Search Results

Search found 3641 results on 146 pages for 'javafx scene builder'.

Page 49/146 | < Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • JavaOne Latin America Schedule Changes For Thursday

    - by Tori Wieldt
    tweetmeme_url = 'http://blogs.oracle.com/javaone/2010/12/javaone_latin_america_schedule_changes_for_thursday.html'; Share .FBConnectButton_Small{background-position:-5px -232px !important;border-left:1px solid #1A356E;} .FBConnectButton_Text{margin-left:12px !important ;padding:2px 3px 3px !important;} The good news: we've got LOTS of developers at JavaOne Latin America.The bad news: the rooms are too small to hold everyone! (we've heard you)The good news: selected sessions for Thursday have been moved larger rooms (the keynote halls) More good news: some sessions that were full from Wednesday will be repeated on Thursday. SCHEDULE CHANGES FOR THURSDAY, DECEMBER 9THNote: Be sure to check the schedule on site, there still may be some last minute changes. Session Name Speaker New Time/Room Ginga, LWUIT, JavaDTV and You 2.0 Dimas Oliveria Thursday, December 9, 11:15am - 12:00pm Auditorio 4 JavaFX do seu jeito: criando aplicativos JavaFX com linguagens alternativas Stephen Chin Thursday, December 9, 3:00pm - 3:45pm Auditorio 4 Automatizando sua casa usando Java; JavaME, JavaFX, e Open Source Hardware Vinicius Senger Thursday, December 9, 9:00am - 9:45am Auditorio 3 Construindo uma arquitetura RESTful para aplicacoes ricas com HTML 5 e JSF2 Raphael Helmonth Adrien Caetano Thursday, December 9, 5:15pm - 6:00pm Auditorio 2 Dicas eTruquies sobre performance em Java EE JPA e JSF Alberto Lemos e Danival Taffarel Calegari Thursday, December 9, 2:00pm - 2:45pm Auditorio 2 Escrevendo Aplicativos Multipatforma Incriveis Usando LWUIT Roger Brinkley Cancelled Platforma NetBeans: sem slide - apenas codigo Mauricio Leal Cancelled Escalando o seu AJAX Push com Servlet 3.0 Paulo Silveria Keynote Hall 9:00am - 9:45am Cobetura Completa de Ferramentas para a Platforma Java EE 6 Ludovic Champenois Keynote Hall 10:00am - 10:45am Servlet 3.0 - Expansivel, Assincrono e Facil de Usar Arun Gupta Keynote Hall 4:00pm - 4:45pm Transforme seu processo em REST com JAX-RS Guilherme Silveria Keynote Hall 5:00pm - 5:45pm The Future of Java Fabiane Nardon e Bruno Souza Keynote Hall 6:00pm - 6:45pm Thanks for your understanding, we are tuning the conference to make it the best JavaOne possible.

    Read the article

  • Java Spotlight Episode 107: Adam Bien on JavaEE Patterns and Futures @AdamBien

    - by Roger Brinkley
    Interview with Adam Bien, Java Champion and Ace Director, on his book Real World Java EE Patterns-Rethinking Best Practices and Java EE futures. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes News NightHacking Tour Continues - Don't Miss It! JavaFX Ensemble in the Mac App Store12 Announcing the JavaFX UI controls sandbox Java EE 7 Status Update - November 2012 2012 Executive Committee (EC) Elections Events Nov 5-9, Øredev Developer Conference, Malmö, Sweden Nov 13-17, Devoxx, Antwerp, Belgium Nov 20-22, DOAG 2012, Nuremberg, Germany Dec 3-5, jDays, Göteborg, Sweden Dec 4-6, JavaOne Latin America, Sao Paolo, Brazil Dec 14-15, IndicThreads, Pune, India Feature InterviewAdam Bien is a Java Champion, NetBeans Dream Team Founding Member, Oracle ACE Director, Java Developer of the Year 2010. He has worked with Java since JDK 1.0, with Servlets/EJB since 1.0. He participates in the JCP as an Expert Group member for the Java EE 6 and 7, EJB 3.X, JAX-RS, CDI, and JPA 2.X JSRs. The author of several books about JavaFX, J2EE, and Java EE, including Real World Java EE Patterns—Rethinking Best Practices and Real World Java EE Night Hacks—Dissecting the Business Tier.The Kindle version of Real World Java EE Patterns-Rethinking Best Practices was released October 31. It’s only $9.99, but if you are an Amazon Prime members you can “borrow” the book for free. What’s Cool Building OpenJFX 2.2 Again

    Read the article

  • Java Spotlight Episode 110: Arun Gupta on the Java EE 6 Pocket Guide @arungupta

    - by Roger Brinkley
    Interview with Arun Gupta on his new Java EE 6 Pocket Guide. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes News Getting Started with JavaFX2 and Scene Builder Using the New CSS Analyzer in JavaFX Scene Builder JavaOne Latin America Keynotes NetBeans Podcast #62 - NetBeans Community News with Geertjan and Tinu Request for Project Nashorn (Open Source) JEP 170: JDBC 4.2 Open Sourcing: decora-compiler JPA 2.1 Schema Generation WebSocket, Java EE 7, and GlassFish Events Dec 3-5, jDays, Göteborg, Sweden Dec 4-6, JavaOne Latin America, Sao Paolo, Brazil Dec 14-15, IndicThreads, Pune, India Feature InterviewArun Gupta is a Java EE & GlassFish Evangelist working at Oracle. Arun has over 14 years of experience in the software industry working in various technologies, Java(TM) platform, and several web-related technologies. In his current role, he works very closely to create and foster the community around Java EE & GlassFish. He has participated in several standard bodies and worked amicably with members from other companies. He has been with the Java EE team since it’s inception. And since then he has contibuted to all Java EE releases.He is a prolific blogger at http://blogs.sun.com/arungupta with over 1000 blog entries and frequent visitors from all over the world reaching up to 25,000 hits/day. His new Java EE 6 Pocket Guide is now available on O’Reily What’s Cool Videos: Getting Started with Java Embedded JavaFX: Leverageing Multicore Performance JavaFX on BeagleBoard State of the Lambda: Libraries Edition FOSDEM 2013 CFP now open! The return of the Shark

