Search Results

Search found 37882 results on 1516 pages for 'function overloading'.

Page 49/1516 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • how to add a function to that program, and call that function from the command line in the function

    - by user336291
    a#include "smallsh.h" /*include file for example*/ /*program buffers and work pointers*/ static char inpbuf[MAXBUF], tokbuf[2*MAXBUF], *ptr = inpbuf, *tok = tokbuf; userin(p) /*print prompt and read a line*/ char *p; { int c, count; /*initialization for later routines*/ ptr = inpbuf; tok = tokbuf; /*display prompt*/ printf("%s ",p); for(count = 0;;) { if((c = getchar()) == EOF) return(EOF); if(count<MAXBUF) inpbuf[count++] = c; if(c == '\n' && count <MAXBUF) { inpbuf[count] = '\0'; return(count); } /*if line too long restart*/ if(c == '\n') { printf("smallsh:input line too long\n"); count = 0; printf("%s",p); } } } gettok(outptr) /*get token and place into tokbuf*/ char **outptr; { int type; *outptr = tok; /*strip white space*/ for(;*ptr == ' ' || *ptr == '\t'; ptr++) ; *tok++ = *ptr; switch(*ptr++) { case '\n': type = EOL; break; case '&': type = AMPERSAND; break; case ';': type = SEMICOLON; break; case '#': type = POUND; break; default: type = ARG; while(inarg(*ptr)) *tok++ = *ptr++; } *tok++ = '\0'; return(type); } static char special[]= {' ', '\t', '&', ':', '\n', '\0'}; inarg(c) /*are we in an ordinary argument*/ char c; { char *wrk; for(wrk = special;*wrk != '\0';wrk++) if(c == *wrk) return(0); return(1); } #include "smallsh.h" procline() /*process input line*/ { char *arg[MAXARG+1]; /*pointer array for runcommand*/ int toktype; /*type of token in command*/ int narg; /*number of arguments so far*/ int type; /*FOREGROUND or BACKGROUND*/ for(narg = 0;;) { /*loop FOREVER*/ /*take action according to token type*/ switch(toktype = gettok(&arg[narg])) { case ARG: if(narg<MAXARG) narg++; break; case EOL: case SEMICOLON: case AMPERSAND: case POUND: type = (toktype == AMPERSAND) ? BACKGROUND : FOREGROUND; if(narg!=0) { arg[narg] = NULL; runcommand(arg, type); } if((toktype == EOL)||(toktype=POUND)) return; narg = 0; break; } } } #include "smallsh.h" /*execute a command with optional wait*/ runcommand(cline,where) char **cline; int where; { int pid, exitstat, ret; if((pid = fork()) <0) { perror("smallsh"); return(-1); } if(pid == 0) { /*child*/ execvp(*cline, cline); perror(*cline); exit(127); } /*code for parent*/ /*if background process print pid and exit*/ if(where == BACKGROUND) { printf("[Process id %d]\n", pid); return(0); } /*wait until process pid exists*/ while( (ret=wait(&exitstat)) != pid && ret != -1) ; return(ret == -1 ? -1 : exitstat); } #include "smallsh.h" char *prompt = "Command>"; /*prompt*/ main() { while(userin(prompt) != EOF) procline(); }

    Read the article

  • How combine 2 functions on submit?

    - by Mahmoud
    hey there, as you can see, i have to functions first to check if all forms are not empty and the second function is to verify the captcher, when i combine them together both work at the same time, i want to first to verify the first function, when that function returns true then the other function starts, here is the code that i used on form <form action="reg.php" method="post" enctype="application/x-www-form-urlencoded" onsubmit=" Checking(this); return jcap();" > As you can see both function execute at the same time so i tried this <form action="reg.php" method="post" enctype="application/x-www-form-urlencoded" onsubmit=" if(Checking(this) == true ){ return jcap();}" > is bypass both i also tried this <form action="reg.php" method="post" enctype="application/x-www-form-urlencoded" onsubmit=" return(Checking(this) && jcap(this));" > and it bypassed jcap function

    Read the article

  • Properly removing an Integer from a List<Integer>

    - by Yuval A
    Here's a nice pitfall I just encountered. Consider a list of integers: List<Integer> list = new ArrayList<Integer>(); list.add(5); list.add(6); list.add(7); list.add(1); Any educated guess on what happens when you execute list.remove(1)? What about list.remove(new Integer(1))? This can cause some nasty bugs. What is the proper way to differentiate between remove(int index), which removes an element from given index and remove(Object o), which removes an element by reference, when dealing with lists of integers? The main point to consider here is the one @Nikita mentioned - exact parameter matching takes precedence over auto-boxing.

