concise solutions on the internet. But LOC are of relatively little concern – as long as I can understand the code quickly. So called “elegant” code, however, often is not easy to understand. The same goes for KISS code – especially if left unrefactored, as it is often the case. That´s why I progressed from requirements to final code the way I did. I first understood and solved the problem on a conceptual level. Then I implemented it top down according to my design. I also could have implemented it bottom-up, since I knew some bottom of the solution. That´s the leaves of the functional decomposition tree. Where things became fuzzy, since the design did not cover any more details as with Find_factors(), I repeated the process in the small, so to speak: fake some top level, endure red high level tests, while first solving a simpler problem. Using scaffolding tests (to be thrown away at the end) brought two advantages: Encapsulation of the implementation details was not compromised. Naturally private methods could stay private. I did not need to make them internal or public just to be able to test them. I was able to write focused tests for small aspects of the solution. No need to test everything through the solution root, the API. The bottom line thus for me is: Informed TDD produces cleaner code in a systematic way. It conforms to core principles of programming: Single Responsibility Principle and/or Separation of Concerns. Distinct roles in development – being a researcher, being an engineer, being a craftsman – are represented as different phases. First find what, what there is. Then devise a solution. Then code the solution, manifest the solution in code. Writing tests first is a good practice. But it should not be taken dogmatic. And above all it should not be overloaded with purposes. And finally: moving from top to bottom through a design produces refactored code right away. Clean code thus almost is inevitable – and not left to a refactoring step at the end which is skipped often for different reasons.   PS: Yes, I have done this kata several times. But that has only an impact on the time needed for phases 1 and 2. I won´t skip them because of that. And there are no shortcuts during implementation because of that.

    Read the article

  • Generating Report for NUnit

    - by thangchung
     All source codes for this post can be found at my github.Time ago, I received a request that people ask me how they can generate reports of the results of testing using NUnit? In fact, I may never do this. In the little world of my programming, I only care about the test results, red-green-refactoring, and that was it. When I got that question quite a bit unexpected, I knew that I could use NCover to generate reports, but reports of NCover too simple, it did not give us more details on the number of test cases, test methods, ... And I began to see about creating interesting report for NUnit.I was lucky to find an open source here. Its authors call it NUnit2Report, but one disadvantage is it only running on .NET 1.0. Indeed too old compared to the current version 4.0. And I try to download the preview, but I could not run. I had to open its source code and found that it uses XSLT to convert the output of NUnit results from XML to HTML. Nothing really special, because I also knew that after NUnit run output file extension is XML is created. Author only use this file to convert to HTML using XSLT. And I decided to convert it to. NET 4.0, because I will not have to code from scratch. Conversion work made me take some time, but was lucky that I finally have what I want. Thanks Gilles for the this OSS. I will send a mail to thank him for his efforts but put this out for the OSS. Now I will show people how to do it. I used the auto built NAnt and NUnit for running TestCase, and I use Selenium testing framework. After writing three TestCase using Selenium, I ran NUnit, and got the following results: There are 1 fail and 2s success. In the bin directory of this project will have the NUnit output file as shown below: Then I create a build file, and a bat file for easy running (can use PowerShell is here also.) Double click in the bat file to create a report like this:       Finally open the index.html file in the folder to view report. As everyone can see, it is the TestCase and divide very clearly, that I meet the requirements. This is really good. Once again I really thank NUnit2Report from Gilles. People can contact him via the mail address [email protected] or website  http://nunit2report.sourceforge.net. It really is useful to those who promised to QA. Hopefully this post will help anyone really interested in doing reports for NUnit.   

    Read the article

< Previous Page | 482 483 484 485 486 487 488 489 490 491 492 493  | Next Page >