    Read the article

  • links for 2010-06-01

    - by Bob Rhubart
    Venkatakrishnan J: Oracle BI EE 10.1.3.4.1 -- Do we need measures in a Fact Table? Troubleshooting from Rittman Mead's Venkatakrishnan J. (tags: oracle otn businessintelligence datawarehouse) Grid container support : JavaFX Composer An overview how JavaFX Composer supports the grid container. (tags: oracle sun javafx) John Brunswick: Site Studio Mobile Example - WCM Reuse The example highlighted in John Brunswick's post takes advantage of dynamic conversion capabilities in Oracle UCM that allow site content to be created and updated via MS Office documents.  (tags: oracle otn enterprise2.0) @glassfish: GlassFish 3 in the EC2 Cloud powering Dutch and Belgian community polls "The infrastructure is Amazon's Elastic Cloud Computing (EC2) environment because of the dynamic provisioning (elasticity) required by such an online service. Requests are handled directly by the grizzly layer of GlassFish with no extra front-end HTTP layer and shows great performance and scalability." -- The Aquarium (tags: oracle java sun glassfish cloud) James Morle: Flash Storage Will Be Cheap: The End of the World is Nigh "We now need technologies that look more like Oracle Exadata v2, with low-latency RDMA interfaces directly into the Operating System/Database. However, they need to easily and natively support other types of storage (unstructured data such as files, VMware datastores and so forth). The Exadata architecture lends itself well to changes in this area in both hardware trends and access protocols." -- James Morle (tags: oracle otn exadata database architecture virtualization) Java / Oracle SOA blog: HTTP binding in Soa Suite 11g PS2 (tags: ping.fm) Confessions of a Software Developer: Some Tips for Installing Oracle BPM 11g on Windows XP (tags: ping.fm) SOA and Java using Oracle technology: Book review: Oracle Coherence 3.5: Create internet scale applications using Oracle's high-performance data grid (tags: ping.fm)

    Read the article

  • Technical Questions for Java Experts

    - by Tori Wieldt
    The "Oracle Technology Network" (meaning me) will be at Devoxx next week doing interviews with Java experts. Do you have technical questions about Project Jigsaw, JavaFX or Java on MacOS? Take a look at the list below of experts and topics. Leave your questions as a comment on this blog and I'll do my best to include them. Most of the interviews happen Tuesday, so get you questions in quickly. Thanks! Interviewee InterviewTopic Arun Gupta and Alexis Moussine-Pouchkine Java EE Mark Reinhold OpenJDK Mark Reinhold Project Jigsaw Jasper Potts JavaFX Scott Kovatch Java on Mac OS Brian Goetz & Mark Reinhold JDK 8 Brian Goetz Project Lambda Steven Chin JavaFX Marek Potociar JAX-RS Claude Falguiere Dev for Tablets Alan Bateman NIO2 Regina ten Bruggencate JDuchess Martijn Verburg Adopt a JSR Note: This is different than the call for questions for the Fireside chat on Tuesday afternoon, Devoxx conference keynote speakers (Henrik Ståhl, senior director of product management for the Java platform at Oracle, and Cameron Purdy, VP of development for the Java EE platform) and the technical discussion panel on Friday morning. Leave (and vote on) those questions here. 

    Read the article

  • Java Magazine: Java at Sea!

    - by Tori Wieldt
    The September/October issue of Java Magazine is now out, with several great Java stories, including: Java At Sea? Liquid Robotics charts a new course with expert help from Java pioneer James Gosling.?  ?Duke’s Choice AwardsMeet this year’s winners! (The awards will be presented at the JavaOne Sunday night reception at the Taylor Street Cafe.)Looking Ahead to Project LambdaJava Language Architect Brian Goetz on the importance of lambda expressions.JCP Q&A: Ben EvansThe London JUG representative talks about the JCP and the Java community.Java EE Connector Architecture 1.6Adam Bien on deep integration with connector services in a lean way.DataFX: Populate JavaFX Controls with Real-World DataTools to retrieve, parse, and render data in a variety of JavaFX controls. Fix ThisStephen Chin challenges your JavaFX skills. Java Magazine is a bi-monthly online publication. It includes technical articles on the Java language and platform; Java innovations and innovators; JUG and JCP news; Java events; links to online Java communities; and videos and multimedia demos. Subscriptions are free.