    Read the article

  • Trying to reduce the speed overhead of an almost-but-not-quite-int number class

    - by Fumiyo Eda
    I have implemented a C++ class which behaves very similarly to the standard int type. The difference is that it has an additional concept of "epsilon" which represents some tiny value that is much less than 1, but greater than 0. One way to think of it is as a very wide fixed point number with 32 MSBs (the integer parts), 32 LSBs (the epsilon parts) and a huge sea of zeros in between. The following class works, but introduces a ~2x speed penalty in the overall program. (The program includes code that has nothing to do with this class, so the actual speed penalty of this class is probably much greater than 2x.) I can't paste the code that is using this class, but I can say the following: +, -, +=, <, > and >= are the only heavily used operators. Use of setEpsilon() and getInt() is extremely rare. * is also rare, and does not even need to consider the epsilon values at all. Here is the class: #include <limits> struct int32Uepsilon { typedef int32Uepsilon Self; int32Uepsilon () { _value = 0; _eps = 0; } int32Uepsilon (const int &i) { _value = i; _eps = 0; } void setEpsilon() { _eps = 1; } Self operator+(const Self &rhs) const { Self result = *this; result._value += rhs._value; result._eps += rhs._eps; return result; } Self operator-(const Self &rhs) const { Self result = *this; result._value -= rhs._value; result._eps -= rhs._eps; return result; } Self operator-( ) const { Self result = *this; result._value = -result._value; result._eps = -result._eps; return result; } Self operator*(const Self &rhs) const { return this->getInt() * rhs.getInt(); } // XXX: discards epsilon bool operator<(const Self &rhs) const { return (_value < rhs._value) || (_value == rhs._value && _eps < rhs._eps); } bool operator>(const Self &rhs) const { return (_value > rhs._value) || (_value == rhs._value && _eps > rhs._eps); } bool operator>=(const Self &rhs) const { return (_value >= rhs._value) || (_value == rhs._value && _eps >= rhs._eps); } Self &operator+=(const Self &rhs) { this->_value += rhs._value; this->_eps += rhs._eps; return *this; } Self &operator-=(const Self &rhs) { this->_value -= rhs._value; this->_eps -= rhs._eps; return *this; } int getInt() const { return(_value); } private: int _value; int _eps; }; namespace std { template<> struct numeric_limits<int32Uepsilon> { static const bool is_signed = true; static int max() { return 2147483647; } } }; The code above works, but it is quite slow. Does anyone have any ideas on how to improve performance? There are a few hints/details I can give that might be helpful: 32 bits are definitely insufficient to hold both _value and _eps. In practice, up to 24 ~ 28 bits of _value are used and up to 20 bits of _eps are used. I could not measure a significant performance difference between using int32_t and int64_t, so memory overhead itself is probably not the problem here. Saturating addition/subtraction on _eps would be cool, but isn't really necessary. Note that the signs of _value and _eps are not necessarily the same! This broke my first attempt at speeding this class up. Inline assembly is no problem, so long as it works with GCC on a Core i7 system running Linux!

    Read the article

  • Few Basic Questions in Overriding

    - by Dahlia
    I have few problems with my basic and would be thankful if someone can clear this. What does it mean when I say base *b = new derived; Why would one go for this? We very well separately can create objects for class base and class derived and then call the functions accordingly. I know that this base *b = new derived; is called as Object Slicing but why and when would one go for this? I know why it is not advisable to convert the base class object to derived class object (because base class is not aware of the derived class members and methods). I even read in other StackOverflow threads that if this is gonna be the case then we have to change/re-visit our design. I understand all that, however, I am just curious, Is there any way to do this? class base { public: void f(){cout << "In Base";} }; class derived:public base { public: void f(){cout << "In Derived";} }; int _tmain(int argc, _TCHAR* argv[]) { base b1, b2; derived d1, d2; b2 = d1; d2 = reinterpret_cast<derived*>(b1); //gives error C2440 b1.f(); // Prints In Base d1.f(); // Prints In Derived b2.f(); // Prints In Base d1.base::f(); //Prints In Base d2.f(); getch(); return 0; } In case of my above example, is there any way I could call the base class f() using derived class object? I used d1.base()::f() I just want to know if there any way without using scope resolution operator? Thanks a lot for your time in helping me out!

    Read the article

  • Jquery: Calling functions from different documents

    - by Tom
    Hi, I've got some Jquery functions that I keep in a "custom.js" file. On some pages, I need to pass PHP variables to the Jquery so some Jquery bits need to remain in the HTML documents. However, as I'm now trying to refactor things to the minimum, I'm tripping over the following: If I put this in my custom.js: $(document).ready(function() { function sayHello() { alert("hello"); } } And this in a HTML document: <script type="text/javascript"> $(document).ready(function() { sayHello(); }); </script> ... the function doesn't get called. However, if both are placed in the HTML document, the function works fine. Is there some kind of public property I need to declare for the function or how do I get Jquery functions in my HTML to talk to external .js files? They're correctly included and work fine otherwise. Thanks.

    Read the article

  • How does Java pick which method to call?

    - by Gaurav
    Given the following code: public class Test { public void method(Object o){ System.out.println("object"); } public void method(String s) { System.out.println("String"); } public void method() { System.out.println("blank"); } /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Test test=new Test(); test.method(null); } } Java prints "String". Why is this the case?

    Read the article

  • Excel VBA pass array of arrays to a function

    - by user429400
    I have one function that creates an array of arrays, and one function that should get the resulting array and write it to the spreadsheet. I don't find the syntax which will allow me to pass the array of arrays to the second function... Could you please help? Here is my code: The function that creates the array of arrays: Function GetCellDetails(dict1 As Dictionary, dict2 As Dictionary) As Variant Dim arr1, arr2 arr1 = dict1.Items arr2 = dict2.Items GetCellDetails = Array(arr1, arr2) End Function the function that writes it to the spreadsheet: Sub WriteCellDataToMemory(arr As Variant, day As Integer, cellId As Integer, nCells As Integer) row = CellIdToMemRow(cellId, nCells) col = DayToMemCol(day) arrSize = UBound(arr, 2) Range(Cells(row, col), Cells(row + arrSize , col + 2)) = Application.Transpose(arr) End Sub The code that calls the functions: Dim CellDetails CellDetails = GetCellDetails(dict1, dict2) WriteCellDataToMemory CellDetails, day, cellId, nCells Thanks, Li

    Read the article

  • C++ addition overload ambiguity

    - by Nate
    I am coming up against a vexing conundrum in my code base. I can't quite tell why my code generates this error, but (for example) std::string does not. class String { public: String(const char*str); friend String operator+ ( const String& lval, const char *rval ); friend String operator+ ( const char *lval, const String& rval ); String operator+ ( const String& rval ); }; The implementation of these is easy enough to imagine on your own. My driver program contains the following: String result, lval("left side "), rval("of string"); char lv[] = "right side ", rv[] = "of string"; result = lv + rval; printf(result); result = (lval + rv); printf(result); Which generates the following error in gcc 4.1.2: driver.cpp:25: error: ISO C++ says that these are ambiguous, even though the worst conversion for the first is better than the worst conversion for the second: String.h:22: note: candidate 1: String operator+(const String&, const char*) String.h:24: note: candidate 2: String String::operator+(const String&) So far so good, right? Sadly, my String(const char *str) constructor is so handy to have as an implicit constructor, that using the explicit keyword to solve this would just cause a different pile of problems. Moreover... std::string doesn't have to resort to this, and I can't figure out why. For example, in basic_string.h, they are declared as follows: template<typename _CharT, typename _Traits, typename _Alloc> basic_string<_CharT, _Traits, _Alloc> operator+(const basic_string<_CharT, _Traits, _Alloc>& __lhs, const basic_string<_CharT, _Traits, _Alloc>& __rhs) template<typename _CharT, typename _Traits, typename _Alloc> basic_string<_CharT,_Traits,_Alloc> operator+(const _CharT* __lhs, const basic_string<_CharT,_Traits,_Alloc>& __rhs); and so on. The basic_string constructor is not declared explicit. How does this not cause the same error I'm getting, and how can I achieve the same behavior??