    Read the article

  • Html.EditorFor not updating model on post

    - by Dave
    I have a complex type composed of two nullable DateTimes: public class Period { public DateTime? Start { get; set; } public DateTime? End { get; set; } public static implicit operator string(Period period) { /* converts from Period to string */ } public static implicit operator Period(string value) { /* and back again */ } } I want to display them together in a single textbox as a date range so I can provide a nice jQuery UI date range selector. To make that happen have the following custom editor template: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<Period>" %> <% string name = ViewData.TemplateInfo.HtmlFieldPrefix; %> <%= Html.PeriodTextBox(name, Model.EarliestDate, Model.LatestDate) %> Where Html.PeriodTextBox is an extension method I've written that just concatenates the two dates sensibly, turns off autocomplete and generates a textbox, like so: public static MvcHelperString PeriodTextBox(this HtmlHelper helper, string name, DateTime? startDate, DateTime? endDate) { TagBuilder builder = new TagBuilder("input"); builder.GenerateId(name); builder.Attributes.Add("name", name); builder.Attributes.Add("type", "text"); builder.Attributes.Add("autocomplete", "off"); builder.Attributes.Add("value", ConcatDates(startDate, endDate)); return MvcHtmlString.Create(builder.ToString()); } That's working fine in that I can call <%= Html.EditorFor(m => m.ReportPeriod) %> and I get my textbox, then when the form is submitted the FormCollection passed to the post action will contain an entry named ReportPeriod with the correct value. [HttpPost] public ActionResult ReportByRange(FormCollection formValues) { Period reportPeriod = formValues["ReportPeriod"]; // creates a Period, with the expected values } The problem is if I replace the FormCollection with the model type I'm passing to the view then the ReportPeriod property never gets set. [HttpPost] public ActionResult ReportByRange(ReportViewModel viewModel) { Period reportPeriod = viewModel.ReportPeriod; // this is null } I expected MVC would try to set the string from the textbox to that property and it would automatically generate a Period (as in my FormCollection example), but it's not. How do I tell the textbox I've generated in the custom editor to poplate that property on the model?

    Read the article

  • dialog.show() crashes my application, why?

    - by user1739462
    I'm new in adroid. I like to do things when the color reach a value. I like (for example) show the alert if r is bigger than 30, but the application go in crash. Thank for very simple answares. public class MainActivity extends Activity { private AlertDialog dialog; private AlertDialog.Builder builder; private BackgroundColors view; public class BackgroundColors extends SurfaceView implements Runnable { public int grand=0; public int step=0; private boolean flip=true; private Thread thread; private boolean running; private SurfaceHolder holder; public BackgroundColors(Context context) { super(context); } Inside this loop while running is true. is impossible to show dialogs ?? public void run() { int r = 0; while (running){ if (holder.getSurface().isValid()){ Canvas canvas = holder.lockCanvas(); if (r > 250) r = 0; r += 10; if (r>30 && flip){ flip=false; // ********************************* dialog.show(); // ********************************* // CRASH !! } try { Thread.sleep(300); } catch(InterruptedException e) { e.printStackTrace(); } canvas.drawARGB(255, r, 255, 255); holder.unlockCanvasAndPost(canvas); } } } public void start() { running = true; thread = new Thread(this); holder = this.getHolder(); thread.start(); } public void stop() { running = false; boolean retry = true; while (retry){ try { thread.join(); retry = false; } catch(InterruptedException e) { retry = true; } } } public boolean onTouchEvent(MotionEvent e){ dialog.show(); return false; } protected void onSizeChanged(int xNew, int yNew, int xOld, int yOld){ super.onSizeChanged(xNew, yNew, xOld, yOld); grand = xNew; step =grand/15; } } public void onCreate(Bundle b) { super.onCreate(b); view = new BackgroundColors(this); this.setContentView(view); builder = new AlertDialog.Builder(this); builder.setMessage("ciao"); builder.setPositiveButton("OK", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int which) { Log.d("Basic", "It worked"); } }); dialog = builder.create(); } public void onPause(){ super.onPause(); view.stop(); } public void onResume(){ super.onResume(); view.start(); } }

    Read the article

  • Looking for suggestions on how to reuse AlertDialogs to confirm actions of contextual menus on the items of an ActivityList

    - by Ozone
    I use a ListActivity to display a list of items. The user can long-press an item in the list to display a contextual menu. This menu contains among other things an option to delete the long-pressed item. When the user selects this option, a dialog pops up asking for confirmation of the deletion. Upon confirmation, the item is deleted from the list. I would like to reuse the AlertDialog as much as possible. My attempts at using onPrepareDialog(int, View, Bundle) have been defeated by the fact that the Bundle is not passed to the DialogInterface.OnClickListener. I end up having to recreate a listener on every invocation. I see several ways to solve this: recreate the dialog on every occasion (pros: simple, cons: wasteful) keep the DialogInterface.OnClickListener in a field on the ListActivity and keep the item to be deleted as a field of the listener. (pros: no memory waste, cons: need to manage state). Q: is this safe? have onPrepareDialog update the title, and bind new View.OnClickListeners on the buttons of the AlertDialog. (pros: limit waste, cons: new View.OnClickListener on every invocation). If DialogInterface.OnClickListener accepted a Bundle, I wouldn't have to jump through hoops to keep track of the item being deleted. This is not a blocker, but I would love to see an elegant solution. I would love to hear your suggestions :) Here is the code for option #1, if you want to play with this: public class Example extends ListActivity { private static final int CONFIRM_DELETE_DIALOG = 1; private static final String POSITION_KEY = "position"; private ArrayAdapter<String> mAdapter; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); mAdapter = new ArrayAdapter<String>( this, android.R.layout.simple_list_item_1, new String[] { "one", "two" }); setListAdapter(mAdapter); registerForContextMenu(getListView()); } @Override public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo menuInfo) { super.onCreateContextMenu(menu, v, menuInfo); getMenuInflater().inflate(R.menu.my_lovely_menu, menu); } @Override public boolean onContextItemSelected(MenuItem item) { AdapterContextMenuInfo info = (AdapterContextMenuInfo) item.getMenuInfo(); switch (item.getItemId()) { case R.id.delete_item: Bundle bundle = new Bundle(); bundle.putInt(POSITION_KEY, info.position); showDialog(CONFIRM_DELETE_DIALOG, bundle); return true; default: return super.onContextItemSelected(item); } } @Override protected Dialog onCreateDialog(int id, Bundle args) { switch (id) { case CONFIRM_DELETE_DIALOG: final int position = args.getInt(POSITION_KEY); AlertDialog.Builder builder = new AlertDialog.Builder(); builder.setCancelable(false); builder.setTitle(String.format( getString(R.string.confirm_delete), mAdapter.getItem(position))); DialogInterface.OnClickListener listener = new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int which) { switch (which) { case DialogInterface.BUTTON_POSITIVE: mAdapter.remove(mAdapter.getItem(position)); // Dismiss the dialog to ensure OnDismissListeners are notified. dialog.dismiss(); break; case DialogInterface.BUTTON_NEGATIVE: // Cancel the dialog to ensure OnCancelListeners are notified. dialog.cancel(); break; } // Remove the dialog so it is re-created next time it is required. removeDialog(CONFIRM_DELETE_DIALOG); } }; builder.setPositiveButton(android.R.string.yes, listener); builder.setNegativeButton(android.R.string.no, listener); return builder.create(); default: return super.onCreateDialog(id, args); } } }