    Read the article

  • Extend and Overload MS and Point Types

    - by dr d b karron
    Do I have make my own Point and Vector types to overload them ? Why does this not work ? namespace System . windows { public partial struct Point : IFormattable { public static Point operator * ( Point P , double D ) { Point Po = new Point ( ); return Po; } } } namespace SilverlightApplication36 { public partial class MainPage : UserControl { public static void ShrinkingRectangle ( WriteableBitmap wBM , int x1 , int y1 , int x2 , int y2 , Color C ) { wBM . DrawRectangle ( x1 , y1 , x2 , y2 , Colors . Red ); Point Center = Mean ( x1 , y1 , x2 , y2 ); wBM . SetPixel ( Center , Colors.Blue , 3 ); Point P1 = new Point ( x1 , y1 ); Point P2 = new Point ( x1 , y2 ); Point P3 = new Point ( x1 , y2 ); Point P4 = new Point ( x2 , y1 ); const int Steps = 10; for ( int i = 0 ; i < Steps ; i++ ) { double iF = (double)(i+1) / (double)Steps; double jF = ( 1.0 - iF ); Point P11 = **P1 * jF;** } }

    Read the article

  • polymorphism and interfaces

    - by mixm
    if i have two classes x and y, both extend class w. and x implementing interface z. if i have methods doSomething(w object) and doSomething(x object), what would happen if i call doSomething(x)? edit: im implementing this on java, more specifically on android. im asking this because some classes which implement a specific interface mostly does the same thing when doSomething() is called. but there are special cases which i would like to single out.

    Read the article

  • Java Best Practice for type resolution at runtime.

    - by Brian
    I'm trying to define a class (or set of classes which implement the same interface) that will behave as a loosely typed object (like JavaScript). They can hold any sort of data and operations on them depend on the underlying type. I have it working in three different ways but none seem ideal. These test versions only allow strings and integers and the only operation is add. Adding integers results in the sum of the integer values, adding strings concatenates the strings and adding an integer to a string converts the integer to a string and concatenates it with the string. The final version will have more types (Doubles, Arrays, JavaScript-like objects where new properties can be added dynamically) and more operations. Way 1: public interface DynObject1 { @Override public String toString(); public DynObject1 add(DynObject1 d); public DynObject1 addTo(DynInteger1 d); public DynObject1 addTo(DynString1 d); } public class DynInteger1 implements DynObject1 { private int value; public DynInteger1(int v) { value = v; } @Override public String toString() { return Integer.toString(value); } public DynObject1 add(DynObject1 d) { return d.addTo(this); } public DynObject1 addTo(DynInteger1 d) { return new DynInteger1(d.value + value); } public DynObject1 addTo(DynString1 d) { return new DynString1(d.toString()+Integer.toString(value)); } } ...and similar for DynString1 Way 2: public interface DynObject2 { @Override public String toString(); public DynObject2 add(DynObject2 d); } public class DynInteger2 implements DynObject2 { private int value; public DynInteger2(int v) { value = v; } @Override public String toString() { return Integer.toString(value); } public DynObject2 add(DynObject2 d) { Class c = d.getClass(); if(c==DynInteger2.class) { return new DynInteger2(value + ((DynInteger2)d).value); } else { return new DynString2(toString() + d.toString()); } } } ...and similar for DynString2 Way 3: public class DynObject3 { private enum ObjectType { Integer, String }; Object value; ObjectType type; public DynObject3(Integer v) { value = v; type = ObjectType.Integer; } public DynObject3(String v) { value = v; type = ObjectType.String; } @Override public String toString() { return value.toString(); } public DynObject3 add(DynObject3 d) { if(type==ObjectType.Integer && d.type==ObjectType.Integer) { return new DynObject3(Integer.valueOf(((Integer)value).intValue()+((Integer)value).intValue())); } else { return new DynObject3(value.toString()+d.value.toString()); } } } With the if-else logic I could use value.getClass()==Integer.class instead of storing the type but with more types I'd change this to use a switch statement and Java doesn't allow switch to use Classes. Anyway... My question is what is the best way to go about something thike this?

    Read the article

  • How to make an ambiguous call distinct in C++?

    - by jcyang
    void outputString(const string &ss) { cout << "outputString(const string& ) " + ss << endl; } void outputString(const string ss) { cout << "outputString(const string ) " + ss << endl; } int main(void) { //! outputString("ambigiousmethod"); const string constStr = "ambigiousmethod2"; //! outputString(constStr); } ///:~ How to make distinct call? EDIT: This piece of code could be compiled with g++ and msvc. thanks.

    Read the article

  • Implementing operator< in C++

    - by Vulcan Eager
    I have a class with a few numeric fields such as: class Class1 { int a; int b; int c; public: // constructor and so on... bool operator<(const Class1& other) const; }; I need to use objects of this class as a key in an std::map. I therefore implement operator<. What is the simplest implementation of operator< to use here?

    Read the article

  • PHP Variable to JQuery function?

    - by grolle
    Hi, I need a relative path in this function: $(function() { $("#searchbox").autocomplete({ minLength : 2, source : function (request, response){ $.ajax({ url : "http://linux/project/index.php/main/search/", dataType : "json", data : { key : request.term}, type : "POST", success : function(data){ response($.map(data, function(item) { return { label: item.original_name, value: item.original_name, id : item.project_id+"/"+item.folder_id+"/"+item.id } })) } }) }, select : function(event, ui) { document.location.href = "http://linux/project/index.php/projects/loaddocument/"+ui.item.id; } }); }); How can I use a PHP Variable path to replace http://linux/project in the function above? Best regards ...

    Read the article

  • How to reduce redundant code when adding new c++0x rvalue reference operator overloads

    - by Inverse
    I am adding new operator overloads to take advantage of c++0x rvalue references, and I feel like I'm producing a lot of redundant code. I have a class, tree, that holds a tree of algebraic operations on double values. Here is an example use case: tree x = 1.23; tree y = 8.19; tree z = (x + y)/67.31 - 3.15*y; ... std::cout << z; // prints "(1.23 + 8.19)/67.31 - 3.15*8.19" For each binary operation (like plus), each side can be either an lvalue tree, rvalue tree, or double. This results in 8 overloads for each binary operation: // core rvalue overloads for plus: tree operator +(const tree& a, const tree& b); tree operator +(const tree& a, tree&& b); tree operator +(tree&& a, const tree& b); tree operator +(tree&& a, tree&& b); // cast and forward cases: tree operator +(const tree& a, double b) { return a + tree(b); } tree operator +(double a, const tree& b) { return tree(a) + b; } tree operator +(tree&& a, double b) { return std::move(a) + tree(b); } tree operator +(double a, tree&& b) { return tree(a) + std::move(b); } // 8 more overloads for minus // 8 more overloads for multiply // 8 more overloads for divide // etc which also has to be repeated in a way for each binary operation (minus, multiply, divide, etc). As you can see, there are really only 4 functions I actually need to write; the other 4 can cast and forward to the core cases. Do you have any suggestions for reducing the size of this code? PS: The class is actually more complex than just a tree of doubles. Reducing copies does dramatically improve performance of my project. So, the rvalue overloads are worthwhile for me, even with the extra code. I have a suspicion that there might be a way to template away the "cast and forward" cases above, but I can't seem to think of anything.

    Read the article

  • Implicit array casting in C#

    - by Malki
    Hi, I have the following classes with an implicit cast operator defined: class A { ... } class B { private A m_a; public B(A a) { this.m_a = a; } public static implicit operator B(A a) { return new B(a); } } Now, I can implicitly cast A to B. But why can't I implicitly cast A[] to B[] ? static void Main(string[] args) { // compiles A a = new A(); B b = a; // doesn't compile A[] arrA = new A[] {new A(), new A()}; B[] arrB = arrA; } Thanks, Malki.