    Read the article

  • Implementing features in an Entity System

    - by Bane
    After asking two questions on Entity Systems (1, 2), and reading some articles on them, I think that I understand them much better than before. But, I still have some uncertainties, and mainly they are about building a Particle Emitter, an Input system, and a Camera. I obviously still have some problems understanding Entity Systems, and they might apply to a whole other range of objects, but I chose these three because they are very different concepts and should cover a pretty big ground, and help me understand Entity Systems and how to handle problems like these myself, as they come along. I am building an engine in Javascript, and I've implemented most of the core features, which include: input handling, flexible animation system, particle emitter, math classes and functions, scene handling, a camera and a render, and a whole bunch of other things that engines usually support. Then, I read Byte56's answer that got me interested into making the engine into an Entity System one. It would still remain an HTML5 game engine with the basic Scene philosophy, but it should support dynamic creation of entities from components. These are some of the definitions from the previous questions, updated: An Entity is an identifier. It doesn't have any data, it's not an object, it's a simple id that represents an index in the Scene's list of all entities (which I actually plan to implement as a component matrix). A Component is a data holder, but with methods that can operate on that data. The best example is a Vector2D, or a "Position" component. It has data: x and y, but also some methods that make operating on the data a bit easier: add(), normalize(), and so on. A System is something that can operate on a set of entities that meet the certain requirements, usually they (the entities) need to have a specified (by the system itself) set of components to be operated upon. The system is the "logic" part, the "algorithm" part, all the functionality supplied by components is purely for easier data management. The problem that I have now is fitting my old engine concept into this new programming paradigm. Lets start with the simplest one, a Camera. The camera has a position property (Vector2D), a rotation property and some methods for centering it around a point. Each frame, it is fed to a renderer, along with a scene, and all the objects are translated according to it's position. Then the scene is rendered. How could I represent this kind of an object in an Entity System? Would the camera be an entity or simply a component? A combination (see my answer)? Another issues that is bothering me is implementing a Particle Emitter. For what exactly I mean by that, you can check out my video of it: http://youtu.be/BObargIMQsE. The problem I have with this is, again, what should be what. I'm pretty sure that particles themselves shouldn't be entities, as I want to support 10k+ of them, and creating that much entities would be a heavy blow on my performance, I believe. Or maybe not? Depends on the implementation, but anyone with experience: please, do answer. The last bit I wan't to talk about, which is also bugging me the most, is how input should be handled. In my current version of the engine, there is a class called Input. It's a handler that subscribes to browser's events, such as keypresses, and mouse position changes, and also it maintains an internal state. Then, the player class has a react() method, which accepts an input object as an argument. The advantage of this is that the input object could be serialized into JSON and then shared over the network, allowing for smooth multiplayer simulations. But how does this translate into an Entity System?

    Read the article

  • Reflective discovery of an inner class in an API

    - by wassup
    Let me ask you, as this bothers me for quite a while but appears to be subjectively the best solution for my problem, if reflective discovery of an inner class for API purposes is that bad idea? First, let me explain what I mean by saying "reflective discovery" and all that stuff. I am sketching an API for a Java database system, that'll be centered around block-based entities (don't ask me what that means - that's a long story), and those entities can be read and returned to the Java code as objects subclassed from the Entity class. I have an Entity.Factory class, that, by means of fluent interfaces, takes a Class<? extends Entity> argument and then, uses an instance of Section.Builder, Property.Builder, or whatever builder the entity has, to put it into the back-end storage. The idea about registering all entity types and their builders just doesn't appeal to me, so I thought that the closest solution to the problem that'd suffice my design needs would be to discover, using reflection, all inner classes of Entity classes and find one that's called Builder. Looking for some expert insight :) And if I missed some important design details (which could happen as I tried to make this question as concise as possible), just tell me and I'll add them.

    Read the article

  • How to display a QGraphicsScene?

    - by Chris
    I've got the following code and I'm not sure how to add the QGraphicsScene to my layout.. class MainForm(QDialog): def __init__(self, parent=None): super(MainForm, self).__init__(parent) self.scene = QGraphicsScene(self) self.scene.setSceneRect(0, 0, 500, 500) self.view = QGraphicsView() self.view.setRenderHint(QPainter.Antialiasing) self.view.setScene(self.scene) self.view.setFocusPolicy(Qt.NoFocus) zoomSlider = QSlider(Qt.Horizontal) zoomSlider.setRange(5, 200) zoomSlider.setValue(100) self.pauseButton = QPushButton("Pause") quitButton = QPushButton("Quit") layout = QVBoxLayout() layout.addWidget(zoomSlider) self.setLayout(layout) self.startTimer(10) How can I get my QGraphicsScene running? I'm new to Qt. Am I even supposed to be adding a QGraphicsScene to a layout/

    Read the article

  • How do I 'addChild' an DisplayObject3d from another class? (Papervision3d)

    - by Sandor
    Hi All Im kind of new in the whole papervision scene. For a school assignment I'm making a panorama version of my own room using a cube with 6 pictures in it. It created the panorama, it works great. But now I want to add clickable objects in it. One of the requirements is that my code is OOP focused. So that's what I am trying right now. Currently I got two classes - Main.as (Here i make the panorama cube as the room) - photoWall.as (Here I want to create my first clickable object) Now my problem is: I want to addChild a clickable object from photoWall.as to my panorama room. But he doesn't show it? I think it has something to do with the scenes. I use a new scene in Main.as and in photoWall.as. No errors or warnings are reported This is the piece in photoWall.as were I want to addChild my object (photoList): private function portret():void { //defining my material for the clickable portret var material : BitmapFileMaterial = new BitmapFileMaterial('images/room.jpg'); var material_list : MaterialsList = new MaterialsList( { front: material, back: material } ); // I don't know if this is nessecary? that's my problem scene = new Scene3D(); material.interactive = true; // make the clickable object as a cube var photoList : DisplayObject3D = new Cube(material_list, 1400, 1400, 1750, 1, 4, 4, 4); // positioning photoList.x = -1400; photoList.y = -280; photoList.z = 5000; //mouse event photoList.addEventListener( InteractiveScene3DEvent.OBJECT_CLICK, onPress); // this is my problem! I cannot see 'photoList' within my scene!!! scene.addChild(photoList); // trace works, so the function must be loaded. trace('function loaded'); } Hope you guys can help me out here. Would really be great! Thanks, Sandor

    Read the article

  • using a texture mesh and wireframe mesh in threejs

    - by Andy Poes
    I'm trying to draw a wireframe mesh and a textured mesh in threeJS but when I have both added to my scene the textured mesh doesn't display. Code below: I'm having trouble creating two meshes that share the same geometry where one of the materials is wireframe and the other is a texture. If one of the materials is wireframe and the other is just a color fill it works fine- but as soon as I make the second material a texture it stops working. If I comment out scene.add( wireMesh ); then the textured mesh shows up. var wireMat = new THREE.MeshBasicMaterial( { color:0x00FFFF, wireframe: true, transparent: true, overdraw:true } ); var wireMesh = new THREE.Mesh(geometry, wireMat); scene.add( wireMesh ); var texture = texture = THREE.ImageUtils.loadTexture( 'textures/world.jpg' ); var imageMat = new THREE.MeshBasicMaterial( {color:0xffffff, map: texture } ); var fillMesh = new THREE.Mesh(geometry, imageMat); scene.add( fillMesh );

    Read the article

  • How do I controll clipping with non-opaque graphics-item's in Qt?

    - by JJacobsson
    I have a bunch of QGraphicsSvgItem's in a QGraphicsScene that are drawn connected by QGraphicsLineItem's. This show's a graph of a tree-structure. What I want to do is provide a feature where everything but a selected sub-tree becomes transparent. A kind of "highlight this sub-tree" feature. That part was easy, but the results are ugly because now the lines can be seen through the semi-transparent svg's. I am looking for some way to still clip other QGraphicsItem's in the scene to the svg item's, giving the effect that the svg's are semi-transparent windows to the background. I know this code does not use svg's but I figure you can replace that yourself if you are so inclined. int main(int argc, char *argv[]) { QApplication app(argc, argv); QGraphicsScene scene; for( int i = 0; i < 10; ++i ) { QGraphicsLineItem* line = new QGraphicsLineItem; line->setLine( i * 25.0 + 1.0, 0, i * 25.0 + 23.0, 0 ); scene.addItem( line ); } for( int i = 0; i < 11; ++i ) { QGraphicsEllipseItem* ellipse = new QGraphicsEllipseItem; ellipse->setRect( (i * 25.0) - 9.0, -9.0, 18.0, 18.0f ); ellipse->setBrush( QBrush( Qt::green, Qt::SolidPattern ) ); ellipse->setOpacity( 0.5 ); scene.addItem( ellipse ); } QGraphicsView view( &scene ); view.show(); return app.exec(); } I would like the line's to not be seen behind the circle's. I have tried fiddling with the depth-buffer and the stencil buffer using opengl rendering to no avail. How do I get the QGraphicsSvgItem's (or QGraphicsEllipseItem's in the example code) to still clip the lines even though they are semi-transparent?

    Read the article

  • Cocos2d and MPMoviePlayerViewController - NSNotificationCenter not working

    - by digi_0315
    I'm using cocos2d with MPMoviePlayerViewController class, but when I tryed to catch notification status when the movie is finished I got this error: Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '-[NSCFString movieFinishedCallback]: unrecognized selector sent to instance 0x5d23730' my playVideoController.m are: @implementation PlayVideoViewController +(id) scene{ CCScene *scene = [CCScene node]; CCLayer *layer = [credits node]; [scene addChild: layer]; return scene; } -(id)initWithPath:(NSString *)moviePath{ if ((self = [super init])){ movieURL = [NSURL fileURLWithPath:moviePath]; [movieURL retain]; playerViewController = [[MPMoviePlayerViewController alloc] initWithContentURL:movieURL]; player = [playerViewController moviePlayer]; [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(movieFinishedCallback) name:MPMoviePlayerPlaybackDidFinishNotification object:player]; [[[CCDirector sharedDirector] openGLView] addSubview:playerViewController.view]; [player play]; } return self; } -(void)movieFinishedCallback{ CCLOG(@"video finished!!"); } in .h: #import <UIKit/UIKit.h> #import "cocos2d.h" #import <MediaPlayer/MediaPlayer.h> @interface PlayVideoViewController : CCLayer { NSURL *movieURL; MPMoviePlayerViewController *playerViewController; MPMoviePlayerController *player; } +(id) scene; @end and I call it in appDelegate.m: - (void) applicationDidFinishLaunching:(UIApplication*)application { CC_DIRECTOR_INIT(); CCDirector *director = [CCDirector sharedDirector]; [director setDeviceOrientation:kCCDeviceOrientationLandscapeLeft]; EAGLView *glView = [director openGLView]; [glView setMultipleTouchEnabled:YES]; [CCTexture2D setDefaultAlphaPixelFormat:kTexture2DPixelFormat_RGBA8888];//kEAGLColorFormatRGBA8 NSString *path = [[NSBundle mainBundle] pathForResource:@"intro" ofType:@"mov" inDirectory:nil]; vi ewController = [[[PlayVideoViewController alloc] initWithPath:path] autorelease]; } what i'm doing wrong? anyone can help me please?? I'm try to solve it since a lot of hours ago but I can't!

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Setting up OpenGL camera with off-center perspective

    - by user5484
    Hi, I'm using OpenGL ES (in iOS) and am struggling with setting up a viewport with an off-center distance point. Consider a game where you have a character in the left hand side of the screen, and some controls alpha'd over the left-hand side. The "main" part of the screen is on the right, but you still want to show whats in the view on the left. However when the character moves "forward" you want the character to appear to be going "straight", or "up" on the device, and not heading on an angle to the point that is geographically at the mid-x position in the screen. Here's the jist of how i set my viewport up where it is centered in the middle: // setup the camera // glMatrixMode(GL_PROJECTION); glLoadIdentity(); const GLfloat zNear = 0.1; const GLfloat zFar = 1000.0; const GLfloat fieldOfView = 90.0; // can definitely adjust this to see more/less of the scene GLfloat size = zNear * tanf(DEGREES_TO_RADIANS(fieldOfView) / 2.0); CGRect rect; rect.origin = CGPointMake(0.0, 0.0); rect.size = CGSizeMake(backingWidth, backingHeight); glFrustumf(-size, size, -size / (rect.size.width / rect.size.height), size / (rect.size.width / rect.size.height), zNear, zFar); glMatrixMode(GL_MODELVIEW); // rotate the whole scene by the tilt to face down on the dude const float tilt = 0.3f; const float yscale = 0.8f; const float zscale = -4.0f; glTranslatef(0.0, yscale, zscale); const int rotationMinDegree = 0; const int rotationMaxDegree = 180; glRotatef(tilt * (rotationMaxDegree - rotationMinDegree) / 2, 1.0f, 0.0f, 0.0f); glTranslatef(0, -yscale, -zscale); static float b = -25; //0; static float c = 0; // rotate by to face in the direction of the dude float a = RADIANS_TO_DEGREES(-atan2f(-gCamera.orientation.x, -gCamera.orientation.z)); glRotatef(a, 0.0, 1.0, 0.0); // and move to where it is glTranslatef(-gCamera.pos.x, -gCamera.pos.y, -gCamera.pos.z); // draw the rest of the scene ... I've tried a variety of things to make it appear as though "the dude" is off to the right: - do a translate after the frustrum to the x direction - do a rotation after the frustrum about the up/y-axis - move the camera with a biased lean to the left of the dude Nothing i do seems to produce good results, the dude will either look like he's stuck on an angle, or the whole scene will appear tilted. I'm no OpenGL expert, so i'm hoping someone can suggest some ideas or tricks on how to "off-center" these model views in OpenGL. Thanks!

    Read the article

  • How to fix Jdeveloper 11.1.1.2 Hang

    - by nestor.reyes
    Is Jdeveloper hanging on you when use the XPATH expression Builder? Have a look at the Release notes for 11.1.1.2. This will relieve a lot of frustration.http://download.oracle.com/docs/cd/E15523_01/doc.1111/e14770/bpel.htm#BABECHBF16.1.6 Oracle JDeveloper May Hang When Using the Expression Builder Using the Expression Builder to build XPath expressions may cause Oracle JDeveloper to hang. If that happens, perform the following steps: Kill the Oracle JDeveloper process. Restart Oracle JDeveloper. Select Tools > Preferences > SOA, and deselect the Validate Expression checkbox. After performing these steps, Oracle JDeveloper should no longer hang.

    Read the article

  • Heterogén adatelérés OWB-vel: ODI EE Enterprise ETL

    - by Fekete Zoltán
    Az elozo ketto blogbejegyzéshez kapcsolódva felmerül a kérdés: Hogyan lehet az Oracle Warehouse Builderrel heterogén adatforrásokat elérni? Ajánlott olvasmány: Oracle Warehouse Builder 11gR2: OWB ETL Using ODI Knowledge Modules Természetesen az OWB az Oracle Database Heterogeneous Services-zel ODBC-vel illetve Oracle Gateway-k alkalmazásával eddig is lehetett mindenféle ODBC kompatibilis továbbá mainframe-es adatbázisokat elérni. Oracle Database Gateways: MS SQL Server, Sybase, Teradata, Informix, ODBC, DRDA, APPC, WebSphere MQ, DB2, DB2/400. A megfelelo Application Adapters megvásárlásával lehet csatlakozni az OWB-vel például a következo forrásokhoz: SAP, Oracle E-Business Suite, Peoplesoft, Siebel, Oracle Customer Data Hub (CDH), Universal Customer Master (UCM), Product Information Management (PIM). Az OWB 11gR2-tol kezdve az OWB tudja használni az Oracle Data Integrator Knowledge moduljait a heterogén adatelérésre, ez JDBC-vel illetve más heterogén elérési módokkal. Ajánlott olvasmány: Oracle Warehouse Builder 11gR2: OWB ETL Using ODI Knowledge Modules Letöltés: Oracle Warehouse Builder. BTW az OWB Java-s kliens szoftver Linux-on és Windows-on is használható. A szerver oldal pedig természetesen az Oracle adatbázisban fut: Solaris, Linux, HP-UX, AIX, Windows operációs rendszereken.

    Read the article

  • Android Bitmap : collision Detecting [on hold]

    - by user2505374
    I am writing an Android game right now and I would need some help in the collision of the wall on screen. When I drag the ball in the top and right it able to collide in wall but when I drag it faster it was able to overlap in the wall. public boolean onTouchEvent(MotionEvent event) { int x = (int) event.getX(); int y = (int) event.getY(); switch (event.getAction()) { // if the player moves case MotionEvent.ACTION_MOVE: { if (playerTouchRect.contains(x, y)) { boolean left = false; boolean right = false; boolean up = false; boolean down = false; boolean canMove = false; boolean foundFinish = false; if (x != pLastXPos) { if (x < pLastXPos) { left = true; } else { right = true; } pLastXPos = x; } if (y != pLastYPos) { if (y < pLastYPos) { up = true; } else { down = true; } pLastYPos = y; } plCellRect = getRectFromPos(x, y); newplRect.set(playerRect); newplRect.left = x - (int) (playerRect.width() / 2); newplRect.right = x + (int) (playerRect.width() / 2); newplRect.top = y - (int) (playerRect.height() / 2); newplRect.bottom = y + (int) (playerRect.height() / 2); int currentRow = 0; int currentCol = 0; currentRow = getRowFromYPos(newplRect.top); currentCol = getColFromXPos(newplRect.right); if(!canMove){ canMove = mapManager.getCurrentTile().pMaze[currentRow][currentCol] == Cell.wall; canMove =true; } finishTest = mapManager.getCurrentTile().pMaze[currentRow][currentCol]; foundA = finishTest == Cell.valueOf(letterNotGet + ""); canMove = mapManager.getCurrentTile().pMaze[currentRow][currentCol] != Cell.wall; canMove = (finishTest == Cell.floor || finishTest == Cell.pl) && canMove; if (canMove) { invalidate(); setTitle(); } if (foundA) { mapManager.getCurrentTile().pMaze[currentRow][currentCol] = Cell.floor; // finishTest letterGotten.add(letterNotGet); playCurrentLetter(); /*sounds.play(sExplosion, 1.0f, 1.0f, 0, 0, 1.5f);*/ foundS = letterNotGet == 's'; letterNotGet++; }if(foundS){ AlertDialog.Builder builder = new AlertDialog.Builder(mainActivity); builder.setTitle(mainActivity.getText(R.string.finished_title)); LayoutInflater inflater = mainActivity.getLayoutInflater(); View view = inflater.inflate(R.layout.finish, null); builder.setView(view); View closeButton =view.findViewById(R.id.closeGame); closeButton.setOnClickListener(new OnClickListener() { @Override public void onClick(View clicked) { if(clicked.getId() == R.id.closeGame) { mainActivity.finish(); } } }); AlertDialog finishDialog = builder.create(); finishDialog.show(); } else { Log.d(TAG, "INFO: updated player position"); playerRect.set(newplRect); setTouchZone(); updatePlayerCell(); } } // end of (CASE) if playerTouch break; } // end of (SWITCH) Case motion }//end of Switch return true; }//end of TouchEvent private void finish() { // TODO Auto-generated method stub } public int getColFromXPos(int xPos) { val = xPos / (pvWidth / mapManager.getCurrentTile().pCols); if (val == mapManager.getCurrentTile().pCols) { val = mapManager.getCurrentTile().pCols - 1; } return val; } /** * Given a y pixel position, return the row of the cell it is in This is * used when determining the type of adjacent Cells. * * @param yPos * y position in pixels * @return The cell this position is in */ public int getRowFromYPos(int yPos) { val = yPos / (pvHeight / mapManager.getCurrentTile().pRows); if (val == mapManager.getCurrentTile().pRows) { val = mapManager.getCurrentTile().pRows - 1; } return val; } /** * When preserving the position we need to know which cell the player is in, * so calculate it from the centre on its Rect */ public void updatePlayerCell() { plCell.x = (playerRect.left + (playerRect.width() / 2)) / (pvWidth / mapManager.getCurrentTile().pCols); plCell.y = (playerRect.top + (playerRect.height() / 2)) / (pvHeight / mapManager.getCurrentTile().pRows); if (mapManager.getCurrentTile().pMaze[plCell.y][plCell.x] == Cell.floor) { for (int row = 0; row < mapManager.getCurrentTile().pRows; row++) { for (int col = 0; col < mapManager.getCurrentTile().pCols; col++) { if (mapManager.getCurrentTile().pMaze[row][col] == Cell.pl) { mapManager.getCurrentTile().pMaze[row][col] = Cell.floor; break; } } } mapManager.getCurrentTile().pMaze[plCell.y][plCell.x] = Cell.pl; } } public Rect getRectFromPos(int x, int y) { calcCell.left = ((x / cellWidth) + 0) * cellWidth; calcCell.right = calcCell.left + cellWidth; calcCell.top = ((y / cellHeight) + 0) * cellHeight; calcCell.bottom = calcCell.top + cellHeight; Log.d(TAG, "Rect: " + calcCell + " Player: " + playerRect); return calcCell; } public void setPlayerRect(Rect newplRect) { playerRect.set(newplRect); } private void setTouchZone() { playerTouchRect.set( playerRect.left - playerRect.width() / TOUCH_ZONE, playerRect.top - playerRect.height() / TOUCH_ZONE, playerRect.right + playerRect.width() / TOUCH_ZONE, playerRect.bottom + playerRect.height() / TOUCH_ZONE); } public Rect getPlayerRect() { return playerRect; } public Point getPlayerCell() { return plCell; } public void setPlayerCell(Point cell) { plCell = cell; }

    Read the article

  • Savable in Widget Lookup on Move Action

    - by Geertjan
    Possible from 7.3 onwards, since Widget now implements Lookup.Provider for the first time: import java.awt.Point; import java.io.IOException; import org.netbeans.api.visual.action.ActionFactory; import org.netbeans.api.visual.action.MoveProvider; import org.netbeans.api.visual.widget.LabelWidget; import org.netbeans.api.visual.widget.Scene; import org.netbeans.api.visual.widget.Widget; import org.netbeans.spi.actions.AbstractSavable; import org.openide.util.Lookup; import org.openide.util.lookup.AbstractLookup; import org.openide.util.lookup.InstanceContent; import org.openide.windows.TopComponent; public class MyWidget extends LabelWidget { private MySavable mySavable; private Lookup lookup; private TopComponent tc; private InstanceContent ic; public MyWidget(Scene scene, String label, TopComponent tc) { super(scene, label); this.tc = tc; ic = new InstanceContent(); getActions().addAction(ActionFactory.createMoveAction(null, new MoveStrategyProvider())); } @Override public Lookup getLookup() { if (lookup == null) { lookup = new AbstractLookup(ic); } return lookup; } private class MoveStrategyProvider implements MoveProvider { @Override public void movementStarted(Widget widget) { } @Override public void movementFinished(Widget widget) { modify(); } @Override public Point getOriginalLocation(Widget widget) { return ActionFactory.createDefaultMoveProvider().getOriginalLocation(widget); } @Override public void setNewLocation(Widget widget, Point point) { ActionFactory.createDefaultMoveProvider().setNewLocation(widget, point); } } private void modify() { if (getLookup().lookup(MySavable.class) == null) { ic.add(mySavable = new MySavable()); } } private class MySavable extends AbstractSavable { public MySavable() { register(); } TopComponent tc() { return tc; } @Override protected String findDisplayName() { return getLabel(); } @Override protected void handleSave() throws IOException { ic.remove(mySavable); unregister(); } @Override public boolean equals(Object obj) { if (obj instanceof MySavable) { MySavable m = (MySavable) obj; return tc() == m.tc(); } return false; } @Override public int hashCode() { return tc().hashCode(); } } }

    Read the article

  • Are these non-standard applications of rendering practical in games?

    - by maul
    I've recently got into 3D and I came up with a few different "tricky" rendering techniques. Unfortunately I don't have the time to work on this myself, but I'd like to know if these are known methods and if they can be used in practice. Hybrid rendering Now I know that ray-tracing is still not fast enough for real-time rendering, at least on home computers. I also know that hybrid rendering (a combination of rasterization and ray-tracing) is a well known theory. However I had the following idea: one could separate a scene into "important" and "not important" objects. First you render the "not important" objects using traditional rasterization. In this pass you also render the "important" objects using a special shader that simply marks these parts on the image using a special color, or some stencil/depth buffer trickery. Then in the second pass you read back the results of the first pass and start ray tracing, but only from the pixels that were marked by the "important" object's shader. This would allow you to only ray-trace exactly what you need to. Could this be fast enough for real-time effects? Rendered physics I'm specifically talking about bullet physics - intersection of a very small object (point/bullet) that travels across a straight line with other, relatively slow-moving, fairly constant objects. More specifically: hit detection. My idea is that you could render the scene from the point of view of the gun (or the bullet). Every object in the scene would draw a different color. You only need to render a 1x1 pixel window - the center of the screen (again, from the gun's point of view). Then you simply check that central pixel and the color tells you what you hit. This is pixel-perfect hit detection based on the graphical representation of objects, which is not common in games. Afaik traditional OpenGL "picking" is a similar method. This could be extended in a few ways: For larger (non-bullet) objects you render a larger portion of the screen. If you put a special-colored plane in the middle of the scene (exactly where the bullet will be after the current frame) you get a method that works as the traditional slow-moving iterative physics test as well. You could simulate objects that the bullet can pass through (with decreased velocity) using alpha blending or some similar trick. So are these techniques in use anywhere, and/or are they practical at all?

    Read the article

  • Variable number of GUI Buttons

    - by Wakaka
    I have a generic HTML5 Canvas GUI Button class and a Scene class. The Scene class has a method called createButton(), which will create a new Button with onclick parameter and store it in a list of buttons. I call createButton() for all UI buttons when initializing the Scene. Because buttons can appear and disappear very often during rendering, Scene would first deactivate all buttons (temporarily remove their onclick, onmouseover etc property) before each render frame. During rendering, the renderer would then activate the required buttons for that frame. The problem is that part of the UI requires a variable number of buttons, and their onclick, onmouseover etc properties change frequently. An example is a buffs system. The UI will list all buffs as square sprites for the current unit selected, and mousing over each square will bring up a tooltip with some information on the buff. But the number of buffs is variable thus I won't know how many buttons to create at the start. What's the best way to solve this problem? P.S. My game is in Javascript, and I know I can use HTML buttons, but would like to make my game purely Canvas-based. Create buttons on-the-fly during rendering. Thus I will only have buttons when I require them. After the render frame these buttons would be useless and removed. Create a fixed set of buttons that I'm going to assume the number of buffs per unit won't exceed. During each render frame activate the buttons accordingly and set their onmouseover property. Assign a button to each Buff instance. This sounds wrong as the buff button is a part of the GUI which can only have one unit selected. Assigning a button to every single Buff in the game seems to be overkill. Also, I would need to change the button's position every render frame since its order in the unit's list of buffs matter. Any other solutions? I'm actually quite for idea (1) but am worried about the memory/time issues of creating a new Button() object every render frame. But this is in Javascript where object creation is oh-so-common ({} mainly) due to automatic garbage collection. What is your take on this? Thanks!

    Read the article

< Previous Page | 45 46 47 48 49 50 51 52 53 54 55 56  | Next Page >