    Read the article

  • Efficiency of manually written loops vs operator overloads (C++)

    - by Sagekilla
    Hi all, in the program I'm working on I have 3-element arrays, which I use as mathematical vectors for all intents and purposes. Through the course of writing my code, I was tempted to just roll my own Vector class with simple +, -, *, /, etc overloads so I can simplify statements like: for (int i = 0; i < 3; i++) r[i] = r1[i] - r2[i]; // becomes: r = r1 - r2; Which should be more or less identical in generated code. But when it comes to more complicated things, could this really impact my performance heavily? One example that I have in my code is this: Manually written version: for (int j = 0; j < 3; j++) { p.vel[j] = p.oldVel[j] + (p.oldAcc[j] + p.acc[j]) * dt2 + (p.oldJerk[j] - p.jerk[j]) * dt12; p.pos[j] = p.oldPos[j] + (p.oldVel[j] + p.vel[j]) * dt2 + (p.oldAcc[j] - p.acc[j]) * dt12; } Using a Vector class with operator overloads: p.vel = p.oldVel + (p.oldAcc + p.acc) * dt2 + (p.oldJerk - p.jerk) * dt12; p.pos = p.oldPos + (p.oldVel + p.vel) * dt2 + (p.oldAcc - p.acc) * dt12; I am compiling my code for maximum possible speed, as it's extremely important that this code runs quickly and calculates accurately. So will me relying on my Vector's for these sorts of things really affect me? For those curious, this is part of some numerical integration code which is not trivial to run in my program. Any insight would be appreciated, as would any idioms or tricks I'm unaware of.

    Read the article

  • How do I write an overload operator where both arguments are interface

    - by Eric Girard
    I'm using interface for most of my stuff. I can't find a way to create an overload operator + that would allow me to perform an addition on any objects implementing the IPoint interface Code interface IPoint { double X { get; set; } double Y { get; set; } } class Point : IPoint { double X { get; set; } double Y { get; set; } //How and where do I create this operator/extension ??? public static IPoint operator + (IPoint a,IPoint b) { return Add(a,b); } public static IPoint Add(IPoint a,IPoint b) { return new Point { X = a.X + b.X, Y = a.Y + b.Y }; } } //Dumb use case : public class Test { IPoint _currentLocation; public Test(IPoint initialLocation) { _currentLocation = intialLocation } public MoveOf(IPoint movement) { _currentLocation = _currentLocation + intialLocation; //Much cleaner/user-friendly than _currentLocation = Point.Add(_currentLocation,intialLocation); } }

    Read the article

  • What are the default return values for operator< and operator[] in C++ (Visual Studio 6)?

    - by DustOff
    I've inherited a large Visual Studio 6 C++ project that needs to be translated for VS2005. Some of the classes defined operator< and operator[], but don't specify return types in the declarations. VS6 allows this, but not VS2005. I am aware that the C standard specifies that the default return type for normal functions is int, and I assumed VS6 might have been following that, but would this apply to C++ operators as well? Or could VS6 figure out the return type on its own? For example, the code defines a custom string class like this: class String { char arr[16]; public: operator<(const String& other) { return something1 < something2; } operator[](int index) { return arr[index]; } }; Would VS6 have simply put the return types for both as int, or would it have been smart enough to figure out that operator[] should return a char and operator< should return a bool (and not convert both results to int all the time)? Of course I have to add return types to make this code VS2005 C++ compliant, but I want to make sure to specify the same type as before, as to not immediately change program behavior (we're going for compatibility at the moment; we'll standardize things later).

    Read the article

  • How operator oveloading works

    - by Rasmi Ranjan Nayak
    I have below code class rectangle { ..... .....//Some code int operator+(rectangle r1) { return(r1.length+length); } }; In main fun. int main() { rectangle r1(10,20); rectangle r2(40,60); rectangle r3(30,60); int len = r1+r3; } Here if we will see in operator+(), we are doing r1.length + length. How the compiler comes to know that the 2nd length in return statement belong to object r3 not to r1 or r2? I think answer may be in main() we have writeen int len = r1+r3; If that is the case then why do we need to write in operator+(....) { r1.lenth + lenth; //Why not length + length? } Why not length + length? Bcause compiler already knows from main() that the first length belong to object r1 and 2nd to object r3.

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >